HMMC-3024 [AGILENT]

DC-12 GHz High Efficiency GaAs HBT MMIC Divide-by-4 Prescaler; DC - 12 GHz的高效率砷化镓HBT MMIC除以4分频器
HMMC-3024
型号: HMMC-3024
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

DC-12 GHz High Efficiency GaAs HBT MMIC Divide-by-4 Prescaler
DC - 12 GHz的高效率砷化镓HBT MMIC除以4分频器

文件: 总9页 (文件大小:786K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HMMC–3024  
DC–12 GHz High Efficiency  
GaAs HBT MMIC  
Divide–by–4 Prescaler  
1GC1-8007  
Data Sheet  
Features  
• Wide Frequency Range:  
0.2-12 GHz  
• High Input Power Sensitivity:  
On-chip pre- and post-amps  
-25 to +10 dBm (1–8 GHz)  
-15 to +18 dBm (8–10 GHz)  
-10 to +2 dBm (10–12 GHz)  
Chip Size:  
1330 x 440 µm (52.4 x 17.3 mils)  
10 µm ( 0.4 mils)  
Chip Size Tolerance:  
Chip Thickness:  
Pad Dimensions:  
127 15 µm (5.0 0.ꢀ mils)  
70 x 70 µm (2.8 x 2.8 mils)  
• Dual-mode P : (Chip Form)  
out  
0 dBm (0.5 V ) @ 40 mA  
p–p  
-6.0 dBm (0.25 V ) @ 30 mA  
p–p  
• Low Phase Noise:  
-153 dBc/Hz @ 100 kHz Offset  
1
Absolute Maximum Ratings  
• (+) or (-) Single Supply Bias  
Operation  
(@ T = 25°C, unless otherwise indicated)  
A
• Wide Bias Supply Range:  
4.5 to 6.5 volt operating range  
Symbol  
Parameters/Conditions  
Bias supply voltage  
Bias supply voltage  
Bias supply delta  
Min.  
Max.  
Units  
volts  
volts  
volts  
volts  
volts  
dBm  
• Differential I/0 with on-chip  
V
V
V
V
+7  
CC  
EE  
CC  
50 Ω matching  
-7  
0
Description  
The HMMC-3024 GaAs HBT MMIC  
prescaler offers dc to 12 GHz fre-  
quency translation for use in  
communications and EW systems  
incorporating high-frequency PLL  
oscillator circuits and signal-path  
down conversion applications.  
The prescaler provides a large input  
power sensitivity window and low  
phase noise. In addition to the fea-  
tures listed above the device offers  
an input disable contact pad to elimi-  
nate any self-oscillation condition.  
- V  
+7  
EE  
Pre-amp disable voltage  
Logic threshold voltage  
CW RF input power  
DC input voltage  
V
V
V
V
Disable  
EE  
CC  
VLogic  
-1.5  
-1.2  
CC  
CC  
P
V
+10  
in(CW)  
RFin  
(@ RF or RF ports)  
V 0.5 volts  
CC  
in  
in  
2
T
T
T
Backside operating temperature -40  
+85  
+1ꢀ5  
310  
°C  
°C  
°C  
BS  
Storage temperature  
-ꢀ5  
st  
Maximum assembly temperature  
(ꢀ0 s max.)  
max  
Notes  
1. Operation in excess of any parameter limit (except T ) may cause permanent damage to the device.  
BS  
2. MTTF > 1 x 10 hours @ T ≤ 85°C. Operation in excess of maximum operating temperature (T ) will degrade MTTF.  
BS  
BS  
dc Specifications/Physical Properties  
(T = 25°C, V – V = 5.0 volts, unless otherwise listed)  
A
CC  
EE  
Symbol  
Parameters/Conditions  
Min.  
Typ.  
Max.  
Units  
V
– V  
Operating bias supply difference1  
4.5  
5.0  
ꢀ.5  
volts  
CC  
EE  
|I | or |I  
CC  
|
Bias supply current  
EE  
(HIGH Output Power Configuration2: V  
= V  
)
34  
25  
40  
30  
4ꢀ  
35  
mA  
EE  
PwrSel  
Bias supply current  
(LOW Output Power Configuration: V  
= open)  
mA  
PwrSel  
V
V
Quiescent dc voltage appearing at all RF ports  
V
volts  
CC  
RFin(q)  
RFout(q)  
V
Nominal ECL Logic Level  
Logic  
(V  
contact self-bias voltage, generated on-chip)  
V
-1.45  
V
-1.32  
V
-1.25  
volts  
CC  
CC  
CC  
Logic  
Notes  
1. Prescaler will operate over full specified supply voltage range, V or V not to exceed limits specified in Absolute Maximum Ratings section.  
CC  
EE  
2. High output power configuration: P = 0 dBm (V = 0.5 V ). Low output power configuration: P = -ꢀ.0 dBm (V = 0.25 V )  
out  
out  
p-p  
out  
out  
p-p  
RF Specifications  
(T = 25°C, Z = 50 Ω, V – V = 5.0 volts)  
(÷4)  
A
0
CC  
EE  
Symbol  
Parameters/Conditions  
Min.  
Typ.  
14  
Max.  
Units  
GHz  
ƒ
ƒ
Maximum input frequency of operation  
Minimum input frequency of operation1  
12  
in(max)  
in(min)  
0.2  
0.5  
GHz  
(P = -10 dBm)  
in  
ƒ
Output Self-Oscillation Frequency2  
@ dc, (Square-wave input)  
3.4  
GHz  
Self–Osc.  
P
-15  
-15  
-15  
-10  
-5  
> -25  
> -20  
> -20  
> -15  
> -10  
15  
+10  
+10  
+10  
+ 5  
-1  
dBm  
dBm  
dBm  
dBm  
dBm  
dB  
in  
@ ƒ = 500 MHz, (Sine-wave input)  
in  
ƒ
ƒ
ƒ
= 1 to 8 GHz  
= 8 to 10 GHz  
= 10 to 12 GHz  
in  
in  
in  
RL  
Small-Signal Input/Output Return Loss (@ ƒ < 10 GHz)  
in  
S
Small-Signal Reverse Isolation (@ ƒ < 10 GHz)  
30  
dB  
12  
in  
φ
SSB Phase noise (@ P = 0 dBm, 100 kHz offset from a  
-153  
dBc/Hz  
N
in  
ƒ
= 1.2 GHz Carrier)  
out  
Jitter  
Input signal time variation @ zero–crossing  
(ƒ = 10 GHz, P = -10 dBm)  
1
ps  
ps  
in  
in  
T or T  
r
Output edge speed (10% to 90% rise/fall time)  
70  
f
Notes  
1. For sine-wave input signal. Prescaler will operate down to D.C. for square-wave input signal. Minimum divide frequency limited by input slew-rate.  
2. Prescaler may exhibit this output signal under bias in the absence of an RF input signal. This condition may be eliminated by use of the Pre-amp  
Disable ( V  
) feature, or the Differential Input de-biasing technique.  
Disable  
2
RF Specifications (Continued)  
(T = 25°C, Z = 50 Ω, V – V = 5.0 volts)  
A
0
CC  
EE  
1
High Output Power Operating Mode  
Symbol  
Parameters/Conditions  
@ ƒ < 1 GHz  
Min.  
-2.0  
-2.5  
-3.0  
0.39  
0.37  
0.35  
Typ.  
Max.  
Units  
dBM  
dBm  
dBm  
volts  
volts  
volts  
dBm  
P
0.0  
out  
out  
@ ƒ = 2.5 GHz  
-0.5  
-1.0  
0.5  
out  
@ ƒ = 3.0 GHz  
out  
|V  
P
|
@ ƒ < 1 GHz  
out  
out(p–p)  
@ ƒ = 2.5 GHz  
0.47  
0.44  
-53  
out  
@ ƒ = 3.0 GHz  
out  
ƒ
power level appearing at RF or RF  
in  
in  
in  
Spitback  
out  
(@ ƒ 10 GHz, Unused RF or RF unterminated)  
out  
out  
ƒ
power level appearing at RF or RF  
-73  
-30  
dBm  
dBc  
in  
in  
out  
(@ ƒ = 10 GHz, Both RF & RF terminated)  
out  
out  
in  
P
Power level of ƒ appearing at RF or RF  
out out  
in  
feedthru  
(@ ƒ = 12 GHz, P = 0 dBm, referred to P (ƒ )  
in  
in  
in  
in  
H
Second harmonic distortion output level  
(@ ƒ = 3.0 GHz, referred to P (ƒ ))  
2
-25  
dBc  
out  
out out  
2
Low Output Power Operating Mode  
P
@ ƒ < 1 GHz  
-8.0  
-8.5  
-9.0  
0.20  
0.19  
0.18  
-ꢀ.0  
-ꢀ.5  
-7.0  
0.25  
0.24  
0.22  
dBm  
dBm  
dBm  
volts  
volts  
volts  
out  
out  
@ ƒ = 2.5 GHz  
out  
@ ƒ = 3.0 GHz  
out  
|V  
|
@ ƒ < 1 GHz  
out  
out(p–p)  
@ ƒ = 2.5 GHz  
out  
@ ƒ = 3.0 GHz  
out  
P
ƒ
power level appearing at RF or RF  
Spitback  
out in in  
(@ ƒ 12 GHz, Unused RF or RF unterminated)  
-ꢀ1  
-82  
-30  
-30  
dBm  
dBm  
dBc  
dBc  
in  
out  
out  
ƒ
power level appearing at RF or RF  
in in  
out  
(@ ƒ = 12 GHz, both RF & RF terminated)  
in  
out  
out  
P
Power level of ƒ appearing at RF or RF  
out  
feedthru  
in  
out  
(@ ƒ = 12 GHz, P = 0 dBm, referred to P (ƒ ))  
in  
in  
in in  
H
Second harmonic distortion output level  
(@ ƒ = 3.0 GHz, referred to P (ƒ ))  
2
out  
out out  
Notes  
1. V  
= V  
.
PwrSel  
PwrSel  
EE  
2.  
V
= Open Circuit.  
3
Post Amplifier Stage  
Input Preamplifier Stage  
4
Figure 1. Simplified Schematic  
Several features are designed into this  
prescaler:  
divide. The device will operate at fre-  
quencies down to dc when driven with  
a square-wave.  
Applications  
The HMMC-3024 is designed for use in  
high frequency communications, micro-  
wave instrumentation, and EW radar  
systems where low phase-noise PLL  
control circuitry or broad-band frequency  
translation is required.  
1. Dual-Output Power Feature  
Bonding both V and V  
pads to  
The device may be biased from either a  
single positive or single negative sup-  
ply bias. The backside of the device is  
not dc connected to any dc bias point  
on the device.  
EE  
PwrSel  
either ground (positive bias mode) or  
the negative supply (negative bias  
mode), will deliver ~0 dBm [0.5 V  
at the RF output port while drawing  
~40 mA supply current. Eliminating  
]
p–p  
Operation  
the V  
connection results in re-  
For positive supply operation V is  
CC  
PwrSel  
The device is designed to operate  
when driven with either a single-ended  
or differential sinusoidal input signal  
over a 200 MHz to 12 GHz bandwidth.  
Below 200 MHz the prescaler input is  
“slew-rate” limited, requiring fast ris-  
ing and falling edge speeds to properly  
duced output power and voltage swing,  
nominally biased at any voltage in the  
+4.5 to +ꢀ.5 volt range with V (or V  
-ꢀ.0 dBm [0.25 V ] but at a reduced  
current draw of ~30 mA resulting in  
less overall power dissipation.  
p–p  
EE  
EE  
& V  
) grounded. For negative bias  
PwrSel  
operation V is typically grounded and  
CC  
a negative voltage between -4.5 to  
(NOTE: V must ALWAYS  
EE  
-ꢀ.5 volts is applied to V (or V  
&
EE  
EE  
be bonded and V  
must  
PwrSel  
V
).  
PwrSel  
NEVER be biased to any potential  
other than V or open-circuited.)  
EE  
4
All bonds between the device and this  
bypass capacitor should be as short  
as possible to limit the inductance.  
For operation at frequencies below 1  
GHz, a large value capacitor must be  
added to provide proper RF bypassing.  
Note however, that the input sensitivity  
will be reduced slightly due to the  
presence of this offset.  
2. V  
ECL Contact Pad  
Logic  
Under normal conditions  
no connection or external bias  
is required to this pad and it  
is self-biased to the on-chip ECL  
logic threshold voltage  
Assembly Techniques  
(V -1.35 V). The user can  
CC  
Figure 3 shows the chip assembly  
diagram for single-ended I/O opera-  
tion through 12 GHz for either positive  
or negative bias supply operation. In  
either case the supply contact to the  
chip must be capacitively bypassed to  
provide good input sensitivity and low  
input power feedthrough. Independent  
of the bias applied to the device, the  
backside of the chip should always be  
connected to both a good RF ground  
plane and a good thermal heat sinking  
region on the mounting surface.  
Due to on-chip 50 Ω matching resis-  
tors at all four RF ports, no external  
termination is required on any unused  
RF port. However, improved “Spit-  
provide an external bias to this pad  
(1.5 to 1.2 volts less than V ) to force  
CC  
the prescaler to  
operate at a system generated logic  
threshold voltage.  
back” performance ( 20 dB) and  
~
input sensitivity can be achieved by  
terminating the unused RF port to  
3. Input Disable Feature  
out  
V
through 50 Ω (positive supply) or  
If an RF signal with sufficient signal-  
to-noise ratio is present at the RF  
input, the prescaler will operate and  
provide a divided output equal to the  
input frequency divided by the divide  
modulus. Under certain “ideal” condi-  
tions where the input is well matched  
at the right input frequency, the  
CC  
to ground via  
a 50 Ω termination (negative  
supply operation).  
GaAs MMICs are ESD sensitive.  
ESD preventive measures must be  
employed in all aspects of storage,  
handling, and assembly.  
All RF ports are dc connected  
on-chip to the V contact through  
CC  
device may “self-oscillate,” especially  
under small signal input powers or  
with only noise present at the input.  
This “self-oscillation” will produce a  
undesired output signal also known  
as a false trigger. By applying an  
external bias to the input disable  
on-chip 50 Ω resistors. Under any  
bias conditions where V is not dc  
CC  
MMIC ESD precautions, handling  
considerations, die attach and bond-  
ing methods are critical factors in suc-  
cessful GaAs MMIC performance and  
reliability.  
grounded, the RF ports should be ac  
coupled via series capacitors mounted  
on the thin-film substrate at each RF  
port. Only under bias conditions where  
V
is dc grounded (as is typical for  
CC  
contact pad (more positive than V  
-
CC  
negative bias supply operation) may  
the RF ports be direct coupled to adja-  
cent circuitry or in some cases, such  
as level shifting to subsequent stages.  
In the latter case the device backside  
may be “floated” and bias applied as  
Agilent application note #54, “GaAs  
MMIC ESD, Die Attach and Bonding  
Guidelines” provides basic  
1.35 V), the input preamplifier stage is  
locked into either logic “high” or logic  
“low” preventing frequency division  
and any self-oscillation frequency  
which may be present.  
information on these subjects.  
the difference between V and V .  
EE  
CC  
4. Input dc Offset  
Another method used to prevent false  
triggers or self-oscillation  
conditions is to apply a 20 to  
100 mV dc offset voltage between  
the RF and RF ports. This prevents  
in  
in  
noise or spurious low level signals  
from triggering the divider.  
Adding a 10 KΩ resistor between the  
unused RF input to a contact point at  
the V potential will result in an off-  
EE  
set of ≈25 mV between the RF inputs.  
5
Optional dc Operating Values/Logic Levels  
(T = 25°C)  
A
Function  
Symbol  
Conditions  
Min  
(volts/mA)  
Typical  
(volts/mA)  
Max  
(volts/mA)  
1
Logic Threshold  
Input Disable  
Input Disable  
Input Disable  
Input Disable  
V
V
-1.45  
V
-1.32  
V -1.25  
CC  
Logic  
CC  
CC  
V
V
[Disable]  
[Enable]  
V
+0.25  
V
V
V
Disable(High)  
Disable(Low)  
Disable  
Logic  
Logic  
CC  
V
V
-0.25  
Logic  
EE  
Logic  
I
I
V > V +3 (V  
-V -3)/500  
(V  
-V -3)/500  
(V  
-V -3)/500  
D
EE  
Disable EE  
Disable EE  
Disable EE  
V < V +3  
0
0
0
Disable  
D
EE  
Note:  
1. Acceptable voltage range when applied from external source.  
Notes:  
• All dimensions in micrometers.  
• All Pad Dim: 70 x 70 ꢁm  
(except where noted).  
Tolerances: 10 ꢁm  
• Chip Thickness: 127 15 ꢁm  
Figure 2. Pad locations and chip dimensions  
Figure 3. Assembly diagrams  
7
Figure 4. Typical input sensitivity window  
Figure 5. Typical supply current & V  
vs. supply voltage  
Logic  
Figure 7. Typical output power vs. output frequency, ƒ (GHz)  
Figure 6. Typical phase noise performance  
out  
Figure 8. Typical “Spitback” power P(ƒ ) appearing  
out  
at RF input port  
8
www.agilent.com  
www.agilent.com/find/emailupdates  
Get the latest information on the  
products and applications you select.  
For more information on Agilent Technologies’  
products, applications or services, please  
contact your local Agilent office. The complete  
list is available at:  
www.agilent.com/find/contactus  
www.agilent.com/find/agilentdirect  
Quickly choose and use your test  
equipment solutions with confidence.  
Americas  
Canada  
Latin America  
United States  
(877) 894-4414  
305 2ꢀ9 7500  
(800) 829-4444  
www.agilent.com/find/open  
Asia Pacific  
Australia  
China  
Hong Kong  
India  
Agilent Open simplifies the process  
of connecting and programming  
test systems to help engineers  
design, validate and manufacture  
electronic products. Agilent offers  
open connectivity for a broad range  
of system-ready instruments, open  
industry software, PC-standard I/O  
and global support, which are  
combined to more easily integrate  
test system development.  
1 800 ꢀ29 485  
800 810 0189  
800 938 ꢀ93  
1 800 112 929  
81 42ꢀ 5ꢀ 7832  
080 7ꢀ9 0800  
1 800 888 848  
1 800 375 8100  
0800 047 8ꢀꢀ  
1 800 22ꢀ 008  
Japan  
Korea  
Malaysia  
Singapore  
Taiwan  
Thailand  
Europe  
www.lxistandard.org  
Austria  
Belgium  
Denmark  
Finland  
France  
Germany  
0820 87 44 11  
LXI is the LAN-based successor to  
GPIB, providing faster, more efficient  
connectivity. Agilent is a founding  
member of the LXI consortium.  
32 (0) 2 404 93 40  
45 70 13 15 15  
358 (0) 10 855 2100  
0825 010 700  
01805 24 ꢀ333*  
*0.14 /minute  
1890 924 204  
Ireland  
This data sheet contains a variety of  
typical and guaranteed performance  
data. The information supplied should  
not be interpreted as a complete list  
of circuit specifi cations. Customers  
considering the use of this, or other  
Agilent GaAs ICs, for their design  
should obtain the current production  
specifi cations from Agilent.  
Italy  
39 02 92 ꢀ0 8484  
31 (0) 20 547 2111  
34 (91) ꢀ31 3300  
0200-88 22 55  
Netherlands  
Spain  
Sweden  
Switzerland (French)  
41 (21) 8113811(Opt 2)  
Switzerland (German) 0800 80 53 53 (Opt 1)  
United Kingdom  
44 (0) 118 927ꢀ201  
Other European Countries:  
www.agilent.com/find/contactus  
Revised: May 7, 2007  
In this data sheet the term typical  
refers to the 50th percentile  
performance. For additional informa-  
tion contact Agilent.  
Product specifications and descriptions  
in this document subject to change  
without notice.  
MMIC_Helpline@agilent.com.  
© Agilent Technologies, Inc. 2007  
Printed in USA, November 1ꢀ, 2007  
5989-7347EN  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY