AKD4560A [AKM]

16bit CODEC with ALC and MIC/HP/SPK-Amps; 16位编解码器与ALC和MIC / HP / SPK-安培
AKD4560A
型号: AKD4560A
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

16bit CODEC with ALC and MIC/HP/SPK-Amps
16位编解码器与ALC和MIC / HP / SPK-安培

解码器 编解码器
文件: 总47页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ASAHI KASEI  
[AK4560A]  
AK4560A  
16bit CODEC with ALC and MIC/HP/SPK-Amps  
GENERAL DESCRIPTION  
AK4560A is a 16bit stereo CODEC with a built-in Microphone-Amp, Headphone-Amp and Speaker-Amp. Input  
circuits include Microphone/LINE inputs selector, power supply for microphone, Pre-Amp, HPF-Amp, EQ-Amp  
and ALC (Auto Level Control) circuit, and output circuits include LINEOUT buffer, Analog Volume,  
Headphone-Amp and Speaker-Amp, therefore the AK4560A suits a portable application with a built-in LCD  
and etc. As Multi-Power-Supply-System can be set a suitable power supply voltage in each block, the  
AK4560A is compatible with high performance and low power dissipation. The package is a 64pin LQFP,  
therefore, a new system can be a smaller board area than a current system is composed of 2 or 3 chips.  
FEATURE  
1. Resolution: 16bits  
2. Recording Function:  
3-Input Selector (Internal MIC, External MIC, LINE)  
Pre-Amp/EQ-Amp  
HPF-Amp for wind-noise  
Digital ALC (Auto Level Control) circuit  
FADEIN / FADEOUT  
Digital HPF for offset cancellation (fc=3.7Hz@fs=48kHz)  
3. Playback Function  
Digital De-emphasis Filter (tc = 50/15us, fs = 32kHz, 44.1kHz and 48kHz)  
LINEOUT Buffer: +2dBV  
Analog Volume  
- 0dB -50dB, Mute  
Headphone-Amp  
- Output Level: -3.4dBV, THD+N = 1%  
Speaker-Amp with a built-in Digital ALC circuit  
- BTL Output  
- Output Power: 80mW @ 8  
BEEP and Shutter Signal Inputs  
4. Analog Through Mode  
5. Power Management  
6. ADC Characteristics (LIN  
ALC1  
ADMIX ADC)  
S/(N+D): 80dB, DR=S/N: 86dB  
7. DAC Characteristics (DAC LINEOUT)  
S/(N+D): 82dB, DR=S/N: 88dB  
8. Master Clock: 256fs/384fs  
9. Sampling Rate: 8kHz 50kHz  
10. Audio Data Interface Format: MSB-First, 2’s compliment (AK4518/AK4550 Compatible)  
ADC: 16bit MSB justified, DAC: 16bit LSB justified  
11. Ta = -20 85  
12. Power Supply  
°
C
CODEC, Analog Volume: 2.6 3.3V (typ. 2.8V)  
LINEOUT, Headphone-Amp: 3.8 5.5V (typ. 4.5V)  
MIC-Amp: 2.6 5.5V (typ. 3.9V)  
Speaker-Amp: 3.8 4.3V (typ. 4.0V)  
13. Power Supply Current  
All Circuits Power-up: 32.5mA  
14. Package: 64pin LQFP, 0.5mm Pitch  
MS0028-E-00  
2000/05  
- 1 -  
ASAHI KASEI  
[AK4560A]  
EXT_MIC_L INT_MIC_L  
INT_MIC_R EXT_MIC_R  
MVSS  
57  
MVDD  
58  
MVCM  
56  
+
+
MPWR  
MRF  
64  
63  
62  
Pre Amp  
61  
60  
59  
55  
54  
53  
52  
51  
50  
49  
Pre Amp  
INT/EXT  
INT/EXT  
EQ Amp  
1
48  
MIC Block  
EQ Amp  
MIC  
HPF  
OFF  
HPF  
ON  
HPF  
OFF  
2
3
47  
ADC  
HPF  
MIX  
ADMIX  
MIX  
HPF  
ADC  
ALC1  
46  
AIN  
ON  
HPF  
HPF  
4
45  
44  
IPGA  
5
SPKP or HPP  
AOUT1  
VCOM  
SVDD  
6
43  
AOUT0  
AOUT1  
+
+
VREF  
+
AOUT0  
SVSS  
7
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
Analog Volume  
AGND  
8
INT/EXT_DET  
SPKP  
ALC2  
+
MIX  
SP1  
VA  
9
ALCS  
SPPS  
Speaker-Block  
8
10  
11  
12  
13  
14  
15  
16  
ND  
BEEPS  
SP0  
SPPS  
MOUT  
PD  
Clock  
Divider  
MCLK  
LRCK  
BCLK  
CCLK  
Headphone-Amp  
BEEP  
SHT  
HPP  
DAC  
Audio I/F  
Controller  
DAC  
Control Register  
I/F  
LOUTP  
LOUTP  
17  
18  
19  
20  
21  
22  
HVCM  
23  
24  
25  
26  
MUTE  
27  
28  
29  
30  
31  
32  
HPL  
HPR  
+
+
SDTO  
SDTI  
CDTIO  
CS  
ROUT1  
LOUT1  
VD  
DGND  
HVDD  
LIN  
RIN  
Signal Select  
Power Management  
Power Save  
Figure 1. AK4560A Block Diagram  
MS0028-E-00  
2000/05  
- 2 -  
ASAHI KASEI  
[AK4560A]  
n Ordering Guide  
AK4560AVQ  
AKD4560A  
-20 +85 °C  
Evaluation Board  
64pin LQFP (0.5mm pitch)  
n Pin layout  
EQ_P_L  
EQ_O_L  
HPF_P_L  
HPF_O_L  
MIC_IN_L  
VCOM  
VREF  
1
EQ_P_R  
EQ_O_R  
HPF_P_R  
HPF_O_R  
MIC_IN_R  
SVDD  
48  
47  
46  
45  
44  
43  
42  
2
3
4
5
6
7
SVSS  
Top View  
INT_EXT_DET  
SP1  
AGND  
VA  
8
41  
40  
39  
38  
37  
36  
35  
34  
33  
9
ND  
10  
11  
12  
13  
14  
15  
16  
ROUT2  
OPGR  
LOUT2  
OPGL  
SP0  
PD  
MCLK  
LRCK  
BCLK  
CCLK  
BEEP  
SHT  
MOUT  
MS0028-E-00  
2000/05  
- 3 -  
ASAHI KASEI  
[AK4560A]  
PIN/FUNCTION  
No. Pin Name  
I/O  
Function  
Power Supply  
6
7
8
9
VCOM  
VREF  
AGND  
VA  
O
O
-
Common Voltage Output Pin, 0.5 x VA  
ADC, DAC Reference Level, 0.5 x VA  
Analog Ground Pin  
-
Analog Power Supply Pin, +2.8V  
22 HVCM  
23 HVDD  
27 VD  
O
-
-
LINEOUT & HP-Amp Common Voltage Output Pin, 0.5 x HVDD  
LINEOUT & HP-Amp Power Supply Pin, +4.5V  
Digital Power Supply Pin, +2.8V  
28 DGND  
42 SVSS  
43 SVDD  
52 MPWR  
55 MRF  
56 MVCM  
57 MVSS  
58 MVDD  
Operation Clock  
29 SDTO  
30 SDTI  
-
-
-
O
O
O
-
Digital Ground Pin  
Speaker Amp Ground Pin  
Speaker Amp Power Supply Pin, +4.0V  
MIC Power Supply Pin, 2.5V@MVDD=3.9V, Idd=3mA(max)  
MIC Power Supply Ripple Filter Pin  
MIC Block Common Voltage Output Pin, 0.5 X MVDD  
MIC Block Ground Pin  
-
MIC Block Power Supply Pin  
O
I
I
I
I
Audio Serial Data Output Pin  
Audio Serial Data Input Pin  
Audio Serial Data Clock Pin  
Input/Output Channel Clock Pin  
Master Clock Input Pin  
34 BCLK  
35 LRCK  
36 MCLK  
MIC Block  
1
2
3
4
EQ_P_L  
EQ_O_L  
HPF_P_L  
HPF_O_L  
I
O
I
O
O
I
O
I
I
Lch EQ-Amp Positive Input Pin  
Lch EQ-Amp Output Pin  
Lch HPF-Amp Positive Input Pin  
Lch HPF Output Pin  
Rch HPF Output Pin  
Rch HPF-Amp Positive Input Pin  
Rch EQ-Amp Output Pin  
45 HPF_O_R  
46 HPF_P_R  
47 EQ_O_R  
48 EQ_P_R  
49 EQ_N_R  
Rch EQ-Amp Positive Input Pin  
Rch EQ-Amp Negative Input Pin  
50 PRE_O_R  
51 PRE_N_R  
53 EXT_MIC_R  
54 INT_MIC_R  
59 INT_MIC_L  
60 EXT_MIC_L  
61 MIC_B  
0
I
I
I
I
Rch Pre-Amp Output Pin  
Rch Pre-Amp Negative Input Pin  
External MIC Rch Input Pin  
Internal MIC Rch Input Pin  
Internal MIC Lch Input Pin  
External MIC Lch Input Pin  
MIC-Amp Bias Pin  
I
I
62 PRE_N_L  
63 PRE_O_L  
I
0
Lch Pre-Amp Negative Input Pin  
Lch Pre-Amp Output Pin  
64 EQ_N_L  
I
Lch EQ-Amp Negative Input Pin  
Note: All input pins should not be left floating.  
MS0028-E-00  
2000/05  
- 4 -  
ASAHI KASEI  
[AK4560A]  
Control Data Interface  
31 CDTIO  
I/O Control Data Input/Output Pin  
32  
I
I
Chip Select Pin  
CS  
33 CCLK  
Control Clock Input Pin  
ALC1 Block  
5
MIC_IN_L  
I
I
I
I
Lch MIC Input Pin  
Lch Line Input Pin  
Rch Line Input Pin  
Rch MIC Input Pin  
18 LIN  
20 RIN  
44 MIC_IN_R  
DAC  
10 ROUT2  
12 LOUT2  
19 LOUT1  
21 ROUT1  
Analog Volume  
11 OPGR  
13 OPGL  
Headphone Amp  
24 HPR  
O
O
O
O
Rch #2 Line Output Pin, -5.5dBV@VA=2.8V  
Lch #2 Line Output Pin, -5.5dBV@VA=2.8V  
Lch #1 Line Output Pin, +2dBV@VA=2.8V, VOL=+7.5dB  
Rch #1 Line Output Pin, +2dBV@VA=2.8V, VOL=+7.5dB  
I
I
Rch Analog Volume Input Pin  
Lch Analog Volume Input Pin  
O
O
Rch Headphone-Amp Output Pin  
Lch Headphone-Amp Output Pin  
25 HPL  
Speaker Amp Block  
16 MOUT  
17 MIN  
O
I
Analog Mixing Output Pin  
ALC2 Input Pin  
38 SP0  
40 SP1  
O
O
Speaker Amp positive Output Pin  
Speaker Amp negative Output Pin  
Other Functions  
14 BEEP  
15 SHT  
I
I
I
Beep Signal Input Pin  
Shutter Signal Input Pin  
Mute Pin, “L”: Normal Operation, “H”: Mute  
26 MUTE  
37  
I
Power Down & Reset Pin, “L”: Power-down & Reset, “H”: Normal operation  
PD  
39 ND  
I
I
Noise Decrease Pin, “L”: Disable, “H”: Enable  
41 INT_EXT_DET  
Internal /External MIC Detect Pin, “L”: Internal MIC, “H”: External MIC  
Note: All input pins should not be left floating.  
MS0028-E-00  
2000/05  
- 5 -  
ASAHI KASEI  
[AK4560A]  
ABSOLUTE MAXIMUM RATING  
(AGND, DGND, MVSS, SVSS=0V; Note 1)  
Parameter  
Symbol  
VA  
HVDD  
MIC  
min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-
max  
6.0  
6.0  
6.0  
6.0  
6.0  
0.3  
0.3  
0.3  
Units  
V
V
V
V
V
V
V
V
Power Supplies  
Analog 1 (VA pin)  
Analog 2 (HVDD pin)  
MIC (MVDD pin)  
Digital (VD pin)  
VD  
Speaker (SVDD pin)  
| DGND – AGND | (Note 2)  
| MVSS – AGND | (Note 2)  
| SVSS – AGND | (Note 2)  
SVDD  
GND1  
GND2  
GND3  
IIN  
VINA1  
VINA2  
VIND1  
VIND2  
VIND3  
Ta  
-
-
Input Current (Any pines except supplies)  
Analog Input Voltage (Note 3)  
(Note 4)  
Digital Input Voltage (Note 5)  
(Note 6)  
-
±10  
mA  
V
V
V
V
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-20  
-65  
-
VA+0.3  
MIC+0.3  
VD+0.3  
HVDD+0.3  
SVDD+0.3  
85  
(Note 7)  
V
Ambient Temperature  
Storage Temperature  
°C  
°C  
mW  
Tstg  
Pd  
150  
650  
Maximum Power Dissipation (Note 8)  
Note 1. All voltage with respect to ground.  
Note 2. DGND and AGND, MVSS and AGND, SVSS and AGND are the same voltage.  
Note 3. Analog input pins except EXT_MIC_L, EXT_MIC_R, INT_MIC_L, INT_MIC_R, PRE_N_L, PRE_N_R,  
EQ_N_L, EQ_N_R, EQ_P_L, EQ_P_R, HPF_P_L, HPF_P_R and MIC_B pins.  
Note 4. EXT_MIC_L, EXT_MIC_R, INT_MIC_L, INT_MIC_R, PRE_N_L, PRE_N_R, EQ_N_L, EQ_N_R, EQ_P_L,  
EQ_P_R, HPF_P_L, HPF_P_R and MIC_B pins  
Note 5. Except INT_EXT_DET, ND and MUTE pins  
Note 6. MUTE pin  
Note 7. INT_EXT_DET and ND pins  
Note 8. Wiring density is 50% over.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not  
guaranteed at these extremes.  
RECOMMEND OPERATING CONDITIONS  
(AGND, DGND, MVSS, SVSS=0V; Note 1)  
Parameter  
Symbol  
VA  
HVDD  
MIC  
VD  
SVDD  
min  
2.6  
3.8  
2.6  
2.6  
3.8  
typ  
2.8  
4.5  
3.9  
2.8  
4.0  
max  
3.3  
5.5  
5.5  
3.3  
4.3  
Units  
V
V
V
V
Power  
Supplies  
Analog 1 (VA pin)  
Analog 2 (HVDD pin)  
MIC (MIC pin)  
Digital (VD pin)  
Speaker (SVDD pin)  
V
Note 1. All voltage with respect to ground.  
* AKM assumes no responsibility for the usage beyond the conditions in this datasheet.  
MS0028-E-00  
2000/05  
- 6 -  
ASAHI KASEI  
[AK4560A]  
ANALOG CHARACTERISTICS  
(Ta=25°C; VA=VD=2.8V, MVDD=3.9V, SVDD=4.0V, HVDD=4.5V; AGND=DGND=MVSS=SVSS=0V; fs=48kHz;  
Input Frequency = 1kHz; Measurement width = 20Hz 20kHz; unless otherwise specified)  
Parameter  
min  
typ  
max  
Units  
Pre-Amp Characteristics:  
Input Resistance (Note 9)  
70  
100  
+26  
130  
-1  
kΩ  
dBV  
dB  
Maximum Output Voltage (Note 10)  
Gain  
+18  
1
+30  
Load Resistance  
kΩ  
pF  
Load Capacitance (Note 11)  
EQ-Amp Characteristics: (Gain:0dB)  
Maximum Output Voltage (Note 11)  
Load Resistance  
20  
-1  
dBV  
kΩ  
pF  
1
3
Load Capacitance (Note 11)  
HPF-Amp Characteristics: (Gain: 0dB)  
Maximum Output Voltage (Note 10)  
Load Resistance  
20  
-1  
dBV  
kΩ  
pF  
Load Capacitance (Note 11)  
20  
MIC Block Characteristics: Measured via HPF_O_L/HPF_O_R (Note 12)  
S/(N+D) (-10dBV Output)  
60  
77  
dB  
Output Noise Voltage (No signal input, Rg = 1k)  
BW = 20Hz 20kHz, A-Weighted) (Note 13)  
BW = 400Hz 30kHz (Note 14)  
Interchannel Isolation  
-93  
-92  
90  
-89  
-88  
dBV  
dBV  
dB  
70  
MIC Power Supply Characteristics:  
Output Voltage (No Load) (Note 15)  
Output Current  
2.2  
2.5  
2.8  
3
V
mA  
Note 9. INT_MIC_L, INT_MIC_R, EXT_MIC_L and EXT_MIC_R pins  
Note 10. Maximum output voltage is typically (MVDD-1.3) V.  
Note 11. When output pin drives some capacitive load, some resistor should be added in series between output pin and  
capacitive load.  
Note 12. These values are measured via the following path. EQ-Amp and HPF-Amp are a unity gain buffer.  
Pre-Amp (Gain: +26dB EQ-Amp (Gain: 0dB, Not add signal of other channel) HPF-Amp (Gain: 0dB)  
Note 13. In case of the following path, output noise voltage is suitable value for -59.4dB (typ) and -55.4dBV (min).  
MIC Block (Gain: +26dB, Input from INT_MIC_L/INT_MIC_R pins) IPGA (Gain: +26dB) + ADC →  
DAC+LINEOUT (Gain: +7.5dB, Measured via LOUT1/ROUT1 pins)  
Note 14. In the following path, if analog input signal is –70dBV (Then analog output level is –10.5dBV at LINEOUT),  
output noise voltage except the fundamental wave is suitable value for 58.4dBV(typ.) and –54.4dBV(min.).  
Because it is not possible that each block of IPGA, ADC, DAC and LINEOUT output a distortion when the small  
signal level is input.  
MIC Block (Gain: +26dB, Input from INT_MIC_L/INT_MIC_R pins) IPGA (Gain: +26dB) + ADC →  
DAC+LINEOUT (Gain: +7.5dB, Measured via LOUT1/ROUT1 pins)  
Note 15. Output voltage is typically (MVDD - 1.4) V.  
MS0028-E-00  
2000/05  
- 7 -  
ASAHI KASEI  
[AK4560A]  
Parameter  
min  
typ  
max  
Units  
ALC1 Characteristics (IPGA):  
Maximum Input Voltage (Note 16)  
Input Resistance:  
-0.5  
dBV  
MIC(MIC_IN_L and MIC_IN_R pins) (Note 17)  
LINE(LIN and RIN pins) (Note 18)  
5.6  
117  
9
184  
13  
260  
kΩ  
kΩ  
Step Size  
MIC  
LINE  
0.1  
0.1  
0.1  
-
0.5  
1
2
2
4
dB  
dB  
dB  
dB  
dB  
+26dB -10dB  
-10dB -18dB  
-18dB -30dB  
-30dB -42dB  
-42dB -54dB  
+0dB -36dB  
-36dB -44dB  
-44dB -56dB  
-56dB -68dB  
-68dB -80dB  
-
ADC Analog Input Characteristics: ALC1 = OFF  
Resolution  
16  
Bits  
dBV  
dBV  
dB  
Input Voltage (Note 19) (Note 20)  
(Note 21)  
-6.3  
-32.3  
74  
-5.5  
-31.5  
80  
-4.7  
-30.7  
S/(N+D) (-2.0dBFS Output) (Note 20)  
(Note 21)  
68  
74  
dB  
DR (-60dBFS Output, A-Weighted) (Note 20)  
(Note 21)  
80  
73  
86  
79  
dB  
dB  
S/N  
(A-Weighted) (Note 20)  
(Note 21)  
80  
73  
86  
79  
dB  
dB  
Interchannel Isolation (Note 20)  
(Note 21)  
80  
80  
100  
100  
dB  
dB  
Interchannel Gain Mismatch (Note 20)  
(Note 21)  
0.5  
0.5  
dB  
dB  
DAC Analog Output Characteristics: Measured via OUT1/ROUT1. VOL=+7.5dB  
Resolution  
16  
Bits  
dB  
S/(N+D) (0dBFS Input)  
DR (-60dBFS Input, A-Weighted)  
S/N (A-Weighted)  
76  
82  
82  
88  
dB  
82  
88  
dB  
Output Voltage (Note 19)  
Interchannel Isolation  
+1.2  
80  
+2  
100  
+2.8  
0.5  
20  
dBV  
dB  
Interchannel Gain Mismatch  
Load Resistance  
dB  
10  
kΩ  
pF  
Load Capacitance (Note 22)  
Note 16. When ALC1 is enabled, maximum input voltage becomes typically (VA – 0.13V) Vpp.  
E.g. 2.67Vpp = -0.5dBV @ VA = 2.8V  
Note 17. Input impedance of MIC changes from 8kto 10kby setting GAIN value, typically.  
Note 18. Input impedance of LINE changes from 168kto 200kby setting GAIN value, typically.  
Note 19. Input/Output voltage are proportional to VA voltage. 0.54 x VA.  
Note 20. Input from LIN/RIN pins. AIN = “1”. IPGA = 0dB.  
Note 21. Input from MIC_IN_L and MIC_IN_R pins. AIN = “0”. IPGA = +26dB.  
Note 22. When output pin drives some capacitive load, some resistor should be added in series between output pin and  
capacitive load.  
MS0028-E-00  
2000/05  
- 8 -  
ASAHI KASEI  
[AK4560A]  
Parameter  
min  
typ  
max  
Units  
Analog Volume Characteristics (OPGA):  
Input Resistance (OPGL and OPGR pins) (Note 23)  
Step Size: +0dB -16dB  
44  
0.1  
0.1  
0.1  
110  
1
2
205  
kΩ  
dB  
dB  
dB  
-16dB -38dB  
-38dB -50dB  
4
Headphone-Amp Characteristics: RL = 220(Note 24)  
Output Voltage (FS-12dB = -17.5dBV Input) (Note 19)  
S/(N+D) (-3.4dBV Output)  
-6.5  
40  
-5.7  
53  
-4.9  
-74  
0.5  
20  
dBV  
dB  
Output Noise Voltage (OPGA=MUTE, A-Weighted)  
Interchannel Isolation  
-80  
100  
dBV  
dB  
80  
Interchannel Gain Mismatch  
dB  
Load Resistance  
220  
Load Capacitance (Note 22)  
pF  
Speaker-Amp Characteristics: RL= 8, BTL, Input from MIN pin, ALC2=OFF  
Output Voltage  
-4  
40  
81  
8
-2  
55  
87  
0
dBV  
dB  
dB  
S/(N+D) (80mW Output)  
S/N (A-Weighted)  
Load Resistance  
Load Capacitance (Note 22)  
Shutter Input: (SHT pin)  
Maximum Input Voltage (Note 19)  
Input Resistance  
10  
pF  
-5.5  
55  
dBV  
29  
14  
14  
42  
20  
kΩ  
BEEP Input: (BEEP pin)  
Maximum Input Voltage (Note 19)  
Feed-back Resistance  
-7.5  
26  
dBV  
kΩ  
Monaural Input: (MIN pin)  
Maximum Input Voltage (Note 19)  
Input Resistance (Note 25)  
Monaural Output: (MOUT pin) (Note 26)  
Output Voltage (Note 19)  
Load Resistance  
-5.5  
33  
dBV  
23  
kΩ  
-6.3  
10  
-5.5  
-4.7  
20  
dBV  
kΩ  
Load Capacitance (Note 22)  
pF  
Note 23. Input impedance of OPGA changes from 63kto 158kby setting GAIN value, typically.  
Note 24. Input OPGL/OPGR pins. These values are measured via the following path.  
Analog volume (OPGA=0dB) Monaural Output (MOUT pin)  
Note 25. Input impedance of MIN pin changes from 21kto 25kby setting ALC2 GAIN value, typically.  
Note 26. OPGL/OPGR pins are input to –5.5dBV. These values are measured via the following path.  
Analog volume (OPGA=0dB) Monaural Output (MOUT pin)  
MS0028-E-00  
2000/05  
- 9 -  
ASAHI KASEI  
[AK4560A]  
Parameter  
min  
typ  
max  
Units  
Power Supplies Current  
Power Up ( PD = “H”)  
All Circuit Power Up: (MIC=IPGA=ADC=DAC=VCOM=HPP=SPKP=LOUTP= “1”)  
VA+VD  
19.0  
6.5  
28.5  
9.8  
mA  
mA  
mA  
MVDD (Note 27)  
HVDD:HP-Amp Normal Operation  
(LOUT=HP= “1”, No Output)  
SVDD:SPK-Amp Normal Operation  
(SPPS= “1”, No Output)  
3.5  
5.3  
3.5  
5.3  
mA  
mA  
ALC1+ADMIX+ADC: (IPGA=ADC=VCOM= “1”) (Note 28)  
VA+VD  
10.0  
15.0  
DAC+LINEOUT: (DAC=LOUTP=VCOM= “1”) (Note 29)  
VA+VD  
8.0  
1.5  
12.0  
2.3  
mA  
mA  
HVDD: LINEOUT Normal Operation  
(LOUT= “1”, No Output)  
Power Down ( PD = “L”)  
VA+VD+HVDD+MVDD+SVDD (Note 30)  
Note 27. MPWR pin supplies 0mA.  
200  
uA  
Note 28. As VCOM = “1”, HVDD of power supply current is 0.5mA (typ.) and power supply current of MVDD is 0.5mA  
(typ.).  
Note 29. As VCOM= “1”, power supply current is 0.5mA (typ.).  
Note 30. In case of power-down, all digital input pins including clock (MCLK, BCLK and LRCK) pins are held “VD” or  
“DGND”. PD pin is held “DGND”.  
MS0028-E-00  
2000/05  
- 10 -  
ASAHI KASEI  
[AK4560A]  
FILTER CHARACTERISTICS  
(Ta=25°C; VA=VD=2.6 3.3V; fs=48kHz; De-emphasis = OFF)  
Parameter  
ADC Digital Filter (LPF):  
Passband (Note 31)  
Symbol  
min  
typ  
max  
Units  
±0.1dB  
-1.0dB  
-3.0dB  
PB  
0
-
-
18.9  
-
-
kHz  
kHz  
kHz  
kHz  
dB  
21.8  
23.0  
Stopband (Note 31)  
Passband Ripple  
SB  
PR  
29.4  
±0.1  
Stopband Attenuation  
Group Delay (Note 32)  
Group Delay Distortion  
SA  
GD  
GD  
65  
-
dB  
1/fs  
us  
17.0  
0
-
ADC Digital Filter (HPF):  
Frequency Response (Note 31) -3.0dB  
FR  
-
-
-
3.7  
10  
20  
-
-
-
Hz  
Hz  
Hz  
-0.56dB  
-0.15dB  
DAC Digital Filter:  
Passband (Note 31)  
±0.1dB  
-6.0dB  
PB  
0
-
26.2  
21.7  
-
kHz  
kHz  
kHz  
dB  
dB  
1/fs  
24.0  
Stopband (Note 31)  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 32)  
SB  
PR  
SA  
GD  
±0.06  
43  
-
14.8  
-
DAC Digital Filter + Analog Filter:  
Frequency Response 20.0kHz  
FR  
dB  
0
±0.5  
Note 31. The passband and stopband frequencies scale with fs (system sampling rate).  
For example, ADC is PB=0.454*fs (@-1.0dB), DAC is PB=0.454*fs (@-0.1dB).  
Note 32. The calculating delay time which occured by digital filtering, This time is from the input of analog signal to  
setting the 16 bit data of both channels on input register to the output register of ADC. And this time include  
group delay of HPF. For DAC, this time is from setting the 16 bit data of both channels on input register to the  
output of analog signal.  
MS0028-E-00  
2000/05  
- 11 -  
ASAHI KASEI  
[AK4560A]  
DC CHARACTERISTICS  
(Ta=25°C; VA=VD=2.6 3.3V)  
Parameter  
Symbol  
VIH  
VIL  
min  
typ  
max  
-
0.6  
-
0.2  
±10  
Units  
V
V
High-Level Input Voltage  
Low-Level Input Voltage  
1.5  
-
-
-
-
-
-
High-Level Output Voltage Iout=-200uA  
Low-Level Output Voltage Iout=200uA  
Input Leakage Current  
VOH  
VOL  
Iin  
VD-0.2  
V
V
uA  
-
-
SWITCHING CHARACTERISTICS  
(Ta=25°C; VA=VD=2.6 3.3V; CL=20pF)  
Parameter  
Control Clock Frequency  
Symbol  
min  
typ  
max  
Units  
Master Clock(MCLK) 256fs: Frequency  
Pulse Width Low  
fCLK  
tCLKL  
tCLKH  
fCLK  
tCLKL  
tCLKH  
fs  
2.048  
28  
28  
3.072  
23  
23  
12.288  
12.8  
MHz  
ns  
ns  
MHz  
ns  
ns  
Pulse Width High  
384fs: Frequency  
Pulse Width Low  
Pulse Width High  
18.432  
19.2  
Channel Select Clock (LRCK): Frequency  
Duty  
8
45  
48  
50  
50  
55  
kHz  
%
Duty  
Audio Interface Timing  
BCLK Period  
tBLK  
tBLKL  
tBLKH  
tLRB  
tBLR  
tLRM  
tBSD  
312.5  
130  
130  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK Pulse Width Low  
Pulse Width High  
LRCK Edge to BCLK “” (Note 33)  
BCLK “” to LRCK Edge (Note 33)  
LRCK to SDTO(MSB) Delay Time  
BCLK “” to SDTO Delay Time  
SDTI Latch Hold Time  
SDTI Latch Set up Time  
Control Interface Timing  
CCLK Period  
50  
80  
80  
tSDH  
tSDS  
50  
50  
tCCK  
tCCKL  
tCCKH  
tCDS  
tCDH  
tCSW  
tCSS  
tCSH  
tDCD  
tCCZ  
200  
80  
80  
50  
50  
150  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK Pulse Width Low  
Pulse Width High  
CDTIO Latch Set Up Time  
CDTIO Latch Hold Time  
CSN “H” Time  
CSN ”” to CCLK “”  
CCLK “” to CSN ”  
CDTIO Output Delay Time  
CSN “” to CDTO(Hi-Z) Time (Note 34)  
Reset Timing  
70  
70  
PD Pulse Width  
PD “” to SDTO Delay Time  
tPDW  
tPDV  
150  
ns  
1/fs  
8224  
Note 33. BCLK rising edge must not occur at the same time as LRCK edge.  
Note 34. RL=1k/10% Change. (Pull-up operates for VD)  
MS0028-E-00  
2000/05  
- 12 -  
ASAHI KASEI  
[AK4560A]  
n
Timing Diagram  
1/fCLK  
1.5V  
0.6V  
MCLK  
tCLKH  
tCLKL  
1/fs  
1.5V  
0.6V  
LRCK  
BCLK  
tBLK  
1.5V  
0.6V  
tBLKH  
tBLKL  
Figure 2. Clock Timing  
1.5V  
0.6V  
LRCK  
tBLR  
tLRB  
1.5V  
0.6V  
BCLK  
tLRM  
tBSD  
D14  
D15(MSB)  
50%VD  
SDTO  
SDTI  
t
SDH  
tSDS  
1.5V  
0.6V  
Figure 3. Audio Data Input/Output Timing  
1.5V  
0.6V  
CS  
tCSS  
tCCKH  
tCDH  
tCCKL  
tCDS  
1.5V  
0.6V  
CCLK  
Hi- z(Note 1)  
1.5V  
0.6V  
CDTIO(I)  
op0  
op1  
op2  
A0  
Figure 4. WRITE/READ Command Input Timing  
Note:1. CDTIO pin should not be left floating except READ output timing as CDTIO pin is input pin then.  
MS0028-E-00  
2000/05  
- 13 -  
ASAHI KASEI  
[AK4560A]  
1.5V  
0.6V  
CS  
1.5V  
0.6V  
CCLK  
CDTIO(O)  
tDCD  
D0  
A3  
A4  
D1  
D2 50%VD  
Hi-z (Note 1)  
Figure 5. READ Data Input/Output Timing  
tCSW  
1.5V  
0.6V  
CS  
tCSH  
tCCZ  
1.5V  
0.6V  
CCLK  
CDTIO(I/O)  
D4  
D5  
D6  
D7  
Hi-z(Note 2)  
Figure 6. WRITE/READ Data Input/Output Timing  
Notes:1. CDTIO pin should not be left floating except READ output timing as CDTIO pin is input pin then.  
2. RL = 1k/10% Change. (Pull-up operates for VD.)  
t
t
PDV  
PDW  
PD  
0.6V  
50%VD  
SDTO  
Figure 7. Reset Timing  
MS0028-E-00  
2000/05  
- 14 -  
ASAHI KASEI  
[AK4560A]  
OPERATION OVERVIEW  
n
System Clock  
The clock which are required to operate are MCLK (256fs/384fs), LRCK (fs), BCLK (32fs ). The master clock (MCLK)  
should be synchronized with LRCK but the phase is free of care.  
The MCLK can be input 256fs or 384fs. When 384fs is input, the internal master clock is divided into 2/3 automatically.  
* fs is sampling frequency.  
When the synchronization is out of phase by changing the clock frequencies during normal operation, the AK4560A may  
occur click noise. In case of DAC, click noise is avoided by setting the inputs to “0”.  
All external clocks (MCLK, BCLK and LRCK) should always be present. If these clocks are not provided, the AK4560A  
may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If  
the external clocks are not present, the AK4560A should be in the power-down mode. (Refer to the “Power Management  
Mode”.)  
n System Reset  
AK4560A should be reset once by bringing PD pin “L” upon power-up. After the system reset operation, the all internal  
AK4560A registers become initial value.  
Initializing cycle is 8224/fs=171.3ms@fs=48kHz. During initializing cycle, the ADC digital data outputs of both  
channels are forced to a 2's compliment, “0”. Output data of ADC settles data equivalent for analog input signal after  
initializing cycle. This cycle is not for DAC.  
As a normal initializing cycle may not be executed, nothing writes at address 02H during initializing cycle.  
n Digital High Pass Filter  
The ADC has HPF for the DC offset cancel. The cut-off frequency of HPF is 3.7Hz (@fs=48kHz) and it is -0.15dB at  
22Hz. It also scales with the sampling frequency (fs).  
MS0028-E-00  
2000/05  
- 15 -  
ASAHI KASEI  
[AK4560A]  
n
Audio Interface Format  
Data is shifted in/out the SDTI/SDTO pins using BCLK and LRCK inputs. The serial data is MSB-first, 2's compliment  
format, ADC is MSB justified and DAC is LSB justified.  
LRCK  
0
1
2
9
10 11  
12  
13 14  
15  
0
1
2
9
10 11  
12  
13 14  
15  
0
1
3
3
BCLK(32fs)  
SDTO(o)  
SDTI(i)  
15 14  
8
7
2
6
1
5
4
3
2
1
0
15 14  
7
2
6
1
5
4
3
2
1
0
15  
15  
13  
13  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
BCLK(64fs)  
SDTO(o)  
15 14 13 1
0
15 14 13  
0
Don’t Care  
15 14  
1
0
Don’t Care  
Rch Data  
15 14  
1
0
SDTI(i)  
15:MSB, 0:LSB  
Lch Data  
Figure 8. Audio Data Timing  
n
Control Register Timing  
The data on the 3-wire serial interface consists of op-code (3bit), address (LSB-first, 5bit) and control data (LSB-first,  
8bit). The Transmitting data is output to each bit by “” of CCLK, the receiving data is latched by “” of CCLK. Writing  
data becomes effective by “” of CS . Reading data becomes Hi-z (floating) by “” of CS . CS should be held to “H”  
at no access.  
CCLK always need 16 edges of “” during CS . Reading/Writing of the address except 00H 09H are inhibited.  
Reading/Writing of the control registers by except op1-0 = “11” are invalid.  
In case of reading data, nothing is written to D0 D7 data.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CCLK  
CDTIO  
op0 op1op2 A0 A1 A2 A3 A4 D0 D1 D2 D3 D4 D5 D6 D7  
"1" "1"  
"X"  
op0-op2: Op-code (111:WRITE, 110:READ)  
A0-A4: Address  
D0-D7: Control Data  
Figure 9. Control Data Timing  
MS0028-E-00  
2000/05  
- 16 -  
ASAHI KASEI  
[AK4560A]  
n
Register Map  
The following registers are reset at PD pin = “L”, then inhibits writing.  
Addr  
Register Name  
D7  
0
SPPS  
D6  
0
D5  
D4  
D3  
D2  
AIN  
D1  
D0  
00H Signal Select 1  
01H Signal Select 2  
02H  
ADMIX AOUT1 AOUT0  
HPF INT/EXT  
HP  
IPGA  
ALCS BEEPS LOUT  
MOUT BEEPH  
DAC  
VOL  
MIC  
Power Management Control  
LOUTP SPKP  
HPP  
VCOM  
ADC  
03H Mode Control  
04H Timer Select  
0
0
VOL1  
VOL0 MONO1 MONO0 DEM1  
ZTM0 WTM1 WTM0 LTM1  
ZELM LMAT1 LMAT0 FDATT RATT  
DEM0  
LTM0  
LMTH  
REF0  
FDTM1 FDTM0 ZTM1  
05H ALC Mode Control 1  
06H ALC Mode Control 2  
07H Operation Mode  
08H Input PGA Control  
09H Output PGA Control  
0
0
0
0
0
0
REF6  
0
REF5  
STAT  
REF4  
ND  
REF3  
ALC2  
REF2  
REF1  
FDIN FDOUT ALC1  
IPGA0  
OPGA4 OPGA3 OPGA2 OPGA1 OPGA0  
Table 1. AK4560A Register Map  
IPGA6 IPGA5  
IPGA4 IPGA3 IPGA2 IPGA1  
0
0
Signal Select 1  
Addr  
Register Name  
D7  
0
D6  
0
D5  
ADMIX AOUT1 AOUT0  
R/W  
D4  
D3  
D2  
D1  
D0  
00H Signal Select 1  
AIN  
HPF INT/EXT  
R/W  
RD  
RESET  
0
0
0
0
1
0
0
0
INT/EXT: Select Internal / External MIC (Refer to Figure 12 and Figure 13.)  
0: Internal MIC (RESET)  
1: External MIC  
INT/EXT bit and INT_EXT_DET pin are ORed.  
When this function is controlled by INT_EXT_DET pin, INT_EXT bit is fixed to “0”. When this  
function is controlled by INT/EXT bit, INT_EXT_DET pin is fixed to “L”.  
HPF: Select HPF-Amplifier  
0: Disable (RESET)  
1: Enable  
When HPF bit is “0”, HPF-Amp becomes a unity gain buffer.  
When External MIC (INT/EXT bit = “1” or INT_EXT_DEC pin = “H”) is selected, HPF bit is  
ignored.  
AIN: Select input signal of ALC1 and change gain table of IPGA.  
0: MIC (RESET)  
1: LINE  
AOUT1-0: Select input signal of LINEOUT or Analog Volume (OPGA)  
ON/OFF of DAC is selected by AOUT0 bit and ON/OFF of Analog Through Mode is selected by  
AOUT1.  
00: Input signal is OFF. Common voltage is output.  
01:DAC (RESET)  
10: Analog Through Mode (Output signal of ALC1)  
11: Output signal of DAC and Analog Through are mixed.  
ADMIX: Output signal of ALC1 and input signal of SHT pin are mixed.  
0: Disable (RESET)  
1: Enable  
MS0028-E-00  
2000/05  
- 17 -  
ASAHI KASEI  
[AK4560A]  
Signal Select 2  
Addr  
Register Name  
D7  
SPPS  
D6  
D5  
D4  
D3  
MOUT BEEPH  
R/W  
D2  
D1  
HP  
D0  
VOL  
01H Signal Select 2  
ALCS BEEPS LOUT  
R/W  
RESET  
0
0
0
0
0
0
0
0
VOL: Select signal of analog volume (OPGA) to input to Headphone-Amp  
0: OFF (RESET)  
1: ON. Output signal of analog volume is input to Headphone-Amp.  
HP: Select output signal of Headphone-Amp  
0: OFF. Power-Save-Mode. Output HVCM voltage (RESET)  
1: ON  
BEEPH: Select BEEP signal to input to Headphone-Amp  
0: OFF (RESET)  
1: ON. Input BEEP signal to Headphone-Amp.  
MOUT: Select monaural output (Mixing = (L+R)/2).  
0: OFF. Output VCOM voltage. (RESET)  
1: ON  
LOUT: Select LINEOUT  
0: OFF. Power-Save-Mode. Output HVCM voltage. (RESET)  
1: ON  
BEEPS: Select BEEP/Shutter signal to input to Speaker-Amp  
0: OFF (RESET)  
1: ON. BEEP or Shutter signal is input to Speaker-Amp.  
ALCS: Select output signal of ALC2 to input to Speaker-Amp  
0: OFF (RESET)  
1: ON. Output signal of ALC2 is input to Speaker-Amp.  
SPPS: Speaker-Amp Power-Save-Mode  
0: Power-Save-Mode  
SP0 pin becomes Hi-z and SP1 pin is output to SVDD/2 voltage. (RESET)  
1: Normal operation  
MS0028-E-00  
2000/05  
- 18 -  
ASAHI KASEI  
[AK4560A]  
Power Management Control  
Addr  
02H  
Register Name  
Power Management Control  
D7  
D6  
D5  
HPP  
D4  
VCOM  
D3  
DAC  
D2  
ADC  
D1  
IPGA  
D0  
MIC  
LOUTP SPKP  
R/W  
R/W  
RESET  
1
1
1
1
1
1
1
1
MIC: MIC Block (Pre-Amp, EQ-Amp, HPF-Amp and MPWR) Power Control.  
0: OFF. Output pins are Hi-z.  
1: ON (RESET)  
IPGA: IPGA (ALC1) Power Control  
0: OFF  
1: ON (RESET)  
ADC: ADC Power Control  
0: OFF. SDTO pin is output “L”.  
1: ON (RESET)  
When ADC bit changes from “0” to “1”, initializing cycle (8224/fs=171.3ms@fs=48kHz) starts.  
After initializing cycle, digital data of ADC is output.  
DAC: DAC Power Control  
0: OFF  
1: ON (RESET)  
VCOM: Common Voltage (VCOM, HVCM and MVCM) Power Control  
0: OFF  
1: ON (RESET)  
HPP: Headphone-Amp Power Control (Including OPGA, BEEP and HP-Amp)  
0: OFF. Output of Headphone-Amp becomes “L” (AGND).  
1: ON (RESET)  
SPKP: Speaker Block Power Control (Including OPGA, BEEP, MOUT, ALC2 and Speaker-Amp)  
0: OFF. Output of Speaker-Amp is Hi-z.  
1: ON (RESET)  
LOUTP: Lineout Power Control  
0: OFF. Output pin is Hi-z.  
1: ON (RESET)  
Analog volume (OPGA) are enabled when SPKP bit = “1” or HPP bit = “1”.  
These bits can be partially powered-down by ON/OFF (“1” / “0”). When PD pin goes  
“L”, all the circuit in AK4560A can be powered-down regardless of these bits in the  
address.  
When bit in this address goes all “0”, all the circuits in AK4560A can be also powered-  
down. But contents of registers are kept.  
When each block is operated, VCOM bit must go “1”. VCOM bit can write “0” when all  
bits in this address can be “0”.  
Except the case of IPGA=ADC=DAC=SPKP=HPP= “0” or PD pin = “L”, MCLK,  
BCLK and LRCK should not be stopped.  
MS0028-E-00  
2000/05  
- 19 -  
ASAHI KASEI  
[AK4560A]  
MIC  
ALC1  
ADC  
DAC  
MPWR  
ADMIX  
D0:MIC  
D1:IPGA  
D2:ADC  
D3:DAC  
OPGA  
BEEP  
SHT  
LINE  
OUT  
VCOM  
HP  
D5:HPP  
(*1)  
D4:VCOM  
D7:LOUTP  
MOUT  
ALC2  
SPK  
(*1:OPGA is enabled by controlling  
HPP or SPKP bit.)  
D6:SPKP  
Figure 10. Power Management Control  
MIC  
ALC1  
ADC  
DAC  
MPWR  
ADMIX  
MVDD  
VA  
VA  
VA  
OPGA  
BEEP  
SHT  
LINE  
OUT  
VCOM  
HP  
HVDD  
VA  
VA  
HVDD  
MOUT  
ALC2  
SPK  
VA  
SVDD  
Figure 11. Analog Power Supply Source of Each Block  
MS0028-E-00  
2000/05  
- 20 -  
ASAHI KASEI  
[AK4560A]  
Mode Control  
Addr  
Register Name  
D7  
0
D6  
0
D5  
VOL1  
D4  
D3  
D2  
D1  
D0  
DEM0  
03H Mode Control  
R/W  
VOL0 MONO1 MONO0 DEM1  
R/W  
RD  
RESET  
0
0
1
0
0
0
0
1
DEM1-0: Select De-emphasis Frequency  
The AK4560A includes the digital de-emphasis filter (tc = 50/15us) by IIR filter. The filter  
corresponds to three sampling frequencies (32kHz, 44.1kHz and 48kHz). The de-emphasis filter  
selected DEM0 and DEM1 registers are enabled for input audio data.  
DEM1  
DEM0  
Mode  
44.1kHz  
OFF  
0
0
1
1
0
1
0
1
RESET  
48kHz  
32kHz  
Table 2. De-emphasis Frequencies  
MONO1-0: Select digital data to input to DAC  
MONO1  
MONO0  
LOUT  
Lch  
ROUT  
Rch  
RESET  
0
0
1
1
0
1
0
1
Lch  
Lch  
Rch  
Rch  
Rch  
Lch  
Table 3. Select digital data to input to DAC  
VOL1-0: LINEOUT Gain Setting  
As signal level of LINEOUT is different by VA power supply voltage, a gain of LINEOUT is set  
by VOL1-0 bits.  
VOL1  
VOL0  
Gain  
VA Voltage  
2.8V  
RESET  
1
1
0
1
+7.5dB  
+6.9dB  
3.0V  
Table 4. LINEOUT volume setting  
MS0028-E-00  
2000/05  
- 21 -  
ASAHI KASEI  
[AK4560A]  
Timer Select  
Addr  
04H Timer Select  
R/W  
Register Name  
D7  
D6  
D5  
D4  
ZTM0  
D3  
WTM1 WTM0 LTM1  
R/W  
D2  
D1  
D0  
LTM0  
FDTM1 FDTM0 ZTM1  
RESET  
1
0
1
0
1
0
0
0
LTM1-0: ALC1 limiter operation period at zero crossing disable (ZELM = “1”)  
The IPGA value is changed immediately. When the IPGA value is changed continuously, the  
change is done by the period specified by LTM1-0 bits.  
ALC1 Limiter Operation Period  
LTM1  
LTM0  
48kHz  
10us  
21us  
42us  
83us  
44.1kHz  
11us  
23us  
45us  
32kHz  
16us  
31us  
63us  
0
0
1
1
0
1
0
1
0.5/fs  
1/fs  
2/fs  
RESET  
4/fs  
91us  
125us  
Table 5. ALC1 Limiter Operation Period at zero crossing disable (ZELM = “1”)  
WTM1-0: ALC1 Recovery Waiting Period  
A period of recovery operation when any limiter operation does not occur during ALC1  
operation.  
Recovery operation is done at period set by WTM1-0 bits.  
When the input signal level exceeds auto recovery waiting counter reset level set by LMTH bit,  
the auto recovery waiting counter is reset.  
The waiting timer starts when the input signal level becomes below the auto recovery waiting  
counter reset level.  
ALC1 Recovery Operation Waiting Period  
WTM1  
WTM0  
48kHz  
10.7ms  
1024/fs 21.3ms  
2048/fs 42.6ms  
4096/fs 85.2ms  
44.1kHz  
11.6ms  
23.2ms  
46.4ms  
92.8ms  
32kHz  
16.0ms  
32.0ms  
64.0ms  
128.0ms  
0
0
1
1
0
1
0
1
512/fs  
RESET  
Table 6. ALC1 Recovery Operation Waiting Period  
ZTM1-0: Zero crossing timeout at writing operation by uP and ALC1 recovery operation  
When IPGA of each L/R channels do zero crossing or timeout independently, the IPGA value is  
changed by uP WRITE operation or ALC1 recovery operation  
Zero Crossing Timeout Period  
ZTM1  
ZTM0  
48kHz  
44.1kHz  
11.6ms  
23.2ms  
46.5ms  
92.9ms  
32kHz  
16.0ms  
32.0ms  
64.0ms  
128.0ms  
0
0
1
1
0
1
0
1
513/fs  
10.7ms  
1025/fs 21.4ms  
2049/fs 42.7ms  
4097/fs 85.4ms  
RESET  
Table 7. Zero Crossing Timeout  
FDTM1-0: FADEIN/OUT Cycle Setting  
The FADEIN/OUT operation is done by a period set by FDTM1-0 bits when FDIN or FDOUT  
bits are set to “1”. When IPGA of each L/R channel do zero crossing or timeout independently,  
the IPGA value is changed.  
FADEIN/OUT Period  
FDTM1  
FDTM0  
48kHz  
44.1kHz  
11.6ms  
23.2ms  
46.4ms  
92.8ms  
32kHz  
16.0ms  
32.0ms  
64.0ms  
128.0ms  
0
0
1
1
0
1
0
1
512/fs  
10.7ms  
1024/fs 21.3ms  
2048/fs 42.6ms  
4096/fs 85.2ms  
RESET  
Table 8. FADEIN/OUT Period  
MS0028-E-00  
2000/05  
- 22 -  
ASAHI KASEI  
[AK4560A]  
ALC Mode Control 1  
Addr  
Register Name  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
05H ALC Mode Control 1  
ZELM LMAT1 LMAT0 FDATT RATT  
R/W  
LMTH  
R/W  
RESET  
0
0
0
0
0
0
0
0
LMTH: ALC1 Limiter Detection Level / Recovery Waiting Counter Reset Level  
The ALC1 limiter detection level and the ALC1 recovery counter reset level are of uneven quality  
about ±2dB.  
LMTH ALC1 Limiter Detection Level ALC1 Recovery Waiting Counter Reset Level  
RESET  
0
1
ADC Input -6.0dB  
ADC Input -4.0dB  
-6.0dB > ADC Input -8.0dB  
-4.0dB >ADC Input -6.0dB  
Table 9. ALC1 Limiter Detection Level / Recovery Waiting Counter Reset Level  
RATT: ALC1 Recovery GAIN Step  
During the ALC1 Recovery operation, the number of steps changed from current IPGA value is  
set. For example, when the current IPGA value is 30H, RATT = “1” is set, IPGA changes to 32H  
by the ALC1 recovery operation, the input signal level is gained by 1dB (=0.5dB x 2).  
When the IPGA value exceeds the reference level (REF6-0), the IPGA value does not increase.  
RATT  
GAIN STEP  
RESET  
0
1
1
2
Table 10. ALC1 Recovery GAIN Step Setting  
FDATT: FADEIN/OUT ATT Step  
During the FADEIN/OUT operation, the number of steps changed from current IPGA value is  
set. For example, when the current IPGA value is 30H, FDATT = “1” is set, IPGA changes to  
32H(at FADEIN operation) or 2EH (at FADEOUT operation) by the FADEIN/OUT operation,  
the input signal level is changed by 1dB (=0.5dB x 2).  
When the IPGA value exceeds the reference level (REF6-0), the IPGA value does not increase.  
FDATT  
ATT STEP  
RESET  
0
1
1
2
Table 11. FADEIN/OUT ATT Step Setting  
LMAT1-0: ALC1 Limiter ATT Step  
During the ALC1 limiter operation, when either Lch or Rch exceeds the ALC1 limiter detection  
level set by LMTH, the number of steps attenuated from current IPGA value is set. For example,  
when the current IPGA value is 68H in the state of LMAT1-0 bit = “11”, it becomes IPGA = 64H  
by the ALC1 limiter operation, the input signal level is attenuated by 2dB (=0.5dB x 4).  
When the attenuation value exceeds IPGA = “00” (MUTE), it clips to “00”.  
LMAT1  
LMAT0  
ATT STEP  
RESET  
0
0
1
1
0
1
0
1
1
2
3
4
Table 12. ALC1 Limiter ATT Step Setting  
ZELM: Enable zero crossing detection at ALC1 Limiter operation  
0: Enable (RESET)  
1: Disable  
In case of ZELM = “0”, IPGA of each L/R channel do zero crossing or timeout independently, the IPGA  
value is changed by ALC1 operation. Zero crossing timeout is the same as ALC1 recovery operation. In case  
of ZELM = “1”, the IPGA value is changed immediately.  
MS0028-E-00  
2000/05  
- 23 -  
ASAHI KASEI  
[AK4560A]  
ALC Mode Control 2  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
06H ALC Mode Control 2  
0
RD  
0
REF6  
REF5  
REF4  
REF3  
R/W  
0
REF2  
REF1  
REF0  
R/W  
RESET  
1
1
0
0
0
0
REF6-0: Set the Reference value at ALC1 Recovery Operation  
During the ALC1 recovery operation, if the IPGA value exceeds the setting reference value by  
Gain operation, IPGA does not become the larger than the reference value.  
For example, when REF=30H, RATT=2, IPGA=2FH and IPGA will become 2FH + 2step = 31H  
by the ALC1 recovery operation, but the IPGA value becomes 30H as REF value is 30H.  
GAIN(dB)  
DATA  
STEP  
LEVEL  
MIC  
+26.0  
+25.5  
+25.0  
:
LINE  
+0.0  
-0.5  
RESET  
60H  
5FH  
5EH  
:
-1.0  
:
2CH  
2BH  
:
+0.0  
-0.5  
-26.0  
-26.5  
:
0.5dB  
73  
:
19H  
18H  
17H  
16H  
:
-9.5  
-35.5  
-36.0  
-37.0  
-38.0  
:
-10.0  
-11.0  
-12.0  
:
1dB  
8
11H  
10H  
0FH  
0EH  
:
-17.0  
-18.0  
-20.0  
-22.0  
:
-43.0  
-44.0  
-46.0  
-48.0  
:
2dB  
4dB  
12  
05H  
04H  
03H  
02H  
01H  
00H  
-40.0  
-42.0  
-46.0  
-50.0  
-54.0  
MUTE  
-66.0  
-68.0  
-72.0  
-76.0  
-80.0  
MUTE  
3
1
Table 13. Setting Reference Value at ALC1 Recovery Operation  
MS0028-E-00  
2000/05  
- 24 -  
ASAHI KASEI  
[AK4560A]  
Operation Mode  
Addr Register Name  
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
07H Operation Mode  
R/W  
0
RD  
0
STAT  
ND  
ALC2  
FDIN  
R/W  
0
ALC1  
FDOUT  
RESET  
0
0
0
1
0
0
ALC1: ALC1 Enable Flag  
0: Disable (RESET)  
1: Enable  
FDOUT: FADEOUT Enable Flag  
0: Disable (RESET)  
1: Enable  
FDIN: FADEIN Enable Flag  
0: Disable (RESET)  
1: Enable  
* When FADEIN or FADEOUT operation is done, ALC1 bit should always be “1”.  
ALC2: ALC2 Enable Flag  
0: Disable  
1: Enable (RESET)  
After initializing cycle (2048/fs=42.7ms@fs=48kHz), ALC2 is enabled. This initializing cycle  
starts when PD pin change “L” to “H” or SPKP bit change from “0” to “1”.  
ND: REF6-0 value of ALC1 is decreased to –3.5dB.  
0: Keep REF6-0 value of ALC1 (RESET)  
1: Decrease –3.5dB from REF6-0 value of ALC1  
This bit and ND pin are ORed.  
When this function is controlled by ND pin, ND bit is fixed to “0”. When this function is  
controlled by ND bit, ND pin is fixed to “L”.  
STAT: Status Flag  
0: In case of ALC1 (including FADEIN, FADEOUT and Noise Decreasing function) operation  
or initializing cycle. (RESET)  
1: Manual Mode  
STAT bit is “0” during initilizing operation after exiting power-down by PD pin. After the  
finish of the initilizing operation, STAT bit becomes “1”.  
During the ALC1 operation, STAT bit becomes “1” after the max “1” ATT/GAIN operation is  
completed by internal state.  
MS0028-E-00  
2000/05  
- 25 -  
ASAHI KASEI  
[AK4560A]  
Input PGA Control  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
08H Input PGA Control  
0
RD  
0
IPGA6 IPGA5  
IPGA4 IPGA3 IPGA2 IPGA1  
R/W  
IPGA0  
R/W  
RESET  
0
1
0
1
1
0
0
IPGA6-0: Input Analog PGA; 97 levels  
GAIN(dB)  
DATA  
STEP  
LEVEL  
MIC  
+26.0  
+25.5  
+25.0  
:
LINE  
+0.0  
-0.5  
60H  
5FH  
5EH  
:
-1.0  
:
RESET  
2CH  
2BH  
:
+0.0  
-0.5  
-26.0  
-26.5  
:
0.5dB  
73  
:
19H  
18H  
17H  
16H  
:
-9.5  
-35.5  
-36.0  
-37.0  
-38.0  
:
-10.0  
-11.0  
-12.0  
:
1dB  
8
11H  
10H  
0FH  
0EH  
:
-17.0  
-18.0  
-20.0  
-22.0  
:
-43.0  
-44.0  
-46.0  
-48.0  
:
2dB  
4dB  
12  
05H  
04H  
03H  
02H  
01H  
00H  
-40.0  
-42.0  
-46.0  
-50.0  
-54.0  
MUTE  
-66.0  
-68.0  
-72.0  
-76.0  
-80.0  
MUTE  
3
1
Table 14. Input Gain Setting  
MS0028-E-00  
2000/05  
- 26 -  
ASAHI KASEI  
[AK4560A]  
D0  
Output PGA Control  
Addr  
Register Name  
D7  
0
D6  
D5  
0
D4  
D3  
D2  
D1  
09H Output PGA Control  
0
RD  
0
OPGA4 OPGA3 OPGA2 OPGA1 OPGA0  
R/W  
R/W  
RESET  
0
0
1
1
1
1
1
OPGA4-0: Output analog PGA; 32 Level; 0dB -50dB, Mute.  
These bits can change volume of Headphone-Amps and Speaker-Amp.  
This volume includes zero crossing detection, and it does L/R channels independently. Zero  
crossing timeout is proportional to sampling rate, To = 512/fs.  
10.7ms = 512/fs@fs=48kHz  
16ms = 512/fs@fs=32kHz  
DATA  
1FH  
1EH  
1DH  
:
GAIN(dB)  
+0  
STEP  
1dB  
LEVEL  
17  
RESET  
-1  
-2  
:
10H  
0FH  
0EH  
0DH  
:
-15  
-16  
-18  
-20  
:
2dB  
4dB  
11  
05H  
04H  
03H  
02H  
01H  
00H  
-36  
-38  
-42  
-46  
-50  
Mute  
3
1
Table 15. ATT value of Analog Volume  
MS0028-E-00  
2000/05  
- 27 -  
ASAHI KASEI  
[AK4560A]  
FUNCTION DETAIL  
n
MIC BLOCK  
MIC block includes 2-inputs selectors, Internal MIC or External MIC Mode can be selected by MIC bit. (Refer to Figure  
12 and Figure 13)  
From Rch  
5
63  
3
2
61  
4
62  
1
64  
-
INT_MIC_L  
EXT_MIC_L  
ON  
HPF  
To ALC1  
+
HPF OFF  
-
+
60  
59  
EQ Amp  
+
-
INT/EXT  
Pre Amp  
HPF  
INT/EXT  
Figure 12. Internal path at selecting Internal MIC Mode (HPF OFF)  
From Rch  
63  
61  
3
4
5
62  
1
64  
2
-
INT_MIC_L  
EXT_MIC_L  
ON  
HPF  
HPF  
To ALC1  
+
OFF  
-
+
60  
59  
EQ Amp  
+
-
INT/EXT  
Pre Amp  
HPF  
INT/EXT  
Figure 13. Internal path at selecting External MIC Mode (HPF OFF)  
MS0028-E-00  
2000/05  
- 28 -  
ASAHI KASEI  
1. Pre- Amp  
[AK4560A]  
Pre-Amp is non-inverting amplifier and internally biased to MVCM voltage with 100k(typ.). Gain value of Pre-Amp is  
adjusted by external resistor.  
Gain (1+Rf/Ri) of Pre-Amp should use a range of +18 30dB.  
An external capacitor needs to cancel DC gain. Cut-off frequency is decided by a external input resistor (Ri) and a  
capacitor (C).  
Ri  
Rf  
C
63  
62  
INT_MIC_L  
EXT_MIC_L  
60  
59  
-
+
Pre Amp  
Figure 14. Pre-Amp  
2. EQ-Amp  
EQ-Amp is block to emphasize a stereo feeling at using Internal MIC Mode.  
EQ-Amp can be emphasized by adding the output signal from pre-amplifier and the reverse channel differentially. When  
External MIC Mode is selected, EQ-Amp does not connect.  
3. HPF-Amp  
To cancel wind-noise, AK4560A has the HPF-Amp which is non-inverting amplifier, 2nd order high pass filter and gain of  
0dB. The HPF-Amp can be ON/OFF by controlling the internal registers. In case of OFF, HPF-Amp becomes a unity gain  
buffer. This HPF-Amp can use when Internal MIC Mode is selected. In case of External MIC Mode, the control of  
HPF-Amp is invalid and becomes a unity gain buffer.  
4. Power Supply for MIC  
Power Supply for microphone is supplied from MPWR pin. Output voltage is MVDD – 1.4V (typ) . For example, MPWR  
pin outputs 2.5V at MVDD = 3.9V. And MPWR pin can supply the current until 3mA.  
When MIC bit is “0”, the power supply current can be stopped.  
MS0028-E-00  
2000/05  
- 29 -  
ASAHI KASEI  
[AK4560A]  
n
Shutter Signal Input  
1. Recording  
When ADMIX bit is “1”, input signal from SHT pin is attenuated to –4.5dB internally and is mixed to output signal from  
ALC1 by a gain of 0dB. Input impedance of SHT pin is 42k(typ.).  
When ADMIX bit is “0”, output signal of ALC1 is input to ADC by a gain of 0dB.  
Gain=0dB  
ALC1  
-
ADC  
+
ADMIX bit  
SHT pin  
Gain =-4.5dB  
Figure 15. ADMIX Block Diagram  
2. Playback  
When BEEPS bit is “1”, input signal from SHT pin can be input to Speaker-Amp. This signal level can be adjusted by an  
external resistor (R2). An internal resistor value (Rf) is 20k ± 30% . For example, when R2 is 20k, the final output  
level from Speaker-Amp becomes “20log10(20k/20k) dB + 5.6dB (Speaker-Amp) = +5.6dB”. (Refer to Figure 16)  
n
BEEP Input  
When BEEPH bit is “1”, input signal from BEEP pin can be input to Headphone-Amp. When BEEPS bit is “1”, input  
signal from BEEP pin can be input to Speaker-Amp.  
This signal level can be adjusted by an external resistor (R1). An internal resistor value (Rf) is 20k ± 30% . For example,  
when R1 is 20k, the final output level from Headphone-Amp becomes  
“20log10(20k/20k) dB + 11.8dB (Headphone-Amp block) = +11.8dB”. (Refer to Figure 16)  
Rf=20k  
R1  
-
BEEP  
SHT  
to SPK or HP-Amp  
to ADMIX  
+
R2  
Figure 16. Block Diagram of BEEP and SHT pin  
MS0028-E-00  
2000/05  
- 30 -  
ASAHI KASEI  
[AK4560A]  
n
Analog Volume (OPGA)  
The AK4560A includes the 0dB -50dB & MUTE analog volume with zero crossing detection for headphone and  
speaker. Zero crossing is detected on L/R channels independently. Zero crossing timeout (To) is proportional to sampling  
rate. To=512/fs@fs=48kHz=10.7ms.  
OPGA is not written during counting zero crossing timers. In case of writing control register continually, the change of  
OPGA should be written after zero crossing timeout and over. If OPGA is changed by writing to control register before  
zero crossing detection, OPGA value of L/R channels may not give a difference level.  
Usually, to remove the offset of DAC, it needs a capacitor (Ca) between LOUT2/ROUT2 and OPGL/OPGR. The cut-off  
frequency is decided by capacity of Ca and input impedance (typ. 110k) of OPGL/OPGR.  
Power supply for analog volume enables when speaker or headphone of power management bits is “1”. (SPKP bit = “1”  
or HPP bit = “1”)  
The initial value is 0dB at exiting power-down.  
LOUT2/ROUT2  
Ca  
typ.110k  
OPGA  
OPGL/OPGR  
Figure 17. Connect LOUT2/ROUT2 with OPGL/OPGR  
n
LINE input  
In case of LINE input, input impedance of LIN/RIN is 184k(typ.) and centered around the VCOM voltage. When input  
voltage is +2dBV, LIN/RIN pins should be input to –5.5dBV@VA=2.8V and less after dividing resistors externally.  
When LIN bit is “1”, LINE input is selected. Then IPGA table of ALC1 is changed to LINE side.  
ALC1  
LIN/RIN  
27k  
LINE input  
typ.184k  
22k  
Figure 18. Example of LINEIN at VA=2.8V  
MS0028-E-00  
2000/05  
- 31 -  
ASAHI KASEI  
[AK4560A]  
n
MUTE pin Function  
When MUTE pin is “H”, output signals of LINEOUT, Headphone and Speaker is muted by force, and these signals are  
output to common voltage. Then switches of AOUT1-0, VOL, BEEPH, ALCS and BEEPS become “OFF” by force.  
When MUTE pin is “L”, these output signals are normal operation.  
n
Analog Through Mode  
This mode can be input to playback circuits after adding ALC1 output signal and shutter signal. This mode can be  
controlled by AOUT1-0 bits.  
n
Noise decreasing function  
When ND pin is “H” or ND bit is “1”, the setting reference value of ALC1 (REF6-0 bits) is decreased to –3.5dB. Then this  
mode is doing at every 1step with zero crossing detection. The time constant is about 12sec@fs=32kHz and  
8sec@fs=48kHz.  
When ND pin (or ND bit) changes from “H” (or “1”) to “L” (or “0”), the current reference value operates toward the  
setting reference value of ALC1. Then this mode is doing at every 1step with zero crossing detection. The time constant is  
about 3sec@fs=32kHz and 3sec@fs=48kHz.  
In case of doing the FADEIN/FADEOUT operation during noise decreasing operation, the FADEIN/FADEOUT  
operation starts from the current IPGA value.  
MS0028-E-00  
2000/05  
- 32 -  
ASAHI KASEI  
[AK4560A]  
n
LINEOUT  
The signals of DAC or Analog Through Mode are gained to +7.5dB (@VA= 2.8V, Vol1-0 bit = “10”, refer to Figure 22)  
internally, and its signal is output from LINEOUT. This gain can be changed by VOL1-0 bits.  
Output level of LINEOUT is +2dBV and centered HVCM voltage. Load resistance is min. 10k. (Refer to Figure 19)  
Power supply voltage for LINEOUT is supplied from HVDD voltage. The supplied HVDD voltage does not change  
output level of LINEOUT. But if HVDD voltage is low, a distortion characteristic of LINEOUT is bad.  
LOUT1 and ROUT1 outputs are muted by LOUT bit. Then LOUT1 and ROUT1 pins output HVCM voltage and enter  
Power-Save-Mode. (Refer to Figure 20). When LOUTP bit is “0”, LOUT1 and ROUT1 pins become Power-Down-Mode  
and output signal is Hi-z. (Refer to Figure 21)  
When PD pin changes from “L” to “H” after power-up, LOUT1 and ROUT1 pins become Power-Save-Mode. In  
Power-Save-Mode, LOUT1 and ROUT1 pins gradually become HVCM voltage via an internal resistor (R1: typ.200k)  
from Hi-z to decrease a pop noise. And when Power OFF, the pop noise can be decreased by controlling via Power-  
Save-Mode.  
LOUT  
LOUT1/ROUT1  
LOUT  
LOUT  
C1  
LOUTP  
LOUT  
-
+
R2  
R1  
Figure 19. LINEOUT Normal Operation  
LOUT  
LOUT1/ROUT1  
LOUT  
LOUT  
C1  
LOUTP  
LOUT  
-
+
R2  
R1  
Figure 20. LINEOUT Power-Save-Mode  
LOUT  
LOUT1/ROUT1  
C1  
LOUT  
LOUT  
LOUTP  
LOUT  
R1  
-
+
R2  
Figure 21. LINEOUT Power-Down-Mode  
MS0028-E-00  
2000/05  
- 33 -  
ASAHI KASEI  
[AK4560A]  
n
Headphone-Amps  
Power supply voltage for Headphone-Amp is supplied from HVDD pin and centered around HVCM voltage. Load  
resistance of headphone output is min.220. (Refer to Figure 23).  
Output level of Headphone-Amp is gained to +11.8dB internally, and THD+N is 1% at –3.4dBV(1.9Vpp) output level.  
(Refer to Figure 22)  
+10dBV  
+6.3dBV  
+2dBV  
+11.8dB  
0dBV  
+7.5dBV  
-3.4dBV  
-5.5dBV  
-5.5dBV  
THD+N=1%  
FS  
-10.0dBV  
-10dBV  
+7.5dBV  
-13.7dBV  
-17.5dBV  
FS-12dB  
+11.8dB  
-20dBV  
-8dB  
-25.5dBV  
-30dBV  
LINEOUT(High)  
HP- Amp  
+11.8dB  
FS-12dB  
-10dBV  
DAC  
-13.7dBV  
+7.5dB  
-17.5dBV  
Analog Volume  
OPGA = -8dB  
LINEOUT(Low)  
-17.5dBV  
-25.5dBV  
ALC2  
Figure 22. LINEOUT and Headphone-Amp Level Diagram (@VA=2.8V,OPGA=-8dB,VOL1-0=+7.5dB)  
MS0028-E-00  
2000/05  
- 34 -  
ASAHI KASEI  
[AK4560A]  
When HP bit is “0”, output signal is muted and enter the Power-Save-Mode. Then HPL and HPR pins output HVCM  
voltage. (Refer to Figure 24)  
When HPP bit is “0”, Headphone-Amp is powered down perfectly. Then HPL and HPR pins go “L” (AGND). (Refer to  
Figure 25)  
When PD pin changes from “L” to “H” after power-up, HPL and HPR pins become Power-Save-Mode. In Power-  
Save-Mode, output voltage of HPL and HPR pins gradually change from AGND to HVCM voltage by the time constants  
of an internal resistor (R2: typ.10k) and an external capacitor (C1). (Refer to Figure 24)  
In case of entering the normal operation mode after that, HP bit changes from “0” to “1”.  
In the Power-Down-Mode ( PD pin = “L” or HPP bit = “0”), output voltage of HPL and HPR pins gradually change from  
AGND to HVCM voltage by the time constants of an internal resistor (R2:typ.10k) and an external capacitor (C1).  
(Refer to Figure 25)  
HP  
HP  
HPL/HPR  
C1  
HP  
HP  
R1  
-
+
R2  
HPP  
Figure 23. Headphone-Amps Normal Operation  
HP  
HP  
HPL/HPR  
C1  
HP  
HP  
R1  
-
+
R2  
HPP  
Figure 24. Headphone-Amps Power-Save-Mode  
HP  
HP  
HP  
HPL/HPR  
C1  
HP  
R1  
-
+
R2  
HPP  
Figure 25. Headphone-Amps Power-Down-Mode  
MS0028-E-00  
2000/05  
- 35 -  
ASAHI KASEI  
[AK4560A]  
n
SPEAKER BLOCK  
The output signal from analog volume is converted into a monaural signal, its signal is input to speaker-Amp via ALC2  
circuit. This speaker-Amp is a monaural output by BTL, can be output to maximum 80mW at 8. (Refer to Figure 26)  
Speaker Blocks (MOUT, ALC2 and Speaker-Amp) can be powered ON/OFF by controlling SPKP bit.  
When SPKP bit is “0”, MOUT, SP0 and SP1 pins go Hi-z. (Refer to Figure 28)  
When SPPS bit is “0”, Speaker-Amp becomes Power-Save-Mode. (Refer to Figure 27)  
Then SP0 pin goes Hi-z and SP1 pin is output to SVDD/2 via R1 (typ.100k ).  
When PD pin changes from “L” to “H” after power-up, SP0 and SP1 pins become Power-Save-Mode. In Power-Save-  
Mode, SP0 and SP1 pins gradually become HVCM voltage via an internal resistor (R1: typ.200k) from Hi-z to decrease  
a pop noise. And when Power OFF (SPKP = “0”), the pop noise can be decreased by controlling via Power-Save-Mode.  
SPPS  
or  
SPKP  
SP0  
SPPS  
SPPS  
-
+
SPPS  
8
SPPS  
SPPS  
SPKP  
SP1  
-
+
R1  
Figure 26. Speaker-Amp Normal Operation  
SPPS  
or  
SPKP  
SP0  
SPPS  
SPPS  
-
+
SPPS  
8Ω  
SPPS  
SPPS  
SP1  
SPKP  
-
+
R1  
Figure 27. Speaker-Amp Power-Save-Mode  
MS0028-E-00  
2000/05  
- 36 -  
ASAHI KASEI  
[AK4560A]  
SPPS  
or  
SPKP  
SP0  
SPPS  
SPPS  
-
+
SPPS  
8Ω  
SPPS  
SPKP  
SPPS  
SP1  
-
+
R1  
Figure 28. Speaker-Amp Power-Down-Mode  
1. Monaural Output  
Both L/R channels of output signal from analog volume (OPGA) are mixed at (L+R)/2. When MOUT bit is “0”, these  
signals can be OFF. Then MOUT pin outputs VCOM voltage. Load impedance is 10k(min.).  
When SPKP bit is “0”, MOUT pin becomes Power-Down-Mode and outputs Hi-z.  
2. ALC2  
Input resistance of ALC2 is 23k(typ.) and centered around VCOM voltage, and input signal level is –5.5dBV. (Refer to  
Figure 29)  
Limiter detection level is not related to power supply voltage, output level is limited by the ALC2 circuit when input  
signal exceeds –7.5dBV (=FS-2dB@VA=2.8V) and over.  
When the continuous signal of –7.5dBV and over is input to the ALC2 circuit, the change period of ALC2 limiter  
operation is 2/fs=42us@fs=48kHz and the attenuation level is 0.5dB/step.  
The ALC2 recovery operation is always detected by zero crossing operation and gains 1dB/step. The ALC2 recovery  
operation is done until input level of speaker-Amp goes to –9.5dBV(=FS-4dB@VA=2.8V). The ALC2 recovery  
operation period is fixed to 2048/fs=42.7mS@fs=48kHz.  
In case of inputting signal between –7.5dBV and –9.5dBV, the ALC2 limiter or recovery operations are not done.  
When PD pin changes from “L” to “H” or SPKP bit changes from “0” to “1”, the initilizing cycle (2048/fs = 42.7ms  
@fs=48kHz) starts. ALC2 is disabled during initilizing cycle, ALC2 starts after finishing the initilizing cycle.  
Parameter  
ALC2 Limiter operation  
-7.5dBV  
ALC2 Recovery operation  
-9.5dBV  
Operation Start Level  
fs=48kHz  
fs=32kHz  
2/fs = 42us  
2/fs = 63us  
No  
2048/fs = 42.7ms  
2048/fs = 64ms  
Yes(Timeout = 2048/fs )  
1dB step  
Period  
Zero-crossing Detection  
ATT/GAIN  
0.5dB step  
Table 16. Content of ALC2  
MS0028-E-00  
2000/05  
- 37 -  
ASAHI KASEI  
[AK4560A]  
0dBV  
-1.9dBV  
Full-differential  
-5.5dBV  
-5.5dBV  
-5.5dBV  
+5.6dB  
-7.9dBV  
-7.5dBV  
FS-2dB  
FS  
-2dB  
-6dB  
Single-ended  
-10dBV  
-8dB  
FS-4dB  
-9.5dBV  
-13.5dBV  
-0.4dB  
-17.5dBV  
-17.5dBV  
FS-12dB  
+18dB  
-20dBV  
-30dBV  
-8dB  
-25.5dBV  
LINEOUT(High)  
-10dBV  
HP-Amp  
FS-12dB  
DAC  
+7.5dB  
-17.5dBV  
SPK  
Analog Volume  
OPGA = -8dB  
LINEOUT(Low)  
-25.5dBV  
-17.5dBV  
ALC2  
Figure 29. Speaker-Amp Output Level Diagram (VA=2.8V, OPGA = -8dB, VOL1-0=+7.5dB)  
MS0028-E-00  
2000/05  
- 38 -  
ASAHI KASEI  
[AK4560A]  
n
ALC1 Operation  
1. ALC1 Limiter Operation  
During the ALC1 limiter operation, when either Lch or Rch exceed ALC1 limiter detection level (LMTH), IPGA value is  
attenuated by ALC1 limiter ATT step (LMAT1-0) automatically. Then the IPGA value is changed commonly for L/R  
channels.  
In case of ZELM = “1”, timeout period is set by LTM1-0 bits. The operation for attenuation is done continuously until the  
input signal level becomes LMTH or less. After finishing the operation for attenuation, if ALC1 bit does not change into  
“0”, the operation of attenuation repeats when the input signal level exceed LMTH. (Refer to Figure 30)  
In case of ZELM = “0”, timeout period is set by ZTM1-0 bits. The IPGA value is attenuated by zero crossing detection  
automatically. (Refer to Figure 31)  
The ALC1 operation corresponds to the impulse noise inadditional to the ALC operation of AK4516A. When the impulse  
noise is input, the ALC1 recovery operation becomes the faster period than a normal recovery operation.  
[Explanation for ALC1 operation]  
Limiter starts  
ATT level (LMAT1-0)  
ATT level (LMAT1-0)  
ATT level (LMAT1-0)  
Limiter detection level(LMTH)  
(1) 2dB  
Recovery waiting counter  
reset level (LMTH)  
Limiter finish  
Limiter update period (LTM1-0)  
Figure 30. Disable ALC1 zero crossing detection (ZELM = “1”)  
(1). When the signal is input between 2dB, the AK4560A does not operate the ALC1 limiter and recovery.  
MS0028-E-00  
2000/05  
- 39 -  
ASAHI KASEI  
[AK4560A]  
(3) Zero crossing timeout (ZTM1-0)  
ATT level (LMAT1-0)  
(1)  
Limiter detection level (LMTH)  
(2)  
(2)  
Recovery waiting counter reset level (LMTH)  
Limiter detection level (LMTH)  
(1)  
ATT level (LMAT1-0)  
(3) Zero crossing timeout (ZTM1-0)  
Figure 31. In case of continuing the limiter operation (ZELM = “0”)  
(1) When the input level exceeds the ALC1 limiter detection level, the ALC1 limiter operation starts. Zero crossing  
counter starts at the same time.  
(2) Zero crossing detection. When the input signal is detected, the IPGA value is attenuated until the value set by  
LMAT1-0 and the ALC1 limiter operation is finished.  
(3) Zero crossing timeout is set by ZTM1-0 bits. But the first zero crossing timeout cycle after starting the limiter  
operation may be the short cycle by the state of the last zero crossing counter. (For example, in case of doing the  
limiter operation during the recovery operation)  
MS0028-E-00  
2000/05  
- 40 -  
ASAHI KASEI  
[AK4560A]  
2. ALC1 Recovery Operation  
The ALC1 recovery operation waits until a time of setting WTM1-0 bits after completing the ALC1 limiter. If the input  
signal does not exceed “LMTH – 2dB”, the ALC1 recovery operation is done. The IPGA value increases automatically by  
this operation up to the set reference level (REF6-0 bits). Then the IPGA value is set for L/R commonly. The ALC1  
recovery operation is done at a period set by WTM1-0 bits.  
When L/R channels are detected by zero crossing operation during WTM1-0, the ALC1 recovery operation waits until  
WTM1-0 period and the next recovery operation is done.  
During the ALC1 recovery operation, when either input signal level of Lch or Rch exceeds the ALC1 limiter detection  
level (LNTH), the ALC1 recovery operation changes into the ALC1 limiter operation immediately  
In case of “(Recovery waiting counter reset level) Input Signal < Limiter detection level” during the ALC1 recovery  
operation, the waiting timer of ALC1 recovery operation is reset. Therefore, in case of “(Recovery waiting counter reset  
level) > Input Signal”, the waiting timer of ALC1 recovery operation starts.  
Limiter detection level (LMTH)  
Recovery waiting counter  
reset level (LMTH)  
During recovery counter reset  
Zero crossing detect  
(1)  
WTM counter starts  
ZTM counter starts  
(2)  
(2)  
WTM counter starts  
WTM counter starts  
ZTM counter starts  
WTM counter starts  
(2)  
Figure 32. The transition from the limiter operation to the recovery operation  
(1). When the input signal is below the ALC1 recovery waiting counter reset level, the ALC1 recovery operation waits the  
time set by WTM1-0 bits. If the input signal does not exceed the ALC1 limiter detection level or the ALC1 recovery  
waiting counter reset level, the ALC1 recovery operation is done only once.  
(2). The IPGA value is changed by the zero crossing operation in ALC1 recovery operation, but the next counter of the  
ALC1 recovery waiting timer is also starting.  
Other:  
When a channel of one side enters the limiter operation during the waiting zero crossing, the present ALC1 recovery  
operation stops, according as the small value of IPGA (a channel of waiting zero crossing), the ALC1 limiter operation is  
done.  
When both channels are waiting for the next ALC1 recovery operation, the ALC1 limiter operation is done from the IPGA  
value of a point in time.  
During the ALC1 operation, the value of writing in IPGA6-0 bits is ignored.  
MS0028-E-00  
2000/05  
- 41 -  
ASAHI KASEI  
[AK4560A]  
(1) Recovery waiting counter reset level (LMTH) or reference value of recovery operation (REF6-0)  
Zero crossing detect  
Gain Level (RATT)  
Limiter detection level (LMTH)  
(2) Zero crossing timeout (ZTM1-0) & Recovery waiting time (WTM1-0)  
Figure 33. The continuous ALC1 Recovery Operation  
(1). When the input signal exceeds the ALC1 recovery waiting counter reset level, the ALC1 recovery operation stops, the  
ALC1 recovery operation is repeated when input signal level is below “LMTH” again. When the IPGA value by  
repeating the ALC1 recovery operation reaches the reference level (REF6-0 bits), the ALC1 recovery operation stops  
also  
(2). ZTM bit sets zero crossing timeout and WTM bit sets the ALC1 recovery operation period. When the ALC1 recovery  
waiting time (WTM1-0 bits) is shorter than zero crossing timeout period of ZTM1-0 bit, the ALC1 recovery is  
operated by the zero crossing timeout period of ZTM1-0 bit. Therefore, in this case the auto recovery operation period  
is not constant.  
3. ALC1 Operation OFF (ALC1 bit = “0”)  
The zero crossing detection of IPGA is done to L/R channels independently. Zero crossing timeout is set by ZTM1-0 bits.  
When the control register is written from uP, the zero crossing counter for L/R channels commonly is reset and its counter  
starts. When the signal detects zero crossing or zero crossing timeout, the written value from uP becomes a valid for the  
first time. In case of writing to the control register continually, the control register should be written by an interval more  
than zero crossing timeout. If an appointed interval is written, there is possible to the different value the IPGA value of  
L/R channels  
For example, when the present IPGA value is updated by zero crossing detection in a channel of one side and other  
channel is not updated, if the new data is written in IPGA, the updated channel is keeping the last IPGA value and other  
channel is updated to a new IPGA value by the last zero crossing counter. Therefore, zero crossing counter does not reset  
when the zero crossing detection is waiting.  
MS0028-E-00  
2000/05  
- 42 -  
ASAHI KASEI  
[AK4560A]  
During ALC1 operation, the following registers are inhibits.  
LTM1-0, LMTH, LMAT1-0, WTM1-0, ZTM1-0, RATT, REF6-0  
Manual-Mode  
WR (Power Management Control & Signal Select registers)  
WR (ZTM1-0, WTM1-0, LTM1-0)  
WR (LMAT1-0, RATT, LMTH)  
WR (REF6-0)  
* The value of IPGA should be the  
same or smaller than REF’s.  
WR (IPGA6-0)  
WR (ALC1= “1”)  
ALC1 Operation  
No  
Finish ALC1 mode?  
Yes  
WR (ALC1= “0”)  
RD (STAT)  
No  
STAT = “1”?  
Yes  
Finish ALC1-Mode and become manual-Mode  
Figure 34. Registers set-up sequence at ALC1 operation  
MS0028-E-00  
2000/05  
- 43 -  
ASAHI KASEI  
[AK4560A]  
n
FADEIN Mode  
In FADEIN Mode, the IPGA value is increased at the value set by FDATT when FDIN bit changes from “0” to “1”.  
The update period can be set by FDTM1-0 bits. The FADEIN Mode is always detected by the zero crossing operation.  
This operation is kept over the REF value or until the limiter operation at once. If the limiter operation is done during  
FADAIN cycle, the FADEIN operation becomes the ALC operation.  
NOTE: When FDIN and FDOUT bits are “1”, FDOUT operation is enabled.  
IPGA Ouput  
ALC1 bit  
FDIN bit  
(5)  
(1) (2)  
(3)  
(4)  
Figure 35. Example for controlling sequence in FADEIN operation  
(1) WR (ALC1 = FDIN = “0”): The ALC1 operation is disabled. To start the FADEIN operation, FDIN bit is written in  
“0”.  
(2) WR (IPGA = “MUTE”): The IPGA output is muted.  
(3) WR (ALC1 = FDIN = “1”): The FADEIN operation starts. The IPGA changes from the MUTE state to the FADEIN  
operation.  
(4) The FADEIN operation is done until the limiter detection level (LMTH) or the reference level (REF6-0). After  
completing the FADEIN operation, the AK4560A becomes the ALC1 operation.  
(5) FADEIN time can be set by FDTM1-0 and FDATT bits  
E.g. FDTM1-0 = 1024/fs @ fs =48kHz = 21.3ms, FDATT = 1step  
(96 x FDTM1-0) / FDATT = 96 x 21.3ms / 1 = 2.04s  
MS0028-E-00  
2000/05  
- 44 -  
ASAHI KASEI  
[AK4560A]  
n
FADEOUT Mode  
In FADEOUT mode, the present IPGA value is decreased until the MUTE state when FDOUT bit changes from “0” to  
“1”. This operation is always detected by the zero crossing operation.  
If the large signal is input to the ALC1 circuit during the FADEOUT operation, the ALC1 limiter operation is done.  
However a total time of the FADEOUT operation is the same time, even if the limiter operation is done. The period of  
FADEOUT is set by FDTM1-0 bits, a number of step can be set by FDATT bit.  
When FDOUT bit changes into “0” during the FADEOUT operation, the ALC1 operation start from the preset IPGA  
value.  
When FDOUT and ALC1 bits change into “0” at the same time, the FDOUT operation stops and the IPGA becomes the  
value at that time.  
NOTE: When FDIN and FDOUT bits are “1”, FDOUT bit is enabled.  
IPGA Output  
ALC1 bit  
FDOUT bit  
(2)  
(1)  
(3)  
(4) (5) (6) (7) (8)  
Figure 36. Example for controlling sequence in FADEOUT operation  
(1) WR (FDOUT = “1”): The FADEOUT operation starts. Then ALC1 bit should be always “1”.  
(2) FADEOUT time can be set by FDTM1-0 and FDATT bits.  
During the FADEIN operation, the zero crossing timeout period is ignored and becomes the same as the FADEIN  
period.  
E.g. FDTM1-0 = 1024/fs @ fs =48kHz = 21.3ms, FDATT = 1step  
(96 x FDTM1-0) / FDATT = 96 x 21.3ms / 1 = 2.04s  
(3) The FADEOUT operation is completed. The IPGA value is the MUTE state. If FDOUT bit is keeping “1”, the IPGA  
value is keeping the MUTE state.  
(4) Analog and digital outputs mutes externally. Then the IPGA value is the MUTE state.  
(5) WR (ALC1 = FDOUT = “0”): Exit the ALC1 and FADEOUT operations  
(6) WR (IPGA): The IPGA value changes the initial value (exiting MUTE state).  
(7) WR (ALC1 = “1”, FDOUT = “0”): The ALC1 operation restarts. But the ALC1 bit should not write until completing  
zero crossing operation of IPGA.  
(8) Release a mute function of analog and digital outputs externally.  
MS0028-E-00  
2000/05  
- 45 -  
ASAHI KASEI  
[AK4560A]  
PACKAGE  
64pin LQFP(Unit:mm)  
12.0±0.3  
10.0  
1.70max  
1.40  
0.10±0.10  
33  
48  
49  
32  
64  
17  
M
0.17±0.05  
1
16  
0.21±0.05  
0.10  
1.0  
0 10  
°
°
0.45±0.2  
0.10  
n
Package & Lead frame material  
Package molding compound: Epoxy  
Lead frame material:  
Cu  
Lead frame surface treatment: Solder plate  
MS0028-E-00  
2000/05  
- 46 -  
ASAHI KASEI  
[AK4560A]  
MARKING  
AK4560VQ  
XXXXXXX  
JAPAN  
1
- Asashi kasei Logo  
- Marketing Code: AK4560AVQ  
- Date Code: XXXXXXX (7 digits)  
First 4 digits: weekly code, Remains 3 digits: code management in office  
- Country of Origin: JAPAN  
IMPORTANT NOTICE  
These products and their specifications are subject to change without notice. Before considering any use or  
application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor  
concerning their current status.  
AKM assumes no liability for infringement of any patent, intellectual property, or other right in the  
application or use of any information contained herein.  
Any export of these products, or devices or systems containing them, may require an export license or other  
official approval under the law and regulations of the country of export pertaining to customs and tariffs,  
currency exchange, or strategic materials.  
AKM products are neither intended nor authorized for use as critical components in any safety, life support,  
or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except  
with the express written consent of the Representative Director of AKM. As used here:  
a. A hazard related device or system is one designed or intended for life support or maintenance of safety or  
for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or  
perform may reasonably be expected to result in loss of life or in significant injury or damage to person or  
property.  
b. A critical component is one whose failure to function or perform may reasonably be expected to result,  
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing  
it, and which must therefore meet very high standards of performance and reliability.  
It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise  
places the product with a third party to notify that party in advance of the above content and conditions, and  
the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless  
from any and all claims arising from the use of said product in the absence of such notification.  
MS0028-E-00  
2000/05  
- 47 -  

相关型号:

AKD4561

16bit CODEC with built-in ALC and MIC/HP-Amp
AKM

AKD4562

EVALUATION BOARD REV.A FOR AK4562
AKM

AKD4562(AKD4562)

Evaluation board Rev.A for AK4562
AKM

AKD4562.(AKD4562)

Evaluation board Rev.A for AK4562
AKM

AKD4563A

Low Power 16bit 4ch ADC & 2ch DAC with ALC
AKM

AKD4563A_06

16bit 4ch A/D and 2ch D/A converter,
AKM

AKD4564

16BIT CODEC WITH BUILT-IN ALC AND MIC/HP/SPK-AMP
AKM

AKD4565

Evaluation board Rev.A for AK4565
AKM

AKD4566

20bit Stereo CODEC with built-in IPGA & HP-AMP
AKM

AKD4569

20-Bit Stereo CODEC with IPGA & HP-AMP
AKM

AKD4571

USB Interface Audio CODEC
AKM

AKD4584

24Bit 96kHz Audio CODEC with DIT/DIR
AKM