HCPL-4562-320E [AGILENT]

Transistor Output Optocoupler, 1-Element, 3750V Isolation,;
HCPL-4562-320E
型号: HCPL-4562-320E
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

Transistor Output Optocoupler, 1-Element, 3750V Isolation,

文件: 总16页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Bandwidth, Analog/Video  
Optocouplers  
Technical Data  
HCPL-4562  
HCNW4562  
Applications  
Description  
Features  
• Wide Bandwidth[1]:  
17 MHz (HCPL-4562)  
9 MHz (HCNW4562)  
• Video Isolation for the  
Following Standards/  
Formats: NTSC, PAL,  
SECAM, S-VHS, ANALOG  
RGB  
The HCPL-4562 and HCNW4562  
optocouplers provide wide band-  
width isolation for analog signals.  
They are ideal for video isolation  
when combined with their  
• High Voltage Gain[1]:  
2.0 (HCPL-4562)  
application circuit (Figure 4).  
High linearity and low phase shift  
are achieved through an AlGaAs  
LED combined with a high speed  
detector. These single channel  
optocouplers are available in  
8-Pin DIP and Widebody package  
configurations.  
• Low Drive Current Feedback  
Element in Switching Power  
Supplies, e.g., for ISDN  
Networks  
• A/D Converter Signal  
Isolation  
• Analog Signal Ground  
Isolation  
• High Voltage Insulation  
3.0 (HCNW4562)  
• Low GV Temperature  
Coefficient: -0.3%/°C  
• Highly Linear at Low Drive  
Currents  
• High-Speed AlGaAs Emitter  
• Safety Approval  
UL Recognized - 3750 V rms  
for 1 minute (5000 V rms for  
1 minute for HCPL-  
4562#020 and HCNW4562)  
per UL 1577  
Functional Diagram  
CSA Approved  
IEC/EN/DIN EN 60747-5-2  
Approved  
-VIORM = 1414 V peak for  
HCNW4562  
• Available in 8-Pin DIP and  
Widebody Packages  
8
7
6
5
NC  
ANODE  
CATHODE  
NC  
1
2
3
4
V
V
V
CC  
B
O
GND  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
2
Selection Guide  
Single Channel Packages  
8-Pin DIP  
(300 Mil)  
Widebody  
(400 Mil)  
HCPL-4562  
HCNW4562  
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Example:  
HCPL-4562#XXXX  
020 = UL 5000 V rms/1 Minute Option*  
300 = Gull Wing Surface Mount Option†  
500 = Tape and Reel Packaging Option  
XXXE = Lead Free Option  
Option data sheets are available. Contact your Agilent sales representative or authorized distributor for  
information.  
*For HCPL-4562 only.  
†Gull wing surface mount option applies to through hole parts only.  
Remarks: The notation “#” is used for existing products, while (new) products launched since 15th July  
2001 and lead free option will use “-”  
Schematic  
I
CC  
8
V
CC  
I
F
2
+
ANODE  
V
F
I
O
6
5
3
V
O
CATHODE  
GND  
I
B
7
V
B
3
Package Outline Drawings  
8-Pin DIP Package (HCPL-4562)  
7.63 0.35  
(0.ꢀ00 0.010ꢁ  
9.65 0.35  
(0.ꢀ80 0.010ꢁ  
8
1
7
6
5
6.ꢀ5 0.35  
(0.350 0.010ꢁ  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
3
4
RECOGNITION  
1.78 (0.070ꢁ MAX.  
1.19 (0.047ꢁ MAX.  
+ 0.076  
- 0.051  
0.354  
5° TYP.  
+ 0.00ꢀꢁ  
- 0.003ꢁ  
ꢀ.56 0.1ꢀ  
(0.140 0.005ꢁ  
(0.010  
4.70 (0.185ꢁ MAX.  
0.51 (0.030ꢁ MIN.  
3.93 (0.115ꢁ MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHESꢁ.  
1.080 0.ꢀ30  
(0.04ꢀ 0.01ꢀꢁ  
0.65 (0.035ꢁ MAX.  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 030  
OPTION NUMBERS ꢀ00 AND 500 NOT MARKED.  
3.54 0.35  
(0.100 0.010ꢁ  
NOTE: FLOATING LEAD PROTRUSION IS 0.35 mm (10 milsꢁ MAX.  
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562)  
LAND PATTERN RECOMMENDATION  
9.65 0.35  
1.016 (0.040ꢁ  
(0.ꢀ80 0.010ꢁ  
6
5
8
1
7
6.ꢀ50 0.35  
(0.350 0.010ꢁ  
10.9 (0.4ꢀ0ꢁ  
3.0 (0.080ꢁ  
3
4
1.37 (0.050ꢁ  
9.65 0.35  
1.780  
(0.070ꢁ  
MAX.  
(0.ꢀ80 0.010ꢁ  
1.19  
(0.047ꢁ  
MAX.  
7.63 0.35  
(0.ꢀ00 0.010ꢁ  
+ 0.076  
0.354  
- 0.051  
ꢀ.56 0.1ꢀ  
(0.140 0.005ꢁ  
+ 0.00ꢀꢁ  
- 0.003ꢁ  
(0.010  
1.080 0.ꢀ30  
(0.04ꢀ 0.01ꢀꢁ  
0.6ꢀ5 0.35  
(0.035 0.010ꢁ  
13° NOM.  
0.6ꢀ5 0.1ꢀ0  
(0.035 0.005ꢁ  
3.54  
(0.100ꢁ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢁ.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢁ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.35 mm (10 milsꢁ MAX.  
4
8-Pin Widebody DIP Package (HCNW4562)  
11.00  
(0.4ꢀꢀꢁ  
11.15 0.15  
(0.443 0.006ꢁ  
MAX.  
9.00 0.15  
(0.ꢀ54 0.006ꢁ  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
HCNWXXXX  
YYWW  
1
3
4
10.16 (0.400ꢁ  
TYP.  
1.55  
(0.061ꢁ  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
0.354  
+ 0.00ꢀꢁ  
- 0.003ꢁ  
(0.010  
5.10  
(0.301ꢁ  
MAX.  
ꢀ.10 (0.133ꢁ  
ꢀ.90 (0.154ꢁ  
0.51 (0.031ꢁ MIN.  
3.54 (0.100ꢁ  
TYP.  
1.78 0.15  
(0.070 0.006ꢁ  
0.40 (0.016ꢁ  
0.56 (0.033ꢁ  
DIMENSIONS IN MILLIMETERS (INCHESꢁ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.35 mm (10 milsꢁ MAX.  
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562)  
11.15 0.15  
(0.443 0.006ꢁ  
LAND PATTERN RECOMMENDATION  
7
6
5
8
9.00 0.15  
(0.ꢀ54 0.006ꢁ  
1ꢀ.56  
(0.5ꢀ4ꢁ  
1
3
4
3.39  
1.ꢀ  
(0.09ꢁ  
(0.051ꢁ  
13.ꢀ0 0.ꢀ0  
1.55  
(0.061ꢁ  
MAX.  
(0.484 0.013ꢁ  
11.00  
MAX.  
(0.4ꢀꢀꢁ  
4.00  
MAX.  
(0.158ꢁ  
1.78 0.15  
(0.070 0.006ꢁ  
1.00 0.15  
(0.0ꢀ9 0.006ꢁ  
0.75 0.35  
(0.0ꢀ0 0.010ꢁ  
+ 0.076  
- 0.0051  
3.54  
(0.100ꢁ  
BSC  
0.354  
+ 0.00ꢀꢁ  
- 0.003ꢁ  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHESꢁ.  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢁ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.35 mm (10 milsꢁ MAX.  
5
Solder Reflow Temperature Profile  
ꢀ00  
PREHEATING RATE ꢀ°C + 1°C/0.5°C/SEC.  
REFLOW HEATING RATE 3.5°C 0.5°C/SEC.  
PEAK  
TEMP.  
345°C  
PEAK  
TEMP.  
340°C  
PEAK  
TEMP.  
3ꢀ0°C  
300  
3.5°C 0.5°C/SEC.  
SOLDERING  
TIME  
ꢀ0  
160°C  
150°C  
140°C  
300°C  
SEC.  
ꢀ0  
SEC.  
°C + 1°C/0.5°C  
100  
PREHEATING TIME  
150°C, 90 + ꢀ0 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
300  
350  
TIME (SECONDSꢁ  
Recommended Pb-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
30-40 SEC.  
360 +0/-5 °C  
T
T
p
317 °C  
L
RAMP-UP  
°C/SEC. MAX.  
150 - 300 °C  
RAMP-DOWN  
6 °C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
35  
t 35 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 35 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 300 °C, T = 150 °C  
T
smax  
smin  
Regulatory Information  
UL  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01  
The devices contained in this data  
sheet have been approved by the  
following organizations:  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
CSA  
(HCNW4562 only)  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
6
Insulation and Safety Related Specifications  
8-Pin DIP Widebody  
(300 Mil)  
Value  
(400 Mil)  
Value  
Parameter  
Symbol  
Units  
Conditions  
Minimum External  
Air Gap (External  
Clearance)  
Minimum External  
Tracking (External  
Creepage)  
Minimum Internal  
Plastic Gap  
(Internal Clearance)  
L(101)  
7.1  
9.6  
10.0  
1.0  
mm  
Measured from input terminals to  
output terminals, shortest distance  
through air.  
Measured from input terminals to  
output terminals, shortest distance  
path along body.  
Through insulation distance,  
conductor to conductor, usually the  
direct distance between the photo-  
emitter and photodetector inside the  
optocoupler cavity.  
L(102)  
7.4  
mm  
mm  
0.08  
Minimum Internal  
Tracking (Internal  
Creepage)  
Tracking Resistance  
(Comparative  
Tracking Index)  
Isolation Group  
NA  
200  
IIIa  
4.0  
200  
IIIa  
mm  
Measured from input terminals to  
output terminals, along internal cavity.  
CTI  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Material Group  
(DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY)  
Description  
Symbol Characteristic Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 600 V rms  
for rated mains voltage 1000 V rms  
Climatic Classification  
I-IV  
I-III  
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
IORM  
1414  
V peak  
V peak  
V
IORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
VPR  
VPR  
2652  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = VPR, Type and sample test,  
2121  
8000  
V peak  
V peak  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
IOTM  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 17, Thermal Derating curve.)  
Case Temperature  
Input Current  
Output Power  
TS  
IS,INPUT  
PS,OUTPUT  
150  
400  
700  
°C  
mA  
mW  
Insulation Resistance at TS, V = 500 V  
RS  
109  
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN  
60747-5-2, for a detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
7
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
TS  
Device  
Min.  
-55  
Max. Units Note  
125  
85  
°C  
°C  
Operating Temperature  
TA  
-40  
Average Forward Input Current  
IF(avg)  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCPL-4562  
HCNW4562  
HCNW4562  
12  
mA  
25  
Peak Forward Input Current  
IF(PEAK)  
18.6  
40  
mA  
Effective Input Current  
IF(EFF)  
VR  
12.9 mA rms  
Reverse LED Input Voltage (Pin 3-2)  
1.8  
3
V
Input Power Dissipation  
PIN  
40  
8
mW  
mA  
mA  
V
Average Output Current (Pin 6)  
Peak Output Current (Pin 6)  
Emitter-Base Reverse Voltage (Pin 5-7)  
Supply Voltage (Pin 8-5)  
IO(AVG)  
IO(PEAK)  
16  
5
V
EBR  
VCC  
VO  
-0.3  
-0.3  
30  
20  
5
V
Output Voltage (Pin 6-5)  
V
Base Current (Pin 7)  
IB  
mA  
mW  
°C  
Output Power Dissipation  
PO  
TLS  
100  
260  
2
Lead Solder Temperature  
1.6 mm Below Seating Plane, 10 Seconds  
up to Seating Plane, 10 Seconds  
HCPL-4562  
HCNW4562  
260  
°C  
Reflow Temperature Profile  
TRP  
Option  
300  
See Package Outline  
Drawings Section  
Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Device  
Min.  
Max.  
70  
Units  
°C  
Note  
Operating Temperature  
Quiescent Input Current  
HCPL-4562  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
-10  
IFQ  
6
mA  
10  
10  
Peak Input Current  
IF(PEAK)  
mA  
17  
8
Electrical Specifications (DC)  
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless  
otherwise specified.  
Parameter  
Symbol  
Device  
Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Base Photo  
Current  
IPB  
13  
31  
19.2  
65  
µA IF = 10 mA VPB 5 V 2, 6  
HCPL-4562  
IF = 6 mA  
IPB  
IPB/  
T  
-0.3  
%/°C 2 mA < IF < 10 mA,  
VPB 5 V  
2
Temperature  
Coefficient  
IPB  
HCPL-4562  
HCNW4562  
0.25  
0.15  
%
V
V
2 mA < IF < 10 mA  
6 mA < IF < 14 mA  
2, 6  
5
3
Nonlinearity  
Input Forward  
Voltage  
VF  
HCPL-4562  
HCNW4562 1.2  
1.1  
1.3  
1.6  
1.6  
1.8  
IF = 5 mA  
IF = 10 mA  
Input Reverse  
Breakdown  
Voltage  
BVR  
HCPL-4562  
HCNW4562  
1.8  
3
5
IR = 10 µA  
IR = 100 µA  
Transistor  
CurrentGain  
hFE  
CTR  
VOUT  
60  
160  
IC = 1 mA,  
VCE = 1.25 V  
Current  
Transfer Ratio  
HCPL-4562  
HCNW4562  
45  
52  
%
V
VCE = 1.25 V,  
VPB 5 V  
GV = 2, VCC = 9 V  
8, 9  
4
DC Output  
Voltage  
HCPL-4562  
HCNW4562  
4.25  
5.0  
4,  
15  
9
Small Signal Characteristics (AC)  
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless  
otherwise specified.  
Parameter  
Symbol  
Device  
Min. Typ.* Max. Units  
Test Conditions  
VIN = 1 VP-P  
Fig. Note  
Voltage Gain  
GV  
HCPL-4562 0.8  
2.0  
3.0  
4.2  
1
6
(0.1 MHz) HCNW4562  
GV Temperature  
Coefficient  
GV/T  
-0.3  
%/°C VIN = 1 VP-P  
fREF = 0.1 MHz  
-dB VIN = 1 VP-P  
fREF = 0.1 MHz  
,
1, 11  
Base Photo  
Current  
iPB  
HCPL-4562  
1.1  
0.36  
3.0  
,
3, 10,  
12  
(6 MHz) HCNW4562  
Variation  
-3 dB Frequency  
(iPB)  
iPB  
(-3 dB) HCNW4562  
GV HCPL-4562  
(-3 dB) HCNW4562  
GV HCPL-4562  
HCPL-4562  
6
6
15  
13  
MHz VIN = 1 VP-P  
fREF = 0.1 MHz  
MHz VIN = 1 VP-P  
,
3, 10,  
12  
7
7
-3 dB Frequency  
(GV)  
17  
9
,
1, 11  
fREF = 0.1 MHz  
Gain Variation  
1.1  
0.54  
0.8  
3.0  
-dB TA = 25°C V = 1 VP-P  
,
1, 11  
IN  
(6 MHz) HCNW4562  
HCPL-4562  
fREF = 0.1 MHz  
TA = -10°C  
TA = 70°C  
1.5  
GV  
HCPL-4562  
1.15  
2.27  
-dB VIN = 1 VP-P,  
(10 MHz) HCNW4562  
fREF = 0.1 MHz  
Differential  
Gain at  
f = 3.58 MHz  
HCPL-4562  
1.0  
%
IFac = 0.7 mA p-p,  
IFdc = 3 to 9 mA  
IFac = 1 mA p-p,  
IFdc = 7 to 13 mA  
3, 7  
3, 7  
8
9
HCNW4562  
0.9  
Differential  
Phase at  
f = 3.58 MHz  
HCPL-4562  
HCNW4562  
1
deg. IFac = 0.7 mA p-p,  
IFdc = 3 to 9 mA  
0.6  
IFac = 1 mA p-p,  
IFdc = 7 to 13 mA  
Total Harmonic  
Distortion  
THD  
VO(noise)  
IMRR  
HCPL-4562  
HCNW4562  
2.5  
0.75  
%
VIN = 1 VP-P  
f = 3.58 MHz, GV = 2  
,
4
1
10  
Output Noise  
Voltage  
950  
µVrms 10 Hz to 10 MHz  
Isolation Mode  
Rejection Ratio  
HCPL-4562  
HCNW4562  
122  
119  
dB f = 120 Hz, GV = 2  
14  
11  
10  
Package Characteristics  
All Typicals at T = 25°C  
A
Parameter  
Sym.  
Device  
Min. Typ.  
Max. Units Test Conditions  
Fig. Note  
Input-Output  
Momentary  
Withstand  
Voltage*  
V
ISO  
HCPL-4562 3750  
HCNW4562 5000  
HCPL-4562 5000  
(Option 020)  
V rms RH 50%,  
5, 12  
5, 13  
5, 13  
t = 1 min.,  
T = 25°C  
A
Input-Output  
Resistance  
RI-O  
HCPL-4562  
HCNW4562  
1012  
1013  
VI-O = 500 Vdc  
5
5
1012  
1011  
T = 25°C  
A
T = 100°C  
A
Input-Output  
Capacitance  
CI-O  
HCPL-4562  
HCNW4562  
0.6  
0.5  
pF  
f = 1 MHz  
0.6  
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if  
applicable), your equipment level safety specification or Agilent Application Note 1074 entitled “Optocoupler Input-Output Endurance  
Voltage,” publication number 5963-2203E.  
Notes:  
8. Differential gain is the change in the  
small-signal gain of the optocoupler  
at 3.58 MHz as the bias level is varied  
over a given range.  
where V is the isolation mode  
voltage signal.  
IM  
1. When used in the circuit of Figure 1  
or Figure 4; GV = VOUT/VIN; IFQ  
6 mA (HCPL-4562), IFQ = 10 mA  
(HCNW4562).  
=
12. In accordance with UL 1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
4500 V rms for 1 second (leakage  
detection current limit, II-O 5 µA).  
This test is performed before the  
100% Production test shown in the  
IEC/EN/DIN EN 60747-5-2 Insulation  
Related Characteristics Table, if  
applicable.  
13. In accordance with UL 1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
6000 V rms for 1 second (leakage  
detection current limit, II-O 5 µA).  
This test is performed before the  
100% Production test shown in the  
IEC/EN/DIN EN 60747-5-2 Insulation  
Related Characteristics Table, if  
applicable.  
9. Differential phase is the change in the  
small-signal phase response of the  
optocoupler at 3.58 MHz as the bias  
level is varied over a given range.  
10. TOTAL HARMONIC DISTORTION  
(THD) is defined as the square root  
of the sum of the square of each  
harmonic distortion component. The  
THD of the isolated video circuit is  
measured using a 2.6 kload in  
series with the 50 input impedance  
of the spectrum analyzer.  
11. ISOLATION MODE REJECTION  
RATIO (IMRR), a measure of the  
optocoupler’s ability to reject signals  
or noise that may exist between input  
and output terminals, is defined by  
20 log10 [(VOUT/VIN)/(VOUT/VIM)],  
2. Derate linearly above 70°C free-air  
temperature at a rate of 2.0 mW/°C  
(HCPL-4562).  
3. Maximum variation from the best fit  
line of IPB vs. IF expressed as a  
percentage of the peak-to-peak full  
scale output.  
4. CURRENT TRANSFER RATIO (CTR)  
is defined as the ratio of output  
collector current, IO, to the forward  
LED input current, IF, times 100%.  
5. Device considered a two-terminal  
device: Pins 1, 2, 3, and 4 shorted  
together and Pins 5, 6, 7, and 8  
shorted together.  
6. Flat-band, small-signal voltage gain.  
7. The frequency at which the gain is  
3 dB below the flat-band gain.  
11  
163 (HCPL-4563ꢁ  
90.9 (HCNW4563ꢁ  
Figure 1. Gain and Bandwidth Test Circuit.  
163 (HCPL-4563ꢁ  
90.9 (HCNW4563ꢁ  
Figure 2. Base Photo Current Test  
Circuit.  
Figure 3. Base Photo Current Frequency Response Test Circuit.  
Figure 4. Recommended Isolated Video Interface Circuit.  
12  
HCNW4563  
HCPL-4563  
100  
10  
I
F
+
V
F
T
= 70 °C  
A
1.0  
T
T
= 35 °C  
= -10 °C  
A
A
0.1  
0.01  
1.0  
1.1  
1.3  
1.ꢀ  
1.4  
1.5  
V
FORWARD VOLTAGE V  
F
Figure 5. Input Current vs. Forward Voltage.  
HCNW4563  
HCPL-4563  
80  
70  
60  
50  
40  
T
V
= 35 °C  
A
ꢀ0  
> 5 V  
PB  
30  
10  
0
0
3
4
6
8
10 13 14 16 18 30  
I
INPUT CURRENT mA  
F
Figure 6. Base Photo Current vs. Input Current.  
HCPL-4563  
HCNW4563  
3
1
0
1.03  
1
PHASE  
0.98  
-1  
-3  
-ꢀ  
0.96  
0.94  
0.93  
NORMALIZED  
= 6 mA  
GAIN  
I
F
f = ꢀ.58 MHz  
= 35 °C  
T
A
SEE FIG. ꢀ  
0
3
4
6
8
10 13 14 16 18 30  
I
INPUT CURRENT mA  
F
Figure 7. Small-Signal Response vs. Input Current.  
13  
HCNW4563  
HCPL-4563  
1.04  
1.03  
1.00  
0.98  
0.96  
0.94  
0.93  
0.90  
0.88  
0.86  
NORMALIZED  
= 35 °C  
T
A
I
= 6.0 mA  
F
V
V
= 1.35 V  
> 5 V  
CE  
PB  
-10  
0
10 30 ꢀ0 40 50 60 70  
T TEMPERATURE – °C  
Figure 8. Current Transfer Ratio vs. Temperature.  
HCNW4563  
HCPL-4563  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
V
= 5.0 V  
CE  
V
V
= 1.35 V  
= 0.4 V  
CE  
CE  
NORMALIZED  
= 35 °C  
T
A
I
V
V
= 6 mA  
F
= 1.35 V  
> 5 V  
CE  
PB  
0
3
4
6
8
10 13 14 16 18 30  
I
INPUT CURRENT mA  
F
Figure 9. Current Transfer Ratio vs. Input Current.  
HCNW4563  
HCPL-4563  
-0.9  
-1.1  
FREQUENCY = 6 MHz  
-1.ꢀ  
-1.5  
-1.7  
FREQUENCY = 10 MHz  
-1.9  
-3.1  
T
F
= 35 °C  
A
-3.ꢀ  
-3.5  
-3.7  
= 0.1 MHz  
REF  
1
3
4
5
6
7
8
9 10 11 13  
I
QUIESCENT INPUT CURRENT mA  
FQ  
Figure 10. Base Photo Current Variation vs. Bias Conditions.  
14  
HCNW4563  
HCPL-4563  
3
T
= -10 °C  
A
1
0
T
T
= 35 °C  
= 70 °C  
A
A
-1  
-3  
-ꢀ  
-4  
NORMALIZED  
= 35 °C  
f = 0.1 MHz  
T
A
-5  
-6  
-7  
0.01 0.1 1.0 10 100 1000 10,000 100,000  
f FREQUENCY KHz  
Figure 11. Normalized Voltage Gain vs. Frequency.  
HCNW4563  
HCPL-4563  
0.5  
0
-0.5  
-1.0  
NORMALIZED  
-1.5  
-3.0  
-3.5  
-ꢀ.0  
-ꢀ.5  
T
= 35 °C  
A
f = 0.1 MHz  
-4.0  
-4.5  
0.01 0.1 1.0 10 100 1000 10,000 100,000  
f FREQUENCY KHz  
Figure 12. Normalized Base Photo Current vs. Frequency.  
HCNW4563  
HCPL-4563  
0
I
PHASE  
PB  
SEE FIGURE ꢀ  
-35  
-50  
-75  
T
= 35 °C  
A
-100  
-135  
-150  
-175  
VIDEO INTERFACE  
CIRCUIT PHASE  
SEE FIGURE 4  
-300  
-335  
-350  
0
3
4
6
8
10 13 14 16 18 30  
f FREQUENCY MHz  
Figure 13. Phase vs. Frequency.  
15  
HCNW4563  
HCPL-4563  
150  
130  
90  
T
= 35 °C  
A
-30 dB/DECADE SLOPE  
60  
G
v
ꢀ0 IMRR = 30 LOG  
10  
v
v
IM  
OUT  
/
0
0.01 0.1  
1.0  
10  
100 1000 10,000  
f FREQUENCY KHz  
Figure 14. Isolation Mode Rejection Ratio vs. Frequency.  
HCNW4563  
HCPL-4563  
6.0  
5.5  
5.0  
4.5  
4.0  
ꢀ.5  
ꢀ.0  
50 100 150 300 350 ꢀ00 ꢀ50 400 450  
h
TRANSISTOR CURRENT GAIN  
FE  
Figure 15. DC Output Voltage vs. Transistor Current Gain.  
HCNW4563  
1000  
V
CC  
P
I
(mWꢁ  
S
900  
800  
700  
600  
500  
400  
ꢀ00  
300  
I
= 3 mA  
(mAꢁ  
C
S
Q4  
R
9
ADDITIONAL  
BUFFER  
STAGE  
Q
4
Q
Q
5
R
11  
V
OUT  
LOW  
IMPEDANCE  
LOAD  
100  
0
R
R
10  
13  
0
35  
50 75 100 135 150 175  
T
CASE TEMPERATURE – °C  
S
Figure 16. Output Buffer Stage for  
Low Impedance Loads.  
Figure 17. Thermal Derating Curve,  
Dependence of Safety Limiting Value  
with Case Temperature per IEC/EN/  
DIN EN 60747-5-2.  
Conversion from HCPL-4562 to  
HCNW4562  
Figure 15 shows the dependency of the DC output  
voltage on hFEX  
.
In order to obtain similar circuit performance when  
converting from the HCPL-4562 to the HCNW4562,  
it is recommended to increase the Quiescent Input  
Current, IFQ, from 6 mA to 10 mA. If the application  
circuit in Figure 4 is used, then potentiometer R4  
should be adjusted appropriately.  
For 9 V < VCC < 12 V, select the value of R11 such  
that  
VO  
R11  
4.25 V  
470 Ω  
IC––– –––––– 9.0 mA  
(8)  
(9)  
Q4  
The voltage gain of the second stage (Q3) is  
approximately equal to:  
Design Considerations of the  
Application Circuit  
R
R10  
1
9– –––––––––––––––––––––––––  
*
The application circuit in Figure 4 incorporates  
several features that help maximize the bandwidth  
performance of the HCPL-4562/HCNW4562. Most  
important of these features is peaked response of  
the detector circuit that helps extend the frequency  
range over which the voltage gain is relatively  
constant. The number of gain stages, the overall  
circuit topology, and the choice of DC bias points  
are all consequences of the desire to maximize  
bandwidth performance.  
1
1 + s R9 CCQ + –––––––––  
3
2π RfT
11  
4
Increasing R(Rincludes the parallel  
11  
11  
combination of R11 and the load impedance) or  
reducing R9 (keeping R9/R10 ratio constant) will  
improve the bandwidth.  
If it is necessary to drive a low impedance load,  
bandwidth may also be preserved by adding an  
additional emitter following the buffer stage (Q5 in  
Figure 16), in which case R11 can be increased to  
set ICQ4 2 mA.  
To use the circuit, first select R1 to set VE for the  
desired LED quiescent current by:  
VE GV V R10  
IFQ = –– ––––––E––––––  
R4 (IPB/IF) R7R9  
Finally, adjust R4 to achieve the desired voltage  
gain.  
(1)  
VOUT IPB R7R9  
For a constant value VINp-p, the circuit topology  
GV –––– –––– ––––––  
(10)  
(adjusting the gain with R4) preserves linearity by  
keeping the modulation factor (MF) dependent only  
on VE.  
V
IN  
IF R4R10  
IPB  
where typically –––– = 0.0032  
IF  
iFp-p V /R4  
(2)  
IN  
p-p  
Definition:  
GV = Voltage Gain  
iF
iPB
V
IN
p-p  
––p-p –––p-p = –––––  
(3)  
(4)  
IFQ = Quiescent LED forward current  
iFp-p = Peak-to-peak small signal LED forward  
current  
INp-p = Peak-to-peak small signal input voltage  
iPBp-p = Peak-to-peak small signal  
base photo current  
IPBQ = Quiescent base photo current  
VBEX = Base-Emitter voltage of HCPL-4562/  
HCNW4562 transistor  
IBXQ = Quiescent base current of HCPL-4562/  
HCNW4562 transistor  
IFQ  
IPBQ  
VE  
Modulation  
Factor (MF): ––––– = –––––  
iF
2 IFQ 2 VE  
V
IN
p-p  
(p-p)  
V
For a given GV, VE, and VCC, DC output voltage will  
vary only with hFEX  
.
R
R10  
VO = VCC VBE 9– [VBEX (IPBQ IBXQ) R7]  
(5)  
4
Where:  
hFEX = Current Gain (IC/IB) of HCPL-4562/  
HCNW4562 transistor  
VE = Voltage across emitter degeneration  
resistor R4  
G VER  
IPBQ ––V–––––10  
R7R9  
(6)  
(7)  
and,  
f
= Unity gain frequency of Q5  
T4  
CCQ = Effective capacitance from collector of Q3  
VCC 2 VBE  
IBXQ ––––––––––  
R6 hFEX  
3
to ground  
www.agilent.com/semiconductors  
E-mail: SemiconductorSupport@agilent.com  
Data subject to change.  
Copyright © 2005 Agilent Technologies, Inc.  
Obsoletes 5989-0287EN  
March 1, 2005  
5989-2158EN  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY