HCPL-063L060 [AGILENT]

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15 Mbps, SOIC-8;
HCPL-063L060
型号: HCPL-063L060
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15 Mbps, SOIC-8

输出元件 光电
文件: 总15页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AgilentHCPL-260L/060L/263L/063L  
High Speed LVTTL Compatible  
3.3 Volt Optocouplers  
Data Sheet  
Features  
Low power consumption  
15 kV/µs minimum Common Mode  
Rejection (CMR) at VCM = 50 V  
High speed: 15 MBd typical  
LVTTL/LVCMOScompatible  
Low input current capability:  
5 mA  
Description  
The HCPL-260L/060L/263L/063L  
are optically coupled gates that  
combine a GaAsP light emitting  
diode and an integrated high gain  
photo detector. An enable input  
allows the detector to be strobed.  
The output of the detector IC is an  
open collector Schottky-clamped  
transistor. The internal shield  
provides a guaranteed common  
mode transient immunity  
This unique design provides  
maximum AC and DC circuit  
isolation while achieving  
LVTTL/LVCMOS compatibility.  
The optocoupler AC and DC  
operational parameters are  
guaranteed from –40˚C to +85˚C  
allowing trouble-free system  
performance.  
Guaranteed AC and DC performance  
over temperature: –40˚C to +85˚C  
Available in 8-pin DIP, SOIC-8  
Strobable output (single channel  
products only)  
Safetyapprovals;UL,CSA,IEC/EN/  
DINEN60747-5-2  
Applications  
specification of 5 kV/µs.  
Isolated line receiver  
Computer-peripheral interfaces  
Microprocessor system interfaces  
Functional Diagram  
Digital isolation for A/D, D/A  
conversion  
HCPL-260L/060L  
HCPL-263L/063L  
1
2
V
V
V
ANODE  
CATHODE  
CATHODE  
ANODE  
1
2
V
V
8
7
8
7
NC  
CC  
CC  
O1  
O2  
1
1
Switching power supply  
Instrumentinput/outputisolation  
Ground loop elimination  
Pulse transformer replacement  
Field buses  
ANODE  
E
V
CATHODE  
NC  
3
4
6
5
3
4
6
5
O
2
2
GND  
GND  
SHIELD  
SHIELD  
TRUTH TABLE  
(POSITIVE LOGIC)  
TRUTH TABLE  
(POSITIVE LOGIC)  
LED ENABLE OUTPUT  
LED OUTPUT  
ON  
OFF  
ON  
OFF  
ON  
OFF  
H
H
L
L
NC  
NC  
L
H
H
H
L
ON  
OFF  
L
H
H
A 0.1 µF bypass capacitor must be connected between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent  
damage and/or degradation which may be induced by ESD.  
These optocouplers are suitable  
for high speed logic interfacing,  
input/output buffering, as line  
receivers in environments that  
conventional line receivers  
cannot tolerate and are  
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Example:  
HCPL-260L#XXXX  
060=IEC/EN/DINEN60747-5-2  
recommended for use in  
extremely high ground or induced  
noise environments.  
500 = Tape and Reel Packaging Option  
XXXE = Lead Free Option  
These optocouplers are available  
in an 8-pin DIP and industry  
standard SO-8 package. The part  
numbers are as follows:  
Option data sheets available. Contact Agilent sales representative or  
authorized distributor for information.  
Remarks: The notation “#” is used for existing products, while (new)  
products launched since 15th July 2001 and lead free option will use “-”  
8-pin DIP  
HCPL-260L  
HCPL-263L  
SO-8 Package  
HCPL-060L  
HCPL-063L  
Schematic  
HCPL-260L/060L  
HCPL-263L/063L  
I
F
I
I
CC  
I
CC  
I
V
V
V
V
CC  
O
CC  
8
6
2+  
8
7
1
+
I
F1  
O
O1  
O1  
V
F1  
2
V
F
3
GND  
SHIELD  
5
SHIELD  
I
E
7
E
3
I
V
F2  
I
O2  
V
O2  
6
5
USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED  
BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5).  
V
F2  
+
4
GND  
SHIELD  
2
Package Outline Drawings  
8-Pin DIP Package  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"V" = OPTION 060  
OPTION NUMBER 500 NOT MARKED.  
2.54 ± 0.25  
(0.100 ± 0.010)  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
Small Outline SO-8 Package  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
5.994 ± 0.203  
(0.236 ± 0.008)  
XXXV  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
7.49 (0.295)  
TYPE NUMBER  
(LAST 3 DIGITS)  
DATE CODE  
3
4
1.9 (0.075)  
PIN ONE  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
0.432  
45° X  
*
7°  
5.080 ± 0.127  
(0.200 ± 0.005)  
(0.017)  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7°  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
OPTION NUMBER 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
3
Solder Reflow Temperature Profile  
Regulatory Information  
The HCPL-260L/060L/263L/063L  
have been approved by the  
following organizations:  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
UL  
PEAK  
TEMP.  
230°C  
Approval under UL 1577,  
Component Recognition  
Program, File E55361.  
200  
100  
0
2.5°C ± 0.5°C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160°C  
150°C  
140°C  
SEC.  
30  
SEC.  
CSA  
3°C + 1°C/–0.5°C  
Approval under CSA Component  
Acceptance Notice #5, File CA  
88324.  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
IEC/EN/DINEN60747-5-2  
Approved under:  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01  
(Option 060 only)  
PB-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAK TEMPERATURE  
t
p
15 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
RAMP-DOWN  
6 °C/SEC. MAX.  
150 - 200 °C  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
4
Insulation and Safety Related Specifications  
8-Pin DIP  
(300Mil)  
Value  
SO-8  
Parameter  
Symbol  
Value Units Conditions  
Minimum External Air  
Gap (External Clearance)  
L (101)  
7.1  
4.9  
mm  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External Tracking L (102)  
(External Creepage)  
7.4  
4.8  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic  
Gap (Internal Clearance)  
0.08  
0.08  
Through insulation distance, conductor to  
conductor, usually the direct distance  
between the photoemitter and photodetector  
inside the optocoupler cavity.  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
200  
IIIa  
200  
IIIa  
Volts DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
IEC/EN/DINEN60747-5-2InsulationRelatedCharacteristics  
Description  
Symbol  
PDIP Option 060  
SO-8 Option 60  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 150 V rms  
I-IV  
I-III  
I-II  
for rated mains voltage 300 V rms  
for rated mains voltage 600 V rms  
I-IV  
I-III  
Climatic Classification  
55/85/21  
55/85/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
2
2
V
V
630  
566  
V
V
IORM  
PR  
peak  
peak  
V
x 1.875 = V , 100% Production Test  
1181  
1063  
IORM  
PR  
with t = 1 sec, Partial Discharge < 5 pC  
m
Input to Output Test Voltage, Method a*  
V
x 1.5 = V , Type and Sample Test,  
= 60 sec, Partial Discharge < 5 pC  
V
V
945  
849  
V
V
IORM  
PR  
PR  
peak  
peak  
t
m
Highest Allowable Overvoltage*  
6000  
4000  
IOTM  
(Transient Overvoltage, t = 10 sec)  
ini  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 16, Thermal Derating curve.)  
Case Temperature  
T
175  
230  
600  
150  
150  
600  
˚C  
mA  
mW  
S
Input Current  
Output Power  
I
S,INPUT  
P
S,OUTPUT  
S
9
9
Insulation Resistance at T , V = 500 V  
R
10  
10  
S
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2, for a detailed  
description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.  
5
Absolute Maximum Ratings (No Derating Required up to 85˚C)  
Parameter  
Symbol  
Package**  
Min.  
–55  
Max.  
125  
85  
Units  
˚C  
Note  
Storage Temperature  
Operating Temperature†  
Average Forward Input Current  
T
T
S
–40  
˚C  
A
I
Single 8-Pin DIP  
Single SO-8  
20  
mA  
2
F
Dual 8-Pin DIP  
Dual SO-8  
15  
1, 3  
1
Reverse Input Voltage  
V
P
V
V
8-Pin DIP, SO-8  
5
V
R
I
Input Power Dissipation  
40  
7
mW  
V
Supply Voltage (1 Minute Maximum)  
Enable Input Voltage (Not to Exceed  
CC  
E
Single 8-Pin DIP  
Single SO-8  
V
+ 0.5  
V
CC  
V
by more than 500 mV)  
CC  
Enable Input Current  
I
I
5
mA  
mA  
V
E
Output Collector Current  
Output Collector Voltage  
Output Collector Power Dissipation  
50  
7
1
1
O
V
P
O
O
Single 8-Pin DIP  
Single SO-8  
85  
mW  
Dual 8-Pin DIP  
Dual SO-8  
60  
1, 4  
Lead Solder Temperature  
(Through Hole Parts Only)  
T
8-Pin DIP  
260˚C for 10 sec., 1.6 mm below  
seating plane  
LS  
Solder Reflow Temperature Profile  
(Surface Mount Parts Only)  
SO-8  
See Package Outline Drawings  
section  
**Ratings apply to all devices except otherwise noted in the Package column.  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
0
Max.  
250  
15  
Units  
Input Current, Low Level  
Input Current, High Level  
Power Supply Voltage  
I
I
*
µA  
FL  
[1]  
**  
5
mA  
FH  
V
V
V
2.7  
0
3.6  
V
CC  
Low Level Enable Voltage  
High Level Enable Voltage  
0.8  
V
EL  
EH  
A
2.0  
–40  
V
V
CC  
Operating Temperature  
T
85  
5
˚C  
[1]  
Fan Out (at R = 1 k)  
N
TTL Loads  
L
Output Pull-up Resistor  
R
330  
4 k  
L
*The off condition can also be guaranteed by ensuring that V 0.8 volts.  
FL  
**The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used  
for best performance and to permit at least a 20% LED degradation guardband.  
6
Electrical Specifications  
Over Recommended Temperature (T = –40˚C to +85˚C) unless otherwise specified. All Typicals at V = 3.3 V,  
A
CC  
T = 25˚C. All enable test conditions apply to single channel products only. See Note 5.  
A
Parameter  
Sym.  
Device Min. Typ.  
Max. Units Test Conditions  
Fig.  
Note  
High Level  
I
*
4.5  
50  
µA  
V
= 3.3 V, V = 2.0 V,  
1
1, 15  
OH  
CC  
E
Output Current  
V = 3.3 V, I = 250 µA  
O
F
Input Threshold  
Current  
I
3.0  
5.0  
mA  
V
= 3.3 V, V = 2.0 V,  
2
3
15  
15  
TH  
CC  
E
V = 0.6 V,  
O
I
(Sinking) = 13 mA  
OL  
Low Level  
V
*
0.35  
0.6  
V
V
= 3.3 V, V = 2.0 V,  
CC E  
OL  
Output Voltage  
I = 5 mA,  
F
I
(Sinking) = 13 mA  
OL  
High Level  
Supply Current  
I
I
Single  
Dual  
4.7  
6.9  
7.0  
8.7  
–0.5  
7.0  
mA  
mA  
V = 0.5 V I = 0 mA  
E F  
CCH  
CCL  
EH  
10.0  
10.0  
15.0  
–1.2  
V
CC  
= 3.3 V  
Low Level  
Supply Current  
Single  
Dual  
V = 0.5 V I = 10 mA  
E
F
V
CC  
= 3.3 V  
High Level  
Enable Current  
I
I
mA  
mA  
V
V
V
= 3.3 V, V = 2.0 V  
E
CC  
CC  
Low Level  
Enable Current  
*
–0.5  
–1.2  
= 3.3 V, V = 0.5 V  
E
EL  
High Level  
Enable Voltage  
V
V
V
2.0  
15  
EH  
EL  
F
Low Level  
Enable Voltage  
0.8  
V
Input Forward  
Voltage  
1.4  
5
1.5  
1.75*  
V
T = 25˚C, I = 10 mA  
5
1
1
A
F
Input Reverse  
Breakdown  
Voltage  
BV *  
V
I = 10 µA  
R
R
Input Diode  
Temperature  
Coefficient  
V /  
–1.6  
60  
mV˚C I = 10 mA  
1
1
F
F
T  
A
Input  
C
pF  
f = 1 MHz, V = 0 V  
F
IN  
Capacitance  
*The JEDEC Registration specifies 0˚C to +70˚C. Agilent specifies –40˚C to +85˚C.  
7
Switching Specifications  
Over Recommended Temperature (T = –40˚C to +85˚C), V = 3.3 V, I = 7.5 mA unless otherwise specified. All Typicals  
A
CC  
F
at T = 25˚C, V = 3.3 V.  
A
CC  
Parameter  
Sym.  
Package** Min. Typ. Max. Units Test Conditions  
Fig.  
Note  
Propagation Delay  
Time to High Output  
Level  
t
90  
ns  
R = 350 Ω  
C = 15 pF  
L
6, 7, 8 1, 6, 15  
PLH  
PHL  
L
Propagation Delay  
Time to Low Output  
Level  
t
75  
ns  
1, 7, 15  
Pulse Width  
Distortion  
|t –t | 8-Pin DIP  
25  
40  
ns  
ns  
ns  
ns  
ns  
8
9, 15  
8, 9, 15  
1, 15  
1, 15  
10  
PHL PLH  
SO-8  
Propagation Delay  
Skew  
t
t
PSK  
Output Rise Time  
(10-90%)  
45  
20  
45  
r
Output Fall Time  
(90-10%)  
t
f
Propagation Delay  
Time of Enable from  
t
R = 350 ,  
C = 15 pF,  
L
9
ELH  
L
V
tp V  
V = 0 V, V = 3 V  
EL EH  
EH  
EL  
Propagation Delay  
Time of Enable from  
t
30  
ns  
11  
EHL  
V
to V  
EH  
EL  
*JEDEC registered data for the 6N137.  
**Ratings apply to all devices except otherwise noted in the Package column.  
Parameter Sym.  
Device  
Min.  
Typ.  
Units Test Conditions  
Fig. Note  
Logic High |CM | HCPL-263L 15,000 25,000 V/µs |V |=10V  
V
= 3.3 V, I = 0 mA, 11  
12, 14, 15  
H
CM  
CC  
F
Common  
Mode  
HCPL-063L  
V
= 2 V,  
O(MIN)  
R = 350 , T = 25˚C  
L
A
Transient  
Immunity  
HCPL-260L 15,000 25,000  
HCPL-060L  
|V |=50V  
CM  
Logic Low  
Common  
Mode  
|CM | HCPL-263L 15,000 25,000 V/µs |V |=10V  
V
V
= 3.3 V, I = 7.5 mA, 11  
CC F  
13, 14, 15  
L
CM  
HCPL-063L  
= 0.8 V,  
O(MAX)  
R = 350 , T = 25˚C  
L
A
Transient  
Immunity  
HCPL-260L 15,000 25,000  
HCPL-060L  
|V |=50V  
CM  
8
Package Characteristics  
All Typicals at T = 25˚C.  
A
Parameter  
Sym. Package  
Min. Typ. Max  
Units Test Conditions  
µA 45% RH, t = 5 s,  
= 3 kV DC, T = 25˚C  
Fig. Note  
Input-Output  
Insulation  
I
*
Single 8-Pin DIP  
Single SO-8  
1
16, 17  
I-O  
V
I-O  
A
Input-Output  
Momentary  
Withstand  
Voltage**  
V
8-Pin DIP, SO-8  
3750  
V rms RH 50%, t = 1 min,  
T = 25˚C  
16, 17  
ISO  
A
12  
Input-Output  
Resistance  
R
C
8-Pin, SO-8  
10  
V
=500 V dc  
I-O  
1, 16, 19  
I-O  
I-O  
Input-Output  
Capacitance  
8-Pin DIP, SO-8  
Dual Channel  
0.6  
pF  
µA  
f = 1 MHz, T = 25˚C  
1, 16, 19  
20  
A
Input-Input  
Insulation  
Leakage  
Current  
I
0.005  
RH 45%, t = 5 s,  
V
I-I  
= 500 V  
I-I  
11  
Resistance  
(Input-Input)  
R
C
Dual Channel  
10  
20  
20  
I-I  
I-I  
Capacitance  
(Input-Input)  
Dual 8-Pin Dip  
Dual SO-8  
0.03  
0.25  
pG  
f = 1 MHz  
*The JEDEC Registration specifies 0˚C to +70˚C. Agilent specifies –40˚C to +85˚C.  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your  
equipment level safety specification or Agilent Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."  
Notes:  
1. Each channel.  
2. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not  
exceed 20 mA.  
3. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not  
exceed 15 mA.  
4. Derate linearly above +80˚C free-air temperature at a rate of 2.7 mW/˚C for the SOIC-8 package.  
5. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated in  
Figure 11. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm.  
6. The t  
propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge  
PLH  
of the output pulse.  
7. The t  
propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge  
PHL  
of the output pulse.  
8. t  
is equal to the worst case difference in t  
and/or t  
that will be seen between units at any given temperature and specified test  
PLH  
PSK  
PHL  
conditions.  
9. See test circuit for measurement details.  
10. The t  
enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the  
ELH  
rising edge of the output pulse.  
11. The t  
enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the  
ELH  
falling edge of the output pulse.  
12. CM is the maximum tolerable rate of rise on the common mode voltage to assure that the output will remain in a high logic state  
H
(i.e., V > 2.0 V).  
o
13. CM is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state  
L
(i.e., V < 0.8 V).  
o
14. For sinusoidal voltages, (|dV | / dt)  
= πf  
V
(p-p).  
CM  
max  
CM CM  
15. No external pull up is required for a high logic state on the enable input. If the V pin is not used, tying V to V will result in improved  
E
E
CC  
CMR performance. For single channel products only. See application information provided.  
16. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.  
17. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for one second (leakage  
detection current limit, I 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the  
I-O  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.  
18. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for one second (leakage  
detection current limit, I 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the  
I-O  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.  
19. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only.  
20. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only.  
9
8-PIN DIP, SO-8  
= 3.3 V  
8-PIN DIP, SO-8  
15  
10  
12  
10  
0.8  
0.7  
V
V
V
V
= 3.3 V * FOR SINGLE  
CC  
CC  
= 0.6 V  
V
V
V
= 3.3 V  
= 3.3 V  
= 2.0 V*  
= 250 µA  
CC  
O
E
= 2.0 V*  
= 5.0 mA  
CHANNEL  
PRODUCTS ONLY  
O
E
I
F
0.6  
0.5  
0.4  
0.3  
0.2  
I
F
8
6
4
* FOR SINGLE  
CHANNEL  
PRODUCTS  
ONLY  
R
= 350  
L
R
= 1 KΩ  
L
I
= 13 mA  
O
5
0
2
0
0.1  
0
R
= 4 KΩ  
L
-60 -40 -20  
0
20 40  
80 100  
-60 -40 -20  
0
20 40  
80 100  
-60 -40 -20  
0
20 40 60 80 100  
60  
60  
T
– TEMPERATURE – °C  
A
T
– TEMPERATURE – °C  
A
T
– TEMPERATURE – °C  
A
Figure 1. Typical high level output current vs.  
temperature.  
Figure 2. Typical input threshold current vs.  
temperature.  
Figure 3. Typical low level output voltage vs.  
temperature.  
8-PIN DIP, SO-8  
1000  
70  
V
V
V
= 3.3 V  
= 2.0 V*  
= 0.6 V  
* FOR SINGLE  
CHANNEL  
PRODUCTS ONLY  
CC  
E
OL  
T
= 25 °C  
A
100  
10  
I
F
60  
50  
+
F
V
1.0  
I
= 5.0 mA  
F
0.1  
0.01  
40  
20  
0.001  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
-60 -40 -20  
0
20 40  
80 100  
60  
V
– FORWARD VOLTAGE – V  
F
T
– TEMPERATURE – °C  
A
Figure 4. Typical low level output current vs.  
temperature.  
Figure 5. Typical input diode forward  
characteristic.  
PULSE GEN.  
= 50 Ω  
Z
O
t = t = 5 ns  
f
r
SINGLE CHANNEL  
DUAL CHANNEL  
3.3 V  
3.3 V  
I
F
I
F
PULSE GEN.  
= 50 Ω  
V
V
1
2
3
4
8
7
6
5
1
2
3
4
8
CC  
CC  
Z
O
R
L
t
= t = 5 ns  
r
f
INPUT  
MONITORING  
NODE  
OUTPUT V  
O
MONITORING  
NODE  
0.1 µF  
BYPASS  
R
7
6
5
L
0.1 µF  
BYPASS  
OUTPUT V  
MONITORING  
NODE  
INPUT  
MONITORING  
NODE  
O
*C  
L
R
C *  
L
M
R
M
GND  
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
I
I
= 7.50 mA  
= 3.75 mA  
F
INPUT  
F
I
F
t
t
PLH  
PHL  
OUTPUT  
V
O
1.5 V  
Figure 6. Test circuit for t  
and t  
.
PLH  
PHL  
10  
150  
120  
50  
40  
30  
20  
10  
0
V
= 3.3 V  
CC  
= 7.5 mA  
V
= 3.3 V  
CC  
= 7.5 mA  
I
F
I
F
t
, R = 350 Ω  
L
PLH  
90  
60  
R
= 350  
L
t
, R = 350 Ω  
L
PHL  
30  
0
-60  
-60 -40 -20  
0
20 40  
80 100  
-40 -20  
0
20 40  
80 100  
60  
60  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 7. Typical propagation delay vs.  
temperature.  
Figure 8. Typical pulse width distortion vs.  
temperature.  
PULSE GEN.  
Z
= 50 Ω  
r
O
t = t = 5 ns  
f
INPUT V  
MONITORING NODE  
E
+3.3 V  
V
3.0 V  
1.5 V  
1
2
3
4
8
7
6
5
CC  
INPUT  
V
7.5 mA  
E
0.1 µF  
BYPASS  
R
L
I
F
t
t
ELH  
EHL  
OUTPUT V  
MONITORING  
NODE  
O
OUTPUT  
V
O
1.5 V  
*C  
L
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
Figure 9. Test circuit for t  
and t  
.
ELH  
EHL  
I
F
SINGLE CHANNEL  
DUAL CHANNEL  
V
B
A
I
F
V
+3.3 V  
8
7
6
5
+3.3 V  
1
2
3
4
8
1
2
3
4
CC  
CC  
R
B
A
L
OUTPUT V  
MONITORING  
NODE  
O
0.1 µF  
BYPASS  
R
7
6
5
L
V
FF  
OUTPUT V  
MONITORING  
NODE  
O
V
0.1 µF  
BYPASS  
FF  
GND  
GND  
V
V
CM  
CM  
+
+
PULSE  
GENERATOR  
PULSE  
GENERATOR  
= 50 Ω  
Z
= 50 Ω  
Z
O
O
V
(PEAK)  
(MIN.)  
CM  
V
CM  
0 V  
SWITCH AT A: I = 0 mA  
F
3.3 V  
CM  
H
V
O
V
O
SWITCH AT B: I = 7.5 mA  
F
V
(MAX.)  
O
V
O
0.5 V  
CM  
L
Figure 10. Test circuit for common mode transient immunity and typical waveforms.  
11  
GND BUS (BACK)  
V
BUS (FRONT)  
NC  
CC  
ENABLE  
OUTPUT  
0.1µF  
NC  
10 mm MAX.  
(SEE NOTE 5)  
SINGLE CHANNEL  
DEVICE ILLUSTRATED.  
Figure 11. Recommended printed circuit board layout.  
SINGLE CHANNEL DEVICE  
3.3 V  
3.3 V  
8
6
V
CC1  
V
CC2  
R
L
220  
I
F
+
2
3
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
V
E
7
1
2
*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.  
DUAL CHANNEL DEVICE  
CHANNEL 1 SHOWN  
3.3 V  
3.3 V  
8
7
V
CC1  
V
CC2  
R
L
220 Ω  
I
F
+
1
2
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
1
2
Figure 12. Recommended LVTTL interface circuit.  
12  
HCPL-260L  
Application Information  
Common-Mode Rejection for  
HCPL-260L Families:  
Figure 13 shows the recom-  
mended drive circuit for optimal  
common-mode rejection  
performance. Two main points to  
note are:  
*
1
8
7
V
V
V
CC  
CC+  
0.01 µF  
220 Ω  
220 Ω  
350 Ω  
2
3
4
6
5
O
74LS04  
OR ANY TOTEM-POLE  
OUTPUT LOGIC GATE  
GND  
SHIELD  
*
1. The enable pin is tied to VCC  
rather than floating (this  
applies to single-channel parts  
only).  
GND1  
GND2  
* HIGHER CMR MAY BE OBTAINABLE BY CONNECTING PINS 1, 4 TO INPUT GROUND (GND1).  
2. Two LED-current setting  
resistors are used instead of  
one. This is to balance ILED  
variation during common-  
mode transients.  
Figure 13. Recommended drive circuit for High-CMR.  
1
2
8
7
V
V
+
CC  
If the enable pin is left floating, it  
is possible for common-mode  
transients to couple to the enable  
pin, resulting in common-mode  
failure. This failure mechanism  
only occurs when the LED is on  
and the output is in the Low  
State. It is identified as occurring  
when the transient output voltage  
rises above 0.8 V. Therefore, the  
enable pin should be connected  
to either VCC or logic-level high  
for best common-mode  
1/2 R  
1/2 R  
0.01 µF  
LED  
350  
I
LP  
LED  
C
I
LA  
LN  
3
4
6
5
O
15 pF  
C
LC  
GND  
SHIELD  
+
V
CM  
Figure 14. AC equivalent circuit.  
performance with the output low  
(CMRL). This failure mechanism  
is only present in single-channel  
parts which have the enable  
function.  
For transients occurring when the output is “high”), if an imbalance  
LED is on, common-mode rejec-  
tion (CMRL, since the output is in  
the “low” state) depends upon the  
amount of LED current drive (IF).  
For conditions where IF is close  
to the switching threshold (ITH),  
CMRL also depends on the extent  
which ILP and ILN balance each  
other. In other words, any  
condition where common-mode  
transients cause a momentary  
decrease in IF will cause  
common-mode failure for  
transients which are fast enough.  
between ILP and ILN results in a  
transient IF equal to or greater  
than the switching threshold of  
the optocoupler, the transient  
“signal” may cause the output to  
spike below 2 V (which consti-  
tutes a CMRH failure).  
Also, common-mode transients  
can capacitively couple from the  
LED anode (or cathode) to the  
output-side ground causing  
current to be shunted away from  
the LED (which can be bad if the  
LED is on) or conversely cause  
current to be injected into the  
LED (bad if the LED is meant to  
be off). Figure 14 shows the  
parasitic capacitances which  
exists between LED  
By using the recommended  
circuit in Figure 13, good CMR  
can be achieved. The balanced  
ILED-setting resistors help equalize  
ILP and ILN to reduce the amount  
by which ILED is modulated from  
transient coupling through CLA  
and CLC.  
anode/cathode and output ground  
(CLA and CLC). Also shown in  
Figure 14 on the input side is an  
AC-equivalent circuit.  
Likewise for common-mode  
transients which occur when the  
LED is off (i.e. CMRH, since the  
13  
V
CMR with Other Drive  
Circuits  
CC  
HCPL-260L  
CMR performance with drive  
circuits other than that shown in  
Figure 13 may be enhanced by  
following these guidelines:  
1
2
420 Ω  
(MAX)  
2N3906  
(ANY PNP)  
74L504  
(ANY  
LED  
1. Use of drive circuits where  
current is shunted from the  
LED in the LED “off” state (as  
shown in Figures 15 and 16).  
This is beneficial for good  
CMRH.  
TTL/CMOS  
GATE)  
3
4
2. Use of IFH > 3.5 mA. This is  
good for high CMRL.  
Figure 15. TTL interface circuit.  
Figure 15 shows a circuit which  
can be used with any totem-pole-  
output TTL/LSTTL/HCMOS logic  
gate. The buffer PNP transistor  
allows the circuit to be used with  
logic devices which have low  
current-sinking capability. It also  
helps maintain the driving-gate  
power-supply current at a  
V
CC  
HCPL-260L  
1
2
R
74HC00  
(OR ANY  
OPEN-COLLECTOR/  
OPEN-DRAIN  
LED  
3
4
LOGIC GATE)  
constant level to minimize ground  
shifting for other devices  
connected to the input-supply  
ground.  
Figure 16. TTL open-collector/open drain gate drive circuit.  
When using an open-collector  
TTL or open-drain CMOS logic  
gate, the circuit in Figure 16 may  
be used. When using a CMOS  
gate to drive the optocoupler, the  
circuit shown in Figure 17 may  
be used. The diode in parallel  
with the RLED speeds the turn-off  
of the optocoupler LED.  
V
CC  
HCPL-260L  
1N4148  
1
2
220  
74HC04  
(OR ANY  
LED  
TOTEM-POLE  
OUTPUT LOGIC  
GATE)  
3
4
Figure 17. CMOS gate drive circuit.  
14  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(916)788-6763  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6756 2394  
India, Australia, New Zealand: (+65) 6755 1939  
Japan: (+81 3) 3335-8152 (Domestic/Interna-  
tional), or 0120-61-1280 (Domestic Only)  
Korea: (+65) 6755 1989  
Singapore, Malaysia, Vietnam, Thailand,  
Philippines, Indonesia: (+65) 6755 2044  
Taiwan: (+65) 6755 1843  
Data subject to change.  
Copyright © 2004 Agilent Technologies, Inc.  
Obsoletes 5988-8186EN  
January 25, 2004  
5989-0303EN  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY