HCPL-7723-320E [AVAGO]

50 MBd 2 ns PWD High Speed CMOS Optocoupler; 50 MBd的2纳秒PWD高速CMOS光电耦合器
HCPL-7723-320E
型号: HCPL-7723-320E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

50 MBd 2 ns PWD High Speed CMOS Optocoupler
50 MBd的2纳秒PWD高速CMOS光电耦合器

光电
文件: 总12页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-7723/0723  
50 MBd 2 ns PWD High Speed CMOS Optocoupler  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
• +5 V CMOS compatibility  
• High speed: 50 MBd min.  
• 2 ns max. pulse width distortion  
• 22 ns max. prop. delay  
Available in either 8-pin DIP or SO-8 package style respec-  
tively, the HCPL-7723 or HCPL-0723 optocoupler utilize  
the latest CMOS IC technology to achieve outstanding  
speed performance of minimum 50 MBd data rate and  
2ns maximum pulse width distortion.  
• 16 ns max. prop. delay skew  
• 10 kV/µs min. common mode rejection  
• –40 to 85°C temperature range  
• Safety and regulatory approvals:  
Basic building blocks of HCPL-7723/0723 are a CMOS  
LED driver IC, a high speed LED and a CMOS detector  
IC. A CMOS logic input signal controls the LED driver  
IC, which supplies current to the LED. The detector  
IC incorporates an integrated photodiode, a high speed  
transimpedance amplifier, and a voltage comparator with  
an output driver.  
UL recognized  
– 5000 V for 1 min. per UL1577 for HCPL-7723 for  
rms  
option 020  
– 3750 V for 1 min. per UL1577 for HCPL-0723  
rms  
CSA component acceptance notice #5  
Functional Diagram  
IEC/EN/DIN EN 60747-5-5  
– V  
– V  
= 630 V  
= 567 V  
for HCPL-7723 option 060  
for HCPL-0723 option 060  
iorm  
peak  
iorm  
peak  
**V  
1
2
8
7
V
**  
DD2  
DD1  
V
I
NC*  
Applications  
I
O
• Digital fieldbus isolation: CC-Link, DeviceNet, Profibus,  
SDS, Isolated A/D or D/A conversion  
3
4
6
5
NC*  
V
O
LED1  
• Multiplexed data transmission  
• High speed digital input/output  
• Computer peripheral interface  
• Microprocessor system interface  
GND  
GND  
2
1
SHIELD  
*
PIN 3 IS THE ANODE OF THE INTERNAL LED AND MUST BE LEFT  
UNCONNECTED FOR GUARANTEED DATASHEET PERFORMANCE.  
PIN 7 IS NOT CONNECTED INTERNALLY.  
** A 0.1 µF BYPASS CAPACITOR MUST BE CONNECTED BETWEEN  
PINS 1 AND 4, AND 5 AND 8.  
TRUTH TABLE  
(POSITIVE LOGIC)  
V , INPUT  
I
LED1  
V
, OUTPUT  
O
H
L
OFF  
ON  
H
L
CAUTION: It is advised that normal static precautions be taken in handling and assembly of  
this component to prevent damage and/or degradation, which may be induced by ESD.  
Package Outline Drawings  
HCPL-7723 8-Pin DIP Package  
9.65 ꢀ.ꢁ5  
(ꢀ.38ꢀ ꢀ.ꢀ0ꢀꢂ  
7.6ꢁ ꢀ.ꢁ5  
(ꢀ.3ꢀꢀ ꢀ.ꢀ0ꢀꢂ  
OPTION ꢀ6ꢀ CODE*  
DATE CODE  
TYPE NUMBER  
8
0
7
6
5
6.35 ꢀ.ꢁ5  
(ꢀ.ꢁ5ꢀ ꢀ.ꢀ0ꢀꢂ  
A XXXXV  
YYWW  
3
4
0.78 (ꢀ.ꢀ7ꢀꢂ MAX.  
0.09 (ꢀ.ꢀ47ꢂ MAX.  
+ ꢀ.ꢀ76  
- ꢀ.ꢀ50  
ꢀ.ꢁ54  
5° TYP.  
+ ꢀ.ꢀꢀ3ꢂ  
- ꢀ.ꢀꢀꢁꢂ  
(ꢀ.ꢀ0ꢀ  
3.56 ꢀ.03  
(ꢀ.04ꢀ ꢀ.ꢀꢀ5ꢂ  
4.7ꢀ (ꢀ.085ꢂ MAX.  
ꢀ.50 (ꢀ.ꢀꢁꢀꢂ MIN.  
ꢁ.9ꢁ (ꢀ.005ꢂ MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHESꢂ.  
*OPTION 3ꢀꢀ AND 5ꢀꢀ NOT MARKED.  
0.ꢀ8ꢀ ꢀ.3ꢁꢀ  
(ꢀ.ꢀ43 ꢀ.ꢀ03ꢂ  
ꢀ.65 (ꢀ.ꢀꢁ5ꢂ MAX.  
NOTE: FLOATING LEAD PROTRUSION IS ꢀ.05 mm (6 milsꢂ MAX.  
ꢁ.54 ꢀ.ꢁ5  
(ꢀ.0ꢀꢀ ꢀ.ꢀ0ꢀꢂ  
2
HCPL-7723 Package with Gull Wing Surface Mount Option 300  
LAND PATTERN RECOMMENDATION  
9.65 0.ꢀ5  
(0.380 0.0ꢁ0ꢂ  
ꢁ.0ꢁ6 (0.040ꢂ  
6
5
8
7
6.350 0.ꢀ5  
(0.ꢀ50 0.0ꢁ0ꢂ  
ꢁ0.9 (0.430ꢂ  
ꢀ.0 (0.080ꢂ  
4
3
ꢁ.ꢀ7 (0.050ꢂ  
9.65 0.ꢀ5  
(0.380 0.0ꢁ0ꢂ  
7.6ꢀ 0.ꢀ5  
ꢁ.780  
(0.070ꢂ  
MAX.  
ꢁ.ꢁ9  
(0.047ꢂ  
MAX.  
(0.300 0.0ꢁ0ꢂ  
+ 0.076  
0.ꢀ54  
- 0.05ꢁ  
3.56 0.ꢁ3  
(0.ꢁ40 0.005ꢂ  
+ 0.003ꢂ  
(0.0ꢁ0  
- 0.00ꢀꢂ  
ꢁ.080 0.3ꢀ0  
(0.043 0.0ꢁ3ꢂ  
0.635 0.ꢀ5  
(0.0ꢀ5 0.0ꢁ0ꢂ  
ꢁꢀ° NOM.  
0.635 0.ꢁ30  
(0.0ꢀ5 0.005ꢂ  
ꢀ.54  
(0.ꢁ00ꢂ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢂ.  
LEAD COPLANARITY = 0.ꢁ0 mm (0.004 INCHESꢂ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.ꢁ5 mm (6 milsꢂ MAX.  
HCPL-0723 Small Outline SO-8 Package  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ꢀ.2ꢀ3  
(ꢀ.236 ꢀ.ꢀꢀ8ꢁ  
XXXV  
YWW  
3.937 ꢀ.127  
(ꢀ.155 ꢀ.ꢀꢀ5ꢁ  
TYPE NUMBER  
(LAST 3 DIGITSꢁ  
DATE CODE  
7.49 (ꢀ.295ꢁ  
3
PIN ONE  
1.9 (ꢀ.ꢀ75ꢁ  
ꢀ.4ꢀ6 ꢀ.ꢀ76  
(ꢀ.ꢀ16 ꢀ.ꢀꢀ3ꢁ  
1.27ꢀ  
(ꢀ.ꢀ5ꢀꢁ  
BSC  
ꢀ.64 (ꢀ.ꢀ25ꢁ  
ꢀ.432  
(ꢀ.ꢀ17ꢁ  
*
7°  
5.ꢀ8ꢀ ꢀ.127  
(ꢀ.2ꢀꢀ ꢀ.ꢀꢀ5ꢁ  
45° X  
3.175 ꢀ.127  
(ꢀ.125 ꢀ.ꢀꢀ5ꢁ  
ꢀ ~ 7°  
ꢀ.228 ꢀ.ꢀ25  
(ꢀ.ꢀꢀ9 ꢀ.ꢀꢀ1ꢁ  
1.524  
(ꢀ.ꢀ6ꢀꢁ  
ꢀ.2ꢀ3 ꢀ.1ꢀ2  
(ꢀ.ꢀꢀ8 ꢀ.ꢀꢀ4ꢁ  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASHꢁ  
5.2ꢀ7 ꢀ.254 (ꢀ.2ꢀ5 ꢀ.ꢀ1ꢀꢁ  
*
ꢀ.3ꢀ5  
(ꢀ.ꢀ12ꢁ  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHESꢁ. LEAD COPLANARITY = ꢀ.1ꢀ mm (ꢀ.ꢀꢀ4 INCHESꢁ MAX.  
OPTION NUMBER 5ꢀꢀ NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS ꢀ.15 mm (6 milsꢁ MAX.  
3
Device Selection Guide  
8-Pin DIP (300 mil)  
HCPL-7723  
Small Outline SO-8  
HCPL-0723  
Ordering Information  
HCPL-0723 and HCPL-7723 are UL Recognized with 3750 Vrms for 1 minute per UL1577.  
Option  
Part  
Number  
RoHS  
non RoHS  
Surface  
Mount  
Gull  
Wing  
Tape  
UL 5000 Vrms/  
IEC/EN/DIN  
Compliant Compliant Package  
& Reel 1 Minute rating EN 60747-5-5 Quantity  
-000E  
-300E  
-500E  
-020E  
no option  
-300  
300 mil DIP-8  
50 per tube  
50 per tube  
X
X
X
X
-500  
X
X
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
-020  
X
X
X
HCPL-7723 -320E  
-320  
X
X
X
X
-520E  
-520  
-060E  
-060  
X
X
X
-360E  
-560E  
-360  
X
X
X
X
X
X
X
X
-560  
X
X
X
-000E  
no option  
-500  
SO-8  
HCPL-0723 -500E  
-060E  
-060  
X
X
-560E  
-560  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
HCPL-7723-560E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN  
EN 60747-5-5 Safety Approval and RoHS compliant.  
Example 2:  
HCPL-0723 to order product of Small Outline SO-8 package in Tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXXis used for existing products, while (new) products launched since July 15, 2001 and  
RoHS compliant will use ‘–XXXE.’  
4
Regulatory Information  
The HCPL-7723/0723 have been approved by the following organizations:  
UL  
Recognized under UL1577, component recognition program, File E55361.  
CSA  
Approved under CSA Component Acceptance Notice #5, File CA88324.  
IEC/EN/DIN EN 60747-5-5  
Approved with Maximum Working Insulation Voltage:  
V
V
= 567 V  
= 630 V  
for HCPL-0723,  
for HCPL-7723  
iorm  
peak  
iorm  
peak  
Solder Reflow Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.  
Insulation and Safety Related Specifications  
Value  
Parameter  
Symbol  
7723  
0723  
Units  
Conditions  
Minimum External Air Gap  
(Clearance)  
L(I01)  
7.1  
4.9  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External Tracking  
(Creepage)  
L(I02)  
CTI  
7.4  
4.8  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
0.08  
0.08  
Insulation thickness between emitter and  
detector; also known as distance through  
insulation.  
Tracking Resistance  
(Comparative Tracking Index)  
≥ 175  
IIIa  
≥ 175  
IIIa  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
5
All Avago data sheets report the creepage and clearance  
inherent to the optocoupler component itself. These  
dimensions are needed as a starting point for the  
equipment designer when determining the circuit insula-  
tion requirements. However, once mounted on a printed  
circuit board, minimum creepage and clearance require-  
ments must be met as specified for individual equipment  
standards. For creepage, the shortest distance path along  
the surface of a printed circuit board between the solder  
fillets of the input and output leads must be considered.  
There are recommended techniques such as grooves  
and ribs, which may be used on a printed circuit board  
to achieve desired creepage and clearances. Creepage  
and clearance distances will also change depending  
on factors such as pollution degree and insulation  
level.  
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (Option 060)  
Characteristic  
Description  
Symbol  
HCPL-7723 HCPL-0723 Unit  
Installation classification per DIN VDE 0110, Table 1  
for rated mains voltage 150 Vrms  
for rated mains voltage 300 Vrms  
for rated mains voltage 600 Vrms  
Climatic Classification  
I – IV  
I – III  
I – IV  
I – IV  
I – III  
I – III  
55/85/21 55/85/21  
Pollution Degree (DIN VDE 0110/39)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
2
2
VIORM  
630  
567  
Vpeak  
VIORM x 1.875 = VPR, 100% Production Test with tm=1 sec,  
Partial discharge < 5 pC  
VPR  
1181  
1063  
Vpeak  
Input to Output Test Voltage, Method a*  
VIORM x 1.6 = VPR, Type and Sample Test, tm=10 sec, Partial discharge < 5 pC  
Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec)  
Safety-limiting values – maximum values allowed in the event of a failure  
Case Temperature  
VPR  
1008  
8000  
907  
Vpeak  
Vpeak  
VIOTM  
6000  
TS  
175  
230  
150  
°C  
Input Current  
IS, INPUT  
150  
mA  
mW  
Output Power  
PS, OUTPUT 600  
RS  
109  
600  
109  
Insulation Resistance at TS, VIO = 500 V  
*Refer to the optocoupler section of the Isolation and Control Component Designer’s Catalog, under Product Safety Regulations section IEC/EN/  
DIN EN 60747-5-5, for a detailed description of Method a and Method b partial discharge test profiles.  
6
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
–55  
–40  
0
Max.  
125  
85  
Units  
°C  
Storage Temperature  
Ambient Operating Temperature  
Supply Voltages  
T
S
[1]  
T
A
°C  
V
V
V
, V  
6.0  
Volts  
Volts  
Volts  
mA  
DD1 DD2  
Input Voltage  
–0.5  
–0.5  
V
V
+0.5  
+0.5  
I
DD1  
Output Voltage  
O
DD2  
Average Output Current  
Lead Solder Temperature  
I
O
10  
260°C for 10 sec., 1.6 mm below seating plane  
See Solder Reflow Temperature Profile Section  
Solder Reflow Temperature Profile  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
–40  
4.5  
Max.  
85  
Units  
°C  
Ambient Operating Temperature  
Supply Voltages  
T
A
V
V
V
, V  
5.5  
V
DD1 DD2  
Logic High Input Voltage  
Logic Low Input Voltage  
Input Signal Rise and Fall Times  
2.0  
V
DD1  
V
IH  
IL  
0.0  
0.8  
1.0  
V
t t  
r, f  
ms  
Electrical Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at T = +25°C, V = V = +5 V.  
A
DD1  
DD2  
Parameter  
Symbol  
Min.  
Typ.  
8.4  
0.6  
2.1  
2.0  
Max.  
10  
3
Units  
Test Conditions  
[2]  
Logic Low Input Supply Current  
I
I
I
I
I
mA  
mA  
mA  
mA  
µA  
V
V = 0 V; Figure 1  
I
DD1L  
DD1H  
DD2L  
DD2H  
I
[2]  
Logic High Input Supply Current  
Output Supply Current  
V = V ; Figure 2  
I DD1  
5
Figure 3  
Figure 4  
5
Input Current  
–10  
4.4  
10  
Logic High Output Voltage  
V
OH  
5.0  
4.8  
0
I = –20 µA, V = V  
O I IH  
4.0  
V
I = –4 mA, V = V  
O I IH  
Logic Low Output Voltage  
V
OL  
0.1  
1.0  
V
I = 20 µA, V = V  
O I IL  
0.5  
V
I = 4 mA, V = V  
O I IL  
7
Switching Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at T = +25°C, V = V = +5 V.  
A
DD1  
DD2  
Parameter  
Symbol  
Min. Typ.  
Max.  
Units  
Test Conditions  
C = 15 pF CMOS Signal Levels; Figure 5  
Propagation Delay Time to Logic  
t
PHL  
16  
22  
ns  
L
[3]  
Low Output  
Propagation Delay Time to Logic  
High Output  
t
PLH  
16  
22  
ns  
C = 15 pF CMOS Signal Levels; Figure 5  
L
[3]  
Pulse Width  
PW  
20  
50  
1
ns  
C = 15 pF CMOS Signal Levels  
L
Maximum Data Rate  
MBd  
ns  
C = 15 pF CMOS Signal Levels  
L
[4]  
Pulse Width Distortion |t - t  
|
|PWD|  
2
C = 15 pF CMOS Signal Levels; Figure 6  
L
PHL PLH  
[5]  
Propagation Delay Skew  
t
t
t
16  
ns  
C = 15 pF CMOS Signal Levels  
L
PSK  
Output Rise Time (10% – 90%)  
Output Fall Time (90% - 10%)  
Common Mode Transient Immunity  
8
6
ns  
C = 15 pF CMOS Signal Levels  
L
R
ns  
C = 15 pF CMOS Signal Levels  
L
F
|CM |  
10  
10  
15  
kV/µs  
V = 1000 V T = 25°C,  
CM , A  
H
[6]  
at Logic High Output  
V = V  
V > 0.8 V  
DD1, O DD2  
I
Common Mode Transient Immunity  
|CM |  
15  
kV/µs  
V = 1000 V T = 25°C,  
CM , A  
V = 0 V V < 0.8 V  
I , O  
L
[6]  
at Logic Low Output  
8
Package Characteristics  
All Typical Specifications are at T = 25°C.  
A
Parameter  
Symbol Min.  
Typ.  
Max.  
Units  
Test Conditions  
Input-Output Momentary  
Withstand Voltage  
–7723  
Option 020  
–0723  
V
ISO  
3750  
5000  
3750  
V rms  
RH ≤ 50%, t = 1 min,  
T = 25°C  
A
[7,8,9]  
[7]  
12  
Input-Output Resistance  
R
C
C
10  
V = 500 V dc  
I-O  
I-O  
I-O  
I
Input-Output Capacitance  
0.6  
3.0  
pF  
f = 1 MHz  
[10]  
Input Capacitance  
pF  
Input IC Junction-to-Case  
Thermal Resistance  
–7723  
–0723  
θ
145  
160  
°C/W  
Thermocouple located at  
center underside of package  
jci  
jco  
PD  
Output IC Junction-to-Case  
Thermal Resistance  
–7723  
–0723  
θ
145  
135  
°C/W  
mW  
Package Power Dissipation  
P
150  
Notes:  
1. Absolute Maximum ambient operating temperature means the device will not be damaged if operated under these conditions. It does not  
guarantee functionality.  
2. The LED is ON when V is low and OFF when V is high.  
I
I
3.  
t
propagation delay is measured from the 50% level on the falling edge of the VI signal to the 50% level of the falling edge of the V sig-  
P
H
L
O
nal. t  
propagation delay is measured from the 50% level on the rising edge of the VI signal to the 50% level of the rising edge of the V  
O
PLH  
signal.  
4. PWD is defined as |t  
PHL PLH  
5.  
t
PSK  
is equal to the magnitude of the worst case difference in t  
within the recommended operating conditions.  
6. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining V > 0.8 V . CML is the maximum com-  
O
DD2  
mon mode voltage slew rate that can be sustained while maintaining V < 0.8 V. The common mode voltage slew rates apply to both rising  
O
and falling common mode voltage edges.  
7. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.  
8. In accordance with UL1577, each HCPL-0723 is proof tested by applying an insulation test voltage ≥ 4500 Vrms for 1 second (leakage detec-  
tion current limit, I ≤ 5 µA). Each HCPL-7723 is proof tested by applying an insulation test voltage ≥ 4500 Vrms for 1 second (leakage detec-  
I-O  
tion current limit. I ≤ 5 µA.)  
I-O  
9. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to your equipment level safety specification or Avago Application Note 1074 entitled  
“Optocoupler Input-Output Endurance Voltage.”  
10. C is the capacitance measured at pin 2 (V ).  
I
I
9
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
0.6  
0.55  
0.5  
0.45  
0.4  
-40  
-20  
0
20  
T (°C)  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
T (°C)  
60  
80  
100  
A
A
Figure 1: Typical Logic Low Input Supply Current vs. temperature  
Figure 2. Typical Logic High Input Supply Current vs. temperature  
3
2.5  
2
3.0  
2.5  
2.0  
1.5  
1.0  
1.5  
1
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
T (°C)  
A
T (°C)  
A
Figure 3. Typical Logic Low Output Supply Current vs. temperature  
Figure 4. Typical Logic High Output Supply Current vs. temperature  
2
1.8  
1.6  
1.4  
1.2  
1
22  
20  
18  
16  
0.8  
0.6  
0.4  
0.2  
0
14  
T
T
plh  
phl  
12  
10  
-20  
-40  
0
20  
40  
T (°C)  
60  
80  
100  
-40  
-20  
0
20  
40  
T (°C)  
60  
80  
100  
A
A
Figure 5. Typical propagation delay vs. temperature  
Figure 6. Typical pulse width distortion vs. temperature  
10  
Application Information  
Propagation Delay, Pulse-Width Distortion and Propa-  
gation Delay Skew  
Bypassing and PC Board Layout  
Propagation Delay is a figure of merit which describes  
how quickly a logic signal propagates through a system  
as illustrated in Figure 9. The propagation delay from low  
The HCPL-7723/0723 optocouplers are extremely easy to  
use. No external interface circuitry is required because  
the HCPL-7723/0723 use high-speed CMOS IC technol-  
ogy allowing CMOS logic to be connected directly to the  
inputs and outputs.  
to high (t ) is the amount of time required for an input  
PLH  
signal to propagate to the output, causing the output to  
change from low to high. Similarly, the propagation delay  
from high to low (t ) is the amount of time required for  
the input signal to propagate to the output, causing the  
output to change from high to low.  
PHL  
As shown in Figure 7, the only external components  
required for proper operation are two bypass capacitors.  
Capacitor values should be between 0.01 µF and 0.1 µF.  
For each capacitor, the total lead length between both  
ends of the capacitor and the power-supply pins should  
not exceed 20 mm. Figure 8 illustrates the recommended  
printed circuit board layout for the HCPL-7723/0723.  
V
8
7
6
5
V
V
DD1  
1
2
3
4
DD2  
C1  
C2  
V
I
NC  
NC  
O
GND  
GND  
1
2
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 7. Functional diagram.  
V
DD1  
V
V
DD2  
V
I
C1  
C2  
O
GND  
GND  
2
1
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 8. Recommended printed circuit board layout.  
INPUT  
5 V CMOS  
0 V  
V
50%  
I
t
t
PHL  
PLH  
V
OH  
2.5 V CMOS  
OUTPUT  
90%  
90%  
V
10%  
10%  
O
V
OL  
Figure 9. Timing diagram to illustrate propagation delay, tplh and tphl.  
11  
Pulse-width distortion (PWD) is the difference between  
and t and often determines the maximum data  
rate capability of a transmission system. PWD can be  
expressed in percent by dividing the PWD (in ns) by the  
minimum pulse width (in ns) being transmitted. Typically,  
PWD on the order of 20-30% of the minimum pulse width  
is tolerable.  
As mentioned earlier, t  
can determine the maximum  
PSK  
t
parallel data transmission rate. Figure 11 is the timing  
diagram of a typical parallel data application with both  
the clock and data lines being sent through the opto-  
couplers. The figure shows data and clock signals at the  
inputs and outputs of the optocouplers. In this case the  
data is assumed to be clocked off of the rising edge of  
the clock.  
PHL  
PLH  
Propagation delay skew, t , is an important parameter  
PSK  
to consider in parallel data applications where synchro-  
nization of signals on parallel data lines is a concern. If  
the parallel data is being sent through a group of opto-  
couplers, differences in propagation delays will cause  
the data to arrive at the outputs of the optocouplers at  
different times. If this difference in propagation delay  
is large enough it will determine the maximum rate at  
which parallel data can be sent through the optocou-  
plers.  
Propagation delay skew represents the uncertainty of  
where an edge might be after being sent through an op-  
tocoupler. Figure 11 shows that there will be uncertainty  
in both the data and clock lines. It is important that these  
two areas of uncertainty not overlap, otherwise the clock  
signal might arrive before all of the data outputs have  
settled, or some of the data outputs may start to change  
before the clock signal has arrived. From these consid-  
erations, the absolute minimum pulse width that can  
be sent through optocouplers in a parallel application is  
Propagation delay skew is defined as the difference  
between the minimum and maximum propagation  
twice t . A cautious design should use a slightly longer  
PSK  
pulse width to ensure that any additional uncertainty in  
the rest of the circuit does not cause a problem.  
delays, either t  
or t , for any given group of opto-  
PLH  
PHL  
couplers which are operating under the same conditions  
(i.e., the same drive current, supply voltage, output load,  
and operating temperature). As illustrated in Figure 10,  
if the inputs of a group of optocouplers are switched  
The HCPL-7723/0723 optocouplers offer the advantage of  
guaranteed specifications for propagation delays, pulse-  
width distortion, and propagation delay skew over the  
recommended temperature and power supply ranges.  
either ON or OFF at the same time, t is the difference  
PSK  
between the shortest propagation delay, either t  
or  
or  
PLH  
t
t
, and the longest propagation delay, either t  
.
PHL  
PLH  
PHL  
V
DATA  
I
50%  
INPUTS  
CLOCK  
2.5 V,  
CMOS  
V
O
t
PSK  
V
50%  
I
DATA  
OUTPUTS  
t
PSK  
CLOCK  
2.5 V,  
CMOS  
V
O
t
PSK  
Figure 10. Timing diagram to illustrate propagation delay skew, tpsk.  
Figure 11. Parallel data transmission example.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0566EN  
AV02-0643EN - February 26, 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY