LCK4993YH-DT [AGERE]

Low-Voltage PLL Clock Drivers; 低电压PLL时钟驱动器
LCK4993YH-DT
型号: LCK4993YH-DT
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

Low-Voltage PLL Clock Drivers
低电压PLL时钟驱动器

时钟驱动器
文件: 总25页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
1 Features  
2 Description  
12 MHz—100 MHz (LCK4993), or 24 MHz—200 MHz  
(LCK4994) output operation  
The LCK4993 and LCK4994 low-voltage PLL clock drivers  
offer user-selectable control over system clock functions.  
The multiple-output clock drivers provide the system  
integrator with functions necessary to optimize the timing of  
high-performance computer and communication systems.  
Matched pair output skew <200 ps  
Zero input-to-output delay  
18 LVTTL 50% duty-cycle outputs capable of driving  
50 terminated lines  
Each of the eighteen configurable outputs drive terminated  
transmission lines with impedances as low as 50 while  
delivering minimal and specified output skews at LVTTL  
levels. The outputs are arranged in five banks. Banks 1—4  
allow a divide function of 1 to 12, while simultaneously  
allowing phase adjustments in 625 ps—1300 ps increments  
up to 10.4 ns. One of the output banks also includes an  
independent clock invert function. The feedback bank  
consists of two outputs that allow divide-by functionality  
from 1 to 12 and limited phase adjustments. Any one of  
these eighteen outputs can be connected to the feedback  
input or drive other inputs.  
3.3 V/2.5 V LVTTL/LV differential (LVPECL) fault tolerant  
and hot insertable reference inputs  
Phase adjustments from 625 ps up to 1300 ps steps up  
to ±10.4 ns  
Output divide ratios of (1—6, 8, 10, 12)  
Multiply ratios of (1—6, 8) x input frequency  
Individual output bank disable for aggressive power  
management and EMI reduction  
Selectable reference input is a fault tolerance feature that  
allows smooth change over to the secondary clock source  
when the primary clock source is not in operation. The  
reference inputs and feedback inputs are configurable to  
accommodate both LVTTL or differential (LVPECL) inputs.  
The completely integrated PLL reduces jitter and simplifies  
board layout.  
Output high-impedance (HI-Z) option for testing  
purposes  
Fully integrated PLL with lock indicator  
Single 3.3 V/2.5 V ± 10% supply  
100-pin TQFP package  
100-ball FSBGA package  
Pin-for-pin compatible with CYPRESS® CY7B993V and  
CY7B994V  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
Table of Contents  
Contents  
Page  
1 Features .............................................................................................................................................................................1  
2 Description ..........................................................................................................................................................................1  
3 Functional Block Diagram ...................................................................................................................................................3  
4 Pin Information ...................................................................................................................................................................4  
4.1 100-Pin TQFP Diagram ...............................................................................................................................................4  
4.2 Pin Descriptions ...........................................................................................................................................................5  
5 Functional Description ........................................................................................................................................................7  
5.1 Phase Frequency Detector and Filter ..........................................................................................................................7  
5.2 VCO, Control Logic, Divider, and Phase Generator ....................................................................................................7  
5.3 Time Unit Definition .....................................................................................................................................................7  
5.4 Divide and Phase Select Matrix ...................................................................................................................................8  
5.5 Timing Relationship of Programmable Skew Outputs .................................................................................................9  
5.6 Output Disable Description ........................................................................................................................................10  
5.7 INV3 Pin Function ......................................................................................................................................................10  
5.8 Lock Detect Output Description .................................................................................................................................10  
5.9 Factory Test Mode Description ..................................................................................................................................11  
5.9.1 Factory Test Reset ...........................................................................................................................................11  
5.10 Absolute Maximum Ratings .....................................................................................................................................11  
5.11 Handling Precautions ..............................................................................................................................................12  
5.12 Thermal Parameters (Definitions and Values) .........................................................................................................12  
6 Electrical Characteristics ..................................................................................................................................................14  
7 Timing ...............................................................................................................................................................................18  
7.1 Switching Characteristics ..........................................................................................................................................18  
7.2 ac Test Loads and Waveforms ..................................................................................................................................21  
7.3 ac Timing Diagrams ...................................................................................................................................................22  
8 Outline Diagrams ..............................................................................................................................................................23  
8.1 100-Pin TQFP ............................................................................................................................................................23  
8.2 100-Ball FSBGA ........................................................................................................................................................24  
9 Ordering Information .........................................................................................................................................................25  
Tables  
Table 4-1. 100-Pin FSBGA Pin Assignments .........................................................................................................................4  
Table 4-2. 100-Pin TQFP Descriptions...................................................................................................................................5  
Table 5-1. Frequency Range Select .......................................................................................................................................7  
Table 5-2. N Factor Determination..........................................................................................................................................7  
Table 5-3. Output Skew Select Function ................................................................................................................................8  
Table 5-4. Output Divider Function.........................................................................................................................................8  
Table 5-5. DIS[1:4]/FBDIS Pin Functionality.........................................................................................................................10  
Table 5-6. Factory Test Mode Frequency Divide Select ....................................................................................................... 11  
Table 5-7. Absolute Maximum Ratings................................................................................................................................. 11  
Table 5-8. Handling Precautions...........................................................................................................................................12  
Table 5-9. Thermal Parameter Values..................................................................................................................................13  
Table 6-1. Electrical Characteristics (TA –40 °C to +85 °C, VDD = 3.3 V ± 10%)..................................................................14  
Table 6-2. Electrical Characteristics (TA –40 °C to +85 °C, VDD = 2.5 V ± 10%)..................................................................16  
Table 7-1. Switching Characteristics (TA –40 °C to +85 °C, VDD = 3.3 V ± 10%).................................................................18  
Table 7-2. Switching Characteristics (TA –40 °C to +85 °C, VDD = 2.5 V ± 10%).................................................................20  
Table 9-1. LCK4993 Ordering Information............................................................................................................................25  
Table 9-2. LCK4994 Ordering Information............................................................................................................................25  
Figures  
Figure 3-1. LCK4993 and LCK4994 Functional Block Diagram .............................................................................................3  
Figure 4-1. 100-Pin TQFP Package (Top View).....................................................................................................................4  
Figure 5-1. Typical Outputs with FB Connected to a Zero-Skew Output................................................................................9  
Figure 7-1. ac Test Loads and Waveforms ..........................................................................................................................21  
Figure 7-2. ac Timing Diagrams ...........................................................................................................................................22  
2
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
3 Functional Block Diagram  
FBKA+  
FBKA–  
LOCK  
FBKB+  
FBKB–  
FBSEL  
PHASE  
FREQUENCY  
CONTROL LOGIC  
DIVIDE AND PHASE  
VCO  
FILTER  
REFA+  
REFA–  
REFB+  
REFB–  
REFSEL  
DETECTOR  
GENERATOR  
FS  
3
OUTPUT_MODE  
3
FBF0  
3
DIVIDE AND  
PHASE SELECT  
MATRIX  
QFA0  
QFA1  
FBDS0  
3
3
FEEDBACK BANK  
FBDS1  
FBDIS  
3
3
3
3
4F0  
4F1  
4QA0  
4QA1  
DIVIDE AND  
PHASE SELECT  
MATRIX  
BANK 4  
4DS0  
4DS1  
DIS4  
4QB0  
4QB1  
3F0  
3F1  
3
3
3
3
3QA0  
3QA1  
DIVIDE AND  
PHASE SELECT  
MATRIX  
BANK 3  
3DS0  
3QB0  
3QB1  
3DS1  
DIS3  
INV3  
2F0  
2F1  
3
3
3
3
2QA0  
2QA1  
DIVIDE AND  
PHASE SELECT  
MATRIX  
BANK 2  
BANK 1  
2DS0  
2DS1  
DIS2  
2QB0  
2QB1  
1F0  
1F1  
3
3
3
3
1QA0  
1QA1  
DIVIDE AND  
PHASE SELECT  
MATRIX  
1DS0  
1QB0  
1QB1  
1DS1  
DIS1  
Figure 3-1. LCK4993 and LCK4994 Functional Block Diagram  
Agere Systems Inc.  
3
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
4 Pin Information  
4.1 100-Pin TQFP Diagram  
GND  
3F1  
4F1  
3F0  
4F0  
4DS1  
3DS1  
GND  
4QB1  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDDQ  
1
REFA+  
REFA–  
REFSEL  
REFB–  
REFB+  
2F0  
FS  
GND  
2QA0  
VDDN  
2
3
4
5
6
7
8
9
VDDN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
4QB0  
GND  
GND  
4QA1  
2QA1  
GND  
GND  
2QB0  
VDDN  
VDDN  
4QA0  
GND  
2DS1  
1DS1  
2QB1  
GND  
FBF0  
1F0  
VDDQ  
GND  
4DS0  
3DS0  
2DS0  
1DS0  
GND  
VDDQ  
FBDIS  
DIS4  
DIS3  
OUTPUT_MODE  
5-8885 (F) r.1  
Figure 4-1. 100-Pin TQFP Package (Top View)  
Table 4-1. 100-Pin FSBGA Pin Assignments  
1
2
3
4
5
6
7
8
9
10  
1QB1  
1QB0  
1QA1  
1QA0  
QFA0  
QFA1  
FBKB+  
VDDQ  
FBKA–  
FBSEL  
GND  
FBKA+  
REFA+  
REFA–  
A
B
C
D
E
F
VDDN  
GND  
VDDN  
GND  
4F0  
VDDN  
GND  
3F1  
VDDN  
GND  
GND  
GND  
GND  
GND  
VDDN  
GND  
VDDN  
GND  
VDDQ  
VDDQ  
2F0  
FBKB–  
GND  
VDDQ  
FS  
LOCK  
4QB1  
4QB0  
4QA1  
FBDS1 FBDS0  
REFSEL REFB–  
VDDN  
VDDN  
2DS1  
4DS1  
3DS1  
VDDQ  
3F0  
GND  
GND  
4F1  
GND  
GND  
GND  
GND  
GND  
VDDN  
VDDN  
1F0  
REFB+  
2QA0  
2QA1  
FBF0  
VDDQ  
G
4QA0  
1DS1  
1DS0  
VDDQ  
GND  
GND  
VDDQ OUTPUT_ FBDIS  
MODE  
2QB0  
H
4DS0  
2F1  
3DS0  
1F1  
2DS0  
DIS2  
DIS1  
VDDN  
VDDN  
VDDN  
GND  
GND  
INV3  
DIS3  
2QB1  
DIS4  
J
3QA0  
3QA1  
3QB0  
3QB1  
K
4
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
4.2 Pin Descriptions  
For all 3-state inputs, low indicates a connection to GND, mid indicates an open connection, and high indicates a  
connection to VDD. Internal termination circuitry holds an unconnected input to VDD/2.  
Table 4-2. 100-Pin TQFP Descriptions  
Pin  
Symbol  
Type  
I/O  
Description  
1, 8, 12, 13, 17, 25—28,  
35, 39, 40, 44, 47, 50,  
55, 58, 62, 63, 67, 82,  
83, 87, 88, 92, 93, 97  
GND  
Power — Ground.  
2—5, 31, 32, 56, 69  
3-Level  
Input  
I
I
Output Phase Function Select. Each pair controls the phase  
function of the respective bank of outputs, see Table 5-3.  
[1:4]F[0:1]  
6, 7, 18, 19, 21—24  
[1:4]DS[0:1]  
3-Level  
Input  
Output Divider Function Select. Each pair controls the divide  
function of the respective bank of outputs, see Table 5-4.  
9, 11, 14, 16, 36, 38, 41, [1:4]Q[A:B][0:1] LVTTL  
43, 59, 61, 64, 66, 89,  
O
Clock Output. These outputs provide numerous divide and  
phase select functions determined by the [1:4]DS[0:1] and  
[1:4]F[0:1] inputs.  
91, 94, 96  
10, 15, 37, 42, 60, 65,  
85, 90, 95  
Power — Output Buffer Power. Power supply for each output pair.  
Power — Internal Power. Power supply for the internal circuitry.  
VDDN  
VDDQ  
20, 29, 30, 45, 49, 54,  
75, 76  
33, 34, 51, 52  
LVTTL  
Id Output Disable. Each input controls the state of the respective  
output bank.  
DIS[1:4]  
Low = the [1:4]Q[A:B][0:1] is enabled, see Table 5-5.  
High = the output bank is disabled to the hold-off or HI-Z state;  
the disable state is determined by OUTPUT_MODE.  
46  
48  
INV3  
3-Level  
Input  
I
I
Invert Mode. This input only affects Bank3.  
Low = each matched output pair will become complementary  
(3QA0+, 3QA1–, 3QB0+, 3QB1–).  
Mid = all four outputs will be noninverting.  
High = all four outputs in the same bank will be inverted.  
OUTPUT_MODE 3-Level  
Input  
Output Mode. This pin determines the clock outputs’ disable  
state.  
Low = the clock outputs will disable to hold-off mode.  
Mid = the device enters factory test mode.  
High = the clock outputs will disable to HI-Z.  
53  
57  
FBDIS  
LVTTL  
Id Feedback Disable. This input controls the state of QFA[0:1].  
Low = the QFA[0:1] is enabled, see Table 5-5.  
High = the QFA[0:1] is disabled to the hold-off or HI-Z state; the  
disable state is determined by OUTPUT_MODE.  
FBF0  
FS  
3-Level  
Input  
I
Feedback Output Phase Function Select. This input deter-  
mines the phase function of the feedback banks QFA[0:1] out-  
puts, see Table 5-3.  
68  
3-Level  
Input  
I
I
Frequency Select. This input must be set according to the  
nominal frequency (fNOM), see Table 5-1).  
70, 71, 73, 74  
REFB+, REFB–, LVTTL/  
REFA–, REFA+ LVDIFF  
Reference Inputs. These inputs can operate as differential  
PECL or single-ended TTL reference inputs to the PLL. When  
operating as a single-ended LVTTL input, the complementary  
input must be left open.  
d
Note: I = each input has an internal pull-down resistor.  
Agere Systems Inc.  
5
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
Table 4-2. 100-Pin TQFP Descriptions (continued)  
Pin  
Symbol  
Type  
I/O  
Description  
72  
REFSEL  
LVTTL  
Id Reference Input Select. The REFSEL input controls how the  
reference input is configured.  
Low = REFSEL uses the REFA pair as the reference input.  
High = REFSEL uses the REFB pair as the reference input.  
77, 78, 80, 81  
FBKA+, FBKA–, LVTTL/  
FBKB–, FBKB+ LVDIFF  
I
Feedback Inputs. One pair of inputs selected by the FBSEL is  
used to feedback the clock output xQn to the phase detector.  
The PLL will operate so that the rising edges of the reference  
and feedback signals are aligned in both phase and frequency.  
These inputs can operate as differential PECL or single-ended  
TTL inputs. When operating as a single-ended LVTTL input,  
the complementary input must be left open.  
79  
FBSEL  
LVTTL  
LVTTL  
Id Feedback Input Select.  
Low = FBKA inputs are selected.  
High = FBKB inputs are selected.  
84, 86  
QFA[0:1]  
O
Clock Feedback Output. This pair of clock outputs is intended  
to be connected to the FB input. These outputs have numerous  
divide options and three choices of phase adjustments. The  
function is determined by setting the FBDS[0:1] pins and FBF0.  
98, 99  
100  
FBDS[0:1]  
LOCK  
3-Level  
Input  
I
Feedback Divider Function Select. These inputs determine  
the function of the QFA0 and QFA1 outputs, see Table 5-4.  
LVTTL  
O
PLL Lock Indicator.  
Low = the PLL is attempting to acquire lock.  
High = this output indicates the internal PLL is locked to the ref-  
erence signal.  
d
Note: I = each input has an internal pull-down resistor.  
6
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
5 Functional Description  
5.1 Phase Frequency Detector and Filter  
These two blocks accept signals from the REF inputs (REFA+, REFA–, REFB+, or REFB–) and the FB inputs (FBKA+,  
FBKA–, FBKB+, or FBKB–). Correction information is then generated to control the frequency of the voltage-controlled  
oscillator (VCO). These two blocks, along with the VCO, form a phase-locked loop (PLL) that tracks the incoming REF  
signal.  
The devices have a flexible REF and FB input scheme. These inputs allow using either differential LVPECL or single-ended  
LVTTL inputs. To configure as single-ended LVTTL inputs, the complementary input pin must be left open (internally pulled  
to 1.5 V), and the other input pin can then be used as an LVTTL input. The REF inputs are also tolerant to hot insertion.  
The REF inputs can be changed dynamically. When changing from one reference input to the other reference input of the  
same frequency, the PLL is optimized to ensure that the clock output period will not be less than the calculated system  
budget (tMIN = tREF (nominal reference clock period) – tCCJ (cycle-to-cycle jitter) – tPDEV (maximum period deviation)) while  
reacquiring lock.  
5.2 VCO, Control Logic, Divider, and Phase Generator  
The VCO accepts analog control inputs from the PLL filter block. The FS control pin setting determines the nominal  
operational frequency (fNOM) range of the divide-by-one output of the device. fNOM is directly related to the VCO frequency.  
There are two versions of the device, a low-speed device (LCK4993) where fNOM ranges from 12 MHz to 100 MHz, and a  
high-speed device (LCK4994) where fNOM ranges from 24 MHz to 200 MHz. The FS setting for each device is shown in  
Table 5-1.  
The fNOM frequency is seen on divide-by-one outputs. For the LCK4994, the upper fNOM range extends from 96 MHz to  
200 MHz.  
Table 5-1. Frequency Range Select  
FS*  
LCK4993  
LCK4994  
fNOM (MHz)  
fNOM (MHz)  
Min  
12  
24  
Max  
26  
52  
Min  
24  
48  
Max  
52  
100  
200  
Low  
Mid  
High  
48  
100  
96  
* The level to be set on FS is determined by the fNOM of the VCO and phase generator. fNOM always appears on an output when the output is  
operating in the divide by 1 mode. The REF and FB are at fNOM when the output connected to FB is in the divide by 1 mode.  
5.3 Time Unit Definition  
Selectable skew is in discrete increments of time unit (tU). The value of tU is determined by the FS setting and the fNOM  
frequency. The equation to be used to determine the tU is as follows:  
1
(eq. 1)  
tU = -------------------------  
fNOM × N  
Where N is a multiplication factor, determined by the FS setting and is defined in Table 5-2; where fNOM is the nominal  
operating frequency of the VCO.  
Table 5-2. N Factor Determination  
FS  
LCK4993  
LCK4994  
N
fNOM (MHz) at which tU = 1.0 ns  
N
32  
16  
8
fNOM (MHz) at which tU = 1.0 ns  
Low  
Mid  
High  
64  
32  
16  
15.265  
31.25  
62.5  
31.25  
62.5  
125  
Agere Systems Inc.  
7
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
5.4 Divide and Phase Select Matrix  
The divide and phase select matrix is comprised of five independent banks as follows: four banks for clock outputs and one  
bank for feedback. Each clock output bank has two pairs of low-skew, high-fanout output buffers ([1:4]Q[A:B][0:1]), two  
phase function select inputs ([1:4]F[0:1]), two divider function selects ([1:4]DS[0:1]), and one output disable (DIS[1:4]).  
The feedback bank has one pair of low-skew, high-fanout output buffers (QFA[0:1]). One of these outputs may connect to  
the selected feedback input (FBK[A:B]±). This feedback bank also has one phase function select input (FBF0), two divider  
function selects FSDS[0:1], and one output disable (FBDIS).  
The phase capabilities that are chosen by the phase function select pins are shown in Table 5-3. The divide capabilities for  
each bank are shown in Table 5-4.  
Table 5-3. Output Skew Select Function  
Function Selects  
Output Skew Function  
[1:4]F1  
[1:4]F0 and FBF0  
Bank1  
–4 tU  
–3 tU  
–2 tU  
– 1tU  
0 tU  
Bank2  
–4 tU  
–3 tU  
–2 tU  
–1 tU  
0 tU  
Bank3  
–8 tU  
–7 tU  
–6 tU  
BK1*  
0 tU  
Bank4  
–8 tU  
–7 tU  
–6 tU  
BK1*  
0 tU  
Feedback Bank  
Low  
Low  
Low  
Mid  
Low  
Mid  
–4 tU  
NA  
High  
Low  
Mid  
NA  
NA  
Mid  
0 tU  
NA  
Mid  
High  
Low  
Mid  
1 tU  
1 tU  
BK2†  
BK2†  
High  
High  
High  
2 tU  
2 tU  
6 tU  
6 tU  
NA  
3 tU  
3 tU  
7 tU  
7 tU  
NA  
High  
4 tU  
4 tU  
8 tU  
8 tU  
4 tU  
* BK1 denotes following the skew of Bank1.  
† BK2 denotes following the skew of Bank2.  
Table 5-4. Output Divider Function  
Function Selects*  
Output Divider Function  
[1:4]DS1 and FBDS1  
[1:4]DS0 and FBDS0  
Bank1  
Bank2  
Bank3  
Bank4  
Feedback Bank  
Low  
Low  
Low  
Mid  
Low  
Mid  
/1  
/2  
/1  
/2  
/1  
/2  
/1  
/2  
/1  
/2  
High  
Low  
Mid  
/3  
/3  
/3  
/3  
/3  
/4  
/4  
/4  
/4  
/4  
Mid  
/5  
/5  
/5  
/5  
/5  
Mid  
High  
Low  
Mid  
/6  
/6  
/6  
/6  
/6  
High  
High  
High  
/8  
/8  
/8  
/8  
/8  
/10  
/12  
/10  
/12  
/10  
/12  
/10  
/12  
/10  
/12  
High  
* Output frequency = f  
(VCO frequency)/value of output divisor.  
NOM  
8
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
5.5 Timing Relationship of Programmable Skew Outputs  
Figure 5-1 illustrates the timing relationship of programmable skew outputs. All times are measured with respect to REF,  
with the output used for feedback programed with 0 tU skew. The PLL naturally aligns the rising edge of the FB input and  
REF input. If the output used for feedback is programmed to another skew position, then the whole tU matrix will shift with  
respect to REF. For example, if the output used for feedback is programmed to shift –8 tU, then the whole matrix is shifted  
forward in time by 8 tU. Therefore, an output programed with 8 tU of skew will effectively be skewed 16 tU with respect to  
REF.  
FB Input  
REF Input  
1F[1:0] 3F[1:0]  
2F[1:0] 4F[1:0]  
NA  
NA  
NA  
LL  
LL  
LM  
LH  
–8 tU  
–7 tU  
–6 tU  
–4 tU  
–3 tU  
–2 tU  
–1 tU  
0 tU  
NA  
NA  
NA  
NA  
MM  
NA  
NA  
NA  
NA  
HL  
LM  
LH  
ML  
MM  
MH  
HL  
1 tU  
2 tU  
HM  
HH  
NA  
NA  
NA  
3 tU  
4 tU  
6 tU  
HM  
HH  
7 tU  
8 tU  
Note: FB connected to an output selected for zero skew (i.e., FBF0 = mid or xF[1:0] = mid).  
Figure 5-1. Typical Outputs with FB Connected to a Zero-Skew Output  
Agere Systems Inc.  
9
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
5.6 Output Disable Description  
The feedback divide and phase select matrix bank has two outputs, each of the four divide and phase select matrix banks  
have four outputs. The outputs of each bank can be independently put into a hold-off, or HI-Z state. The combination of the  
OUTPUT_MODE and DIS[1:4]/FBDIS inputs determines the clock outputs’ state for each bank. When the DIS[1:4]/FBDIS  
is low, the outputs of the corresponding bank will be enabled. When the DIS[1:4]/FBDIS is high the outputs for that bank will  
be disabled to a HI-Z or hold-off state, depending on the OUTPUT_MODE input. Table 5-5 defines the disabled output  
functions.  
The hold-off state is intended to be a power saving feature. An output bank is disabled to the hold-off state in a maximum of  
six output clock cycles from the time when the disable input (DIS[1:4]/FBDIS) is high. When disabled to the hold-off state,  
noninverting outputs are driven to a logic-low state on its falling edge. Inverting outputs are driven to a logic-high state on its  
rising edge. This ensures the output clocks are stopped without a glitch. When a bank of outputs is disabled to a HI-Z state,  
the respective bank of outputs will go HI-Z immediately.  
Table 5-5. DIS[1:4]/FBDIS Pin Functionality  
OUTPUT_MODE  
DIS[1:4]/FBDIS  
Output Mode  
High/Low  
High  
Low  
High  
High  
X
Enabled  
HI-Z  
Low  
Hold-off  
Mid  
Factory Test  
5.7 INV3 Pin Function  
Bank3 has signal invert capability. The four outputs of Bank3 will act as two pairs of complementary outputs when the INV3  
pin is driven low. In complementary output mode, 3QA0 and 3QB0 are noninverting; 3QA1 and 3QB1 are inverting outputs.  
All four outputs will be inverted when the INV3 pin is driven high. When the INV3 pin is left in mid, the outputs will not invert.  
Inversion of the outputs are independent of the skew and divide functions. Therefore, clock outputs of Bank3 can be  
inverted, divided, and skewed at the same time.  
5.8 Lock Detect Output Description  
The LOCK detect output indicates the lock condition of the integrated PLL. Lock detection is accomplished by comparing  
the phase difference between the reference and feedback inputs. Phase error is declared when the phase difference  
between the two inputs is greater than the specified device propagation delay limit (tPD).  
When in the locked state, after four or more consecutive feedback clock cycles with phase-errors, the LOCK output will be  
forced low to indicate out-of-lock state.  
When in the out-of-lock state, 32 consecutive phase-errorless feedback clock cycles are required to allow the LOCK output  
to indicate lock condition (LOCK = high).  
If the feedback clock is removed after LOCK has gone high, a watchdog circuit is implemented to indicate the out-of-lock  
condition after a time-out period by deasserting LOCK low. This time-out period is based on a divided down reference  
clock. This assumes that there is activity on the selected REF input. If there is no activity on the selected REF input, then  
the LOCK detect pin may not accurately reflect the state of the internal PLL.  
10  
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
5.9 Factory Test Mode Description  
The device will enter factory test mode when the OUTPUT_MODE input is driven to a mid level. In factory test mode, the  
device will operate with its internal PLL disconnected. The reference input will replace the PLL output. While operating in  
factory test mode, the selected FB input(s) must both be tied low. The output frequency is a function of the input level set on  
the FS pin (see Table 5-6). When operating in factory test mode, all outputs must be set to the divide by 1 function. Output  
skew select function operates normally, output bank disable is unavailable while operating in factory test mode. The  
OUTPUT_MODE input is designed to be a static input. Dynamically toggling this input from low to high may temporarily  
cause the device to go into factory test mode (when passing through the mid state).  
5.9.1 Factory Test Reset  
When operating in factory test mode (OUTPUT_MODE = mid), the device can be reset to a deterministic state by forcing  
the DIS4 input to a logic high. With DIS4 in a logic high state, all clock outputs will go to HI-Z. After the selected reference  
clock pin has five positive transitions, all the internal finite state machines (FSM) will be set to a deterministic state. The  
deterministic state of the state machines will depend on the configuration of the divide select, skew select, and frequency  
select inputs. All clock outputs will stay in high-impedance mode, and all FSMs will stay in the deterministic state until DIS4  
is deasserted. When DIS4 is deasserted (with OUTPUT_MODE still at mid), the device will re-enter factory test mode.  
Table 5-6. Factory Test Mode Frequency Divide Select  
FS  
LCK4993  
Output Frequency  
Divide By  
LCK4994  
Output Frequency  
Divide By  
Low  
Mid  
32  
16  
8
16  
8
High  
4
5.10 Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute  
stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those  
given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can  
adversely affect device reliability.  
Table 5-7. Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
Min  
Max  
Unit  
Tstg  
VDD  
VDC  
IOUT  
IL  
–40  
–0.5  
–0.3  
125  
4.6  
°C  
V
Supply Voltage  
dc Input Voltage  
VDD + 0.5  
40  
V
Output Current into Outputs (low)  
Latch-Up Current  
mA  
mA  
±200  
Agere Systems Inc.  
11  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
5.11 Handling Precautions  
Although electrostatic discharge (ESD) protection circuitry has been designed into this device, proper precautions must be  
taken to avoid exposure to ESD and electrical overstress (EOS) during all handling, assembly, and test operations. Agere  
employs both a human-body model (HBM) and a charged-device model (CDM) qualification requirement in order to deter-  
mine ESD susceptibility limits and protection design evaluation. ESD voltage thresholds are dependent on the circuit  
parameters used in each of the models, as defined by JEDEC's JESD22-A114 (HBM) and JESD22-C101 (CDM) stan-  
dards.  
Table 5-8. Handling Precautions  
Device  
Minimum Threshold  
HBM  
CDM  
LCK4993  
LCK4994  
2000 V  
2000 V  
500 V  
500 V  
Caution: MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and pack-  
aging MOS devices should be observed.  
5.12 Thermal Parameters (Definitions and Values)  
System and circuit board level performance depends not only on device electrical characteristics, but also on device thermal  
characteristics. The thermal characteristics frequently determine the limits of circuit board or system performance, and they  
can be a major cost adder or cost avoidance factor. When the die temperature is kept below 125 °C, temperature-activated  
failure mechanisms are minimized. The thermal parameters that Agere provides for its packages help the chip and system  
designer choose the best package for their applications, including allowing the system designer to thermally design and in-  
tegrate their systems.  
It should be noted that all the parameters listed below are affected, to varying degrees, by package design (including paddle  
size) and choice of materials, the amount of copper in the test board or system board, and system airflow.  
ΘJA - Junction to Air Thermal Resistance  
ΘJA is a number used to express the thermal performance of a part under JEDEC standard natural convection conditions.  
ΘJA is calculated using the following formula:  
ΘJA = (TJ – Tamb) / P; where P = power  
ΘJMA - Junction to Moving Air Thermal Resistance  
ΘJMA is effectively identical to ΘJA but represents performance of a part mounted on a JEDEC four-layer board inside a wind  
tunnel with forced air convection. ΘJMA is reported at airflows of 200 LFPM and 500 LFPM (linear feet per minute), which  
roughly correspond to 1 m/s and 2.5 m/s (respectively). ΘJMA is calculated using the following formula:  
ΘJMA = (TJ – Tamb) / P  
ΘJC - Junction to Case Thermal Resistance  
ΘJC is the thermal resistance from junction to the top of the case. This number is determined by forcing nearly 100% of the  
heat generated in the die out the top of the package by lowering the top case temperature. This is done by placing the top  
of the package in contact with a copper slug kept at room temperature using a liquid refrigeration unit. ΘJC is calculated using  
the following formula:  
ΘJC = (TJ – TC) / P  
12  
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
ΘJB - Junction to Board Thermal Resistance  
ΘJB is the thermal resistance from junction to board. This number is determined by forcing the heat generated in the die out  
of the package through the leads or balls by lowering the board temperature and insulating the package top. This is done  
using a special fixture, which keeps the board in contact with a water chilled copper slug around the perimeter of the package  
while insulating the package top. ΘJB is calculated using the following formula:  
ΘJB = (TJ – TB) / P  
ΨJT  
ΨJT correlates the junction temperature to the case temperature. It is generally used by the customer to infer the junction  
temperature while the part is operating in their system. It is not considered a true thermal resistance. ΨJT is calculated using  
the following formula:  
ΨJT = (TJ – TC) / P  
Table 5-9. Thermal Parameter Values  
Parameter  
Temperature °C/Watt  
100-Pin TQFP  
100-Ball FSBGA  
ΘJA  
38  
32.9  
30.4  
32.9  
29.9  
1
71.9  
66.6  
64.7  
24.5  
56.8  
1
ΘJMA (1 m/s)  
ΘJMA (2.5 m/s)  
ΘJC  
ΘJB  
ΨJT  
Agere Systems Inc.  
13  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
6 Electrical Characteristics  
.
Table 6-1. Electrical Characteristics (TA –40 °C to +85 °C, VDD = 3.3 V ± 10%)  
Parameter  
Symbol  
Description  
Test Conditions  
Min  
Max  
Unit  
LVTTL Compatible Output Pins (QFA[0:1], [1:4]Q[A:B], LOCK  
High-Voltage  
Output (LVTTL)  
VOH  
QFA[0:1], [1:4]Q[A:B][0:1]  
VDD = min, IOH = –30 mA  
VDD = min, IOH = –2 mA  
VDD = min, IOH = 30 mA  
VDD = min, IOH = 2 mA  
2.4  
2.4  
V
V
LOCK  
Low-Voltage  
Output (LVTTL)  
VOL  
QFA[0:1], [1:4]Q[A:B][0:1]  
0.5  
0.5  
100  
V
LOCK  
V
High-Imped-  
IOZ  
–100  
µA  
ance State Leak-  
age Current  
LVTTL Compatible Pins (FBKA±, FBKB±, REFA±, REFB±, FBSEL, REFSEL, FBDIS, DIS[1:4])  
High-Voltage  
Input (LVTTL)  
VIH  
VIL  
IIH  
FBK[A:B]±, REF[A:B]±  
Min VDD max  
2.0  
2.0  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
REFSEL, FBSEL, FBDIS, DIS[1:4]  
FBK[A:B]±, REF[A:B]±  
Low-Voltage  
Input (LVTTL)  
Min VDD max  
–0.3  
–0.3  
V
REFSEL, FBSEL, FBDIS, DIS[1:4]  
FBK[A:B]±, REF[A:B]±  
0.8  
V
High-Input  
Current (LVTTL)  
VDD = max, VIN = VDD  
VIN = VDD  
500  
µA  
µA  
µA  
µA  
REFSEL, FBSEL, FBDIS, DIS[1:4]  
FBK[A:B]±, REF[A:B]±  
500  
Low-Input  
Current (LVTTL)  
IIL  
VDD = max, VIN = GND  
VIN = GND  
–500  
–500  
REFSEL, FBSEL, FBDIS, DIS[1:4]  
3-Level Input Pins (FBF0, FBDS[0:1], [1:4]F[0:1], [1:4]DS[0:1], FS, OUTPUT_MODE(TEST)  
Low-Voltage  
VILL  
VIMM  
VIHH  
IILL  
Min VDD max  
Min VDD max  
Min VDD max  
0.13 x VDD  
V
V
V
3-Level Input1  
Mid-Voltage  
0.47 x VDD 0.53 x VDD  
3-Level Input1  
High-Voltage  
3-Level Input1  
0.87 x VDD  
Low-Current  
3-Level Input  
3-level input pins excluding FBF0 VIN = GND  
FBF0 VIN = GND  
3-level input pins excluding FBF0 VIN = VDD/2  
FBF0 VIN = VDD/2  
3-level input pins excluding FBF0 VIN = VDD  
FBF0 VIN = VDD  
–200  
–400  
–50  
–100  
µA  
µA  
µA  
µA  
µA  
µA  
Mid-Current  
3-Level Input  
IIMM  
IIHH  
50  
100  
200  
400  
High-Current  
3-Level Input  
1. These inputs are normally wired to VDD, GND, or left unconnected (actual threshold voltages vary as a percentage of VDD). Internal termination  
resistors hold the unconnected inputs at VDD/2. If these inputs are switched, the function and timing of the outputs may glitch and the PLL may  
require an additional tLOCK time before all data sheet limits are achieved.  
14  
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Table 6-1. Electrical Characteristics (TA –40 °C to +85 °C, VDD = 3.3 V ± 10%) (continued)  
Parameter  
Symbol  
Description  
Test Conditions  
Min  
Max  
Unit  
LVDIFF Input Pins (FBK[A:B]±, REF[A:B]±)  
Input Differential  
Voltage  
VDIFF  
VILLP  
VIHHP  
VCOM  
400  
GND  
1.0  
VDD  
VDD – 0.4  
VDD  
mV  
V
Lowest Input  
Low Voltage  
Highest Input  
High Voltage  
V
Common-mode  
Range (crossing  
voltage)  
0.8  
VDD  
V
Operating Current  
Internal Operat-  
ing Current  
ICCI  
LCK4993  
LCK4994  
LCK4993  
VDD = max, fmax  
VDD = max, fmax  
VDD = max,  
250  
250  
40  
mA  
mA  
mA  
1
Output Current  
Dissipation/Pair2  
ICCN  
CLOAD = 25 pF,  
RLOAD = 50 at  
VDD/2, fmax  
LCK4994  
VDD = max,  
50  
5
mA  
pF  
CLOAD = 25 pF,  
RLOAD = 50 at  
VDD/2, fmax  
Capacitance  
Input Capaci-  
tance  
CIN  
TA = 25 °C, f = 1 MHz,  
VDD = 3.3 V/2.5 V  
1. ICCI measurements are performed with Bank1 and FB bank configured to run at maximum frequency (fNOM = 100 MHz for LCK4993, fNOM =  
200 MHz for LCK4994), and all other clock output banks to run at half the maximum frequency. FS and OUTPUT_MODE are asserted to the high  
state.  
2. This is dependent upon frequency and number of outputs of a bank being loaded. The value indicates maximum ICCN at maximum frequency and  
maximum load of 25 pF terminated to 50 at VDD/2.  
Agere Systems Inc.  
15  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
Table 6-2. Electrical Characteristics (TA –40 °C to +85 °C, VDD = 2.5 V ± 10%)  
Parameter  
Symbol  
Description  
Test Conditions  
Min  
Max  
Unit  
LVTTL Compatible Output Pins (QFA[0:1], [1:4]Q[A:B], LOCK)  
High-Voltage  
Output (LVTTL)  
VOH  
QFA[0:1], [1:4]Q[A:B][0:1]  
VDD = min, IOH = –30 mA  
VDD = min, IOH = –2 mA  
VDD = min, IOH = 30 mA  
VDD = min, IOH = 2 mA  
1.6  
1.6  
V
V
LOCK  
Low-Voltage  
Output (LVTTL)  
VOL  
QFA[0:1], [1:4]Q[A:B][0:1]  
0.5  
0.5  
100  
V
LOCK  
V
High-Imped-  
IOZ  
–100  
µA  
ance State Leak-  
age Current  
LVTTL Compatible Pins (FBKA±, FBKB±, REFA±, REFB±, FBSEL, REFSEL, FBDIS, DIS[1:4])  
High-Voltage  
Input (LVTTL)  
VIH  
VIL  
IIH  
FBK[A:B]±, REF[A:B]±  
Min VDD max  
2.0  
2.0  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
REFSEL, FBSEL, FBDIS, DIS[1:4]  
FBK[A:B]±, REF[A:B]±  
Min VDD max  
Low-Voltage  
Input (LVTTL)  
–0.3  
–0.3  
V
REFSEL, FBSEL, FBDIS, DIS[1:4]  
FBK[A:B]±, REF[A:B]±  
0.8  
V
High-Input  
Current (LVTTL)  
VDD = max, VIN = VDD  
500  
µA  
µA  
µA  
µA  
REFSEL, FBSEL, FBDIS, DIS[1:4] VIN = VDD  
500  
Low-Input  
Current (LVTTL)  
IIL  
FBK[A:B]±, REF[A:B]±  
VDD = max, VIN = GND  
500  
REFSEL, FBSEL, FBDIS, DIS[1:4]  
–500  
3-Level Input Pins (FBF0, FBDS[0:1], [1:4]F[0:1], [1:4]DS[0:1], FS, OUTPUT_MODE(TEST))  
Low-Voltage  
VILL  
VIMM  
VIHH  
IILL  
Min VDD max  
Min VDD max  
Min VDD max  
0.13 x VDD  
V
V
V
3-Level Input1  
Mid-Voltage  
0.47 x VDD 0.53 x VDD  
3-Level Input1  
High-Voltage  
3-Level Input1  
0.87 x VDD  
Low-Current  
3-Level Input  
3-level input pins excluding FBF0  
VIN = GND  
VIN = GND  
VIN = VDD/2  
VIN = VDD/2  
VIN = VDD  
VIN = VDD  
–200  
–400  
–50  
–100  
µA  
µA  
µA  
µA  
µA  
µA  
FBF0  
Mid-Current  
3-Level Input  
IIMM  
IIHH  
3-level input pins excluding FBF0  
50  
FBF0  
100  
200  
400  
High-Current  
3-Level Input  
3-level input pins excluding FBF0  
FBF0  
1. These inputs are normally wired to VDD, GND, or left unconnected (actual threshold voltages vary as a percentage of VDD). Internal termination  
resistors hold the unconnected inputs at VDD/2. If these inputs are switched, the function and timing of the outputs may glitch and the PLL may  
require an additional tLOCK time before all data sheet limits are achieved.  
16  
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Table 6-2. Electrical Characteristics (TA –40 °C to +85 °C, VDD = 2.5 V ± 10%) (continued)  
Parameter  
Symbol  
Description  
Test Conditions  
Min  
Max  
Unit  
LVDIFF Input Pins (FBK[A:B]±, REF[A:B]±)  
Input Differential  
Voltage  
VDIFF  
VILLP  
VIHHP  
VCOM  
400  
GND  
1.0  
VDD  
VDD – 0.4  
VDD  
mV  
V
Lowest Input  
Low Voltage  
Highest Input  
High Voltage  
V
Common-mode  
Range (crossing  
voltage)  
0.8  
VDD  
V
Operating Current  
Internal Operat-  
ing Current  
ICCI  
LCK4993  
LCK4994  
LCK4993  
VDD = max, fmax  
VDD = max, fmax  
VDD = max,  
250  
250  
40  
mA  
mA  
mA  
1
Output Current  
Dissipation/Pair2  
ICCN  
CLOAD = 25 pF,  
RLOAD = 50 at  
VDD/2, fmax  
LCK4994  
VDD = max,  
50  
5
mA  
pF  
CLOAD = 25 pF,  
RLOAD = 50 at  
VDD/2, fmax  
Capacitance  
Input Capaci-  
tance  
CIN  
TA = 25 °C, f = 1 MHz,  
VDD = 3.3 V/2.5 V  
1. ICCI measurements are performed with Bank1 and FB bank configured to run at maximum frequency (fNOM = 100 MHz for LCK4993, fNOM =  
200 MHz for LCK4994), and all other clock output banks to run at half the maximum frequency. FS and OUTPUT_MODE are asserted to the high  
state.  
2. This is dependent upon frequency and number of outputs of a bank being loaded. The value indicates maximum ICCN at maximum frequency and  
maximum load of 25 pF terminated to 50 at VDD/2.  
Agere Systems Inc.  
17  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
7 Timing  
7.1 Switching Characteristics  
The following switching characteristics and assumptions apply for non 3-level inputs.  
A maximum 25 pF load capacitance is used for frequencies up to 185 MHz. A maximum 10 pF load capacitance is used  
for the frequency of 200 MHz.  
Both outputs of the pair must be terminated, even if only one is being used.  
ac parameters are measured at 50%, unless otherwise indicated.  
Table 7-1. Switching Characteristics (TA –40 °C to +85 °C, VDD = 3.3 V ± 10%)  
Parameter  
Clock Input Frequency  
Symbol  
Description  
Min  
12  
24  
12  
24  
2.0  
2.0  
Max  
100  
200  
100  
200  
Unit  
MHz  
MHz  
MHz  
MHz  
ns  
fIN  
LCK4993  
LCK4994  
LCK4993  
LCK4994  
Pulse width low.8  
Pulse width high.8  
Clock Output Frequency  
REF Input  
fOUT  
tREFPWL  
tREFPWH  
tSKEWPR  
200  
ns  
ps  
Matched-Pair Skew1, 2  
Interbank Skew  
Same frequency and phase, rise-to-rise and fall-to-  
fall. (Matched pair outputs within a bank.)1, 2  
tSKEWBNK Same frequency and phase, rise-to-rise and fall-to-  
fall. (All outputs within a bank.)1, 2  
200  
250  
250  
250  
500  
200  
ps  
ps  
ps  
ps  
ps  
ps  
Output-Output Skew  
tSKEW0  
tSKEW1  
tSKEW2  
tSKEW3  
Same frequency and phase, rise-to-rise and fall-to-  
fall. (All outputs across all banks.)1, 2  
Different frequency same phase, rise-to-rise and  
fall-to-fall. (All outputs all banks.)1, 2  
Same frequency and phase, rise-to-fall and fall-to-  
rise. (Bank 3 inverted to all other banks.)1, 2, 3  
All output configurations outside tSKEW1 and  
tSKEW2.1, 2  
Complementary  
Outputs Skew  
tSKEWCPR Crossing to crossing, complementary outputs.  
(Bank 3 only.)1, 2, 3, 4  
Cycle-to-Cycle Jitter  
Propagation Delay  
tCCJ  
tPD  
Divide by 1 output frequency, FB = divide by 1—8.  
REF to FB rise.  
Difference between two devices.4  
–250  
150  
250  
200  
2.0  
ps  
ps  
ps  
ns  
tPDDELTA  
Output Rise/Fall Time5  
tR/tF  
0.15  
1. Test load CL maximum 25 pF (fnom 185 MHz) and maximum 10 pF (fnom = 200 MHz) both terminated 50 to VDD/2.  
2. SKEW is defined as the time between the earliest and latest output transition among all outputs for which the same phase delay has been  
selected and all outputs are equally loaded and properly terminated.  
3. Complementary output skews are measured at complementary signal pair intersections.  
4. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
5. Rise and fall times are measured at 20% and 80% of the output voltage swing.  
6. fNOM must be within the frequency range defined by the FS state (see Table 5-1).  
7. ac parameters are measured at 50%, unless otherwise indicated.  
8. tPWL is measured at 20%. tPWH is measured at 80%.  
9. UI = unit interval. Examples: 1 UI is a full period. 0.1 UI is 10% of a period.  
10. Measured at 0.5 V deviation from starting voltage.  
11. For tOZA minimum, CL = 0 pF. For tOZA maximum, CL = 25 pF to 185 MHz or 10 pF at 200 MHz.  
18  
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Table 7-1. Switching Characteristics (TA –40 °C to +85 °C, VDD = 3.3 V ± 10%) (continued)  
Parameter  
Symbol  
Description  
Min  
Max  
Unit  
PLL Lock Time from  
Powerup  
tLOCK  
10  
ms  
PLL Relock Time  
tRELOCK1  
tRELOCK2  
From same frequency, different phase, and with sta-  
ble power supply.  
From different frequency, different phase, and with  
stable power supply.6  
500  
µs  
µs  
1000  
Output Duty Cycle 7  
Period Deviation  
tODCV  
tPDEV  
tOZA  
45  
0.5  
55  
0.025  
14  
%
UI9  
ns  
When changing from reference to reference.  
DIS[1:4]/FBDIS low to output active from output is  
high-impedance.10, 11  
Output Disable Time  
Output Enable Time  
tOAZ  
DIS[1:4]/FBDIS high to output high-impedance from  
1.0  
10  
ns  
active.1, 10  
1. Test load CL maximum 25 pF (fnom 185 MHz) and maximum 10 pF (fnom = 200 MHz) both terminated 50 to VDD/2.  
2. SKEW is defined as the time between the earliest and latest output transition among all outputs for which the same phase delay has been  
selected and all outputs are equally loaded and properly terminated.  
3. Complementary output skews are measured at complementary signal pair intersections.  
4. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
5. Rise and fall times are measured at 20% and 80% of the output voltage swing.  
6. fNOM must be within the frequency range defined by the FS state (see Table 5-1).  
7. ac parameters are measured at 50%, unless otherwise indicated.  
8. tPWL is measured at 20%. tPWH is measured at 80%.  
9. UI = unit interval. Examples: 1 UI is a full period. 0.1 UI is 10% of a period.  
10. Measured at 0.5 V deviation from starting voltage.  
11. For tOZA minimum, CL = 0 pF. For tOZA maximum, CL = 25 pF to 185 MHz or 10 pF at 200 MHz.  
Agere Systems Inc.  
19  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
Table 7-2. Switching Characteristics (TA –40 °C to +85 °C, VDD = 2.5 V ± 10%)  
Parameter  
Symbol  
Description  
Min  
Max  
Unit  
Clock Input Frequency  
fIN  
LCK4993.  
12  
24  
12  
24  
2.0  
2.0  
100  
200  
100  
200  
MHz  
MHz  
MHz  
MHz  
ns  
LCK4994.  
Clock Output Frequency  
REF Input  
fOUT  
LCK4993.  
LCK4994.  
tREFPWL  
tREFPWH  
tSKEWPR  
Pulse width low.8  
Pulse width high.8  
ns  
Matched-Pair Skew1, 2  
Interbank Skew  
Same frequency and phase, rise-to-rise and fall-to-  
fall. (Matched pair outputs within a bank.)1, 2  
200  
ps  
tSKEWBNK  
tSKEW0  
Same frequency and phase, rise-to-rise and fall-to-  
fall. (All outputs within a bank.)1, 2  
200  
250  
250  
250  
500  
200  
ps  
ps  
ps  
ps  
ps  
ps  
Output-Output Skew  
Same frequency and phase, rise-to-rise and fall-to-  
fall. (All outputs across all banks.)1, 2  
tSKEW1  
Different frequency same phase, rise-to-rise and  
fall-to-fall. (All outputs all banks.)1, 2  
tSKEW2  
Same frequency and phase, rise-to-fall and fall-to-  
rise. (Bank 3 inverted to all other banks.)1, 2, 3  
tSKEW3  
All output configurations outside tSKEW1 and  
tSKEW2.1, 2  
ComplementaryOutputs  
Skew  
tSKEWCPR  
Crossing to crossing, complementary outputs.  
(Bank 3 only.) 1, 2, 3, 4  
Cycle-to-Cycle Jitter  
Propagation Delay  
tCCJ1—3  
tPD  
Divide by 1 output frequency, FB = divide by 1—8.  
–250  
150  
250  
200  
2.0  
ps  
ps  
ps  
ns  
REF to FB rise.  
Difference between two devices.4  
tPDDELTA  
tR/tF  
Output Rise/Fall Time5  
0.15  
1. Test load CL maximum 25 pF (fnom 185 MHz) and maximum 10 pF (fnom = 200 MHz) both terminated 50 to VDD/2.  
2. SKEW is defined as the time between the earliest and latest output transition among all outputs for which the same phase delay has been  
selected and all outputs are equally loaded and properly terminated.  
3. Complementary output skews are measured at complementary signal pair intersections.  
4. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
5. Rise and fall times are measured at 20% and 80% of the output voltage swing.  
6. fNOM must be within the frequency range defined by the FS state (see Table 5-1).  
7. ac parameters are measured at 50%, unless otherwise indicated.  
8. tPWL is measured at 20%. tPWH is measured at 80%.  
9. UI = unit interval. Examples: 1 UI is a full period. 0.1 UI is 10% of a period.  
10. Measured at 0.5 V deviation from starting voltage.  
11. For tOZA minimum, CL = 0 pF. For tOZA maximum, CL = 25 pF to 185 MHz or 10 pF at 200 MHz.  
20  
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Table 7-2. Switching Characteristics (TA –40 °C to +85 °C, VDD = 2.5 V ± 10%) (continued)  
Parameter  
Symbol  
Description  
Min  
Max  
Unit  
PLL Lock Time from  
Powerup  
tLOCK  
10  
ms  
PLL Relock Time  
tRELOCK1  
tRELOCK2  
From same frequency, different phase, and with  
stable power supply.  
500  
µs  
µs  
From different frequency, different phase, and with  
stable power supply.6  
1000  
Output Duty Cycle 7  
Period Deviation  
tODCV  
tPDEV  
tOZA  
45  
55  
0.025  
14  
%
UI9  
ns  
When changing from reference to reference.  
Output Disable Time  
DIS[1:4]/FBDIS low to output active from output is  
high-impedance.10, 11  
0.5  
Output Enable Time  
tOAZ  
DIS[1:4]/FBDIS high to output high-impedance  
from active.1, 10  
1.0  
10  
ns  
1. Test load CL maximum 25 pF (fnom 185 MHz) and maximum 10 pF (fnom = 200 MHz) both terminated 50 to VDD/2.  
2. SKEW is defined as the time between the earliest and latest output transition among all outputs for which the same phase delay has been  
selected and all outputs are equally loaded and properly terminated.  
3. Complementary output skews are measured at complementary signal pair intersections.  
4. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
5. Rise and fall times are measured at 20% and 80% of the output voltage swing.  
6. fNOM must be within the frequency range defined by the FS state (see Table 5-1).  
7. ac parameters are measured at 50%, unless otherwise indicated.  
8. tPWL is measured at 20%. tPWH is measured at 80%.  
9. UI = unit interval. Examples: 1 UI is a full period. 0.1 UI is 10% of a period.  
10. Measured at 0.5 V deviation from starting voltage.  
11. For tOZA minimum, CL = 0 pF. For tOZA maximum, CL = 25 pF to 185 MHz or 10 pF at 200 MHz.  
7.2 ac Test Loads and Waveforms  
Note: Figure 7-1 is for illustrative purposes only. The actual ATE loads may vary.  
For LOCK output only:  
— R1 = 910 Ω  
— R2 = 910 Ω  
3.3 V  
R1  
3.3 V  
LVTTL ac  
Test Load  
TTL Input  
Test Waveform  
2.0 V  
2.0 V  
— CL < 30 pF  
OUTPUT  
0.8 V  
0.8 V  
For all other outputs:  
— R1 = 100 Ω  
— R2 = 100 Ω  
R2  
CL  
GND  
1 ns  
1 ns  
— CL max = 25 pF to 185 MHz  
or CL max = 10 pF at 200 MHz  
TTL Input Waveform  
LVTTL ac Test Load  
(The above include fixture and probe capacitances.)  
Figure 7-1. ac Test Loads and Waveforms  
Agere Systems Inc.  
21  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
7.3 ac Timing Diagrams  
ac parameters are measured at 50%, unless otherwise indicated.  
tREFPWH  
tREFPWL  
QFA0 OR  
[1:4]Q[A:B]0  
REF  
FB  
Q
tSKEWPR  
tSKEWPR  
tPD  
tPWH  
tPWL  
QFA1 OR  
[1:4]Q[A:B]1  
80%  
20%  
[1:4]QA[0:1]  
tSKEWBNK  
tCCJ1—3, 4—12  
tSKEWBNK  
[1:4]QB[0:1]  
tODCV  
tODCV  
REF TO DEVICE 1 AND 2  
Q
tPD  
tSKEW0, 1  
tSKEW0,1  
FB DEVICE 1  
OTHER Q  
tPDELTA  
tPDELTA  
FB DEVICE 2  
tSKEWCPR  
Q
COMPLEMENTARY A  
COMPLEMENTARY B  
CROSSING  
tSKEW2  
tSKEW2  
INVERTED Q  
CROSSING  
Figure 7-2. ac Timing Diagrams  
22  
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
8 Outline Diagrams  
8.1 100-Pin TQFP  
Controlling dimensions are in millimeters.  
16.00 ± 0.25  
14.00 ± 0.05  
PIN #1 IDENTIFIER ZONE  
100  
76  
1
75  
14.00  
± 0.05  
16.00  
± 0.25  
25  
51  
26  
50  
DETAIL A  
DETAIL B  
1.40 ± 0.05  
1.60 MAX  
SEATING PLANE  
0.08  
0.20 MAX  
0.50 TYP  
1.00 REF  
0.25  
0.05/0.15  
GAGE PLANE  
SEATING PLANE  
0.22 ± 0.05  
0.45/0.75  
M
0.08  
DETAIL A  
DETAIL B  
5-2146 (F) r.1  
Agere Systems Inc.  
23  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
Data Sheet, Revision 1  
May 5, 2004  
8.2 100-Ball FSBGA  
Controlling dimensions are in millimeters.  
11.00 ± 0.10  
A1 INDICATOR  
11.00  
± 0.10  
TOP VIEW  
0.53 ± 0.05  
0.40 ± 0.05  
0.15  
0.36  
1.45 MAX  
A1 INDICATOR  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
1.00  
TYP  
E
BOTTOM VIEW  
F
G
H
J
K
0.45 ± 0.05  
TYP 1.00  
SOLDER BALLS  
11.00 ± 0.10  
5-8159.a (F) r.1  
Note: The ball diameter, ball pitch, and stand-off and package thicknesses are different from JEDEC spec M0192 (low-pro-  
file BGA family).  
24  
Agere Systems Inc.  
Data Sheet, Revision 1  
May 5, 2004  
LCK4993/LCK4994  
Low-Voltage PLL Clock Drivers  
9 Ordering Information  
Table 9-1. LCK4993 Ordering Information  
Device  
Package Type  
Comcode  
Delivery  
LCK4993YH-DB  
LCK4993YH-DT  
LCK4993KB-DB  
LCK4993KB-DT  
100FSBGA  
100FSBGA  
100TQFP  
100TQFP  
700034618  
700034619  
700024614  
700024615  
Tray  
Tape  
Tray  
Tape  
Table 9-2. LCK4994 Ordering Information  
Device  
Package Type  
Comcode  
Delivery  
LCK4994YH-DB  
LCK4994YH-DT  
LCK4994KB-DB  
LCK4994KB-DT  
100FSBGA  
100FSBGA  
100TQFP  
100TQFP  
700042835  
700042836  
700025705  
700025708  
Tray  
Tape  
Tray  
Tape  
Cypress is a registered trademark of Cypress Semiconductor Corporation.  
For additional information, contact your Agere Systems Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.agere.com  
docmaster@agere.com  
N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-9138  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA:  
Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon  
Tel. (852) 3129-2000, FAX (852) 3129-2020  
CHINA: (86) 21-54614688 (Shanghai), (86) 755-25881122 (Shenzhen)  
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)  
Tel. (44) 1344 296 400  
EUROPE:  
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
Agere is a registered trademark of Agere Systems Inc. Agere Systems and the Agere logo are trademarks of Agere Systems Inc.  
Copyright © 2004 Agere Systems Inc.  
All Rights Reserved  
May 5, 2004  
DS04-014LCK-1 (Replaces DS04-014LCK)  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY