HCPL-2631300 [AGILENT]

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10 Mbps, 0.300 INCH, SURFACE MOUNT, DIP-8;
HCPL-2631300
型号: HCPL-2631300
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10 Mbps, 0.300 INCH, SURFACE MOUNT, DIP-8

输出元件
文件: 总20页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High CMR, High Speed TTL  
Compatible Optocouplers  
6N137  
HCNW137  
HCPL-0631  
HCNW2601 HCPL-0661  
HCNW2611 HCPL-2601  
HCPL-0600 HCPL-2611  
HCPL-0601 HCPL-2630  
HCPL-0611 HCPL-2631  
HCPL-0630 HCPL-4661  
Technical Data  
Applications  
• Isolated Line Receiver  
• Computer-Peripheral  
Interfaces  
• Microprocessor System  
Interfaces  
• Digital Isolation for A/D,  
D/A Conversion  
• Switching Power Supply  
• Instrument Input/Output  
Isolation  
• Ground Loop Elimination  
Features  
• Power Transistor Isolation  
in Motor Drives  
• Isolation of High Speed  
Logic Systems  
• 5 kV/µs Minimum Common  
Mode Rejection (CMR) at  
VCM = 50 V for HCPL-X601/  
X631, HCNW2601 and  
10 kV/µs Minimum CMR at  
VCM = 1000 V for HCPL-  
X611/X661, HCNW2611  
• High Speed: 10 MBd Typical  
• LSTTL/TTL Compatible  
• Low Input Current  
Capability: 5 mA  
• Guaranteed ac and dc  
Performance over Temper-  
ature: -40°C to +85°C  
• Available in 8-Pin DIP,  
SOIC-8, Widebody Packages  
Description  
The 6N137, HCPL-26XX/06XX/  
4661, HCNW137/26X1 are  
optically coupled gates that  
combine a GaAsP light emitting  
diode and an integrated high gain  
photo detector. An enable input  
allows the detector to be strobed.  
The output of the detector IC is  
• Pulse Transformer  
Replacement  
• Strobable Output (Single  
Channel Products Only)  
• Safety Approval  
Functional Diagram  
6N137, HCPL-2601/2611  
HCPL-0600/0601/0611  
HCPL-2630/2631/4661  
HCPL-0630/0631/0661  
UL Recognized - 3750 V rms  
for 1 minute and 5000 V rms*  
for 1 minute per UL1577  
CSA Approved  
IEC/EN/DIN EN 60747-5-2  
Approved with  
1
2
V
V
V
ANODE  
CATHODE  
CATHODE  
ANODE  
1
2
V
V
8
7
8
7
NC  
CC  
CC  
O1  
O2  
1
1
ANODE  
E
V
CATHODE  
NC  
3
4
6
5
3
4
6
5
O
2
2
GND  
GND  
SHIELD  
SHIELD  
V
IORM = 630 V peak for  
HCPL-2611 Option 060 and  
VIORM = 1414 V peak for  
TRUTH TABLE  
TRUTH TABLE  
(POSITIVE LOGIC)  
(POSITIVE LOGIC)  
HCNW137/26X1  
LED ENABLE OUTPUT  
LED OUTPUT  
• MIL-PRF-38534 Hermetic  
Version Available (HCPL-  
56XX/66XX)  
ON  
H
H
L
L
NC  
NC  
L
H
H
H
L
ON  
OFF  
L
H
OFF  
ON  
OFF  
ON  
OFF  
H
*5000 V rms/1 Minute rating is for HCNW137/26X1 and Option 020 (6N137, HCPL-2601/11/30/31, HCPL-4661) products only.  
A 0.1 µF bypass capacitor must be connected between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this  
component to prevent damage and/or degradation which may be induced by ESD.  
2
an open collector Schottky-  
clamped transistor. The internal  
shield provides a guaranteed  
common mode transient  
immunity specification of 5,000  
V/µs for the HCPL-X601/X631  
and HCNW2601, and 10,000 V/µs  
for the HCPL-X611/X661 and  
HCNW2611.  
This unique design provides  
maximum ac and dc circuit  
isolation while achieving TTL  
compatibility. The optocoupler ac  
and dc operational parameters  
are guaranteed from -40°C to  
+85°C allowing troublefree  
system performance.  
The 6N137, HCPL-26XX, HCPL-  
06XX, HCPL-4661, HCNW137,  
and HCNW26X1 are suitable for  
high speed logic interfacing,  
input/output buffering, as line  
receivers in environments that  
conventional line receivers  
cannot tolerate and are recom-  
mended for use in extremely high  
ground or induced noise  
environments.  
Selection Guide  
Widebody  
Minimum CMR  
Input  
8-Pin DIP (300 Mil)  
Small-Outline SO-8  
(400 Mil)  
Hermetic  
Single  
On-  
Single  
Channel  
Package  
Dual  
Channel  
Package  
Single  
Channel  
Package  
Dual  
Channel  
Package  
Single  
Channel  
Package  
and Dual  
Channel  
Packages  
dV/dt  
V
CM  
Current Output  
(mA)  
(V/µs)  
(V)  
Enable  
YES  
NO  
NA  
NA  
5
6N137  
HCPL-0600  
HCPL-0601  
HCPL-0611  
HCNW137  
HCNW2601  
HCNW2611  
HCPL-2630  
HCPL-2631  
HCPL-4661  
HCPL-0630  
HCPL-0631  
HCPL-0661  
5,000  
50  
YES  
NO  
HCPL-2601  
HCPL-2611  
10,000 1,000  
YES  
NO  
[1]  
1,000  
3, 500  
1,000  
50  
300  
50  
YES  
YES  
YES  
NO  
HCPL-2602  
HCPL-2612  
HCPL-261A  
[1]  
[1]  
[1]  
3
HCPL-061A  
[1]  
[1]  
HCPL-263A  
HCPL-063A  
[2]  
[1]  
[1]  
1,000  
1,000  
50  
YES  
HCPL-261N  
HCPL-061N  
[1]  
[1]  
NO  
[3]  
HCPL-263N  
HCPL-063N  
[1]  
1,000  
12.5  
HCPL-193X  
HCPL-56XX  
HCPL-66XX  
[1]  
[1]  
Notes:  
1. Technical data are on separate Agilent publications.  
2. 15 kV/µs with VCM = 1 kV can be achieved using Agilent application circuit.  
3. Enable is available for single channel products only, except for HCPL-193X devices.  
3
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Example:  
HCPL-2611#XXXX  
020 = 5000 V rms/1 minute UL Rating Option*  
060 = IEC/EN/DIN EN 60747-5-2 VIORM = 630 Vpeak Option**  
300 = Gull Wing Surface Mount Option  
500 = Tape and Reel Packaging Option  
XXXE = Lead Free Option  
Option data sheets available. Contact Agilent sales representative or authorized distributor for information.  
Remarks: The notation #is used for existing products, while (new) products launched since 15th July  
2001 and lead free option will use -”  
*For 6N137, HCPL-2601/11/30/31 and HCPL-4661 (8-pin DIP products) only.  
**For HCPL-2611 only. Combination of Option 020 and Option 060 is not available.  
Gull wing surface mount option applies to through hole parts only.  
Schematic  
HCPL-2630/2631/4661  
HCPL-0630/0631/0661  
6N137, HCPL-2601/2611  
I
CC  
I
HCPL-0600/0601/0611  
HCNW137, HCNW2601/2611  
V
V
CC  
O1  
8
7
I
1
+
F
I
I
F1  
CC  
V
V
O1  
CC  
O
8
6
2+  
I
O
V
F1  
2
V
SHIELD  
F
3
3
GND  
I
5
SHIELD  
I
O2  
V
E
7
E
O2  
6
5
V
V
F2  
USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED  
BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5).  
+
4
I
F2  
GND  
SHIELD  
4
Package Outline Drawings  
8-pin DIP Package** (6N137, HCPL-2601/11/30/31, HCPL-4661)  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
*MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
"V" = OPTION 060  
2.54 ± 0.25  
(0.100 ± 0.010)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
**JEDEC Registered Data (for 6N137 only).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
8-pin DIP Package with Gull Wing Surface Mount Option 300  
(6N137, HCPL-2601/11/30/31, HCPL-4661)  
LAND PATTERN RECOMMENDATION  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.016 (0.040)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2.0 (0.080)  
2
3
4
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
5
Small-Outline SO-8 Package (HCPL-0600/01/11/30/31/61)  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ± 0.203  
(0.236 ± 0.008)  
XXX  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
TYPE NUMBER  
(LAST 3 DIGITS)  
7.49 (0.295)  
DATE CODE  
3
PIN ONE  
1.9 (0.075)  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
0.432  
(0.017)  
*
7°  
5.080 ± 0.127  
(0.200 ± 0.005)  
45° X  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7°  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
8-Pin Widebody DIP Package (HCNW137, HCNW2601/11)  
11.00  
MAX.  
11.15 ± 0.15  
(0.442 ± 0.006)  
(0.433)  
9.00 ± 0.15  
(0.354 ± 0.006)  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
HCNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400)  
TYP.  
1.55  
(0.061)  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
5.10  
(0.201)  
MAX.  
3.10 (0.122)  
3.90 (0.154)  
0.51 (0.021) MIN.  
2.54 (0.100)  
TYP.  
1.78 ± 0.15  
(0.070 ± 0.006)  
0.40 (0.016)  
0.56 (0.022)  
DIMENSIONS IN MILLIMETERS (INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
6
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300  
(HCNW137, HCNW2601/11)  
11.15 ± 0.15  
(0.442 ± 0.006)  
LAND PATTERN RECOMMENDATION  
7
6
5
8
9.00 ± 0.15  
(0.354 ± 0.006)  
13.56  
(0.534)  
1
3
2
4
2.29  
1.3  
(0.09)  
(0.051)  
12.30 ± 0.30  
(0.484 ± 0.012)  
1.55  
(0.061)  
MAX.  
11.00  
MAX.  
(0.433)  
4.00  
MAX.  
(0.158)  
1.78 ± 0.15  
(0.070 ± 0.006)  
1.00 ± 0.15  
(0.039 ± 0.006)  
0.75 ± 0.25  
(0.030 ± 0.010)  
+ 0.076  
- 0.0051  
2.54  
(0.100)  
BSC  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHES).  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3°C + 1°C/0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
2.5°C ± 0.5°C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160°C  
150°C  
140°C  
SEC.  
30  
SEC.  
3°C + 1°C/0.5°C  
100  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
7
Recommended Pb-free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
150 - 200 °C  
RAMP-DOWN  
6 °C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
Regulatory Information  
The 6N137, HCPL-26XX/06XX/  
46XX, and HCNW137/26XX have  
been approved by the following  
organizations:  
UL  
IEC/EN/DIN EN 60747-5-2  
Approved under  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01  
Recognized under UL 1577,  
Component Recognition Program,  
File E55361.  
CSA  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
(Option 060 and HCNW only)  
Insulation and Safety Related Specifications  
8-pin DIP  
Widebody  
(300 Mil) SO-8 (400 Mil)  
Parameter  
Symbol  
Value  
Value  
Value  
Units  
Conditions  
Minimum External  
Air Gap (External  
Clearance)  
L(101)  
7.1  
4.9  
9.6  
mm  
Measured from input terminals  
to output terminals, shortest  
distance through air.  
Minimum External  
Tracking (External  
Creepage)  
Minimum Internal  
Plastic Gap  
L(102)  
7.4  
4.8  
10.0  
1.0  
mm  
mm  
Measured from input terminals  
to output terminals, shortest  
distance path along body.  
Through insulation distance,  
conductor to conductor, usually  
the direct distance between the  
photoemitter and photodetector  
inside the optocoupler cavity.  
0.08  
0.08  
(Internal Clearance)  
Minimum Internal  
Tracking (Internal  
Creepage)  
Tracking Resistance  
(Comparative  
Tracking Index)  
Isolation Group  
NA  
200  
IIIa  
NA  
200  
IIIa  
4.0  
200  
IIIa  
mm  
Measured from input terminals  
to output terminals, along  
internal cavity.  
CTI  
Volts DIN IEC 112/VDE 0303 Part 1  
Material Group  
(DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
8
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics  
(HCPL-2611 Option 060 Only)  
Description  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 V rms  
for rated mains voltage 450 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
Symbol Characteristic Units  
I-IV  
I-III  
55/85/21  
2
V
630  
Vpeak  
Vpeak  
IORM  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
VPR  
VPR  
1181  
945  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = VPR, Type and sample test,  
Vpeak  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
6000  
Vpeak  
IOTM  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 16, Thermal Derating curve.)  
Case Temperature  
Input Current  
Output Power  
TS  
IS,INPUT  
PS,OUTPUT  
RS  
175  
230  
600  
109  
°C  
mA  
mW  
Insulation Resistance at TS, V = 500 V  
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN  
60747-5-2, for a detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics(HCNW137/2601/2611 Only)  
Description  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 600 V rms  
Symbol Characteristic Units  
I-IV  
I-III  
for rated mains voltage 1000 V rms  
Climatic Classification (DIN IEC 68 part 1)  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
55/100/21  
2
V
1414  
Vpeak  
Vpeak  
IORM  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
VPR  
VPR  
2651  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
V
IORM x 1.5 = VPR, Type and sample test,  
2121  
8000  
Vpeak  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
Vpeak  
IOTM  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 16, Thermal Derating curve.)  
Case Temperature  
TS  
IS,INPUT  
PS,OUTPUT  
150  
400  
700  
109  
°C  
mA  
mW  
Input Current  
Output Power  
Insulation Resistance at TS, V = 500 V  
RS  
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN  
60747-5-2, for a detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
9
Absolute Maximum Ratings* (No Derating Required up to 85°C)  
Parameter  
Storage Temperature  
Operating Temperature†  
Average Forward Input Current  
Symbol  
Package**  
Min.  
-55  
-40  
Max.  
125  
85  
Units  
°C  
°C  
Note  
T
S
T
A
F
I
Single 8-Pin DIP  
Single SO-8  
Widebody  
20  
mA  
2
Dual 8-Pin DIP  
Dual SO-8  
8-Pin DIP, SO-8  
Widebody  
15  
1, 3  
1
Reverse Input Voltage  
V
R
5
3
V
Input Power Dissipation  
Supply Voltage  
P
V
CC  
Widebody  
40  
7
mW  
V
I
(1 Minute Maximum)  
Enable Input Voltage (Not to  
V
E
Single 8-Pin DIP  
Single SO-8  
Widebody  
V
CC  
+ 0.5  
V
Exceed V by more than  
CC  
500 mV)  
Enable Input Current  
Output Collector Current  
Output Collector Voltage  
I
5
50  
7
mA  
mA  
V
E
I
1
1
O
V
O
Output Collector Power  
Dissipation  
P
O
Single 8-Pin DIP  
Single SO-8  
Widebody  
85  
mW  
Dual 8-Pin DIP  
Dual SO-8  
60  
1, 4  
Lead Solder Temperature  
(Through Hole Parts Only)  
T
8-Pin DIP  
260°C for 10 sec.,  
1.6 mm below seating plane  
LS  
Widebody  
260°C for 10 sec.,  
up to seating plane  
Solder Reflow Temperature  
Profile (Surface Mount Parts Only)  
SO-8 and  
Option 300  
See Package Outline  
Drawings section  
*JEDEC Registered Data (for 6N137 only).  
**Ratings apply to all devices except otherwise noted in the Package column.  
0°C to 70°C on JEDEC Registration.  
Recommended Operating Conditions  
Parameter  
Input Current, Low Level  
Symbol  
IFL*  
IFH**  
VCC  
Min.  
0
5
4.5  
0
2.0  
-40  
Max.  
250  
15  
5.5  
0.8  
VCC  
85  
Units  
µA  
mA  
V
Input Current, High Level[1]  
Power Supply Voltage  
Low Level Enable Voltage†  
High Level Enable Voltage†  
Operating Temperature  
Fan Out (at RL = 1 k)[1]  
Output Pull-up Resistor  
VEL  
VEH  
TA  
N
RL  
V
V
°C  
TTL Loads  
5
4 k  
330  
*The off condition can also be guaranteed by ensuring that VFL 0.8 volts.  
**The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used for best performance and to permit  
at least a 20% LED degradation guardband.  
For single channel products only.  
10  
Electrical Specifications  
Over recommended temperature (TA = -40°C to +85°C) unless otherwise specified. All Typicals at VCC = 5 V,  
TA = 25°C. All enable test conditions apply to single channel products only. See note 5.  
Parameter  
Sym.  
Package  
Min.  
Typ. Max. Units  
Test Conditions  
Fig. Note  
High Level Output IOH  
Current  
*
All  
5.5  
100  
µA  
V
CC = 5.5 V, VE = 2.0 V,  
1
1, 6,  
19  
V = 5.5 V, IF = 250 µA  
O
Input Threshold  
Current  
ITH Single Channel  
Widebody  
2.0  
5.0  
mA  
V
CC = 5.5 V, VE = 2.0 V, 2, 3  
19  
VO = 0.6 V,  
Dual Channel  
2.5  
IOL (Sinking) = 13 mA  
Low Level Output  
Voltage  
VOL*  
8-Pin DIP  
SO-8  
0.35  
0.6  
V
VCC = 5.5 V, VE = 2.0 V, 2, 3, 1, 19  
IF = 5 mA,  
4, 5  
Widebody  
0.4  
IOL (Sinking) = 13 mA  
High Level Supply ICCH Single Channel  
Current  
7.0  
6.5  
10  
10.0*  
15  
mA  
VE = 0.5 V VCC = 5.5 V  
7
8
VE = VCC  
Both  
IF = 0 mA  
Dual Channel  
Channels  
Low Level Supply  
Current  
ICCL Single Channel  
Dual Channel  
9.0  
8.5  
13  
13.0*  
21  
mA  
VE = 0.5 V VCC = 5.5 V  
VE = VCC  
Both  
IF = 10 mA  
Channels  
High Level Enable  
Current  
IEH Single Channel  
-0.7  
-0.9  
-1.6  
-1.6  
mA  
mA  
V
VCC = 5.5 V, VE = 2.0 V  
VCC = 5.5 V, VE = 0.5 V  
Low Level Enable  
Current  
IEL*  
9
High Level Enable  
Voltage  
VEH  
VEL  
VF  
2.0  
19  
Low Level Enable  
Voltage  
0.8  
V
Input Forward  
Voltage  
8-Pin DIP  
SO-8  
1.4  
1.3  
1.25  
1.2  
1.5  
1.75*  
1.80  
1.85  
2.05  
V
TA = 25°C IF = 10 mA 6, 7  
TA = 25°C  
1
Widebody  
1.64  
Input Reverse  
Breakdown  
Voltage  
BVR*  
8-Pin DIP  
SO-8  
Widebody  
5
V
IR = 10 µA  
1
1
1
3
IR = 100 µA, TA = 25°C  
Input Diode  
Temperature  
Coefficient  
VF/  
TA  
8-Pin DIP  
SO-8  
Widebody  
-1.6  
mV/°C IF = 10 mA  
7
-1.9  
60  
Input Capacitance  
CIN  
8-Pin DIP  
SO-8  
pF  
f = 1 MHz, VF = 0 V  
Widebody  
70  
*JEDEC registered data for the 6N137. The JEDEC Registration specifies 0°C to +70°C. HP specifies -40°C to +85°C.  
11  
Switching Specifications (AC)  
Over Recommended Temperature (TA = -40°C to +85°C), VCC = 5 V, IF = 7.5 mA unless otherwise specified.  
All Typicals at TA = 25°C, VCC = 5 V.  
Parameter  
Sym.  
Package**  
Min. Typ. Max. Units  
Test Conditions  
Fig. Note  
Propagation Delay  
Time to High  
tPLH  
20  
48  
75*  
100  
ns TA = 25°C RL = 350 8, 9, 1, 10,  
CL = 15 pF 10  
19  
Output Level  
Propagation Delay  
Time to Low  
tPHL  
25  
50  
75*  
100  
ns TA = 25°C  
1, 11,  
19  
Output Level  
Pulse Width  
Distortion  
|tPHL - tPLH  
|
8-Pin DIP  
SO-8  
Widebody  
3.5  
35  
ns  
8, 9, 13, 19  
10,  
11  
40  
40  
Propagation Delay  
Skew  
tPSK  
tr  
ns  
ns  
ns  
12, 13,  
19  
Output Rise  
Time (10-90%)  
24  
10  
30  
12  
12  
1, 19  
1, 19  
14  
Output Fall  
Time (90-10%)  
tf  
Propagation Delay  
Time of Enable  
from VEH to VEL  
tELH  
Single Channel  
Single Channel  
ns RL = 350 ,  
13,  
14  
CL = 15 pF,  
VEL = 0 V, VEH = 3 V  
Propagation Delay  
Time of Enable  
from VEL to VEH  
tEHL  
20  
ns  
15  
*JEDEC registered data for the 6N137.  
**Ratings apply to all devices except otherwise noted in the Package column.  
Parameter Sym.  
Device  
Min.  
Typ. Units  
Test Conditions  
Fig. Note  
Logic High |CMH| 6N137  
10,000 V/µs |VCM| = 10 V VCC = 5 V, IF = 0 mA,  
VO(MIN) = 2 V,  
15  
1, 16,  
18, 19  
Common  
Mode  
Transient  
Immunity  
HCPL-2630  
HCPL-0600/0630  
HCNW137  
HCPL-2601/2631  
HCPL-0601/0631  
HCNW2601  
RL = 350 , TA = 25°C  
5,000 10,000  
|VCM| = 50 V  
|VCM| = 1 kV  
HCPL-2611/4661 10,000 15,000  
HCPL-0611/0661  
HCNW2611  
Logic Low  
Common  
Mode  
Transient  
Immunity  
|CML| 6N137  
HCPL-2630  
10,000 V/µs |VCM| = 10 V VCC = 5 V, IF = 7.5 mA,  
VO(MAX) = 0.8 V,  
15  
1, 17,  
18, 19  
HCPL-0600/0630  
HCNW137  
HCPL-2601/2631  
HCPL-0601/0631  
HCNW2601  
HCPL-2611/4661 10,000 15,000  
HCPL-0611/0661  
HCNW2611  
RL = 350 , TA = 25°C  
5,000 10,000  
|VCM| = 50 V  
|VCM| = 1 kV  
12  
Package Characteristics  
All Typicals at TA = 25°C.  
Parameter  
Sym.  
II-O  
Package  
Min. Typ. Max. Units  
Test Conditions  
Fig. Note  
Input-Output  
Insulation  
*
Single 8-Pin DIP  
Single SO-8  
1
µA  
45% RH, t = 5 s,  
I-O = 3 kV dc, T = 25°C  
20, 21  
V
A
Input-Output  
Momentary With-  
stand Voltage**  
VISO  
8-Pin DIP, SO-8 3750  
V rms RH 50%, t = 1 min,  
TA = 25°C  
20, 21  
20, 22  
Widebody  
5000  
5000  
OPT 020  
Input-Output  
Resistance  
RI-O  
8-Pin DIP, SO-8  
Widebody  
1012  
1013  
VI-O = 500 V dc  
1, 20,  
23  
1012  
1011  
TA = 25°C  
TA = 100°C  
Input-Output  
Capacitance  
CI-O  
II-I  
8-Pin DIP, SO-8  
Widebody  
0.6  
0.5  
pF  
f = 1 MHz, TA = 25°C  
1, 20,  
23  
0.6  
Input-Input  
Dual Channel  
0.005  
µA  
RH 45%, t = 5 s,  
24  
Insulation  
VI-I = 500 V  
Leakage Current  
Resistance  
(Input-Input)  
RI-I  
CI-I  
Dual Channel  
1011  
24  
24  
Capacitance  
(Input-Input)  
Dual 8-Pin DIP  
Dual SO-8  
0.03  
0.25  
pF  
f = 1 MHz  
*JEDEC registered data for the 6N137. The JEDEC Registration specifies 0°C to 70°C. Agilent specifies -40°C to 85°C.  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table  
(if applicable), your equipment level safety specification or Agilent Application Note 1074 entitled Optocoupler Input-Output  
Endurance Voltage.”  
For 6N137, HCPL-2601/2611/2630/2631/4661 only.  
Notes:  
1. Each channel.  
2. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does  
not exceed 20 mA.  
3. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does  
not exceed 15 mA.  
4. Derate linearly above 80°C free-air temperature at a rate of 2.7 mW/°C for the SOIC-8 package.  
5. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated in  
Figure 17. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm.  
6. The JEDEC registration for the 6N137 specifies a maximum IOH of 250 µA. Agilent guarantees a maximum IOH of 100 µA.  
7. The JEDEC registration for the 6N137 specifies a maximum ICCH of 15 mA. Agilent guarantees a maximum ICCH of 10 mA.  
8. The JEDEC registration for the 6N137 specifies a maximum ICCL of 18 mA. Agilent guarantees a maximum ICCL of 13 mA.  
9. The JEDEC registration for the 6N137 specifies a maximum IEL of 2.0 mA. Agilent guarantees a maximum IEL of -1.6 mA.  
10. The tPLH propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the  
rising edge of the output pulse.  
11. The tPHL propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the  
falling edge of the output pulse.  
12. tPSK is equal to the worst case difference in tPHL and/or tPLH that will be seen between units at any given temperature and specified  
test conditions.  
13. See application section titled Propagation Delay, Pulse-Width Distortion and Propagation Delay Skewfor more information.  
14. The tELH enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V  
point on the rising edge of the output pulse.  
15. The tEHL enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point  
on the falling edge of the output pulse.  
16. CMH is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state  
(i.e., VO > 2.0 V).  
17. CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state  
(i.e., VO < 0.8 V).  
18. For sinusoidal voltages, (|dVCM | / dt)max = π fCMVCM(p-p).  
13  
19. No external pull up is required for a high logic state on the enable input. If the VE pin is not used, tying VE to VCC will result in  
improved CMR performance. For single channel products only.  
20. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.  
21. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for one second  
(leakage detection current limit, II-O 5 µA). This test is performed before the 100% production test for partial discharge  
(Method b) shown in the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.  
22. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for one second  
(leakage detection current limit, II-O 5 µA). This test is performed before the 100% production test for partial discharge  
(Method b) shown in the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.  
23. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products  
only.  
24. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only.  
8-PIN DIP, SO-8  
WIDEBODY  
6
6
15  
10  
V
T
= 5 V  
V
= 5 V  
V
V
V
= 5.5 V  
= 5.5 V  
= 2.0 V*  
= 250 µA  
CC  
= 25 °C  
CC  
T = 25 °C  
A
CC  
O
E
A
5
4
3
2
5
4
3
2
I
F
* FOR SINGLE  
CHANNEL  
PRODUCTS  
ONLY  
R
= 350 Ω  
= 1 KΩ  
R
= 350 Ω  
= 1 KΩ  
L
L
R
R
L
L
5
0
R
= 4 KΩ  
R = 4 KΩ  
L
L
1
0
1
0
-60 -40 -20  
0
20 40 60 80 100  
0
1
2
3
I FORWARD INPUT CURRENT mA  
F
4
6
0
1
2
3
4
6
5
5
T
TEMPERATURE – °C  
I
FORWARD INPUT CURRENT mA  
A
F
Figure 1. Typical High Level Output  
Current vs. Temperature.  
Figure 2. Typical Output Voltage vs. Forward Input Current.  
8-PIN DIP, SO-8  
6
WIDEBODY  
6
V
V
= 5.0 V  
V
V
= 5.0 V  
CC  
CC  
= 0.6 V  
= 0.6 V  
O
O
5
4
3
2
5
4
3
2
R
= 350 Ω  
L
R
= 1 KΩ  
R
= 350 Ω  
= 4 KΩ  
L
L
R
= 1 KΩ  
L
1
0
1
0
R
= 4 KΩ  
R
L
L
-60 -40 -20  
0
20 40  
80 100  
60  
-60 -40 -20  
0
20 40  
80 100  
60  
T
TEMPERATURE – °C  
T
TEMPERATURE – °C  
A
A
Figure 3. Typical Input Threshold Current vs. Temperature.  
14  
8-PIN DIP, SO-8  
WIDEBODY  
0.8  
0.7  
70  
60  
50  
0.8  
0.7  
V
V
I
= 5.5 V * FOR SINGLE  
V
V
I
= 5.5 V  
V
V
V
= 5.0 V  
= 2.0 V*  
= 0.6 V  
* FOR SINGLE  
CHANNEL  
PRODUCTS ONLY  
CC  
E
F
CC  
= 2.0 V  
F
CC  
E
OL  
= 2.0 V*  
= 5.0 mA  
CHANNEL  
PRODUCTS ONLY  
E
= 5.0 mA  
0.6  
0.5  
0.4  
0.3  
0.2  
0.6  
0.5  
0.4  
0.3  
0.2  
I
= 16 mA  
O
I
= 10-15 mA  
F
I
= 16 mA  
= 9.6 mA  
I
= 12.8 mA  
O
O
I
= 12.8 mA  
= 6.4 mA  
O
I
I
= 9.6 mA  
I = 6.4 mA  
O
O
I
O
I
= 5.0 mA  
F
40  
20  
O
0.1  
0
0.1  
0
-60 -40 -20  
0
20 40  
80 100  
60  
-60 -40 -20  
0
20 40  
80 100  
-60 -40 -20  
0
20 40  
80 100  
60  
60  
T
TEMPERATURE – °C  
T
TEMPERATURE – °C  
T
TEMPERATURE – °C  
A
A
A
Figure 4. Typical Low Level Output Voltage vs. Temperature.  
Figure 5. Typical Low Level Output  
Current vs. Temperature.  
8-PIN DIP, SO-8  
T
WIDEBODY  
1000  
1000  
= 25 °C  
T = 25 °C  
A
A
100  
10  
100  
10  
I
I
F
+
V
F
F
+
F
V
1.0  
1.0  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
V
FORWARD VOLTAGE V  
V
FORWARD VOLTAGE V  
F
F
Figure 6. Typical Input Diode Forward Characteristic.  
8-PIN DIP, SO-8  
WIDEBODY  
-2.4  
-2.2  
-2.3  
-2.2  
-2.0  
-1.8  
-1.6  
-2.1  
-2.0  
-1.9  
-1.8  
-1.4  
-1.2  
0.1  
1
10  
100  
0.1  
1
10  
I PULSE INPUT CURRENT mA  
F
100  
I
PULSE INPUT CURRENT mA  
F
Figure 7. Typical Temperature Coefficient of Forward Voltage vs. Input Current.  
15  
PULSE GEN.  
= 50 Ω  
Z
O
t
= t = 5 ns  
r
f
SINGLE CHANNEL  
DUAL CHANNEL  
+5 V  
+5 V  
I
F
I
F
PULSE GEN.  
= 50 Ω  
V
V
CC  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CC  
Z
O
R
L
t
= t = 5 ns  
r
f
INPUT  
MONITORING  
NODE  
OUTPUT V  
O
0.1µF  
BYPASS  
R
L
MONITORING  
NODE  
0.1µF  
BYPASS  
OUTPUT V  
MONITORING  
NODE  
INPUT  
MONITORING  
NODE  
O
*C  
L
R
C *  
L
M
R
M
GND  
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
I
= 7.50 mA  
= 3.75 mA  
F
INPUT  
I
I
F
F
t
t
PHL  
PLH  
OUTPUT  
V
O
1.5 V  
Figure 8. Test Circuit for tPHL and tPLH  
.
100  
105  
V
I
= 5.0 V  
V
= 5.0 V  
CC  
= 7.5 mA  
CC  
= 25°C  
T
F
A
t
, R = 4 KΩ  
L
80  
t
, R = 4 KΩ  
90  
PLH  
PLH  
L
t
, R = 350 Ω  
L
PHL  
1 KΩ  
4 KΩ  
60  
40  
75  
60  
t
, R = 350 Ω  
L
PLH  
t
, R = 1 KΩ  
L
PLH  
t
, R = 1 KΩ  
L
PLH  
t
, R = 350 Ω  
L
PLH  
45  
30  
20  
0
t
, R = 350 Ω  
PHL  
L
1 KΩ  
4 KΩ  
5
7
9
11  
13  
15  
-60 -40 -20  
0
20 40  
80 100  
60  
I
PULSE INPUT CURRENT mA  
T
TEMPERATURE – °C  
F
A
Figure 9. Typical Propagation Delay  
vs. Temperature.  
Figure 10. Typical Propagation Delay  
vs. Pulse Input Current.  
40  
V
= 5.0 V  
t
t
CC  
I = 7.5 mA  
F
RISE  
FALL  
R
= 4 kΩ  
L
30  
20  
10  
0
V
I
= 5.0 V  
CC  
= 7.5 mA  
R
= 4 kΩ  
= 1 kΩ  
F
300  
290  
60  
L
R
= 350 Ω  
L
R
L
40  
R
R
= 350 Ω  
L
20  
0
R
= 1 kΩ  
L
= 350 Ω, 1 k, 4 kΩ  
L
0
-10  
-60  
-40 -20  
0
20 40  
80 100  
60  
-60 -40 -20  
20 40 60 80 100  
T
TEMPERATURE – °C  
T
TEMPERATURE – °C  
A
A
Figure 11. Typical Pulse Width  
Distortion vs. Temperature.  
Figure 12. Typical Rise and Fall Time  
vs. Temperature.  
16  
PULSE GEN.  
= 50 Ω  
Z
O
t
= t = 5 ns  
f
r
INPUT V  
MONITORING NODE  
E
+5 V  
V
3.0 V  
1.5 V  
1
2
3
4
8
7
6
5
CC  
INPUT  
V
7.5 mA  
E
0.1 µF  
BYPASS  
R
L
I
F
t
t
EHL  
ELH  
OUTPUT V  
MONITORING  
NODE  
O
OUTPUT  
V
O
1.5 V  
*C  
L
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
Figure 13. Test Circuit for tEHL and tELH  
.
120  
V
V
V
= 5.0 V  
= 3.0 V  
= 0 V  
CC  
EH  
EL  
I
= 7.5 mA  
F
90  
60  
t
, R = 4 kΩ  
L
ELH  
t
, R = 1 kΩ  
ELH  
L
30  
0
t
, R = 350 Ω  
ELH  
L
t
, R = 350 Ω, 1 kΩ, 4 kΩ  
L
EHL  
-60 -40 -20  
0
20 40 60 80 100  
T
TEMPERATURE – °C  
A
Figure 14. Typical Enable Propagation  
Delay vs. Temperature.  
I
F
SINGLE CHANNEL  
DUAL CHANNEL  
B
I
F
V
1
2
3
4
8
7
6
5
+5 V  
V
CC  
+5 V  
CC  
1
2
3
4
8
A
R
B
A
L
OUTPUT V  
MONITORING  
NODE  
0.1 µF  
BYPASS  
O
R
7
6
5
L
V
FF  
OUTPUT V  
MONITORING  
NODE  
O
V
FF  
0.1 µF  
BYPASS  
GND  
GND  
V
CM  
V
CM  
+
+
PULSE  
GENERATOR  
= 50 Ω  
PULSE  
GENERATOR  
= 50 Ω  
Z
Z
O
O
V
CM  
(PEAK)  
V
CM  
0 V  
5 V  
SWITCH AT A: I = 0 mA  
F
CM  
H
V
O
V
(MIN.)  
O
SWITCH AT B: I = 7.5 mA  
F
V
(MAX.)  
O
V
O
0.5 V  
CM  
L
Figure 15. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.  
17  
HCPL-2611 OPTION 060  
(mW)  
HCNWXXXX  
P (mW)  
S
800  
700  
600  
500  
400  
300  
200  
100  
0
P
S
I
(mA)  
I (mA)  
S
S
800  
700  
600  
500  
400  
300  
200  
100  
0
0
25 50 75 100 125 150 175 200  
CASE TEMPERATURE – °C  
0
25  
T CASE TEMPERATURE – °C  
S
50 75 100 125 150 175  
T
S
Figure 16. Thermal Derating Curve, Dependence of Safety Limiting Value with  
Case Temperature per IEC/EN/DIN EN 60747-5-2.  
GND BUS (BACK)  
V
BUS (FRONT)  
NC  
CC  
ENABLE  
OUTPUT  
0.1µF  
NC  
10 mm MAX.  
(SEE NOTE 5)  
SINGLE CHANNEL  
DEVICE ILLUSTRATED.  
Figure 17. Recommended Printed Circuit Board Layout.  
18  
SINGLE CHANNEL DEVICE  
5 V  
5 V  
8
6
V
CC1  
V
CC2  
390 Ω  
470 Ω  
I
F
+
2
3
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
V
E
7
1
2
*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.  
DUAL CHANNEL DEVICE  
CHANNEL 1 SHOWN  
5 V  
5 V  
8
7
V
CC1  
V
CC2  
390 Ω  
470 Ω  
I
F
+
1
2
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
1
2
Figure 18. Recommended TTL/LSTTL to TTL/LSTTL Interface Circuit.  
19  
Propagation Delay, Pulse- tions where synchronization of  
signals at the inputs and outputs  
of the optocouplers. To obtain the  
maximum data transmission rate,  
both edges of the clock signal are  
being used to clock the data; if  
only one edge were used, the  
clock signal would need to be  
twice as fast.  
Width Distortion and  
signals on parallel data lines is a  
concern. If the parallel data is  
being sent through a group of  
optocouplers, differences in  
propagation delays will cause the  
data to arrive at the outputs of the  
optocouplers at different times. If  
this difference in propagation  
delays is large enough, it will  
determine the maximum rate at  
which parallel data can be sent  
through the optocouplers.  
Propagation Delay Skew  
Propagation delay is a figure of  
merit which describes how  
quickly a logic signal propagates  
through a system. The propaga-  
tion delay from low to high (tPLH  
is the amount of time required for  
an input signal to propagate to  
the output, causing the output to  
change from low to high.  
)
Propagation delay skew repre-  
sents the uncertainty of where an  
edge might be after being sent  
through an optocoupler. Figure  
20 shows that there will be  
Similarly, the propagation delay  
from high to low (tPHL) is the  
amount of time required for the  
input signal to propagate to the  
output causing the output to  
change from high to low (see  
Figure 8).  
Propagation delay skew is defined  
as the difference between the  
minimum and maximum  
propagation delays, either tPLH or  
tPHL, for any given group of  
uncertainty in both the data and  
the clock lines. It is important  
that these two areas of uncertainty  
not overlap, otherwise the clock  
signal might arrive before all of  
the data outputs have settled, or  
some of the data outputs may  
start to change before the clock  
signal has arrived. From these  
considerations, the absolute  
minimum pulse width that can be  
sent through optocouplers in a  
parallel application is twice tPSK. A  
cautious design should use a  
slightly longer pulse width to  
ensure that any additional  
optocouplers which are operating  
under the same conditions (i.e.,  
the same drive current, supply  
voltage, output load, and  
Pulse-width distortion (PWD)  
results when tPLH and tPHL differ in  
value. PWD is defined as the  
difference between tPLH and tPHL  
and often determines the  
maximum data rate capability of a  
transmission system. PWD can be  
expressed in percent by dividing  
the PWD (in ns) by the minimum  
pulse width (in ns) being  
operating temperature). As  
illustrated in Figure 19, if the  
inputs of a group of optocouplers  
are switched either ON or OFF at  
the same time, tPSK is the  
difference between the shortest  
propagation delay, either tPLH or  
tPHL, and the longest propagation  
uncertainty in the rest of the  
circuit does not cause a problem.  
transmitted. Typically, PWD on  
the order of 20-30% of the  
delay, either tPLH or tPHL  
.
minimum pulse width is tolerable;  
the exact figure depends on the  
particular application (RS232,  
RS422, T-l, etc.).  
As mentioned earlier, tPSK can  
determine the maximum parallel  
data transmission rate. Figure 20  
is the timing diagram of a typical  
parallel data application with both  
the clock and the data lines being  
sent through optocouplers. The  
figure shows data and clock  
The tPSK specified optocouplers  
offer the advantages of  
guaranteed specifications for  
propagation delays, pulsewidth  
distortion and propagation delay  
skew over the recommended  
temperature, input current, and  
power supply ranges.  
Propagation delay skew, tPSK, is  
an important parameter to  
consider in parallel data applica-  
DATA  
INPUTS  
I
F
50%  
50%  
CLOCK  
1.5 V  
V
O
DATA  
I
F
OUTPUTS  
CLOCK  
t
PSK  
V
1.5 V  
O
t
PSK  
t
PSK  
Figure 19. Illustration of Propagation  
Delay Skew - t  
Figure 20. Parallel Data Transmission  
Example.  
.
PSK  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(916)788-6763  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6756 2394  
India, Australia, New Zealand: (+65) 6755 1939  
Japan: (+81 3) 3335-8152 (Domestic/Interna-  
tional), or 0120-61-1280 (Domestic Only)  
Korea: (+65) 6755 1989  
Singapore, Malaysia, Vietnam, Thailand,  
Philippines, Indonesia: (+65) 6755 2044  
Taiwan: (+65) 6755 1843  
Data subject to change.  
Copyright © 2004 Agilent Technologies, Inc.  
Obsoletes 5989-0302EN  
December 29, 2004  
5989-2126EN  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY