HCPL-7723-060 [AGILENT]

50 MBd 2 ns PWD High Speed CMOS Optocoupler; 50 MBd的2纳秒PWD高速CMOS光电耦合器
HCPL-7723-060
型号: HCPL-7723-060
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

50 MBd 2 ns PWD High Speed CMOS Optocoupler
50 MBd的2纳秒PWD高速CMOS光电耦合器

光电 输出元件
文件: 总12页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HCPL-7723 & HCPL-0723  
50 MBd 2 ns PWD  
High Speed CMOS Optocoupler  
Data Sheet  
Features  
• +5 V CMOS compatibility  
• High speed: 50 MBd min.  
• 2 ns max. pulse width distortion  
• 22 ns max. prop. delay  
Description  
Basic building blocks of HCPL-  
7723/0723 are a CMOS LED  
driver IC, a high speed LED and a  
CMOS detector IC. A CMOS logic  
input signal controls the LED  
driver IC, which supplies current  
to the LED. The detector IC  
incorporates an integrated  
photodiode, a high speed  
Available in either 8-pin DIP or  
SO-8 package style respectively, the  
HCPL-7723 or HCPL-0723  
optocoupler utilize the latest CMOS  
IC technology to achieve out-  
standing speed performance of  
minimum 50 MBd data rate and  
2 ns maximum pulse width  
distortion.  
• 16 ns max. prop. delay skew  
• 10 kV/µs min. common mode  
rejection  
• –40 to 85°C temperature range  
• Safety and regulatory approvals  
(Pending)  
UL recognized  
– 2500 V rms for 1 min. per UL1577  
for HCPL-7723  
– 3750 V rms for 1 min. per UL1577  
for HCPL-0723  
transimpedance amplifier, and a  
voltage comparator with an  
output driver.  
CSA component acceptance  
notice #5  
Functional Diagram  
VDE 0884  
– Viorm = 630 Vpeak for HCPL-7723  
option 060  
– Viorm = 560 Vpeak for HCPL-0723  
option 060  
**V  
1
2
8
7
V
**  
DD2  
DD1  
V
NC*  
I
I
O
3
4
6
5
*
V
O
Applications  
LED1  
• Digital fieldbus isolation: CC-Link,  
DeviceNet, Profibus, SDS  
GND  
GND  
2
1
SHIELD  
Isolated A/D or D/A conversion  
*
PIN 3 IS THE ANODE OF THE INTERNAL LED AND MUST BE LEFT  
UNCONNECTED FOR GUARANTEED DATASHEET PERFORMANCE.  
PIN 7 IS NOT CONNECTED INTERNALLY.  
• Multiplexed data transmission  
• High Speed Digital Input/Output  
• Computer peripheral interface  
• Microprocessor system interface  
** A 0.1 µF BYPASS CAPACITOR MUST BE CONNECTED BETWEEN  
PINS 1 AND 4, AND 5 AND 8.  
TRUTH TABLE  
(POSITIVE LOGIC)  
V , INPUT  
I
LED1  
V
, OUTPUT  
O
H
L
OFF  
ON  
H
L
CAUTION: It is advised that normal static precautions be taken in handling and assembly of  
this component to prevent damage and/or degradation, which may be induced by ESD.  
Package Outline Drawings  
HCPL-7723 8-Pin DIP Package  
9.65 ± 0.25  
(0.380 ± 0.010)  
7.62 ± 0.25  
(0.300 ± 0.010)  
OPTION 060 CODE*  
DATE CODE  
TYPE NUMBER  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
A XXXXV  
YYWW  
2
3
4
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
*OPTION 300 AND 500 NOT MARKED.  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
2.54 ± 0.25  
(0.100 ± 0.010)  
2
HCPL-7723 Package with Gull Wing Surface Mount Option 300  
PAD LOCATION (FOR REFERENCE ONLY)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.016 (0.040)  
1.194 (0.047)  
6
5
8
1
7
4.826  
(0.190)  
TYP.  
6.350 ± 0.25  
(0.250 ± 0.010)  
9.398 (0.370)  
9.906 (0.390)  
2
3
4
0.381 (0.015)  
0.635 (0.025)  
1.194 (0.047)  
1.778 (0.070)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
4.19  
+ 0.003)  
- 0.002)  
MAX.  
(0.165)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
HCPL-0723 Small Outline SO-8 Package  
TYPE NUMBER  
8
7
6
5
4
5.842 ± 0.203  
(0.236 ± 0.008)  
XXXV  
YWW  
OPTION 060 CODE*  
3.937 ± 0.127  
(0.155 ± 0.005)  
DATE CODE  
2
1
3
0.381 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSG  
0.432  
(0.017)  
7°  
45° X  
5.080 ± 0.005  
(0.200 ± 0.005)  
3.175 ± 0.127  
(0.125 ± 0.005)  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.152 ± 0.051  
(0.006 ± 0.002)  
0.305  
MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
*OPTION 500 NOT MARKED.  
(0.012)  
3
Device Selection Guide  
8-Pin DIP (300 mil)  
HCPL-7723  
Small Outline SO-8  
HCPL-0723  
Ordering Information  
Specify Part Number followed by Option Number (if desired)  
Example:  
HCPL-7723-XXX  
060 = VDE0884 Option.  
300 = Gull Wing Surface Mount Option (HCPL-7723 only).  
500 = Tape and Reel Packaging Option.  
No Option and Option 300 contain 50 units (HCPL-7723), 100 units (HCPL-0723) per tube. Option 500  
contain 1000 units (HCPL-7723), 1500 units (HCPL-0723) per reel. Option data sheets available. Contact  
sales representative or authorized distributor.  
4
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
100  
0
2.5°C ± 0.5°C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160°C  
150°C  
140°C  
SEC.  
30  
SEC.  
3°C + 1°C/–0.5°C  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Regulatory Information  
The HCPL-7723/0723 will be  
approved by the following  
organizations:  
VDE  
(HCPL-7723 option 060)  
Approved according to VDE  
0884/06.92, File 6591-23-4880-  
1005.  
UL  
Recognized under UL1577,  
component recognition program,  
File E55361.  
TUV Rheinland  
(HCPL-0723 Option 060)  
Approved according to VDE  
0884/06.92, Certificate  
R9650938.  
CSA  
Approved under CSA Component  
Acceptance Notice #5, File  
CA88324.  
Insulation and Safety Related Specifications  
Value  
Symbol 7723 0723  
Parameter  
Units  
Conditions  
Minimum External Air Gap  
(Clearance)  
L(I01)  
7.1  
4.9  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External Tracking  
(Creepage)  
L(I02)  
7.4  
4.8  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
0.08  
0.08  
Insulation thickness between emitter and  
detector; also known as distance through  
insulation.  
Tracking Resistance  
(Comparative Tracking Index)  
CTI  
175 175 Volts  
IIIa IIIa  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
5
All Agilent data sheets report the  
creepage and clearance inherent  
to the optocoupler component  
itself. These dimensions are  
needed as a starting point for the  
equipment designer when  
determining the circuit insulation  
requirements. However, once  
mounted on a printed circuit  
board, minimum creepage and  
clearance requirements must be  
met as specified for individual  
equipment standards. For  
creepage, the shortest distance  
path along the surface of a  
printed circuit board between the  
solder fillets of the input and  
output leads must be considered.  
There are recommended  
techniques such as grooves and  
ribs, which may be used on a  
printed circuit board to achieve  
desired creepage and clearances.  
Creepage and clearance distances  
will also change depending on  
factors such as pollution degree  
and insulation level.  
VDE 0884 Insulation Related Characteristics (Option 060)  
Description  
HCPL-7723  
Option 060  
HCPL-0723  
Option 060  
Symbol  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 150 V rms  
for rated mains voltage 300 V rms  
I-IV  
I-IV  
I-III  
I-IV  
I-III  
for rated mains voltage 450 V rms  
Climatic Classification  
55/85/21  
2
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
V
630  
560  
V peak  
V peak  
IORM  
1181  
1050  
PR  
V
IORM  
x 1.875 = V , 100% Production Test with t = 1 sec,  
PR m  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
V
945  
840  
V peak  
V peak  
PR  
V
IORM  
x 1.5 = V , Type and Sample Test, t = 60 sec,  
PR m  
Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
V
6000  
4000  
IOTM  
(Transient Overvoltage, t = 10 sec)  
ini  
Safety Limiting Values (maximum values allowed in the  
event of a failure, also see Thermal Derating curve,  
Figure 11)  
Case Temperature  
Input Current  
Output Power  
T
175  
230  
600  
150  
150  
600  
°C  
mA  
mW  
S
I
S,INPUT  
S,OUTPUT  
P
9
9
Insulation Resistance at T , V = 500 V  
R
IO  
10  
10  
S
IO  
*Refer to the front of the optocoupler section of the Isolation and Control Component Designer’s Catalog, under Product Safety Regulations section  
(VDE 0884), for a detailed description.  
Note: These optocouplers are suitable for “safe electrical isolation” only within the safety limit data. Maintenance of the safety data shall be  
ensured by means of protective circuits.  
Note: The surface mount classification is Class A in accordance with CECC 00802.  
6
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
–55  
–40  
0
Max.  
125  
Units  
°C  
Storage Temperature  
Ambient Operating Temperature[1]  
Supply Voltages  
TS  
TA  
85  
°C  
VDD1, VDD2  
6.0  
Volts  
Volts  
Volts  
mA  
Input Voltage  
VI  
–0.5  
–0.5  
VDD1 +0.5  
VDD2 +0.5  
10  
Output Voltage  
VO  
IO  
Average Output Current  
Lead Solder Temperature  
Solder Reflow Temperature Profile  
260°C for 10 sec., 1.6 mm below seating plane  
See Solder Reflow Temperature Profile Section  
Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min.  
–40  
4.5  
Max.  
85  
Units  
°C  
V
Ambient Operating Temperature  
Supply Voltages  
VDD1, VDD2  
VIH  
5.5  
Logic High Input Voltage  
Logic Low Input Voltage  
Input Signal Rise and Fall Times  
2.0  
VDD1  
0.8  
V
VIL  
0.0  
V
tr, tf  
1.0  
ms  
Electrical Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at T = +25°C, V  
= V = +5 V.  
DD2  
A
DD1  
Parameter  
Symbol  
Min.  
Typ.  
7
Max. Units  
Test Conditions  
[2]  
Logic Low Input Supply Current  
Logic High Input Supply Current  
Output Supply Current  
I
10  
mA  
mA  
mA  
mA  
µA  
V
V = 0 V  
I
DD1L  
DD1H  
DD2L  
DD2H  
I
[2]  
I
I
I
I
1.8  
12.5  
12  
3
V = V  
I DD1  
17.5  
16.5  
10  
Input Current  
–10  
4.4  
4.0  
Logic High Output Voltage  
V
OH  
5.0  
4.8  
0
I = –20 µA, V = V  
O I IH  
V
I = –4 mA, V = V  
O I IH  
Logic Low Output Voltage  
V
OL  
0.1  
1.0  
V
I = 20 µA, V = V  
O I IL  
0.5  
V
I = 4 mA, V = V  
O I IL  
7
Switching Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at T = +25°C, V  
= V  
= +5 V.  
DD2  
A
DD1  
Parameter  
Symbol Min. Typ.  
Max. Units Test Conditions  
Propagation Delay Time to Logic  
Low Output  
t
16  
22  
ns  
C = 15 pF CMOS Signal Levels  
L
PHL  
[3]  
Propagation Delay Time to Logic  
High Output  
t
16  
22  
ns  
C = 15 pF CMOS Signal Levels  
L
PLH  
[3]  
Pulse Width  
PW  
20  
50  
ns  
C = 15 pF CMOS Signal Levels  
L
Maximum Data Rate  
MBd  
ns  
C = 15 pF CMOS Signal Levels  
L
[4]  
Pulse Width Distortion |t  
- t  
|
|PWD|  
1
2
C = 15 pF CMOS Signal Levels  
L
PHL  
PLH  
[5]  
Propagation Delay Skew  
t
t
t
16  
ns  
C = 15 pF CMOS Signal Levels  
L
PSK  
R
Output Rise Time (10% – 90%)  
Output Fall Time (90% - 10%)  
8
ns  
C = 15 pF CMOS Signal Levels  
L
6
ns  
C = 15 pF CMOS Signal Levels  
L
F
Common Mode Transient Immunity  
at Logic High Output  
|CM |  
10  
10  
15  
kV/µs  
V
= 1000 V T = 25°C,  
H
CM  
,
A
[6]  
V = V  
I
V
> 0.8 V  
DD1,  
O
DD2  
Common Mode Transient Immunity  
|CM |  
15  
kV/µs  
V
= 1000 V T = 25°C,  
L
CM , A  
[6]  
at Logic Low Output  
V = 0 V V < 0.8 V  
I , O  
8
Package Characteristics  
All Typical Specifications are at T = 25°C.  
A
Parameter  
Symbol Min.  
Typ.  
Max. Units  
V rms RH 50%, t = 1 min,  
T = 25°C  
Test Conditions  
Input-Output Momentary  
Withstand Voltage  
–7723  
–0723  
V
2500  
3750  
ISO  
[7,8,9]  
A
[7]  
12  
Input-Output Resistance  
R
C
C
θ
10  
V
= 500 V dc  
I-O  
I-O  
I
I-O  
Input-Output Capacitance  
0.6  
3.0  
145  
pF  
f = 1 MHz  
[10]  
Input Capacitance  
pF  
Input IC Junction-to-Case  
Thermal Resistance  
–7723  
°C/W  
Thermocouple located at  
center underside of package  
jci  
–0723  
–7723  
–0723  
160  
145  
135  
Output IC Junction-to-Case  
Thermal Resistance  
θ
°C/W  
jco  
Package Power Dissipation  
P
PD  
150  
mW  
Notes:  
1. Absolute Maximum ambient operating temperature means the device will not be damaged if operated under these conditions. It does not  
guarantee functionality.  
2. The LED is ON when VI is low and OFF when VI is high.  
3. tPHL propagation delay is measured from the 50% level on the falling edge of the VI signal to the 50% level of the falling edge of the VO signal.  
tPLH propagation delay is measured from the 50% level on the rising edge of the VI signal to the 50% level of the rising edge of the VO signal.  
4. PWD is defined as |tPHL - tPLH|. %PWD (percent pulse width distortion) is equal to the PWD divided by pulse width.  
5. tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at any given temperature within  
the recommended operating conditions.  
6. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common  
mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common mode voltage slew rates apply to both rising and  
falling common mode voltage edges.  
7. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.  
8. In accordance with UL1577, each HCPL-0723 is proof tested by applying an insulation test voltage 4500 Vrms for 1 second (leakage detection  
current limit, II-O 5 µA). Each HCPL-7723 is proof tested by applying an insulation test voltage 3000 Vrms for 1 second (leakage detection  
current limit. II-O 5 µA.)  
9. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to your equipment level safety specification or Agilent Application Note 1074 entitled  
“Optocoupler Input-Output Endurance Voltage.”  
10. CI is the capacitance measured at pin 2 (VI).  
9
Application Information  
should be between 0.01 µF and 0.1 a system as illustrated in Figure 3.  
µF. For each capacitor, the total  
lead length between both ends of  
The propagation delay from low to  
high (t ) is the amount of time  
Bypassing and PC Board Layout  
PLH  
The HCPL-7723/0723  
the capacitor and the power-supply required for an input signal to  
optocouplers are extremely easy  
to use. No external interface  
circuitry is required because the  
HCPL-7723/0723 use high-speed  
CMOS IC technology allowing  
CMOS logic to be connected  
directly to the inputs and outputs.  
pins should not exceed 20 mm.  
Figure 2 illustrates the  
recommended printed circuit  
board layout for the HCPL-7723/  
0723.  
propagate to the output, causing  
the output to change from low to  
high. Similarly, the propagation  
delay from high to low (t  
) is  
PHL  
the amount of time required for  
the input signal to propagate to  
the output, causing the output to  
Propagation Delay, Pulse-Width  
Distortion and Propagation Delay Skew change from high to low.  
As shown in Figure 1, the only  
external components required for  
proper operation are two bypass  
capacitors. Capacitor values  
Propagation Delay is a figure of  
merit which describes how quickly  
a logic signal propagates through  
V
8
7
6
5
V
DD1  
1
2
3
4
DD2  
C1  
C2  
V
I
NC  
NC  
V
O
GND  
GND  
2
1
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 1. Functional diagram.  
V
DD1  
V
V
DD2  
V
I
C1  
C2  
O
GND  
GND  
2
1
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 2. Recommended printed circuit board layout.  
INPUT  
5 V CMOS  
0 V  
V
50%  
I
t
t
PHL  
PLH  
V
OH  
2.5 V CMOS  
OUTPUT  
90%  
90%  
V
10%  
10%  
O
V
OL  
Figure 3. Timing diagram to illustrate propagation delay, tplh and tphl.  
10  
Pulse-width distortion (PWD) is  
the difference between t and  
optocouplers, differences in  
propagation delays will cause the  
data to arrive at the outputs of  
the optocouplers at different  
times. If this difference in  
propagation delay is large enough  
it will determine the maximum  
rate at which parallel data can be  
sent through the optocouplers.  
illustrated in Figure 4, if the  
inputs of a group of optocouplers  
are switched either ON or OFF at  
PHL  
t
and often determines the  
PHL  
maximum data rate capability of  
a transmission system. PWD can  
be expressed in percent by  
dividing the PWD (in ns) by the  
minimum pulse width (in ns)  
being transmitted. Typically,  
PWD on the order of 20-30% of  
the minimum pulse width is  
tolerable.  
the same time, t  
is the  
PSK  
difference between the shortest  
propagation delay, either t  
or  
PLH  
t
, and the longest propagation  
PHL  
delay, either t  
or t  
.
PLH  
PHL  
As mentioned earlier, t  
can  
PSK  
Propagation delay skew is defined  
as the difference between the  
minimum and maximum  
determine the maximum parallel  
data transmission rate. Figure 5  
is the timing diagram of a typical  
parallel data application with  
both the clock and data lines  
being sent through the  
optocouplers. The figure shows  
data and clock signals at the  
inputs and outputs of the  
Propagation delay skew, t , is  
propagation delays, either t  
or  
PSK  
PLH  
an important parameter to  
t
, for any given group of  
PHL  
consider in parallel data applica-  
tions where synchronization of  
signals on parallel data lines is a  
concern. If the parallel data is  
being sent through a group of  
optocouplers which are operating  
under the same conditions (i.e.,  
the same drive current, supply  
voltage, output load, and  
operating temperature). As  
optocouplers. In this case the  
data is assumed to be clocked off  
of the rising edge of the clock.  
V
I
50%  
Propagation delay skew  
represents the uncertainty of  
where an edge might be after  
being sent through an  
optocoupler. Figure 5 shows that  
there will be uncertainty in both  
the data and clock lines. It is  
important that these two areas of  
uncertainty not overlap,  
2.5 V,  
CMOS  
V
O
t
PSK  
V
50%  
I
otherwise the clock signal might  
arrive before all of the data  
outputs have settled, or some of  
the data outputs may start to  
change before the clock signal  
has arrived. From these  
2.5 V,  
CMOS  
V
O
Figure 4. Timing diagram to illustrate propagation delay skew, tpsk.  
considerations, the absolute  
minimum pulse width that can be  
sent through optocouplers in a  
DATA  
parallel application is twice t  
.
PSK  
A cautious design should use a  
slightly longer pulse width to  
ensure that any additional  
INPUTS  
CLOCK  
uncertainty in the rest of the  
circuit does not cause a problem.  
DATA  
The HCPL-7723/0723  
optocouplers offer the advantage  
of guaranteed specifications for  
propagation delays, pulse-width  
distortion, and propagation delay  
skew over the recommended  
temperature and power supply  
ranges.  
OUTPUTS  
t
PSK  
CLOCK  
t
PSK  
Figure 5. Parallel data transmission example.  
11  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(408) 654-8675  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6271 2451  
India, Australia, New Zealand: (+65) 6271 2394  
Japan: (+81 3) 3335-8152(Domestic/Interna-  
tional), or 0120-61-1280(Domestic Only)  
Korea: (+65) 6271 2194  
Malaysia, Singapore: (+65) 6271 2054  
Taiwan: (+65) 6271 2654  
Data subject to change.  
Copyright © 2002 Agilent Technologies, Inc.  
December 2, 2002  
5988-7986EN  

相关型号:

HCPL-7723-060E

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AVAGO

HCPL-7723-300

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AGILENT

HCPL-7723-300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-7723-300E

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AVAGO

HCPL-7723-320

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AVAGO

HCPL-7723-320E

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AVAGO

HCPL-7723-360

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AVAGO

HCPL-7723-360E

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AVAGO

HCPL-7723-500

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AGILENT

HCPL-7723-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-7723-500E

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AVAGO

HCPL-7723-520

50 MBd 2 ns PWD High Speed CMOS Optocoupler
AVAGO