DAC8412AT [ADI]

Quad, 12-Bit DAC Voltage Output with Readback; 四通道,12位DAC电压输出,回读
DAC8412AT
型号: DAC8412AT
厂家: ADI    ADI
描述:

Quad, 12-Bit DAC Voltage Output with Readback
四通道,12位DAC电压输出,回读

文件: 总20页 (文件大小:479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 12-Bit DAC  
Voltage Output with Readback  
Data Sheet  
DAC8412/DAC8413  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
REFH  
LOGIC  
DD  
+5 V to 15 V operation  
Unipolar or bipolar operation  
True voltage output  
Double-buffered inputs  
Reset to minimum (DAC8413) or center scale (DAC8412)  
Fast bus access time  
12  
I/O  
PORT  
DATA  
I/O  
INPUT  
REG A  
OUTPUT  
REG A  
V
DAC A  
DAC B  
DAC C  
DAC D  
OUTA  
OUTB  
DGND  
INPUT  
REG B  
OUTPUT  
REG B  
V
A0  
A1  
INPUT  
REG C  
OUTPUT  
REG C  
V
V
CONTROL  
LOGIC  
OUTC  
Readback  
R/W  
CS  
INPUT  
REG D  
OUTPUT  
REG D  
OUTD  
APPLICATIONS  
RESET  
LDAC  
Automatic test equipment  
Digitally controlled calibration  
Servo controls  
V
V
REFL  
SS  
Figure 1.  
Process control equipment  
GENERAL DESCRIPTION  
They can be operated from a wide variety of supply and reference  
voltages with supplies ranging from single +5 V to 15 V, and  
references from +2.5 V to 10 V. Power dissipation is less than  
330 mW with 15 V supplies and only 60 mW with a +5 V supply.  
The DAC8412/DAC8413 are quad, 12-bit voltage output  
DACs with readback capability. Built using a complementary  
BiCMOS process, these monolithic DACs offer the user very  
high package density.  
For MIL-STD-883 applications, contact your local Analog  
Devices, Inc. sales office for the DAC8412/DAC8413/883 data  
sheet, which specifies operation over the −55°C to +125°C  
temperature range. All 883 parts are also available on Standard  
Military Drawings 5962-91 76401MXA through 76404M3A.  
0.500  
Output voltage swing is set by the two reference inputs VREFH  
and VREFL. By setting the VREFL input to 0 V and VREFH to a  
positive voltage, the DAC provides a unipolar positive output  
range. A similar configuration with VREFH at 0 V and VREFL at a  
negative voltage provides a unipolar negative output range.  
Bipolar outputs are configured by connecting both VREFH and  
V
REFL to nonzero voltages. This method of setting output voltage  
0.375  
0.250  
0.125  
+125°C  
range has advantages over other bipolar offsetting methods  
because it is not dependent on internal and external resistors  
with different temperature coefficients.  
+25°C  
Digital controls allow the user to load or read back data from any  
DAC, load any DAC, and transfer data to all DACs at one time.  
0
–0.125  
–0.250  
–0.375  
–0.500  
–55°C  
RESET  
An active low  
loads all DAC output registers to midscale  
V
V
V
V
T
= +15V  
= –15V  
DD  
SS  
for the DAC8412 and zero scale for the DAC8413.  
= +10V  
= –10V  
REFH  
REFL  
The DAC8412/DAC8413 are available in 28-lead plastic DIP,  
28-lead cerami c DI P, 28-lead PLCC, and 28-lead LCC packages.  
= –55°C, +25°C, +125°C  
A
0
512  
1024 1536 2046 2548 2560  
DIGITAL INPUT CODE (Decimal)  
3072 4096  
Figure 2. INL vs. Code Over Temperature  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2000–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
DAC8412/DAC8413  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Introduction................................................................................ 14  
DACs............................................................................................ 14  
Glitch............................................................................................ 14  
Reference Inputs......................................................................... 14  
Digital I/O ................................................................................... 14  
Coding ......................................................................................... 14  
Supplies........................................................................................ 15  
Amplifiers.................................................................................... 15  
Reference Configurations.......................................................... 16  
Single +5 V Supply Operation.................................................. 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
aRevision History ............................................................................. 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 14  
REVISION HISTORY  
4/13—Rev. F to Rev. G  
Changed Reference Low Input Current from 0 mA (min),  
2 mA (typ), 2.75 mA (max) to −2.75 mA (min), −2 mA (typ),  
0 mA (max); Table 1......................................................................... 3  
Changes to Reference Configurations Section ........................... 17  
9/09—Rev. E to Rev. F  
Updated Figure Numbering..............................................Universal  
Removed Figure 7............................................................................. 6  
Changes to Ordering Guide .......................................................... 20  
6/07—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Added CERDIP Package....................................................Universal  
Changes to Specifications Section.................................................. 3  
Changes to Absolute Maximum Ratings Section......................... 7  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 20  
3/00—Rev. C to Rev. D  
Rev. G | Page 2 of 20  
 
Data Sheet  
DAC8412/DAC8413  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = +15.0 V, VSS = −15.0 V, VLOGIC = +5.0 V, VREFH = +10.0 V, VREFL = −10.0 V,−40°C ≤ TA ≤ +85°C, unless otherwise noted.1  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.25  
Max  
Unit  
ACCURACY  
Integral Nonlinearity Error  
INL  
E grade  
F grade  
0.5  
1
LSB  
LSB  
Differential Nonlinearity Error  
Min-Scale Error  
Full-Scale Error  
DNL  
VZSE  
VFSE  
Monotonic over temperature  
RL = 2 kΩ  
RL = 2 kΩ  
−1  
LSB  
LSB  
LSB  
2
2
Min-Scale Temperature Coefficient  
Full-Scale Temperature Coefficient  
Linearity Matching  
TCVZSE  
TCVFSE  
RL = 2 kΩ  
RL = 2 kΩ  
Adjacent DAC Matching  
15  
20  
1
ppm/°C  
ppm/°C  
LSB  
REFERENCE  
Positive Reference Input Voltage Range2  
Negative Reference Input Voltage Range2  
Reference High Input Current  
Reference Low Input Current  
Large Signal Bandwidth  
AMPLIFIER CHARACTERISTICS  
Output Current  
VREFL + 2.5  
−10  
−2.75  
VDD − 2.5  
VREFH − 2.5  
+2.75  
V
V
mA  
mA  
kHz  
IREFH  
IREFL  
BW  
+1.5  
−2  
160  
−2.75  
0
−3 dB, VREFH = 0 V to 10 V p-p  
IOUT  
tS  
SR  
RL = 2 kΩ, CL = 100 pF  
To 0.01%, 10 V step, RL = 1 kΩ  
10% to 90%  
–5  
+5  
mA  
μs  
V/μs  
dB  
Settling Time  
Slew Rate  
Analog Crosstalk  
10  
2.2  
72  
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Output High Voltage  
Logic Output Low Voltage  
Logic Input Current  
VINH  
VINL  
VOH  
VOL  
IIN  
TA = 25°C  
TA = 25°C  
IOH = 0.4 mA  
IOL = −1.6 mA  
2.4  
2.4  
V
V
V
V
0.8  
0.4  
1
μA  
Input Capacitance  
CIN  
8
5
pF  
nV-sec  
Digital Feedthrough3  
LOGIC TIMING CHARACTERISTICS3, 4  
Chip Select Write Pulse Width  
Write Setup  
VREFH = 2.5 V, VREFL = 0 V  
tWCS  
tWS  
tWH  
tAS  
tAH  
tLS  
80  
0
0
0
0
70  
30  
20  
0
170  
140  
130  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWCS = 80 ns  
tWCS = 80 ns  
Write Hold  
Address Setup  
Address Hold  
Load Setup  
Load Hold  
Write Data Setup  
Write Data Hold  
Load Data Pulse Width  
Reset Pulse Width  
Chip Select Read Pulse Width  
Read Data Hold  
Read Data Setup  
Data to High-Z  
Chip Select to Data  
tLH  
tWDS  
tWDH  
tLDW  
tRESET  
tRCS  
tRDH  
tRDS  
tDZ  
tWCS = 80 ns  
tWCS = 80 ns  
tRCS = 130 ns  
tRCS = 130 ns  
CL = 10 pF  
0
200  
160  
tCSD  
CL = 100 pF  
Rev. G | Page 3 of 20  
 
 
DAC8412/DAC8413  
Data Sheet  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
PSS  
IDD  
ISS  
14.25 V ≤ VDD ≤ 15.75 V  
VREFH = 2.5 V  
150  
12  
ppm/V  
mA  
mA  
8.5  
−6.5  
−10  
PDISS  
330  
mW  
1 All supplies can be varied 5%, and operation is guaranteed. Device is tested with nominal supplies.  
2 Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
3 All parameters are guaranteed by design.  
4 All input control signals are specified with tr = tf = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.  
VDD = VLOGIC = +5.0 V 5%, VSS = 0.0 V, VREFH = +2.5 V, VREFL = 0.0 V, VSS = –5.0 V 5%, VREFL = −2.5 V, 40°C ≤ TA ≤ +85°C,  
unless otherwise noted.1  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
ACCURACY  
Integral Nonlinearity Error  
INL  
E grade  
F grade  
VSS = 0.0 V, E grade2  
VSS = 0.0 V, F grade2  
Monotonic over temperature  
VSS = −5.0 V  
VSS = −5.0 V  
VSS = 0.0 V  
VSS = 0.0 V  
0.5  
1
2
2
4
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Differential Nonlinearity Error  
Min-Scale Error  
Full-Scale Error  
Min-Scale Error  
Full-Scale Error  
DNL  
VZSE  
VFSE  
VZSE  
VFSE  
–1  
4
4
8
8
LSB  
Min-Scale Temperature Coefficient  
Full-Scale Temperature Coefficient  
Linearity Matching  
TCVZSE  
TCVFSE  
100  
100  
1
ppm/°C  
ppm/°C  
LSB  
Adjacent DAC matching  
REFERENCE  
Positive Reference Input Voltage Range3  
Negative Reference Input Voltage Range  
VREFL + 2.5  
0
–2.5  
VDD − 2.5  
VREFH − 2.5  
VREFH − 2.5  
+1.0  
V
V
V
mA  
kHz  
VSS = 0.0 V  
VSS = −5.0 V  
Code 0x000  
−3 dB, VREFH = 0 V to 2.5 V p-p  
Reference High Input Current  
Large Signal Bandwidth  
AMPLIFIER CHARACTERISTICS  
Output Current  
Settling Time  
Slew Rate  
IREFH  
BW  
–1.0  
450  
IOUT  
tS  
SR  
RL = 2 kΩ, CL = 100 pF  
To 0.01%, 2.5 V step, RL = 1 kΩ  
10% to 90%  
–1.25  
+1.25  
mA  
μs  
V/μs  
7
2.2  
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Output High Voltage  
Logic Output Low Voltage  
Logic Input Current  
Input Capacitance  
VINH  
VINL  
VOH  
VOL  
IIN  
TA = 25°C  
TA = 25°C  
IOH = 0.4 mA  
IOL = −1.6 mA  
2.4  
2.4  
V
V
V
V
μA  
pF  
0.8  
0.45  
1
CIN  
8
LOGIC TIMING CHARACTERISTICS4, 5  
Chip Select Write Pulse Width  
Write Setup  
Write Hold  
Address Setup  
Address Hold  
Load Setup  
Load Hold  
tWCS  
tWS  
tWH  
tAS  
tAH  
tLS  
150  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWCS = 150 ns  
tWCS = 150 ns  
70  
50  
tLH  
Rev. G | Page 4 of 20  
Data Sheet  
DAC8412/DAC8413  
Parameter  
Symbol  
tWDS  
tWDH  
tLDW  
tRESET  
tRCS  
tRDH  
tRDS  
tDZ  
tCSD  
Conditions  
tWCS = 150 ns  
tWCS = 150 ns  
Min  
20  
0
180  
150  
170  
20  
Typ  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Data Setup  
Write Data Hold  
Load Data Pulse Width  
Reset Pulse Width  
Chip Select Read Pulse Width  
Read Data Hold  
tRCS = 170 ns  
tRCS = 170 ns  
CL = 10 pF  
Read Data Setup  
Data to High-Z  
0
200  
320  
Chip Select to Data  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
CL = 100 pF  
ns  
PSS  
IDD  
ISS  
100  
7
ppm/V  
mA  
mA  
mW  
mW  
12  
VSS = −5.0 V  
VSS = 0 V  
VSS = −5.0 V  
−10  
PDISS  
60  
110  
1 All supplies can be varied 5ꢀ% and operation is guaranteed. Device is tested with VDD = 4.75 V.  
2 For single-supply operation only (VREFL = 0.0 V% VSS = 0.0 V). Due to internal offset errors% INL and DNL are measured beginning at 0x005.  
3 Operation is guaranteed over this reference range% but linearity is neither tested nor guaranteed.  
4 All parameters are guaranteed by design.  
5 All input control signals are specified with tr = tf = 5 ns (10ꢀ to 90ꢀ of 5 V) and timed from a voltage level of 1.6 V.  
tWCS  
CS  
tWS  
tWH  
R/W  
tAH  
tAS  
tRDS  
A0/A1  
CS  
tRDH  
tRCS  
tLH  
tLDW  
tLS  
R/W  
LDAC  
DATA IN  
RESET  
tAH  
tAS  
tWDS  
tWDH  
A0/A1  
tDZ  
HIGH-Z  
HIGH-Z  
tRESET  
DATA  
OUT  
DATA VALID  
tCSD  
Figure 3. Data Output (Read Timing)  
Figure 4. Data Write (Input and Output Registers) Timing  
Rev. G | Page 5 of 20  
DAC8412/DAC8413  
Data Sheet  
80ns  
80ns  
CS  
CS  
tWH  
tWH  
tWS  
tWS  
R/W  
R/W  
tAS  
tAS  
ADDRESS  
ONE  
ADDRESS  
TWO  
ADDRESS  
THREE  
ADDRESS  
FOUR  
ADDRESS  
ONE  
ADDRESS  
TWO  
ADDRESS  
THREE  
ADDRESS  
FOUR  
ADDRESS  
LDAC  
ADDRESS  
tLS tLH  
tLH  
tLS  
LDAC  
tLDW  
tWDS  
tWDH  
t
tWDH  
WDS  
DATA1  
VALID  
DATA2  
VALID  
DATA3  
VALID  
DATA4  
VALID  
DATA IN  
DATA1  
VALID  
DATA3  
VALID  
DATA4  
VALID  
DATA2  
VALID  
DATA IN  
Figure 5. Single-Buffer Mode  
Figure 6. Double-Buffer Mode  
Rev. G | Page 6 of 20  
Data Sheet  
DAC8412/DAC8413  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
TA = +25°C, unless otherwise noted.  
θJA is specified for the worst-case mounting conditions, that is, a  
device in socket.  
Table 3.  
Parameter  
Rating  
Table 4. Thermal Resistance  
Package Type  
VSS to VDD  
VSS to VLOGIC  
VLOGIC to DGND  
VSS to VREFL  
VREFH to VDD  
VREFH to VREFL  
Current into Any VSS pin  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND  
Operating Temperature Range  
EP, FP, FPC  
−0.3 V, +33.0 V  
−0.3 V, +33.0 V  
−0.3 V, +7.0 V  
−0.3 V, +VSS − 2.0 V  
+2.0 V, +33.0 V  
+2.0 V, VSS − VDD  
15 mA  
θJA θJC Unit  
48 22 °C/W  
70 28 °C/W  
63 25 °C/W  
28-Lead Plastic DIP (PDIP)  
28-Terminal Ceramic Leadless Chip Carrier (LLC)  
28-Lead Plastic Leaded Chip Carrier (PLLC)  
28-Lead Ceramic Dual In-Line Package (CERDIP) 51  
9
°C/W  
−0.3 V, VLOGIC + 0.3 V  
−0.3 V, +7.0 V  
ESD CAUTION  
−40°C to +85°C  
−55°C to +125°C  
150°C  
−65°C to +150°C  
1000 mW  
AT, BT, BTC  
Junction Temperature  
Storage Temperature Range  
Power Dissipation Package  
Lead Temperature  
Soldering  
JEDEC Industry Standard  
J-STD-020  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. G | Page 7 of 20  
 
 
 
DAC8412/DAC8413  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
V
V
V
V
V
REFH  
OUTB  
OUTA  
REFL  
OUTC  
OUTD  
DD  
V
V
4
3
2
1
28 27 26  
4
3
2
1
28 27 26  
V
SS  
PIN 1  
INDENTFIER  
5
6
25  
24  
23  
22  
21  
20  
DGND  
RESET  
LDAC  
V
V
5
6
25  
24  
23  
22  
21  
20  
19  
DGND  
RESET  
LDAC  
V
V
DD  
DD  
DGND  
RESET  
LDAC  
LOGIC  
DAC8412/  
DAC8413  
LOGIC  
LOGIC  
23 CS  
DAC8412/  
DAC8413  
7
CS  
7
CS  
A0  
22 A0  
TOP VIEW  
DAC8412/  
DAC8413  
TOP VIEW  
8
DB0 (LSB)  
DB1  
A0  
(Not to Scale)  
DB0 (LSB)  
DB1  
21 A1  
8
DB0 (LSB)  
DB1  
TOP VIEW  
9
A1  
20 R/W  
19 DB11 (MSB)  
18 DB10  
17 DB9  
16 DB8  
15 DB7  
(Not to Scale)  
9
A1  
(Not to Scale)  
10  
11  
DB2  
R/W  
DB2 10  
DB3 11  
DB4 12  
DB5 13  
DB6 14  
10  
DB2  
R/W  
DB3  
DB11 (MSB)  
DB3 11  
19 DB11 (MSB)  
12 13 14 15 16 17 18  
12 13 14 15 16 17 18  
Figure 7. PDIP/CERDIP  
Figure 8. PLCC  
Figure 9. LCC  
Table 5. Pin Function Descriptions  
Pin Number Mnemonic Description  
1
2
3
4
VREFH  
VOUTB  
VOUTA  
VSS  
High-Side DAC Reference Input.  
DAC B Output.  
DAC A Output.  
Lower Rail Power Supply.  
Digital Ground.  
5
DGND  
RESET  
LDAC  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
DB10  
DB11  
R/W  
A1  
6
Reset Input and Output Registers to all 0s, Enabled at Active Low.  
7
Load Data to DAC, Enabled at Active Low.  
Data Bit 0, LSB.  
Data Bit 1.  
Data Bit 2.  
Data Bit 3.  
Data Bit 4.  
Data Bit 5.  
Data Bit 6.  
Data Bit 7.  
Data Bit 8.  
Data Bit 9.  
Data Bit 10.  
Data Bit 11, MSB.  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Active Low to Write Data to DAC. Active high to readback previous data at data bit pins with VLOGIC connected to 5 V.  
Address Bit 1.  
Address Bit 0.  
A0  
CS  
Chip Select, Enabled at Active Low.  
Voltage Supply for Readback Function. Can be open circuit if not used.  
Upper Rail Power Supply.  
DAC D Output.  
DAC C Output.  
VLOGIC  
VDD  
VOUTD  
VOUTC  
VREFL  
Low-Side DAC Reference Input.  
Rev. G | Page 8 of 20  
 
Data Sheet  
DAC8412/DAC8413  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
V
V
= +15V  
= –15V  
DD  
SS  
V
V
V
= 5V  
= 0V  
DD  
SS  
2
1
= –10V  
REFL  
= 25°C  
= 0V  
REFL  
= 25°C  
T
A
1
T
A
0
0
–1  
–2  
–1  
1
2
3
6
7
8
9
10  
11  
12  
V
REFH  
(V)  
V
(V)  
REFH  
Figure 13. DNL vs. VREFH  
Figure 10. DNL vs. VREFH  
1
0.3  
0.2  
0.1  
0
V
V
V
= 5V  
= 0V  
DD  
SS  
V
V
V
= +15V  
= –15V  
DD  
SS  
–1  
= 0V  
REFL  
= 25°C  
= 0V  
REFL  
T
A
T
= 25°C  
A
1
2
3
6
8
10  
12  
V
(V)  
V
(V)  
REFH  
REFH  
Figure 14. INL vs.VREFH  
Figure 11. INL vs. VREFH  
0.4  
0.2  
0
0.3  
0.1  
V
V
V
V
= +15V  
= –15V  
X+3σ  
DD  
SS  
= +10V  
= –10V  
REFH  
REFL  
X
–0.1  
–0.3  
X–3σ  
X+3σ  
–0.2  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
X
–0.4  
–0.6  
–0.5  
–0.7  
= +10V  
= –10V  
REFH  
REFL  
X–3σ  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
T = HOURS OF OPERATION AT 125°C  
T = HOURS OF OPERATION AT 125°C  
Figure 12. Full-Scale Error vs. Time Accelerated by Burn-in  
Figure 15. Zero-Scale Error vs. Time Accelerated by Burn-In  
Rev. G | Page 9 of 20  
 
DAC8412/DAC8413  
Data Sheet  
0.2  
1.00  
0.75  
0.50  
0.25  
V
V
V
V
= +15V  
= –15V  
V
V
V
T
= 5V  
= 0V  
DD  
SS  
DD  
SS  
= +10V  
= –10V  
= 2.5V  
REFH  
REFL  
REFH  
= 25°C  
A
0
–0.2  
0
–0.25  
–0.50  
–0.75  
–1.00  
DAC A  
DAC D  
DAC B  
DAC C  
–0.4  
–0.6  
–75  
0
75  
150  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
TEMPERATURE (°C)  
DIGITAL INPUT CODE (Decimal)  
Figure 16. Full-Scale Error vs. Temperature  
Figure 19. Channel-to-Channel Matching (VSUPPLY = +5 V/GND)  
0.2  
13  
V
V
V
V
= +15V  
= –15V  
V
V
V
= +15V  
= –15V  
DD  
SS  
DD  
SS  
= +10V  
= –10V  
= –10V  
REFH  
REFL  
REFL  
0
–0.2  
–0.4  
–0.6  
10  
DAC A  
DAC D  
DAC C  
7
DAC B  
4
–75  
0
75  
150  
7
3
1
5
9
13  
TEMPERATURE (°C)  
V
(V)  
REFH  
Figure 17. Zero-Scale Error vs. Temperature  
Figure 20. IDD vs. VREFH (All DACs High)  
0.37500  
0.26125  
0.18750  
0.08375  
0.500  
0.375  
0.250  
0.125  
V
V
= 10V  
= 0V  
= 25°C  
REFH  
REFL  
T
A
0
–0.09375  
–0.18750  
–0.23125  
–0.37500  
0
–0.125  
–0.250  
–0.375  
–0.500  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
REFH  
REFL  
T
= –55°C, +25°C, +125°C  
A
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
DIGITAL INPUT CODE (Decimal)  
DIGITAL INPUT CODE (Decimal)  
Figure 18. Channel-to-Channel Matching (VSUPPLY  
= 15 V)  
Figure 21. INL vs. Code  
Rev. G | Page 10 of 20  
Data Sheet  
DAC8412/DAC8413  
10V  
10V  
1V/DIV  
EA  
1V/DIV  
EA  
V
V
V
V
T
= +15V  
= –15V  
V
V
V
V
T
= +15V  
= –15V  
DD  
SS  
DD  
SS  
= +10V  
= –10V  
TRIG'D  
= +10V  
= –10V  
TRIG'D  
REFH  
REFL  
REFH  
REFL  
= 25°C  
= 25°C  
A
A
0V  
–580ns  
0V  
–580ns  
1µs/DIV  
9.42µs  
1µs/DIV  
9.42µs  
Figure 22. Positive Slew Rate  
Figure 25. Negative Slew Rate  
15.5mV  
2.0  
1.5  
1.0  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
0
INPUT  
–5V  
= +10V  
= –10V  
REFH  
REFL  
= +10V  
= –10V  
REFH  
REFL  
T
= 25°C  
A
T
= 25°C  
A
2mV/DIV  
5V/DIV  
0.5  
TRIG'D  
0
–4.5mV  
–1.96µs  
–0.5  
2µs/DIV  
18.04µs  
0
511  
1023  
1535  
2047  
2559  
3071  
3583  
4095  
DIGITAL INPUT CODE (Decimal)  
Figure 26. IVREFH vs. Code  
Figure 23. Settling Time (Negative)  
32.5mV  
1.0  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
5V  
INPUT  
0
= +10V  
= –10V  
0.8  
0.6  
0.4  
0.2  
0
REFH  
REFL  
T
= 25°C  
A
5mV/DIV  
5V/DIV  
1 LSB ERROR BAND  
TRIG'D  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
REFH  
= –10V  
REFL  
T
= 25°C  
A
–0.2  
0.01  
–17.5mV  
–1.96µs  
0.1  
1
10  
100  
2µs/DIV  
18.04µs  
LOAD RESISTANCE (k)  
Figure 27. INL vs. Load Resistance  
Figure 24. Settling Time (Positive)  
Rev. G | Page 11 of 20  
DAC8412/DAC8413  
Data Sheet  
12  
100  
80  
60  
40  
20  
0
V
V
V
V
= +15V  
= –15V  
DD  
SS  
+PSRR  
= +10V  
= –10V  
10  
8
REFH  
REFL  
T
= 25°C  
A
–PSRR  
6
+PSRR:  
V
V
= +15V ±1Vp  
= –15V  
DD  
SS  
4
–PSRR:  
V
V
V
= +15V  
= –15V ±1V  
DD  
2
SS  
= +10V  
REFH  
ALL DATA 0  
0
0.01  
0.1  
1
10  
100  
10  
100  
1k  
10k  
100k  
1M  
10k  
25  
LOAD RESISTANCE (kΩ)  
FREQUENCY (Hz)  
Figure 28. Output Swing vs. Load Resistance  
Figure 31. PSRR vs. Frequency  
10  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
REFH  
REFL  
1
0.10  
0
T
= 25°C  
A
–10  
–30  
–50  
–70  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
0.01  
= 0 ±100mV  
= –10V  
REFH  
REFL  
DATA BITS = +5V  
200mV p-p  
0.001  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
FREQUENCY (Hz)  
NOISE FREQUENCY (Hz)  
Figure 32. Noise Density vs. Noise Frequency  
Figure 29. Small Signal Response  
10  
6
40  
30  
V
V
V
V
T
= +15V  
= –15V  
= +10V  
= –10V  
DD  
SS  
I
DD  
REFH  
REFL  
+I  
SC  
20  
= 25°C  
DATA = 0x000  
V
V
= +15V  
= –15V  
A
DD  
SS  
10  
2
0
–2  
–6  
–10  
–20  
–30  
–40  
I
SS  
–I  
SC  
–10  
–75  
0
75  
150  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
TEMPERATURE (°C)  
V
(V)  
OUT  
Figure 30. Power Supply Current vs. Temperature  
Figure 33. IOUT vs. VOUT  
Rev. G | Page 12 of 20  
Data Sheet  
DAC8412/DAC8413  
10µs  
CH1 MEAN  
66.19µV  
4µs  
1V  
GLITCH AT DAC OUTPUT  
1
2
1
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
REFH  
REFL  
DEGLITCHER OUTPUT  
T
= 25°C  
A
1V  
20µV/DIV  
M 200µs  
A
CH1  
12.9mV  
CH2  
1.86V  
Figure 34. Broadband Noise  
Figure 36. Glitch and Deglitched Results  
25  
V
V
V
V
= +15V  
= 0V  
+I  
SC  
DD  
SS  
20  
15  
= +10V  
REFH  
= 0V  
REFL  
T
= 25°C  
A
10  
5
DATA = 0x800  
0
–5  
–10  
–15  
–20  
–25  
–I  
SC  
–6  
–4  
–2  
0
2
4
6
V
(V)  
OUT  
Figure 35. IOUT vs. VOUT  
Rev. G | Page 13 of 20  
 
DAC8412/DAC8413  
Data Sheet  
THEORY OF OPERATION  
INTRODUCTION  
REFERENCE INPUTS  
All four DACs share common reference high (VREFH) and reference  
low (VREFL) inputs. The voltages applied to these reference inputs set  
the output high and low voltage limits of all four of the DACs.  
Each reference input has voltage restrictions with respect to the  
other reference and to the power supplies. The VREFL can be set at  
any voltage between VSS and VREFH − 2.5 V, and VREFH can be set to  
any value between +VDD − 2.5 V and VREFL + 2.5 V. Note that  
because of these restrictions, the DAC8412 references cannot be  
inverted (that is, VREFL cannot be greater than VREFH).  
The DAC8412/DAC8413 are quad, voltage output, 12-bit parallel  
input DACs featuring a 12-bit data bus with readback capability.  
The only differences between the DAC8412/DAC8413 are the  
reset functions. The DAC8412 resets to midscale (Code 0x800),  
and the DAC8413 resets to minimum scale (Code 0x000).  
The ability to operate from a single 5 V supply is a unique  
feature of these DACs.  
Operation of the DAC8412/DAC8413 can be viewed by  
dividing the system into three separate functional groups: the  
digital I/O and logic, the digital-to-analog converters, and the  
output amplifiers.  
It is important to note that the DAC8412 VREFH input both sinks  
and sources current. In addition, the input current of both VREFH  
and VREFL are code-dependent. Many references have limited  
current-sinking capability and must be buffered with an  
amplifier to drive VREFH. The VREFL has no such special  
requirements.  
DACS  
Each DAC is a voltage switched, high impedance (R = 50 kΩ),  
R-2R ladder configuration. Each 2R resistor is driven by a pair  
of switches that connect the resistor to either VREFH or VREFL  
.
It is recommended that the reference inputs be bypassed with  
0.2 μF capacitors when operating with 10 V references. This  
limits the reference bandwidth.  
GLITCH  
Worst-case glitch occurs at the transition between Half-Scale  
Digital Code 1000 0000 0000 to half-scale minus 1 LSB, 0111  
1111 1111. It can be measured at about 2 V μs (see Figure 36).  
For demanding applications such as waveform generation or  
precision instrumentation control, a deglitcher circuit can be  
implemented with a standard sample-and-hold circuit (see  
DIGITAL I/O  
See Table 6 for the digital control logic truth table. Digital I/O  
consists of a 12-bit bidirectional data bus, two registers select  
W
RESET  
CS  
inputs, A0 and A1, a R/ input, a  
LDAC  
input, a chip select ( ),  
and a load DAC (  
) input. Control of the DACs and bus  
CS  
Figure 37). When  
is enabled by synchronizing the hold  
direction is determined by these inputs as shown in Table 6. Digital  
data bits are labeled with the MSB defined as Data Bit 11 and the  
LSB as Data Bit 0. All digital pins are TTL/CMOS compatible.  
period to be longer than the glitch tradition, the output voltage  
can be smoothed with minimum disturbance. A quad  
sample-and-hold amplifier, SMP04, has been used to illustrate  
the deglitching result (see Figure 36).  
See Figure 38 for a simplified I/O logic diagram. The register  
select inputs A0 and A1 select individual DAC registers A  
(Binary Code 00) through D (Binary Code 11). Decoding of the  
DACOUT  
DACOUT  
1
CS  
CS  
registers is enabled by the  
input. When  
is high, no  
S/H  
decoding takes place, and neither the writing nor the reading of  
the input registers is enabled. The loading of the second bank of  
LDAC  
registers is controlled by the asynchronous  
input. By  
DACOUT  
LDAC CS  
taking  
low while  
is enabled, all output registers can  
be updated simultaneously. Note that the tLDW required pulse  
width for updating all DACs is a minimum of 170 ns.  
CS  
W
CS  
The R/ input, when enabled by , controls the writing to  
and reading from the input register.  
S/H  
H
S
H
S
DACOUT  
1
CODING  
Both DAC8412/DAC8413 use binary coding. The output  
voltage can be calculated by  
Figure 37. Data Output (Read Timing)  
(VREFH VREFL )N  
VOUT VREFL   
4096  
where N is the digital code in decimal.  
Rev. G | Page 14 of 20  
 
 
 
 
 
 
 
 
Data Sheet  
DAC8412/DAC8413  
V
LOGIC is the digital output supply voltage for the readback  
RESET  
function. It is normally connected to +5 V. This pin is a logic  
reference input only. It does not supply current to the device. If  
the readback function is not being used, VLOGIC can be left open-  
circuit. While VLOGIC does not supply current to the DAC8412, it  
does supply currents to the digital outputs when readback is used.  
RESET  
The  
function can be used either at power-up or at any  
RESET  
time during DAC operation. The  
function is independent  
CS  
of . This pin is active low and sets the DAC output registers  
to either center code for the DAC8412, or zero code for the  
DAC8413. The reset-to-center code is most useful when the  
DAC is configured for bipolar references and an output of 0 V  
after reset is desired.  
AMPLIFIERS  
Unlike many voltage output DACs, the DAC8412 features buffered  
voltage outputs. Each output is capable of both sourcing and  
sinking 5 mA at 10 V, eliminating the need for external  
amplifiers when driving 500 pF or smaller capacitive load in  
most applications. These amplifiers are short-circuit protected.  
SUPPLIES  
Supplies required are VSS, VDD, and VLOGIC. The VSS supply can  
be set between −15 V and 0 V. VDD is the positive supply; its  
operating range is between 5 V and 15 V.  
Table 6. DAC8412/DAC8413 Logic Table  
R/  
W
CS  
RS  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
LDAC  
A1  
L
L
H
H
L
A0  
L
H
L
H
L
H
L
H
L
H
L
H
X
X
X
X
Input Register  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Read  
Output Register  
Mode  
DAC  
A
B
C
D
A
B
C
D
A
B
C
D
All  
All  
All  
All  
L
L
L
L
L
L
L
L
H
H
H
H
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
H
H
X
H
L
L
L
L
H
H
H
H
H
H
H
H
L
Write  
Write  
Write  
Write  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Transparent  
Transparent  
Transparent  
Transparent  
Write input  
Write input  
Write input  
Write input  
Read input  
Read input  
Read input  
Read input  
L
H
H
L
L
Read  
Read  
Read  
Hold  
H
H
X
X
X
X
Update all output registers  
Hold  
H
X
X
Hold  
Hold  
All registers reset to midscale/zero-scale1  
All registers latched to midscale/zero-scale1  
1 DAC8412 resets to midscale, and DAC8413 resets to zero scale. L = logic low; H = logic high; X = don’t care. Input and output registers are transparent when asserted.  
Rev. G | Page 15 of 20  
 
 
 
DAC8412/DAC8413  
Data Sheet  
V
V
V
SS  
REFH  
DD  
RDDACA  
WRDB0  
WRDB1  
WRDB2  
WRDB3  
WRDB4  
WRDB5  
WRDB6  
WRDB7  
WRDB8  
WRDB9  
WRDB10  
WRDB11  
CS  
DAC A  
DAC B  
DAC C  
DAC D  
V
OUTA  
WRDACA  
RDDACB  
A0  
A1  
V
OUTB  
WRDACB  
INPUT  
REGISTER  
OUTPUT  
REGISTER  
RDDACC  
V
OUTC  
WRDACC  
RDDACD  
WRDACD  
R/W  
V
OUTD  
DB11..DB0  
V
REFL  
V
LOGIC  
LDAC  
RESET  
READOUTBAR  
READBACKDATAIN_DB10  
READOUT  
READBACKDATAIN_DB11  
READBACK  
DATAOUT_DB11  
DGND  
Figure 38. Simplified I/O Logic Diagram  
+15V  
Careful attention to grounding is important for accurate  
operation of the DAC8412. This is not because the DAC8412 is  
more sensitive than other 12-bit DACs, but because with four  
outputs and two references, there is greater potential for ground  
loops. Because the DAC8412 has no analog ground, the ground  
must be specified with respect to the reference.  
39k  
+15V  
V
DD  
6.2Ω  
V
BALANCE  
REFH  
100kΩ  
0.2µF  
AD688 FOR ±10V  
AD588 FOR ±5V  
DAC8412  
OR  
DAC8413  
0.1µF  
//10µF  
REFERENCE CONFIGURATIONS  
GAIN  
100kΩ  
Output voltage ranges can be configured as either unipolar or  
bipolar, and within these choices, a wide variety of options  
exists. The unipolar configuration can be either positive or  
negative voltage output, and the bipolar configuration can be  
either symmetrical or nonsymmetrical.  
6.2Ω  
V
REFL  
0.2µF  
V
SS  
1µF  
–15V  
±5 OR ±10V OPERATION  
+15V  
Figure 40. Symmetrical Bipolar Operation  
+15V  
+
Figure 40 (symmetrical bipolar operation) shows the DAC8412  
configured for 10 ꢀ operation. See the AD688 data sheet for a  
full explanation of reference operation. Adjustments may not be  
required for many applications since the AD688 is a very high  
accuracy reference. However, if additional adjustments are  
required, adjust the DAC8412 full scale first. Begin by loading  
the digital full-scale code (0xFFF), and then adjust the gain  
adjust potentiometer to attain a DAC output voltage of 9.9976 .  
Then, adjust the balance adjust to set the center-scale output  
voltage to 0.000 .  
V
REFH  
V
INPUT  
DD  
OP400  
OUTPUT  
TRIM  
0.2µF  
DAC8412  
OR  
DAC8413  
REF10  
0.1µF  
//10µF  
10k  
V
REFL  
V
SS  
+10V OPERATION  
–15V  
Figure 39. Unipolar +10 V Operation  
Rev. G | Page 16 of 20  
 
 
 
Data Sheet  
DAC8412/DAC8413  
The 0.2 μF bypass capacitors shown at the reference inputs in  
Figure 40 should be used whenever ±±0 ꢀ references are used.  
Applications with single references or references to ±5 ꢀ may  
not require the 0.2 μF bypassing. The 6.2 Ω resistor in series  
with the output of the reference amplifier keeps the amplifier  
from oscillating with the capacitive load. This 6.2 Ω resistor has  
been found to be large enough to stabilize this circuit. Larger  
resistor values are acceptable, provided that the drop across the  
resistor does not exceed ꢀBE. Assuming a minimum ꢀBE of 0.6 ꢀ  
and a maximum current of 2.75 mA, then the resistor should be  
under 200 Ω for the loading of a single DAC84±2.  
Figure 4± shows the DAC84±2 configured for –±0 ꢀ to 0 ꢀ  
operation. A –±0 ꢀ full-scale output voltage reference is  
connected directly to ꢀREFL for the reference voltage.  
SINGLE +5 V SUPPLY OPERATION  
For operation with a 5 ꢀ supply, the reference voltage should be  
set between ±.0 ꢀ and 2.5 ꢀ for optimum linearity. Figure 42  
shows a REF43 used to supply a 2.5 ꢀ reference voltage. The  
headroom of the reference and DAC are both sufficient to support  
a 5 ꢀ supply with ±5% tolerance. ꢀDD and ꢀLOGIC should be  
connected to the same supply. Separate bypassing to each pin  
should also be used.  
Using two separate references is not recommended. Having two  
references can cause different drifts with time and temperature;  
whereas with a single reference, most drifts track.  
5V  
10µF  
0.01µF  
Unipolar positive full-scale operation can usually be set with a  
reference with the correct output voltage. This is preferable to  
using a reference and dividing down to the required value. For a  
±0 ꢀ full-scale output, the circuit can be configured as shown in  
Figure 4±. In this configuration, the full-scale value is set first by  
adjusting the ±0 kΩ resistor for a full-scale output of 9.9976 .  
10k  
INPUT  
V
DD  
V
OUTPUT  
REFH  
REF43  
0.2µF  
DAC8412  
OR  
DAC8413  
0.1µF  
//10µF  
TRIM  
10k  
GND  
V
REFL  
V
SS  
ZERO TO 2.5V OPERATION  
SINGLE 5V SUPPLY  
V
TRIM  
REFH  
V
DD  
Figure 42. +5 V Single-Supply Operation  
OUTPUT  
0.2µF  
GND VOLTAGE  
REFERENCE  
DAC8412  
OR  
0.1µF  
//10µF  
DAC8413  
V
REFL  
0.01µF  
10µF  
V
SS  
ZERO TO –10V OPERATION  
–15V  
Figure 41. Unipolar –10 V Operation  
Rev. G | Page 17 of 20  
 
 
 
DAC8412/DAC8413  
Data Sheet  
OUTLINE DIMENSIONS  
0.300 (7.62)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.075  
(1.91)  
REF  
0.020 (0.51)  
MIN  
19  
25  
0.028 (0.71)  
0.022 (0.56)  
18  
26  
28  
0.05 (1.27)  
0.458  
BOTTON  
VIEW  
0.458 (11.63)  
0.442 (11.23)  
(11.63)  
MAX  
SQ  
1
SQ  
0.15 (3.81)  
REF  
0.075 (1.91)  
REF  
12  
4
11  
5
0.095 (2.41)  
0.075 (1.90)  
0.055 (1.40)  
0.045 (1.14)  
0.088 (2.24)  
0.054 (1.37)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 43. 28-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-28-1)  
Dimensions shown in inches and (millimeters)  
1.565 (39.75)  
1.380 (35.05)  
28  
1
15  
0.580 (14.73)  
0.485 (12.31)  
14  
0.625 (15.88)  
0.600 (15.24)  
0.100 (2.54)  
BSC  
0.195 (4.95)  
0.125 (3.17)  
0.250 (6.35)  
MAX  
0.015 (0.38)  
GAUGE  
PLANE  
0.015  
(0.38)  
MIN  
0.200 (5.08)  
0.115 (2.92)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.700 (17.78)  
MAX  
0.022 (0.56)  
0.014 (0.36)  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
COMPLIANT TO JEDEC STANDARDS MS-011  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE LEADS.  
Figure 44. 28-Lead Plastic Dual In-Line Package [PDIP]  
Wide Body  
(N-28-2)  
Dimensions shown in inches and (millimeters)  
Rev. G | Page 18 of 20  
 
Data Sheet  
DAC8412/DAC8413  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.22)  
0.042 (1.07)  
0.056 (1.42)  
0.042 (1.07)  
0.020 (0.51)  
MIN  
4
5
26  
25  
0.048 (1.22)  
0.042 (1.07)  
0.021 (0.53)  
0.013 (0.33)  
PIN 1  
IDENTIFIER  
BOTTOM  
VIEW  
(PINS UP)  
0.050  
(1.27)  
BSC  
0.430 (10.92)  
0.390 (9.91)  
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
11  
12  
19  
18  
0.045 (1.14)  
0.025 (0.64)  
R
0.456 (11.582)  
0.450 (11.430)  
SQ  
0.120 (3.04)  
0.090 (2.29)  
0.495 (12.57)  
SQ  
0.485 (12.32)  
COMPLIANT TO JEDEC STANDARDS MO-047-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 45. 28-Lead Plastic Leaded Chip Carrier [PLCC]  
(P-28)  
Dimensions shown in inches and (millimeters)  
0.100 (2.54)  
MAX  
0.005 (0.13)  
MIN  
28  
15  
14  
0.610 (15.49)  
0.500 (12.70)  
1
PIN 1  
0.620 (15.75)  
0.590 (14.99)  
0.015 (0.38)  
MIN  
0.225(5.72)  
MAX  
1.490 (37.85) MAX  
0.150 (3.81)  
MIN  
0.018 (0.46)  
0.008 (0.20)  
15°  
0°  
0.200 (5.08)  
0.125 (3.18)  
0.100  
(2.54)  
BSC  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
0.026 (0.66)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 46. 28-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-28-2)  
Dimensions shown in inches and (millimeters)  
Rev. G | Page 19 of 20  
DAC8412/DAC8413  
Data Sheet  
ORDERING GUIDE  
Model1  
Notes Temperature Range  
INL  
Package Description  
Package Option  
Q-28-2  
Q-28-2  
E-28-1  
N-28-2  
N-28-2  
N-28-2  
P-28  
DAC8412AT/883C  
DAC8412BT/883C  
DAC8412BTC/883C  
DAC8412EP  
DAC8412EPZ  
DAC8412FP  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0.75 28-Lead Ceramic Dual In-Line Package [CERDIP]  
1.5  
1.5  
0.5  
0.5  
1
1
1
1
1
28-Lead Ceramic Dual In-Line Package [CERDIP]  
28-Terminal Ceramic Leadless Chip Carrier [LCC]  
28-Lead Plastic Dual In-Line Package [PDIP]  
28-Lead Plastic Dual In-Line Package [PDIP]  
28-Lead Plastic Dual In-Line Package [PDIP]  
28-Lead Plastic Leaded Chip Carrier [PLCC]  
28-Lead Plastic Leaded Chip Carrier [PLCC]  
28-Lead Plastic Leaded Chip Carrier [PLCC]  
28-Lead Plastic Leaded Chip Carrier [PLCC]  
28-Lead Plastic Dual In-Line Package [PDIP]  
2
2
2
2
2
2
2
2
DAC8412FPC  
DAC8412FPC-REEL  
DAC8412FPCZ  
DAC8412FPCZ-REEL  
DAC8412FPZ  
P-28  
P-28  
P-28  
1
N-28-2  
Q-28-2  
Q-28-2  
E-28-1  
N-28-2  
N-28-2  
N-28-2  
P-28  
P-28  
P-28  
N-28-2  
N-28-2  
DAC8413AT/883C  
DAC8413BT/883C  
DAC8413BTC/883C  
DAC8413EP  
DAC8413EPZ  
DAC8413FP  
0.75 28-Lead Ceramic Dual In-Line Package [CERDIP]  
1.5  
1.5  
0.5  
0.5  
1
1
1
1
1
28-Lead Ceramic Dual In-Line Package [CERDIP]  
28-Terminal Ceramic Leadless Chip Carrier [LCC]  
28-Lead Plastic Dual In-Line Package [PDIP]  
28-Lead Plastic Dual In-Line Package [PDIP]  
28-Lead Plastic Dual In-Line Package [PDIP]  
28-Lead Plastic Leaded Chip Carrier [PLCC]  
28-Lead Plastic Leaded Chip Carrier [PLCC]  
28-Lead Plastic Leaded Chip Carrier [PLCC]  
28-Lead Plastic Dual In-Line Package [PDIP]  
28-Lead Plastic Dual In-Line Package [PDIP]  
2
2
2
2
2
2
2
2
DAC8413FPC  
DAC8413FPC-REEL  
DAC8413FPCZ  
DAC8413FPC-REEL  
DAC8413FPZ  
1
1 Z = RoHS Compliant Part.  
2 If burn-in is required, these models are available in CERDIP. Contact sales.  
©2000–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00274-0-4/13(G)  
Rev. G | Page 20 of 20  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY