HCPL-063L#020 [AGILENT]

IC Output Optocoupler, 2-Element, 2500V Isolation;
HCPL-063L#020
型号: HCPL-063L#020
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

IC Output Optocoupler, 2-Element, 2500V Isolation

文件: 总15页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HCPL-260L/ 060L/263L/063L  
High Speed LVTTL Compatible  
3.3 Volt Optocouplers  
Data Sheet  
Features  
Low power consumption  
15 kV/µs minimum Common Mode  
Rejection (CMR) at VCM = 50 V  
High speed: 15 MBd typical  
LVTTL/LVCMOS compatible  
Low input current capability:  
5 mA  
Description  
Guaranteed AC and DC performance  
over temperature: –40˚C to +85˚C  
The HCPL-260L/060L/263L/063L  
are optically coupled gates that  
combine a GaAsP light emitting  
diode and an integrated high gain  
photo detector. An enable input  
allows the detector to be strobed.  
The output of the detector IC is an  
open collector Schottky-clamped  
transistor. The internal shield  
provides a guaranteed common  
mode transient immunity  
This unique design provides  
maximum AC and DC circuit  
isolation while achieving  
LVTTL/LVCMOS compatibility.  
The optocoupler AC and DC  
operational parameters are  
guaranteed from –40˚C to +85˚C  
allowing trouble-free system  
performance.  
Available in 8-pin DIP, SOIC-8  
Strobable output (single channel  
products only)  
Safety approvals; UL, CSA, VDE  
(pending)  
Applications  
Isolated line receiver  
specification of 15 kV/µs.  
Computer-peripheral interfaces  
Microprocessor system interfaces  
Functional Diagram  
Digital isolation for A/D, D/A  
conversion  
HCPL-260L/060L  
HCPL-263L/063L  
1
2
V
V
V
ANODE  
CATHODE  
CATHODE  
ANODE  
1
2
V
V
8
7
8
7
NC  
CC  
CC  
O1  
O2  
1
1
Switching power supply  
Instrument input/output isolation  
Ground loop elimination  
Pulse transformer replacement  
Field buses  
ANODE  
E
V
CATHODE  
NC  
3
4
6
5
3
4
6
5
O
2
2
GND  
GND  
SHIELD  
SHIELD  
TRUTH TABLE  
(POSITIVE LOGIC)  
TRUTH TABLE  
(POSITIVE LOGIC)  
LED ENABLE OUTPUT  
LED OUTPUT  
ON  
OFF  
ON  
OFF  
ON  
OFF  
H
H
L
L
NC  
NC  
L
H
H
H
L
ON  
OFF  
L
H
H
A 0.1 µF bypass capacitor must be connected between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent  
damage and/or degradation which may be induced by ESD.  
These optocouplers are suitable  
for high speed logic interfacing,  
input/output buffering, as line  
receivers in environments that  
conventional line receivers  
cannot tolerate and are  
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Example:  
HCPL-260L #XXX  
060 = VDE 0884 V  
= 630 Vpeak Option  
IORM  
recommended for use in  
extremely high ground or induced  
noise environments.  
500 = Tape and Reel Packaging Option  
Option data sheets available. Contact Agilent sales representative or  
authorized distributor for information.  
These optocouplers are available  
in an 8-pin DIP and industry  
standard SO-8 package. The part  
numbers are as follows:  
8-pin DIP  
HCPL-260L  
HCPL-263L  
SO-8 Package  
HCPL-060L  
HCPL-063L  
Schematic  
HCPL-260L/060L  
HCPL-263L/063L  
I
F
I
I
CC  
I
CC  
I
V
V
V
V
CC  
CC  
8
6
2+  
8
7
1
+
I
F1  
O
O1  
O
O1  
V
F1  
2
V
F
3
GND  
SHIELD  
5
SHIELD  
I
E
7
E
3
I
V
F2  
I
O2  
V
O2  
6
5
USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED  
BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5).  
V
F2  
+
4
GND  
SHIELD  
2
Package Outline Drawings  
8-Pin DIP Package  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
1
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
*MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
"V" = OPTION 060  
2.54 ± 0.25  
(0.100 ± 0.010)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
3
Small Outline SO-8 Package  
8
1
7
2
6
5
4
5.994 ± 0.203  
(0.236 ± 0.008)  
XXX  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
TYPE NUMBER  
(LAST 3 DIGITS)  
DATE CODE  
3
PIN ONE  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSG  
0.432  
(0.017)  
*
7°  
5.080 ± 0.127  
(0.200 ± 0.005)  
45° X  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7°  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
Solder Reflow Temperature Profile  
(Surface Mount Option Parts)  
Regulatory Information  
The HCPL-260L/060L/263L/063L  
are pending by the following  
organizations:  
260  
240  
220  
T = 145°C, 1°C/SEC  
T = 115°C, 0.3°C/SEC  
UL  
200  
180  
160  
140  
120  
100  
Approval (pending) under UL  
1577, Component Recognition  
Program, File E55361.  
80  
T = 100°C, 1.5°C/SEC  
CSA  
60  
40  
20  
0
Approval (pending) under CSA  
Component Acceptance Notice  
#5, File CA 88324.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
VDE  
NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS HIGHLY RECOMMENDED.  
Approval (pending) according to  
VDE 0884/06.92.  
4
Insulation and Safety Related Specifications  
8-Pin DIP  
(300 Mil)  
Value  
SO-8  
Parameter  
Symbol  
Value Units Conditions  
Minimum External Air  
Gap (External Clearance)  
Minimum External Tracking L (102)  
(External Creepage)  
Minimum Internal Plastic  
Gap (Internal Clearance)  
L (101)  
7.1  
4.9  
mm  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Measured from input terminals to output  
7.4  
4.8  
terminals, shortest distance path along body.  
0.08  
0.08  
Through insulation distance, conductor to  
conductor, usually the direct distance  
between the photoemitter and photodetector  
inside the optocoupler cavity.  
Minimum Internal Tracking  
(Internal Creepage)  
Tracking Resistance  
(Comparative Tracking  
Index)  
NA  
200  
NA  
200  
mm  
Measured from input terminals to output  
terminals, along internal cavity.  
CTI  
Volts DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
IIIa  
IIIa  
Material Group (DIN VDE 0110, 1/89, Table 1)  
VDE 0884 Insulation Related Characteristics  
Description  
Symbol  
Characteristic Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 V rms  
I-IV  
I-III  
for rated mains voltage 450 V rms  
Climatic Classification  
55/85/21  
2
630  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
V
V
V
IORM  
peak  
V
IORM  
x 1.875 = V , 100% Production Test with t = 1 sec,  
1181  
PR  
m
PR  
peak  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
V
x 1.5 = V , Type and Sample Test,  
V
V
945  
V
V
IORM  
PR  
PR  
peak  
t = 60 sec, Partial Discharge < 5 pC  
m
Highest Allowable Overvoltage*  
6000  
IOTM  
peak  
(Transient Overvoltage, t = 10 sec)  
ini  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 16, Thermal Derating curve.)  
Case Temperature  
T
175  
230  
600  
˚C  
mA  
mW  
S
Input Current  
Output Power  
I
S,INPUT  
P
R
S,OUTPUT  
S
9
Insulation Resistance at T , V = 500 V  
10  
S
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.  
5
Absolute Maximum Ratings (No Derating Required up to 85˚C)  
Parameter  
Symbol  
Package**  
Min.  
–55  
–40  
Max.  
125  
85  
Units  
˚C  
˚C  
Note  
Storage Temperature  
Operating Temperature†  
Average Forward Input Current  
T
T
S
A
I
Single 8-Pin DIP  
Single SO-8  
20  
mA  
2
F
Dual 8-Pin DIP  
Dual SO-8  
8-Pin DIP, SO-8  
15  
1, 3  
1
Reverse Input Voltage  
V
R
5
V
3
Input Power Dissipation  
Supply Voltage (1 Minute Maximum)  
Enable Input Voltage (Not to Exceed  
P
V
V
40  
7
mW  
V
V
I
CC  
E
Single 8-Pin DIP  
Single SO-8  
V
CC  
+ 0.5  
V
CC  
by more than 500 mV)  
Enable Input Current  
I
I
V
P
5
50  
7
mA  
mA  
V
E
Output Collector Current  
Output Collector Voltage  
Output Collector Power Dissipation  
1
1
O
O
O
Single 8-Pin DIP  
Single SO-8  
85  
mW  
Dual 8-Pin DIP  
Dual SO-8  
60  
1, 4  
Lead Solder Temperature  
(Through Hole Parts Only)  
T
LS  
8-Pin DIP  
260˚C for 10 sec., 1.6 mm below  
seating plane  
260˚C for 10 sec., up to seating  
plane  
Solder Reflow Temperature Profile  
(Surface Mount Parts Only)  
SO-8  
See Package Outline Drawings  
section  
**Ratings apply to all devices except otherwise noted in the Package column.  
Recommended Operating Conditions  
Parameter  
Symbol  
I *  
Min.  
0
5
2.7  
0
2.0  
–40  
Max.  
250  
15  
3.3  
0.8  
Units  
µA  
mA  
V
V
V
Input Current, Low Level  
Input Current, High Level  
Power Supply Voltage  
Low Level Enable Voltage  
High Level Enable Voltage  
FL  
[1]  
I
**  
FH  
V
V
V
CC  
EL  
EH  
A
V
CC  
Operating Temperature  
Fan Out (at R = 1 k)  
T
85  
5
˚C  
[1]  
N
TTL Loads  
L
Output Pull-up Resistor  
R
L
330  
4 k  
*The off condition can also be guaranteed by ensuring that V 0.8 volts.  
FL  
**The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used  
for best performance and to permit at least a 20% LED degradation guardband.  
6
Electrical Specifications  
Over Recommended Temperature (T = –40˚C to +85˚C) unless otherwise specified. All Typicals at V = 3.3 V,  
A
CC  
T = 25˚C. All enable test conditions apply to single channel products only. See Note 5.  
A
Parameter  
Sym.  
Min. Typ.  
Max. Units Test Conditions  
Fig.  
Note  
High Level Output Current  
I
*
4.5  
50  
µA  
V
= 3.3 V, V = 2.0 V,  
1
1, 15  
OH  
CC  
E
V = 3.3 V, I = 250 µA  
O
F
Input Threshold Current  
Low Level Output Voltage  
I
3.0  
5.0  
mA  
V
= 3.3 V, V = 2.0 V,  
2
3
15  
15  
TH  
CC  
E
V = 0.6 V,  
O
I
(Sinking) = 13 mA  
= 3.3 V, V = 2.0 V,  
OL  
V
*
0.35  
0.6  
V
V
OL  
CC E  
I = 5 mA,  
F
I
(Sinking) = 13 mA  
OL  
High Level Supply Current  
Low Level Supply Current  
I
I
I
4.7  
7.0  
7.0  
mA  
mA  
V = 0.5 V  
V
= 3.3 V  
CCH  
CCL  
EH  
E
CC  
I = 0 mA  
F
10.0  
V = 0.5 V  
E
V
CC  
= 3.3 V  
I = 10 mA  
F
High Level Enable Current  
Low Level Enable Current  
High Level Enable Voltage  
Low Level Enable Voltage  
Input Forward Voltage  
–0.5  
–0.5  
2.0  
–1.2  
–1.2  
mA  
mA  
V
V
V
V
CC  
V
CC  
= 3.3 V, V = 2.0 V  
E
= 3.3 V, V = 0.5 V  
E
I *  
EL  
V
V
V
15  
EH  
EL  
F
0.8  
1.75*  
1.4  
5
1.5  
T = 25˚C I = 10 mA  
5
1
1
A
F
Input Reverse Breakdown  
Voltage  
BV *  
V
I = 10 µA  
R
R
Input Diode Temperature  
Coefficient  
V /  
–1.6  
mV˚C I = 10 mA  
1
F
F
T  
A
–1.9  
60  
Input Capacitance  
C
IN  
pF  
f = 1 MHz, V = 0 V  
F
1
*The JEDEC Registration specifies 0˚C to +70˚C. Agilent specifies –40˚C to +85˚C.  
7
Switching Specifications  
Over Recommended Temperature (T = –40˚C to +85˚C), V = 3.3 V, I = 7.5 mA unless otherwise specified. All Typicals  
A
CC  
F
at T = 25˚C, V = 3.3 V.  
A
CC  
Parameter  
Sym.  
Package** Min. Typ. Max. Units Test Conditions  
Fig.  
Note  
Propagation Delay  
Time to High Output  
Level  
Propagation Delay  
Time to Low Output  
Level  
t
90  
ns  
T = 25˚C  
A
R = 350 6, 7, 8 1, 6, 15  
C = 15 pF  
L
PLH  
PHL  
L
t
75  
ns  
1, 7, 15  
Pulse Width  
Distortion  
Propagation Delay  
Skew  
Output Rise Time  
(10-90%)  
Output Fall Time  
(90-10%)  
|t  
– t | 8-Pin DIP  
25  
40  
ns  
ns  
ns  
ns  
ns  
8
9
9, 15  
8, 9, 15  
1, 15  
1, 15  
10  
PHL  
PSK  
r
PLH  
SO-8  
t
t
t
t
45  
20  
45  
f
Propagation Delay  
Time of Enable from  
R = 350 ,  
L
C = 15 pF,  
L
ELH  
V
EH  
tp V  
V = 0 V, V = 3 V  
EL EH  
EL  
Propagation Delay  
Time of Enable from  
t
30  
ns  
11  
EHL  
V
EL  
to V  
EH  
*JEDEC registered data for the 6N137.  
**Ratings apply to all devices except otherwise noted in the Package column.  
Parameter Sym.  
Device  
Min. Typ.  
Units Test Conditions  
Fig. Note  
Logic High |CM | HCPL-263L 15,000 25,000 V/µs |V | = 10 V  
V
= 3.3 V, I = 0 mA,  
11  
12, 14, 15  
H
CM  
CC  
F
Common  
Mode  
HCPL-063L  
V
= 2 V,  
O(MIN)  
R = 350 , T = 25˚C  
L
A
Transient  
Immunity  
HCPL-260L 15,000 25,000  
HCPL-060L  
|V | = 50 V  
CM  
Logic Low  
Common  
Mode  
Transient  
Immunity  
|CM | HCPL-263L 15,000 25,000 V/µs |V | = 10 V  
V
V
= 3.3 V, I = 7.5 mA,  
11  
13, 14, 15  
L
CM  
CC  
F
HCPL-063L  
= 0.8 V,  
O(MAX)  
R = 350 , T = 25˚C  
L
A
HCPL-260L 15,00 25,000  
HCPL-060L  
|V | = 50 V  
CM  
8
Package Characteristics  
All Typicals at T = 25˚C.  
A
Parameter  
Input-Output  
Insulation  
Sym. Package  
Min. Typ. Max  
Units Test Conditions  
µA 45% RH, t = 5 s,  
= 3 kV DC, T = 25˚C  
Fig. Note  
16, 17  
I
*
Single 8-Pin DIP  
Single SO-8  
1
I-O  
V
I-O  
A
Input-Output  
Momentary  
Withstand  
Voltage**  
Input-Output  
Resistance  
Input-Output  
Capacitance  
Input-Input  
Insulation  
Leakage  
Current  
V
8-Pin DIP, SO-8  
2500  
V rms RH 50%, t = 1 min,  
T = 25˚C  
16, 17  
ISO  
A
12  
R
C
8-Pin, SO-8  
10  
V
I-O  
=500 V dc  
1, 16, 19  
1, 16, 19  
20  
I-O  
8-Pin DIP, SO-8  
Dual Channel  
0.6  
pF  
µA  
f = 1 MHz, T = 25˚C  
I-O  
A
I
0.005  
RH 45%, t = 5 s,  
I-I  
V
I-I  
= 500 V  
11  
Resistance  
(Input-Input)  
Capacitance  
(Input-Input)  
R
C
Dual Channel  
10  
20  
20  
I-I  
Dual 8-Pin Dip  
Dual SO-8  
0.03  
0.25  
pG  
f = 1 MHz  
I-I  
*The JEDEC Registration specifies 0˚C to +70˚C. Agilent specifies –40˚C to +85˚C.  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level  
safety specification or Agilent Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."  
Notes:  
1. Each channel.  
2. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not  
exceed 20 mA.  
3. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not  
exceed 15 mA.  
4. Derate linearly above +80˚C free-air temperature at a rate of 2.7 mW/˚C for the SOIC-8 package.  
5. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated in  
Figure 11. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm.  
6. The t  
propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge  
PLH  
of the output pulse.  
7. The t  
of the output pulse.  
propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge  
PHL  
8. t  
is equal to the worst case difference in t  
and/or t  
that will be seen between units at any given temperature and specified test  
PSK  
conditions.  
PHL  
PLH  
9. See test circuit for measurement details.  
10. The t  
enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the  
ELH  
rising edge of the output pulse.  
11. The t  
enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the  
ELH  
falling edge of the output pulse.  
12. CM is the maximum tolerable rate of rise on the common mode voltage to assure that the output will remain in a high logic state  
H
(i.e., V > 2.0 V).  
o
13. CM is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state  
L
(i.e., V < 0.8 V).  
14. For sinusoidal voltages, (|dV | / dt)  
o
= πf  
V
(p-p).  
CM  
max  
CM CM  
15. No external pull up is required for a high logic state on the enable input. If the V pin is not used, tying V to V will result in improved  
E
E
CC  
CMR performance. For single channel products only. See application information provided.  
16. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.  
17. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 3000 V rms for one second (leakage  
detection current limit, I 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the  
I-O  
VDE 0884 Insulation Characteristics Table, if applicable.  
18. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for one second (leakage  
detection current limit, I 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the  
I-O  
VDE 0884 Insulation Characteristics Table, if applicable.  
19. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only.  
20. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only.  
9
8-PIN DIP, SO-8  
= 3.3 V  
8-PIN DIP, SO-8  
15  
10  
12  
10  
0.8  
0.7  
V
V
V
V
= 3.3 V * FOR SINGLE  
CC  
CC  
= 0.6 V  
V
V
V
= 3.3 V  
= 3.3 V  
= 2.0 V*  
= 250 µA  
CC  
O
E
= 2.0 V*  
= 5.0 mA  
CHANNEL  
PRODUCTS ONLY  
O
E
I
F
0.6  
0.5  
0.4  
0.3  
0.2  
I
F
8
6
4
* FOR SINGLE  
CHANNEL  
PRODUCTS  
ONLY  
R
= 350  
L
R
= 1 KΩ  
L
I
= 13 mA  
O
5
0
2
0
0.1  
0
R
= 4 KΩ  
L
0
20 40  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40  
80 100  
-60 -40 -20  
80 100  
60  
60  
T
– TEMPERATURE – °C  
A
T
– TEMPERATURE – °C  
A
T
– TEMPERATURE – °C  
A
Figure 1. Typical high level output current vs.  
temperature.  
Figure 2. Typical input threshold current vs.  
temperature.  
Figure 3. Typical low level output voltage vs.  
temperature.  
8-PIN DIP, SO-8  
1000  
70  
V
V
V
= 3.3 V  
= 2.0 V*  
= 0.6 V  
* FOR SINGLE  
CHANNEL  
PRODUCTS ONLY  
CC  
E
OL  
T
= 25 °C  
A
100  
10  
I
F
60  
50  
+
F
V
1.0  
I
= 5.0 mA  
F
0.1  
0.01  
40  
20  
0.001  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
-60 -40 -20  
0
20 40  
80 100  
60  
V
– FORWARD VOLTAGE – V  
F
T
– TEMPERATURE – °C  
A
Figure 4. Typical low level output current vs.  
temperature.  
Figure 5. Typical input diode forward  
characteristic.  
PULSE GEN.  
= 50  
Z
O
t = t = 5 ns  
f
r
SINGLE CHANNEL  
DUAL CHANNEL  
3.3 V  
3.3 V  
I
F
I
F
PULSE GEN.  
= 50 Ω  
V
V
1
2
3
4
8
7
6
5
1
2
3
4
8
CC  
CC  
Z
O
R
L
t
= t = 5 ns  
r
f
INPUT  
MONITORING  
NODE  
OUTPUT V  
O
MONITORING  
NODE  
0.1 µF  
BYPASS  
R
7
6
5
L
0.1 µF  
BYPASS  
OUTPUT V  
MONITORING  
NODE  
INPUT  
MONITORING  
NODE  
O
*C  
L
R
C *  
L
M
R
M
GND  
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
I
I
= 7.50 mA  
= 3.75 mA  
F
INPUT  
F
I
F
t
t
PLH  
PHL  
OUTPUT  
V
O
1.5 V  
Figure 6. Test circuit for t  
and t  
.
PLH  
PHL  
10  
150  
120  
50  
40  
30  
20  
10  
0
V
= 3.3 V  
CC  
= 7.5 mA  
V
= 3.3 V  
CC  
= 7.5 mA  
I
F
I
F
t
, R = 350  
L
PLH  
90  
60  
R
= 350  
L
t
, R = 350 Ω  
L
PHL  
30  
0
-60  
-40 -20  
0
20 40  
80 100  
-60 -40 -20  
0
20 40  
80 100  
60  
60  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 7. Typical propagation delay vs.  
temperature.  
Figure 8. Typical pulse width distortion vs.  
temperature.  
PULSE GEN.  
Z
= 50 Ω  
r
O
t = t = 5 ns  
f
INPUT V  
MONITORING NODE  
E
+3.3 V  
V
3.0 V  
1.5 V  
1
2
3
4
8
7
6
5
CC  
INPUT  
V
7.5 mA  
E
0.1 µF  
BYPASS  
R
L
I
F
t
t
ELH  
EHL  
OUTPUT V  
MONITORING  
NODE  
O
OUTPUT  
V
O
1.5 V  
*C  
L
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
Figure 9. Test circuit for t  
and t  
.
EHL  
ELH  
I
F
SINGLE CHANNEL  
DUAL CHANNEL  
V
B
A
I
F
V
+3.3 V  
+3.3 V  
1
2
3
4
8
1
2
3
4
8
7
6
5
CC  
CC  
R
B
A
L
OUTPUT V  
MONITORING  
NODE  
O
0.1 µF  
BYPASS  
R
7
6
5
L
V
FF  
OUTPUT V  
MONITORING  
NODE  
O
V
0.1 µF  
BYPASS  
FF  
GND  
GND  
V
V
CM  
CM  
+
+
PULSE  
GENERATOR  
PULSE  
GENERATOR  
= 50 Ω  
Z
= 50 Ω  
Z
O
O
V
(PEAK)  
(MIN.)  
CM  
V
CM  
0 V  
SWITCH AT A: I = 0 mA  
F
3.3 V  
CM  
H
V
V
O
V
O
SWITCH AT B: I = 7.5 mA  
F
V
(MAX.)  
O
O
0.5 V  
CM  
L
Figure 10. Test circuit for common mode transient immunity and typical waveforms.  
11  
GND BUS (BACK)  
V
BUS (FRONT)  
NC  
CC  
ENABLE  
OUTPUT  
0.1µF  
NC  
10 mm MAX.  
(SEE NOTE 5)  
SINGLE CHANNEL  
DEVICE ILLUSTRATED.  
Figure 11. Recommended printed circuit board layout.  
SINGLE CHANNEL DEVICE  
3.3 V  
3.3 V  
8
6
V
CC1  
V
CC2  
R
L
220 Ω  
I
F
+
2
3
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
V
E
7
1
2
*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.  
DUAL CHANNEL DEVICE  
CHANNEL 1 SHOWN  
3.3 V  
3.3 V  
8
7
V
CC1  
V
CC2  
R
L
220 Ω  
I
F
+
1
2
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
1
2
Figure 12. Recommended LVTTL interface circuit.  
12  
Application Information  
Common-Mode Rejection for  
HCPL-260L Families:  
Figure 13 shows the recom-  
mended drive circuit for optimal  
common-mode rejection  
performance. Two main points to  
note are:  
*
1
HCPL-260L  
8
7
V
V
V
CC  
CC+  
0.01 µF  
220  
220 Ω  
350 Ω  
2
3
4
6
5
O
74LS04  
OR ANY TOTEM-POLE  
OUTPUT LOGIC GATE  
GND  
SHIELD  
*
1. The enable pin is tied to VCC  
rather than floating (this  
applies to single-channel parts  
only).  
GND1  
GND2  
* HIGHER CMR MAY BE OBTAINABLE BY CONNECTING PINS 1, 4 TO INPUT GROUND (GND1).  
2. Two LED-current setting  
resistors are used instead of  
one. This is to balance ILED  
variation during common-  
mode transients.  
Figure 13. Recommended drive circuit for High-CMR.  
1
2
8
7
V
V
+
CC  
If the enable pin is left floating, it  
is possible for common-mode  
transients to couple to the enable  
pin, resulting in common-mode  
failure. This failure mechanism  
only occurs when the LED is on  
and the output is in the Low  
State. It is identified as occurring  
when the transient output voltage  
rises above 0.8 V. Therefore, the  
enable pin should be connected  
to either VCC or logic-level high  
for best common-mode  
1/2 R  
1/2 R  
0.01 µF  
LED  
350  
I
LP  
LED  
C
I
LA  
LN  
3
4
6
5
O
15 pF  
C
LC  
GND  
SHIELD  
+
V
CM  
Figure 14. AC equivalent circuit.  
performance with the output low  
(CMRL). This failure mechanism  
is only present in single-channel  
parts which have the enable  
function.  
For transients occurring when the  
LED is on, common-mode rejec-  
tion (CMRL, since the output is in  
the “low” state) depends upon the  
amount of LED current drive (IF).  
For conditions where IF is close  
to the switching threshold (ITH),  
CMRL also depends on the extent  
which ILP and ILN balance each  
other. In other words, any  
condition where common-mode  
transients cause a momentary  
decrease in IF will cause  
common-mode failure for  
transients which are fast enough.  
output is “high”), if an imbalance  
between ILP and ILN results in a  
transient IF equal to or greater  
than the switching threshold of  
the optocoupler, the transient  
“signal” may cause the output to  
spike below 2 V (which consti-  
tutes a CMRH failure).  
Also, common-mode transients  
can capacitively couple from the  
LED anode (or cathode) to the  
output-side ground causing  
current to be shunted away from  
the LED (which can be bad if the  
LED is on) or conversely cause  
current to be injected into the  
LED (bad if the LED is meant to  
be off). Figure 14 shows the  
parasitic capacitances which  
exists between LED  
By using the recommended  
circuit in Figure 13, good CMR  
can be achieved. The balanced  
ILED-setting resistors help equalize  
ILP and ILN to reduce the amount  
by which ILED is modulated from  
transient coupling through CLA  
and CLC.  
anode/cathode and output ground  
(CLA and CLC). Also shown in  
Figure 14 on the input side is an  
AC-equivalent circuit.  
Likewise for common-mode  
transients which occur when the  
LED is off (i.e. CMRH, since the  
13  
V
CMR with Other Drive  
Circuits  
CC  
HCPL-260L  
CMR performance with drive  
circuits other than that shown in  
Figure 13 may be enhanced by  
following these guidelines:  
1
2
420 Ω  
(MAX)  
2N3906  
(ANY PNP)  
74L504  
(ANY  
LED  
1. Use of drive circuits where  
current is shunted from the  
LED in the LED “off” state (as  
shown in Figures 15 and 16).  
This is beneficial for good  
CMRH.  
TTL/CMOS  
GATE)  
3
4
2. Use of IFH > 3.5 mA. This is  
good for high CMRL.  
Figure 15. TTL interface circuit.  
Figure 15 shows a circuit which  
can be used with any totem-pole-  
output TTL/LSTTL/HCMOS logic  
gate. The buffer PNP transistor  
allows the circuit to be used with  
logic devices which have low  
current-sinking capability. It also  
helps maintain the driving-gate  
power-supply current at a  
V
CC  
HCPL-260L  
1
2
R
74HC00  
(OR ANY  
OPEN-COLLECTOR/  
OPEN-DRAIN  
LED  
3
4
LOGIC GATE)  
constant level to minimize ground  
shifting for other devices  
connected to the input-supply  
ground.  
Figure 16. TTL open-collector/open drain gate drive circuit.  
When using an open-collector  
TTL or open-drain CMOS logic  
gate, the circuit in Figure 16 may  
be used. When using a CMOS  
gate to drive the optocoupler, the  
circuit shown in Figure 17 may  
be used. The diode in parallel  
with the RLED speeds the turn-off  
of the optocoupler LED.  
V
CC  
HCPL-260L  
1N4148  
1
2
220 Ω  
74HC04  
(OR ANY  
LED  
TOTEM-POLE  
OUTPUT LOGIC  
GATE)  
3
4
Figure 17. CMOS gate drive circuit.  
14  
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 2000 Agilent Technologies  
5980-2523EN (11/00)  

相关型号:

HCPL-063L#060

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15 Mbps, SOIC-8
AVAGO

HCPL-063L#500

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, SOIC-8
AVAGO

HCPL-063L-000E

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, ROHS COMPLIANT, SOIC-8
AVAGO

HCPL-063L-060

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, SOIC-8
AVAGO

HCPL-063L-060E

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, ROHS COMPLIANT, SOIC-8
AVAGO

HCPL-063L-500

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, SURFACE MOUNT, SOP-8
AVAGO

HCPL-063L-500E

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, ROHS COMPLIANT, SOIC-8
AVAGO

HCPL-063L-560E

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, ROHS COMPLIANT, SOIC-8
AVAGO

HCPL-063L060

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15 Mbps, SOIC-8
AGILENT

HCPL-063N

High CMR, High Speed TTL Compatible Optocouplers
AGILENT

HCPL-063N

HCMOS Compatible, High CMR, 10 MBd Optocouplers
AVAGO

HCPL-063N

High CMR Line Receiver Optocouplers
HP