INA-30311-BLK [AGILENT]

1 GHz Low Noise Silicon MMIC Amplifier; 1 GHz的低噪声硅MMIC放大器
INA-30311-BLK
型号: INA-30311-BLK
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

1 GHz Low Noise Silicon MMIC Amplifier
1 GHz的低噪声硅MMIC放大器

射频和微波 射频放大器 微波放大器
文件: 总6页 (文件大小:74K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1 GHz Low Noise Silicon MMIC  
Amplifier  
Technical Data  
INA-30311  
Description  
SOT-143 Surface Mount  
Package  
Features  
• Internally Biased, Single 3 V  
Supply (6 mA)  
• 3.5 dB NF  
• 13 dB Gain  
Hewlett-Packard’s INA-30311 is a  
Silicon monolithic amplifier for  
applications to1.0 GHz. Packaged  
in a miniature SOT-143 package,  
it requires very little board space.  
• Unconditionally Stable  
The INA-30311 uses an internally  
biased topology which eliminates  
the need for external components  
and provides decreased sensitiv-  
ity to ground inductance.  
Applications  
• LNA or IF Amplifier for  
Cellular, Cordless, Special  
Mobile Radio, PCS, ISM, and  
Wireless LAN Applications  
Pin Connections and  
Package Marking  
GND  
INPUT  
The INA-30311 is designed with  
an output impedance that varies  
from near 200 at low  
frequencies to near 50 at higher  
frequencies. This provides a  
matching advantage for IF  
circuits, as well as improved  
power efficiency, making it  
suitable for battery powered  
designs.  
OUTPUT  
V
CC  
Equivalent Circuit (Simplified)  
V
CC  
The INA-30311 is fabricated using  
HP’s 30 GHz fMAX ISOSATTM  
Silicon bipolar process which  
uses nitride self-alignment sub-  
micrometer lithography, trench  
isolation, ion implantation, gold  
metallization, and polyimide  
intermetal dielectric and scratch  
protection to achieve superior  
performance, uniformity, and  
reliability.  
RF  
OUTPUT  
RF  
INPUT  
GROUND  
5963-6679E  
6-140  
Absolute Maximum Ratings  
Thermal Resistance[2]:  
Absolute  
Symbol  
VCC  
Parameter  
Units  
V
Maximum[1]  
θj-c=550°C/W  
Device Voltage, to ground  
CW RF Input Power  
Junction Temperature  
Storage Temperature  
12  
+13  
Notes:  
1. Operation of this device above any one  
of these limits may cause permanent  
damage.  
2. TC = 25°C (TC is defined to be the  
temperature at the package pins where  
contact is made to the circuit board).  
Pin  
dBm  
°C  
Tj  
150  
TSTG  
°C  
-65to150  
INA-30311ElectricalSpecifications[3], TC = 25°C, ZO = 50 , VCC = 3 V  
Symbol  
Gp  
Parameters and Test Conditions  
PowerGain(|S21|2)  
Units  
dB  
Min. Typ.  
Max.  
f=900MHz  
f=900MHz  
f=900MHz  
f=900MHz  
f=900MHz  
11  
13  
3.5  
-11  
-2  
NF  
Noise Figure  
dB  
P1dB  
IP3  
Output Power at 1 dB Gain Compression  
Third Order Intercept Point  
Input VSWR  
dBm  
dBm  
VSWR  
Icc  
1.7  
6.3  
325  
Device Current  
mA  
ps  
7.5  
ιd  
Group Delay  
f=900MHz  
INA-30311 Typical Scattering Parameters[3], TC = 25°C, ZO = 50 , VCC = 3 V  
Freq.  
GHz  
S11  
Ang  
S21  
Mag  
S12  
Mag  
S22  
K
Mag  
dB  
Ang  
dB  
Ang  
Mag  
Ang  
Factor  
0.05  
0.10  
0.20  
0.30  
0.40  
0.50  
0.60  
0.70  
0.80  
0.90  
1.00  
1.20  
1.40  
1.60  
1.80  
2.00  
2.20  
2.40  
2.50  
0.09  
0.09  
0.10  
0.13  
0.16  
0.18  
0.21  
0.22  
0.24  
0.25  
0.26  
0.27  
0.27  
0.27  
0.27  
0.27  
0.27  
0.26  
0.26  
-1  
-2  
-6  
-16  
-29  
-42  
-59  
-75  
16.12  
16.11  
16.12  
16.14  
16.07  
15.90  
15.56  
15.04  
14.34  
13.44  
12.53  
10.50  
8.50  
6.69  
5.01  
3.58  
2.35  
1.21  
0.75  
6.40  
6.39  
6.40  
6.41  
6.36  
6.24  
6.00  
5.65  
5.21  
4.70  
4.23  
3.35  
2.66  
2.16  
1.78  
1.51  
1.31  
1.15  
1.09  
-6  
-12  
-25  
-38  
-52  
-66  
-81  
-95  
-109  
-122  
-135  
-155  
-173  
172  
159  
147  
136  
126  
122  
-38.1  
-38.2  
-38.4  
-38.9  
-39.4  
-40.1  
-40.7  
-40.7  
-39.6  
-37.6  
-35.5  
-32.3  
-29.6  
-27.5  
-25.7  
-24.1  
-22.5  
-21.4  
-20.9  
0.012  
0.012  
0.012  
0.011  
0.011  
0.010  
0.009  
0.009  
0.011  
0.013  
0.017  
0.024  
0.033  
0.042  
0.052  
0.062  
0.075  
0.085  
0.091  
2
4
8
0.57  
0.56  
0.56  
0.55  
0.54  
0.52  
0.50  
0.47  
0.46  
0.44  
0.43  
0.42  
0.42  
0.42  
0.42  
0.42  
0.42  
0.41  
0.41  
-1  
-3  
-7  
4.35  
4.43  
4.41  
4.83  
4.88  
5.60  
6.58  
7.26  
6.49  
6.23  
5.35  
4.83  
4.43  
4.31  
4.22  
4.17  
3.97  
4.04  
3.99  
13  
19  
27  
40  
57  
74  
86  
94  
100  
101  
100  
99  
97  
95  
92  
91  
-11  
-14  
-18  
-20  
-23  
-24  
-24  
-25  
-26  
-27  
-28  
-30  
-32  
-35  
-37  
-39  
-92  
-107  
-122  
-144  
-162  
-177  
173  
163  
156  
150  
147  
Note:  
3. Reference plane per Figure 9 in Applications Information section.  
6-141  
INA-30311 Typical Performance, TC = 25°C, ZO = 50 , V = 3 V  
CC  
4.0  
3.5  
0
20  
2.7 V  
3.0 V  
3.3 V  
-2  
-4  
3.0  
2.5  
2.0  
1.5  
1.0  
15  
-6  
10  
5
-8  
3.3 V  
3.0 V  
2.7 V  
3.3 V  
3.0 V  
-10  
-12  
-14  
0.5  
0
2.7 V  
0
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5  
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5  
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 1. Power Gain vs. Frequency  
and Voltage.  
Figure 2. Noise Figure vs. Frequency  
and Voltage.  
Figure 3. Output Power for 1 dB Gain  
Compression vs. Frequency and  
Voltage.  
20  
15  
5
4
3
-8  
-9  
+85  
+25  
-40  
10  
5
-10  
-40  
+25  
+85  
2
1
0
+85  
+25  
-40  
-11  
-12  
0
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5  
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5  
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 4. Gain vs. Frequency and  
Temperature.  
Figure 5. Noise Figure vs. Frequency  
and Temperature.  
Figure 6. Output Power for 1 dB Gain  
Compression vs. Frequency and  
Temperature.  
16  
12  
4.0  
3.5  
3.0  
OUTPUT  
8
2.5  
+85  
+50  
+25  
2.0  
0
-40  
4
0
1.5  
INPUT  
1
0
1
2
3
4
5
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5  
V
(V)  
FREQUENCY (GHz)  
CC  
Figure 7. Input and Output VSWR vs.  
Frequency.  
Figure 8. Supply Current vs. Voltage  
and Temperature.  
6-142  
INA-30311 Applications  
Information  
Introduction  
Biasing  
• A second implementation,  
shown in Figure 11, uses a  
simple reactive network at the  
amplifier’s output to match the  
output impedance to 50 .  
The INA-30311 is a voltage biased  
device and operates from a single  
+3 volt power supply. With a  
current drain of 6 mA, this  
amplifier is suitable for use in  
battery powered applications. All  
bias circuitry is fully integrated  
into the IC eliminating the need  
for external DC components. RF  
performance is very stable for  
3-volt battery supplies that may  
range from 2.7 to 3.3 volts,  
The INA-30311 is a silicon RF  
integrated circuit that provides an  
easy-to-use solution for low noise  
or multi-purpose gain block  
applications up to 1000 MHz. This  
two-stage amplifier design uses  
resistive feedback to provide flat  
gain over a wide frequency range.  
This device is assembled in a  
miniature, surface mount package  
and is intended for use in low  
cost wireless communication  
products.  
This matched output arrangement  
will provide an additional 0.9 dB  
of gain and output power at  
900 MHz when driving into a 50 Ω  
stage.  
• The third way to use the INA-  
30311 is to simply cascade  
severalINA-30311’swith50 Ω  
stages and neglect the effects of  
the output mismatch.  
depending on battery “freshness”  
or state of charge in the case of  
rechargeable batteries.  
While the INA-30311 was  
designed for use in +3 volt battery  
powered applications, the  
internal bias regulation circuitry  
allows it to be used with any  
power supply voltage from +2.7  
to+5volts.  
A unique feature of the INA-30311  
is that it is designed with a 50 Ω  
input impedance and an output  
impedance that approaches 200 Ω  
at lower frequencies. This imped-  
ance converting feature is very  
useful for applications such as  
receiver IF circuits in which the  
INA-30311 is followed by high  
input impedance devices like  
signal processing circuits, filters,  
or mixed signal ICs.  
The 50 cascade without  
impedance matching, shown in  
Figure 12, trades off the  
improvement in stage gain and  
output power for a more  
simplified interstage circuit and  
reduced circuit board space.  
Typical Configurations  
The way in which the INA-30311  
is used depends on the particular  
application and operating  
frequency.  
INA-30  
MATCHED  
In addition to simplifying the  
match to higher impedance  
devices, a key benefit of the  
higher output impedance feature  
is an improvement in power  
efficiency.  
50 OUTPUT  
• For receiver IF amplifier appli-  
cations up to several hundred  
MHz, the relatively higher out-  
put impedance level of the  
INA-30311 may be used to  
advantage when interfacing  
directly with devices having  
higher than 50 input imped-  
ances, such as certain signal  
processing or mixed signal ICs.  
This application is shown in  
Figure10.  
Figure 11. Impedance Matched  
Output.  
Phase Reference Planes  
The positions of the reference  
planes used to measure  
S-Parameters are shown in  
Figure 9. As seen in the illustra-  
tion, the reference planes are  
located at the point where the  
package leads contact the test  
circuit.  
INA-30  
INA-30  
50 Ω  
INPUT  
HIGH Z  
OUTPUT  
Figure 12. Simple Cascade without  
Impedance Matching.  
HIGH INPUT  
INA-30  
IMPEDANCE  
STAGE  
REFERENCE  
PLANES  
Figure 10. INA-30311 Driving a High  
Input Impedance Stage.  
TEST CIRCUIT  
Figure 9. Reference Planes.  
6-143  
Operating Details  
used to the amplifier to the VCC  
supply, additional bypass  
900 MHz Matched Example  
The basic application of the INA-  
30311 is shown in Figure 13. DC  
blocking capacitors should be  
placed in series with the RF Input  
and RF Output to isolate adjoin-  
ing circuits from the internal bias  
voltages that are present at these  
terminals. The values of the  
blocking capacitors are deter-  
mined by the lowest frequency of  
operation for a particular applica-  
tion. The capacitor’s reactances  
are chosen to be 5% or less of the  
amplifier’s input or output imped-  
ance at the lowest operating  
frequency. For example, an ampli-  
fier to be used in an application  
covering the 902 to 928 MHz band  
would require an input blocking  
capacitor of at least 70 pF, which  
is 2.5 of reactance, or 5% of  
50 at902 MHz.  
This section describes a  
demonstration circuit for  
900 MHz that is based on the  
matched output configuration  
shown in Figure 11.  
capacitors may be needed to  
prevent resonances that would  
otherwise result in undesirable  
gain responses. A well-bypassed  
VCC line is also desirable to  
prevent possible oscillations that  
may occur due to feedback  
through the bias line from other  
stages in a cascade.  
The output VSWR of the INA-  
30311isapproximately2.6:1at  
900 MHz and results in a 0.9 dB  
mismatch loss when used in a  
50 system. The use of a simple  
impedance matching circuit at the  
output will increase both gain and  
output power by 0.9 dB. The  
noise figure of the amplifier  
remains the same and does not  
depend on whether or not the  
output is matched.  
Adequate grounding is needed to  
obtain maximum performance.  
The ground pin of the INA-30311  
should be connected to directly  
to RF ground by using plated  
through holes (vias) near the  
package terminals.  
FR-4 or G-10 PCB material is a  
good choice for most low cost  
wireless applications. Typical  
board thickness is 0.025 or  
0.031 inches.Thewidthof50 Ω  
microstriplines in these PCB  
thicknesses is also convenient for  
mounting chip components such  
as the series DC blocking  
There are many circuit topologies  
that may be used to match the  
output impedance of the  
INA-30311 to a 50 load. The  
example presented in Figure 15 is  
designed to match the amplifier’s  
output for frequencies near  
900 MHz.  
The VCC connection to the amplifier  
must be RF bypassed by placing a  
capacitor to ground directly at  
the bias pin of the package. Like  
the DC blocking capacitors, the  
value of the VCC bypass capacitor  
is determined by the lowest  
operating frequency for the ampli-  
fier. This value is typically the  
same as that of the DC blocking  
capacitors. If long bias lines are  
capacitors.  
This circuit is representative for  
applications in the 800 MHz  
50 Example  
cellular or 900 MHz unregulated  
frequency bands. This example  
uses a series capacitor to resonate  
with a shunt, high impedance  
transmission line. The transmis-  
sion line is tapped at a 50 level  
for the output. This circuit  
provides the desired impedance  
transformation with a minimum  
of components, using only one  
chip capacitor that also doubles  
as the output DC block.  
The demonstration circuit in Figure  
14showstheINA-30311used  
without output impedance  
matching and is an example of the  
cascade depicted in Figure 12. This  
layout illustrates the simplest  
implementation of the INA-30311  
by using 50 microstriplines  
with DC blocking capacitors for  
both the input and output. The  
VCC supply connection is RF  
bypassed very close to the lead of  
the RFIC. Provision is also made  
for an additional bypass capacitor  
on the VCC line near the edge of  
the PCB.  
RF  
OUTPUT  
RF  
INPUT  
V
CC  
Figure 13. Basic Amplifier  
Application.  
6-144  
Figure 14. 50 Input/Output  
Example.  
Figure 15. Matched Output Example.  
INA-30311 Part Number Ordering Information  
Part Number  
INA-30311-TR1  
INA-30311-BLK  
Devices per Container  
Container  
7" reel  
3,000  
100  
Antistatic bag  
Package Dimensions  
0.92 (0.036)  
0.78 (0.031)  
PACKAGE  
MARKING  
CODE  
1.40 (0.055)  
1.20 (0.047)  
2.65 (0.104)  
2.10 (0.083)  
XXX  
0.60 (0.024)  
0.45 (0.018)  
0.54 (0.021)  
0.37 (0.015)  
2.04 (0.080)  
1.78 (0.070)  
TOP VIEW  
1.02 (0.041)  
0.85 (0.033)  
0.15 (0.006)  
0.09 (0.003)  
3.06 (0.120)  
2.80 (0.110)  
0.69 (0.027)  
0.45 (0.018)  
0.10 (0.004)  
0.013 (0.0005)  
SIDE VIEW  
END VIEW  
DIMENSIONS ARE IN MILLIMETERS (INCHES)  
6-145  

相关型号:

INA-30311-TR1

1 GHz Low Noise Silicon MMIC Amplifier
AGILENT

INA-31063

3V Fixed Gain. High Isolation amplifier
ETC

INA-31063-BLK

IC-RF BUFFER AMPLIFIER
ETC

INA-32063

3.0 GHz Wideband Silicon RFIC Amplifier
AGILENT

INA-32063-BLK

3.0 GHz Wideband Silicon RFIC Amplifier
AGILENT

INA-32063-TR1

3.0 GHz Wideband Silicon RFIC Amplifier
AGILENT

INA-32063-TR2

3.0 GHz Wideband Silicon RFIC Amplifier
AGILENT

INA-34063

3V Fixed Gain. Medium Power Amplifier
ETC

INA-34063-BLK

Wide Band Low Power Amplifier, 100MHz Min, 3000MHz Max, BIPolar, SOT-363, 6 PIN
AGILENT

INA-34063-TR1

Wide Band Low Power Amplifier, 100MHz Min, 3000MHz Max, BIPolar, SOT-363, 6 PIN
AGILENT

INA-50311

1 GHz Low Noise Silicon MMIC Amplifier
AGILENT

INA-50311-BLK

1 GHz Low Noise Silicon MMIC Amplifier
AGILENT