AKD4632 [AKM]

16-Bit ΔΣ Mono CODEC with ALC & MIC/SPK/Video-AMP; 16位ΔΣ单声道编解码器与ALC & MIC / SPK /视频- AMP
AKD4632
型号: AKD4632
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

16-Bit ΔΣ Mono CODEC with ALC & MIC/SPK/Video-AMP
16位ΔΣ单声道编解码器与ALC & MIC / SPK /视频- AMP

解码器 编解码器
文件: 总70页 (文件大小:619K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ASAHI KASEI  
[AK4632]  
AK4632  
∆Σ  
16-Bit  
Mono CODEC with ALC & MIC/SPK/Video-AMP  
GENERAL DESCRIPTION  
The AK4632 is a 16-bit mono CODEC with Microphone-Amplifier, Speaker-Amplifier and Video-  
Amplifier. Input circuits include a Microphone-Amplifier and an ALC (Automatic Level Control) circuit.  
Output circuits include a Speaker-Amplifier and Mono Line Output. Video circuits include a LPF and  
Video-Amplifier. The AK4632 suits a moving picture of Digital Still Camera and etc. This  
speaker-Amplifier supports a Piezo Speaker. The AK4632 is housed in a space-saving 32-pin QFN  
package.  
FEATURE  
1. 16-Bit Delta-Sigma Mono CODEC  
2. Recording Function  
1ch Mono Input  
1st MIC Amplifier: 0dB, 20dB, 26dB or 32dB  
2nd Amplifier with ALC: -8dB +27.5dB, 0.5dB Step  
ADC Performance: S/(N+D): 80dB, DR, S/N: 85dB  
3. Playback Function  
Digital Volume: +12dB -115dB, 0.5dB Step, Mute  
Mono Line Output Performance: S/(N+D): 85dB, S/N: 93dB  
Mono Speaker-Amp  
- Speaker-Amp Performance: S/(N+D): 60dB, S/N: 90dB (150mW@ 8)  
- BTL Output  
- ALC (Automatic Level Control) Circuit  
- Output Power: 400mW @ 8, SVDD=3.3V  
3.0Vrms@SVDD=5V  
Beep Input  
4. Power Management  
5. Video Function  
A Composite Video Input  
Gain Control (-1.0dB +10.5dB, 0.5dB Step)  
Low Pass Filter  
A Video-Amp for Composite Video Signal(+6dB)  
DC Direct Output or Sag Compensation Output  
6. Flexible PLL Mode:  
Frequencies:  
11.2896MHz, 12MHz, 12.288MHz, 13.5MHz, 24MHz, 27MHz (MCKI pin)  
1fs (FCK pin)  
16fs, 32fs or 64fs (BICK pin)  
7. EXT Mode:  
Frequencies: 256fs, 512fs or 1024fs (MCKI pin)  
8. Sampling Rate:  
PLL Slave Mode (FCK pin) : 7.35kHz ~ 26kHz  
PLL Slave Mode (BICK pin) : 7.35kHz ~ 48kHz  
PLL Slave Mode (MCKI pin):  
8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz  
PLL Master Mode:  
8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz  
MS0396-E-00  
2005/06  
- 1 -  
ASAHI KASEI  
[AK4632]  
EXT Slave Mode:  
7.35kHz ~ 48kHz (256fs), 7.35kHz ~ 26kHz (512fs), 7.35kHz ~ 13kHz (1024fs)  
9. Output Master Clock Frequency: 256fs  
10. Serial µP Interface: 3-wire  
11. Master / Slave Mode  
12. Audio Interface Format: MSB First, 2’s compliment  
ADC: DSP Mode, 16bit MSB justified, I2S  
DAC: DSP Mode, 16bit MSB justified, 16bit LSB justified, I2S  
13. Ta = -10 70°C  
14. Power Supply  
CODEC: 2.6 3.6V (typ. 3.3V)  
Speaker-Amp: 2.6 5.25V (typ. 3.3V/5.0V)  
Video-Amp: 2.8 5.25V (typ. 3.3V/5.0V)  
15. Power Supply Current: 23.5 mA (All Power ON)  
16. Package: 32pin QFN  
17. Register Compatible with AK4631  
„ Block Diagram  
AVSS AVDD  
VCOM  
MICOUT  
AIN  
PMMIC  
MPI  
MIC  
MIC Power  
Supply  
PMADC  
DVDD  
DVSS  
ALC1  
(IPGA)  
MIC-AMP  
ADC HPF  
0dB or 20dB  
or 26dB or 32dB  
PDN  
Audio  
FCK  
ALC1A  
DACA  
Interface  
PMDAC  
PMAO  
BICK  
SDTO  
SDTI  
AOUT  
DAC  
DVOL  
BEEPA  
DSP  
and  
uP  
ALC1M  
DACM  
SVDD  
SVSS  
PMSPK  
SPP  
ALC2  
CSN  
SPK-  
AMP  
MIX  
Control  
Register  
CCLK  
CDTI  
SPN  
PMBP  
BEEP  
VOUT  
PMPLL  
MCKO  
PMV  
GCA  
LPF  
PLL  
-1dB ~ +10.5dB  
Step 0.5dB  
+6dB  
CLAMP  
MCKI  
VSAG  
VCOC  
MIN  
MOUT  
VIN  
VVDD  
Figure 1. AK4632 Block Diagram  
MS0396-E-00  
2005/06  
- 2 -  
ASAHI KASEI  
[AK4632]  
„ Ordering Guide  
AK4632VN  
AKD4632  
10 +70°C  
Evaluation board for AK4632  
32pin QFN (0.5mm pitch)  
„ Pin Layout  
MOUT  
AOUT  
BEEP  
AIN  
DVDD  
BICK  
FCK  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
AK4632VN  
SDTO  
SDTI  
CDTI  
CCLK  
CSN  
Top View  
MICOUT  
MIC  
MPI  
VCOM  
„ Compare with AK4632  
Function  
Video Function  
Package  
AK4631  
No  
28pin QFN (5.2mm x 5.2mm)  
AK4632  
Yes  
32pin QFN (5.0mm x 5.0mm)  
The audio function of the AK4632 is compatible with that of the AK4631. Since the register map of audio  
function is the same as the AK4631’s, the software of the audio function can run on the ak4632 without any  
change.  
MS0396-E-00  
2005/06  
- 3 -  
ASAHI KASEI  
No. Pin Name  
[AK4632]  
PIN/FUNCTION  
I/O  
O
Function  
Output Pin for Loop Filter of PLL Circuit  
1
VCOC  
This pin should be connected to AVSS with one resistor and capacitor in series.  
Analog Power Supply Pin  
2
3
4
5
6
7
AVDD  
AVSS  
VVDD  
VIN  
-
-
Analog Ground Pin  
-
Video Block Power Supply Pin.  
I
Composite Video Signal Input Pin  
Composite Video Signal Driver Pin  
Composite Video Signal Output Feedback Input Pin  
Power-Down Mode Pin  
VOUT  
VSAG  
O
I
8
PDN  
I
H: Power up, L: Power down reset and initialize the control register.  
Chip Select Pin  
9
CSN  
I
I
10 CCLK  
11 CDTI  
12 SDTI  
13 SDTO  
14 FCK  
Control Data Clock Pin  
I
Control Data Input Pin  
I
Audio Serial Data Input Pin  
O
Audio Serial Data Output Pin  
I/O Frame Clock Pin  
15 BICK  
16 DVDD  
17 DVSS  
18 MCKI  
19 MCKO  
20 SPN  
I/O Audio Serial Data Clock Pin  
-
-
Digital Power Supply Pin  
Digital Ground Pin  
I
External Master Clock Input Pin (Internal Pull Down 25k@PDN pin =L)  
Master Clock Output Pin  
O
O
O
-
Speaker Amp Negative Output Pin  
Speaker Amp Positive Output Pin  
Speaker Amp Power Supply Pin  
Speaker Amp Ground Pin  
21 SPP  
22 SVDD  
23 SVSS  
24 MIN  
-
I
ALC2 Input Pin  
25 MOUT  
26 AOUT  
27 BEEP  
28 AIN  
O
O
I
Mono Analog Output Pin  
Mono Line Output Pin  
Beep Signal Input Pin  
I
IPGA (ALC1) Input Pin  
29 MICOUT  
30 MIC  
O
I
Microphone Analog Output Pin  
Microphone Input Pin (Mono Input)  
MIC Power Supply Pin for Microphone  
Common Voltage Output Pin. Common Voltage = 0.45 x AVDD  
Bias voltage of ADC inputs and DAC outputs.  
31 MPI  
O
32 VCOM  
O
Note : All input pins except analog input pins (MIC, AIN, MIN, BEEP and VIN pins) should not be left floating.  
Note : The exposed pad on the bottom surface of the package must be open.  
MS0396-E-00  
2005/06  
- 4 -  
ASAHI KASEI  
[AK4632]  
„ Handling of Unused Pin  
The unused I/O pins should be processed appropriately as below.  
Classification  
Pin Name  
Setting  
These pins should be open and each path  
should be switched off.  
Analog Input  
MIC, AIN, BEEP, MIN, VSAG  
Analog Output MICOUT, MPI, AOUT, MOUT, SPP, SPN, VOUT  
These pins should be open.  
These pins should be connected to DVSS.  
MCKI, SDTI, FCK(when M/S bit = 0),  
BICK(when M/S bit = 0)  
Digital Input  
These pins should be open.  
MCKO, SDTO, FCK(when M/S bit = 1),  
BICK(when M/S bit = 1)  
Digital Output  
ABSOLUTE MAXIMUM RATINGS  
(AVSS, DVSS, SVSS=0V; Note 1)  
Parameter  
Symbol  
AVDD  
DVDD  
SVDD  
VVDD  
GND1  
GND2  
IIN  
min  
max  
Units  
V
V
V
V
Power Supplies:  
Analog  
Digital  
Speaker-Amp  
Video  
|AVSS – DVSS| (Note 2)  
0.3  
0.3  
0.3  
0.3  
-
6.0  
6.0  
6.0  
6.0  
0.3  
V
V
|AVSS – SVSS|  
(Note 2)  
-
0.3  
Input Current, Any Pin Except Supplies  
Analog Input Voltage(Audio)  
Analog Input Voltage(Video)  
Digital Input Voltage  
-
±10  
mA  
V
(Note 3)  
(Note 4)  
VINA  
VINV  
VIND  
Ta  
Tstg  
Pd  
0.3  
0.3  
0.3  
10  
65  
-
AVDD+0.3  
VVDD+0.3  
DVDD+0.3  
70  
V
V
Ambient Temperature (powered applied)  
Storage Temperature  
Maximum Power Dissipation (Note 5)  
°C  
°C  
mW  
150  
700  
Note 1. All voltages with respect to ground.  
Note 2. AVSS, DVSS and SVSS must be connected to the same analog ground plane.  
Note 3. MIC, AIN, BEEP, MIN pins  
Note 4. VIN pin  
Note 5. In case that PCB wiring density is 100%. This power is the AK4632 internal dissipation that does not include  
power of externally connected speaker.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
MS0396-E-00  
2005/06  
- 5 -  
ASAHI KASEI  
[AK4632]  
RECOMMENDED OPERATING CONDITIONS  
(AVSS, DVSS, SVSS=0V; Note 1)  
Parameter  
Symbol  
AVDD  
DVDD  
min  
typ  
3.3  
3.3  
max  
3.6  
3.6  
Units  
V
V
Power Supplies Analog  
2.6  
2.6  
(Note 6)  
Digital  
Speaker-Amp (Note 7)  
Video (Note 8)  
Difference  
SVDD  
VVDD  
AVDD-DVDD  
2.6  
3.3 / 5.0  
3.3 / 5.0  
0
5.25  
5.25  
0.3  
V
V
V
2.8 or AVDD  
-0.3  
Note 1. All voltages with respect to ground  
Note 6. The power up sequence between AVDD, DVDD and SVDD is not critical.  
When the power supplies are partially powered OFF, the AK4632 must be reset by bringing PDN pin Lafter  
these power supplies are powered ON again.  
Note 7. SVDD = 2.6 3.6V when 8dynamic speaker is connected to the AK4632. If SVDD is more than 3.6V when  
8dynamic speaker is connected to the AK4632, the output of Speaker-Amp should be restricted in consideration  
of maximum power dissipation as the following.  
SPoMax : Maximum Output Power of SPK-Amp[mW]  
SPKMPD : Maximum Power Dissipation of SPK-Amp[mW]  
Rmin  
: Minimum Impedance of speaker[]  
Vmax  
: Maximum permission output voltage of SPK-Amp[Vrms]  
SPKMPD = 700 – AVDD(max) x 17.5 – VVDD(max) x 12 – SVDD(max) x 27  
A = 2 x sqrt(2) x SVDD(max) / π  
B = A x A – 4 x Rmin x SPKMPD / 1000  
Vmax= (A – sqrt(B)) / 2  
SPoMax = 1000 x Vmax x Vmax / Rmin  
Maximum Output Power of SPK-Amp at B < 0 : No limitation  
Maximum Output Power of SPK-Amp at B 0: This power should be less than or equal to  
SPoMax[mW].  
Regardless of the condition of B, the distortion of output signal increases, when SPK-Amp output power  
exceeds 240mW.  
Note 8. Minimum value is higher value between 2.8V and AVDD[V].  
* AKM assumes no responsibility for the usage beyond the conditions in this datasheet.  
MS0396-E-00  
2005/06  
- 6 -  
ASAHI KASEI  
[AK4632]  
ANALOG CHRACTERISTICS  
(Ta=25°C; AVDD, DVDD, SVDD, VVDD=3.3V; AVSS=DVSS=SVSS=0V; fs=8kHz, BICK=64fs; Signal  
Frequency=1kHz; 16bit Data; Measurement frequency=20Hz 3.4kHz; EXT Slave Mode; unless otherwise specified)  
min  
typ  
max  
Units  
Parameter  
MIC Amplifier  
Input Resistance  
Gain  
20  
30  
0
20  
26  
32  
40  
kΩ  
dB  
dB  
dB  
dB  
(MGAIN1-0 bits = 00)  
(MGAIN1-0 bits = 01)  
(MGAIN1-0 bits = 10)  
(MGAIN1-0 bits = 11)  
-
-
-
-
-
-
-
-
MIC Power Supply: MPI pin  
Output Voltage  
Load Resistance  
Load Capacitance  
(Note 9)  
2.22  
2
-
2.47  
-
-
2.72  
-
30  
V
kΩ  
pF  
Input PGA Characteristics:  
Input Resistance (Note 10)  
Step Size  
5
0.05  
8  
10  
0.5  
-
15  
0.9  
+27.5  
kΩ  
dB  
dB  
Gain Control Range  
ADC Analog Input Characteristics: MIC Æ IPGA Æ ADC, MIC Gain=20dB, IPGA=0dB, ALC1=OFF  
Resolution  
-
0.168  
68  
75  
75  
-
0.198  
80  
85  
85  
16  
0.228  
-
-
-
Bits  
Vpp  
dB  
dB  
dB  
Input Voltage (MIC Gain=20dB, Note 11)  
S/(N+D)  
D-Range  
S/N  
(1dBFS) (Note 12)  
(60dBFS)  
DAC Characteristics:  
Resolution  
-
-
16  
Bits  
Mono Line Output Characteristics: AOUT pin, DAC AOUT, RL=10kΩ  
Output Voltage (Note 13)  
1.78  
73  
83  
83  
10  
-
1.98  
85  
93  
93  
-
2.18  
-
-
-
-
Vpp  
dB  
dB  
dB  
kΩ  
pF  
S/(N+D)  
D-Range  
S/N  
(0dBFS) (Note 12)  
(-60dBFS)  
Load Resistance  
Load Capacitance  
-
30  
Note 9. Output voltage is proportional to AVDD voltage. Vout = 0.75 x AVDD (typ)  
Note 10. When IPGA Gain is changed, this typical value changes between 8kand 11k.  
Note 11. Input voltage is proportional to AVDD voltage. Vin = 0.06 x AVDD (typ)  
Note 12. When a PLL reference clock is FCK pin in PLL Slave Mode, S/(N+D) is 77dB (typ).  
Note 13. Output voltage is proportional to AVDD voltage. Vout = 0.6 x AVDD (typ)  
MS0396-E-00  
2005/06  
- 7 -  
ASAHI KASEI  
[AK4632]  
Units  
min  
typ  
max  
Parameter  
Speaker-Amp Characteristics: SPP/SPN pins, MIN Æ SPP/SPN, ALC2=OFF, RL=8, BTL, SVDD=3.3V  
Output Voltage  
(Note 14)  
S/(N+D)  
2.47  
3.10  
20  
-
-
80  
8
-
3.09  
4.00  
60  
50  
20  
90  
-
3.71  
4.80  
-
-
-
-
-
30  
Vpp  
Vpp  
dB  
dB  
dB  
dB  
SPKG1-0 bits = 00(-0.5dBFS)  
SPKG1-0 bits = 01(-0.5dBFS)  
at 150mW Output  
at 240mW Output  
at 400mW Output  
S/N (Note 16)  
Load Resistance  
Load Capacitance  
-
pF  
Speaker-Amp Characteristics: MIN Æ SPP/SPN pins, ALC2=OFF, CL=3µF, Rserial=10x 2, BTL, SVDD=5.0V  
Output Voltage  
(Note 14)  
-
6.80  
-
20  
80  
50  
-
6.72  
8.50  
60  
50  
80  
-
-
Vpp  
Vpp  
dB  
dB  
dB  
SPKG1-0 bits = 10”  
SPKG1-0 bits = 11”  
SPKG1-0 bits = 10”  
SPKG1-0 bits = 11”  
10.20  
-
-
90  
-
3
S/(N+D) (Note 14)  
(Note 15)  
S/N (Note 15) (Note 16)  
Load Impedance (Note 17)  
Load Capacitance  
-
µF  
BEEP Input: BEEP pin, External Input Resistance= 20kΩ  
Maximum Input Voltage (Note 18)  
Output Voltage (Input Voltage=0.6Vpp)  
BEEP Æ SPP/SPN (SPKG1-0 bits = 00)  
BEEP Æ AOUT  
-
1.98  
-
Vpp  
0.74  
0.3  
1.48  
0.6  
2.22  
0.9  
Vpp  
Vpp  
Mono Input: MIN pin  
Maximum Input Voltage (Note 19)  
-
12  
2.18  
24  
-
36  
Vpp  
kΩ  
Input Resistance  
(Note 20)  
Mono Output: MOUT pin, DACMOUT  
Output Voltage  
Load Resistance  
Load Capacitance  
(Note 21)  
1.78  
10  
-
1.98  
-
-
2.18  
-
30  
Vpp  
kΩ  
pF  
Note 14. The full scale of Input signal of MIN pin is 1.98Vpp.  
Note 15. In case of measuring between SPP pin and SPN pin directly.  
Note 16. There are no relations with the setup of SPKG1-0 bits, and it is the same value.  
Note 17. Load impedance is total impedance of series resistance and piezo speaker impedance at 1kHz in Figure 35. Load  
capacitance is capacitance of piezo speaker. When piezo speaker is used, 10or more series resistors should be  
connected at both SPP and SPN pins, respectively.  
Note 18. The maximum input voltage of the BEEP is proportional to AVDD voltage and external input resistance(Rin).  
Vout = 0.6 x AVDD x Rin/20k(max).  
Note 19. Maximum Input Voltage is proportional to AVDD voltage. Vin = 0.66 x AVDD (max)  
Note 20. When ALC2 Gain is changed, this typical value changes between 22kand 26k.  
Note 21. Output Voltage is proportional to AVDD voltage. Vout = 0.6 x AVDD (typ)  
MS0396-E-00  
2005/06  
- 8 -  
ASAHI KASEI  
[AK4632]  
Parameter  
min  
typ  
max  
Units  
Y Input Characteristics:  
Maximum Input Voltage (Note 22)  
Pull Down Current  
-
-
1.2  
2.0  
-
-
Vpp  
µA  
V Output Characteristics:  
Output Gain  
Maximum Output  
Voltage  
VIN=100kHz (GCA=0dB)  
at DC output  
5.0  
2.4  
-
6.0  
2.52  
2.4  
7.0  
-
-
dB  
Vpp  
Vpp  
at Sag Compensation Output  
100µF+2.2 uF, VVDD 3.135 V  
at Sag Compensation Output  
47µF+1.0uF, VVDD 3.135 V  
at DC output  
-
2.4  
-
Vpp  
Clamp Voltage  
S/N  
Secondary Distortion VIN=3.58MHz, 1.0Vpp(Sin Wave)  
-
-
-
0.15  
66  
-45  
-
-
-
V
dB  
dB  
BW=100kH 6MHz  
(Note 23)  
Load Resistance  
Load Capacitance  
140  
-
-
150  
-
-
-
15  
400  
pF  
pF  
C1(See Figure 2)  
C2(See Figure 2) (Note 24)  
LPF  
Frequency Response  
Input=1.26Vpp, Sin Wave Response at 27MHz  
(0dB at 100kHz)  
-3.0  
-
-0.5  
-30  
-
dB  
dB  
Response at 6.75MHz  
-20  
Group Delay  
-
10  
100  
0.9  
nsec  
dB  
|GD3MHz GD6MHz|  
GCA Characteristics:  
Step Size  
0.1  
0.5  
GCA = -1.0dB +10.5dB  
Power Supplies  
Power Up (PDN = H)  
All Circuit Power-up: (Note 25)  
AVDD+DVDD  
fs=8kHz  
fs=48kHz  
-
-
9
11.5  
-
mA  
mA  
17.5  
SVDD: Speaker-Amp Normal Operation (SPPS bit = 1, No Output)  
SVDD=3.3V  
SVDD=5.0V  
-
-
7
9
-
27  
mA  
mA  
VVDD (Note 26)  
VVDD=3.3V  
VVDD=5.0V  
-
-
7.5  
8
-
12  
mA  
mA  
Power Down (PDN = L) (Note 27)  
AVDD+DVDD+SVDD+VVDD  
-
10  
100  
µA  
Note 22. Input Voltage doesn’t depend on VVDD.  
Note 23. In the case of using Sag Compensation Circuit with 47µF+ 1.0uF and SAGC1-0 bits = 10”  
Note 24. R1 and C2 compose of Low Pass Filter(LPF) in Figure 2. The cut off frequency of LPF is 10.6MHz at C2 =  
400pF.  
R1  
75 ohm  
Video Signal Output  
R2  
75 ohm  
C1  
C2  
Figure 2. Load Capacitance C1 and C2  
MS0396-E-00  
2005/06  
- 9 -  
ASAHI KASEI  
[AK4632]  
Note 25. PLL Master Mode (MCKI=12.288MHz) and PMV=PMMIC = PMADC = PMDAC = PMSPK = PMVCM =  
PMPLL = MCKO = PMAO = PMBP = MPWR = M/S =1. And output current from MPI pin is 0mA. When the  
AK4632 is EXT mode (PMPLL = MCKO = M/S = 0), AVDD+DVDDis typically 7mA@fs=8kHz,  
9.5mA@fs=48kHz).  
Note 26. This is the case of SAGC bits = 00and no load resistance and capacitance. When SAGC bits = 10and Black  
signal is output, this current is typ.8mA. In the case of DC Output, this current increases by DC voltage / 150 .  
DC Output Voltage is 0V at PMV bit = 0, and then DC current doesn’t flow. When any signal isn’t input at  
using Sag Compensation Circuit, PMV bit should be set to 0.  
Note 27. MCKI pin is fixed to DVSS and all digital inputs pins except MCKI pin are fixed to DVSS or DVSS.  
FILTER CHRACTERISTICS  
(Ta = 25°C; AVDD, DVDD = 2.6 3.6V; SVDD =2.6 5.25V; VVDD =2.8 5.25V; fs=8kHz)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
±0.16dB  
0.66dB  
1.1dB  
6.9dB  
PB  
0
-
-
-
4.7  
-
-
3.5  
3.6  
4.0  
-
3.0  
-
-
-
kHz  
kHz  
kHz  
kHz  
kHz  
dB  
Passband  
(Note 28)  
Stopband  
Passband Ripple  
(Note 28)  
SB  
PR  
-
-
±0.1  
Stopband Attenuation  
SA  
GD  
GD  
73  
-
-
-
-
-
-
dB  
1/fs  
µs  
Group Delay  
(Note 29)  
17.1  
0
Group Delay Distortion  
ADC Digital Filter (HPF):  
Frequency Response (Note 28) 3.0dB  
FR  
-
-
-
0.62  
1.81  
3.99  
-
-
-
Hz  
Hz  
Hz  
0.5dB  
0.1dB  
DAC Digital Filter:  
Passband  
(Note 28) ±0.1dB  
0.7dB  
PB  
0
-
-
4.6  
-
59  
-
-
3.6  
4.0  
-
-
-
3.6  
-
-
-
±0.01  
-
-
kHz  
kHz  
6.0dB  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay  
(Note 28)  
SB  
PR  
SA  
GD  
kHz  
dB  
dB  
(Note 29)  
16.8  
1/fs  
DAC Digital Filter + Analog Filter:  
Frequency Response: 0 3.4kHz  
FR  
-
±1.0  
-
dB  
Note 28. The passband and stopband frequencies are proportional to fs (system sampling rate).  
For example, ADC is PB=0.45*fs (@-1.1dB). A reference of frequency response is 1kHz.  
Note 29. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the  
16-bit data of a channel from the input register to the output register of the ADC. This time includes the group  
delay of the HPF. For the DAC, this time is from setting the 16-bit data of a channel from the input register to the  
output of analog signal.  
DC CHRACTERISTICS  
(Ta = 25°C; AVDD, DVDD = 2.6 3.6V; SVDD =2.6 5.25V)  
Parameter  
Symbol  
min  
typ  
max  
Units  
V
V
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Output Voltage  
Low-Level Output Voltage  
Input Leakage Current  
VIH  
VIL  
70%DVDD  
-
-
-
-
-
-
-
30%DVDD  
(Iout=80µA)  
(Iout= 80µA)  
VOH  
VOL  
Iin  
DVDD0.4  
-
V
V
-
0.4  
±10  
-
µA  
MS0396-E-00  
2005/06  
- 10 -  
ASAHI KASEI  
[AK4632]  
SWITING CHARACTERISTICS  
(Ta = 25°C; AVDD, DVDD = 2.6 3.6V; SVDD =2.6 5.25V ; VVDD =2.8 5.25V; CL=20pF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
PLL Master Mode (PLL Reference Clock = MCKI pin) (Figure 3)  
MCKI Input: Frequency  
Pulse Width Low  
Pulse Width High  
MCKO Output:  
fCLK  
tCLKL  
tCLKH  
11.2896  
0.4/fCLK  
0.4/fCLK  
-
-
-
27.0  
MHz  
ns  
-
-
ns  
Frequency  
fMCK  
dMCK  
dMCK  
fFCK  
dFCK  
tBCK  
tBCK  
tBCK  
dBCK  
-
40  
-
256 x fFCK  
-
60  
-
kHz  
%
Duty Cycle except fs=29.4kHz, 32kHz  
fs=29.4kHz, 32kHz (Note 30)  
FCK Output: Frequency  
Duty Cycle  
50  
33  
-
%
8
-
48  
-
kHz  
%
50  
BICK: Period (BCKO1-0 = 00)  
(BCKO1-0 = 01)  
-
1/16fFCK  
1/32fFCK  
1/64fFCK  
50  
-
ns  
-
-
ns  
(BCKO1-0 = 10)  
-
-
ns  
Duty Cycle  
-
-
%
Audio Interface Timing  
DSP Mode: (Figure 4, Figure 5)  
FCK to BICK (Note 31)  
FCK to BICK (Note 32)  
BICK to SDTO (BCKP = 0)  
BICK to SDTO (BCKP = 1)  
SDTI Hold Time  
tDBF  
tDBF  
tBSD  
tBSD  
tSDH  
tSDS  
0.5 x tBCK -40  
0.5 x tBCK  
0.5 x tBCK + 40  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 x tBCK -40  
0.5 x tBCK  
0.5 x tBCK +40  
-70  
-70  
50  
-
-
-
-
70  
70  
-
SDTI Setup Time  
50  
-
Except DSP Mode: (Figure 6)  
BICK to FCK Edge  
FCK to SDTO (MSB)  
tBFCK  
tFSD  
-40  
-70  
-
-
40  
70  
ns  
ns  
(Except I2S mode)  
BICK to SDTO  
SDTI Hold Time  
tBSD  
tSDH  
tSDS  
-70  
50  
-
-
-
70  
-
ns  
ns  
ns  
SDTI Setup Time  
50  
-
MS0396-E-00  
2005/06  
- 11 -  
ASAHI KASEI  
[AK4632]  
Parameter  
Symbol  
min  
typ  
max  
Units  
PLL Slave Mode (PLL Reference Clock: FCK pin) (Figure 7, Figure 8)  
FCK: Frequency  
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK: Period  
fFCK  
tFCKH  
duty  
7.35  
tBCK-60  
45  
8
-
-
-
-
-
26  
kHz  
1/fFCK-tBFCK  
ns  
%
ns  
ns  
ns  
55  
tBCK  
1/64fFCK  
240  
1/16fFCK  
Pulse Width Low  
Pulse Width High  
tBCKL  
tBCKH  
-
-
240  
PLL Slave Mode (PLL Reference Clock: BICK pin) (Figure 7, Figure 8)  
FCK: Frequency  
DSP Mode: Pulse width High  
fFCK  
tFCKH  
duty  
7.35  
8
48  
kHz  
ns  
tBCK-60  
-
1/fFCK-tBFCK  
Except DSP Mode: Duty Cycle  
BICK: Period (PLL3-0 = 0001)  
(PLL3-0 = 0010)  
45  
-
55  
-
%
tBCK  
tBCK  
tBCK  
tBCKL  
tBCKH  
-
1/16fFCK  
ns  
-
1/32fFCK  
-
ns  
(PLL3-0 = 0011)  
Pulse Width Low  
-
1/64fFCK  
-
ns  
0.4 x tBCK  
0.4 x tBCK  
-
-
-
ns  
Pulse Width High  
-
ns  
PLL Slave Mode (PLL Reference Clock: MCKI pin) (Figure 9)  
MCKI Input: Frequency  
Pulse Width Low  
Pulse Width High  
MCKO Output:  
fCLK  
fCLKL  
fCLKH  
11.2896  
0.4/fCLK  
0.4/fCLK  
-
-
-
27.0  
MHz  
ns  
-
-
ns  
Frequency  
fMCK  
dMCK  
dMCK  
fFCK  
-
256 x fFCK  
-
kHz  
%
Duty Cycle except fs=29.4kHz, 32kHz  
fs=29.4kHz, 32kHz (Note 30)  
FCK: Frequency  
40  
-
50  
33  
-
60  
-
%
8
48  
kHz  
ns  
DSP Mode: Pulse width High  
Except DSP Mode: Duty Cycle  
BICK: Period  
tFCKH  
duty  
tBCK-60  
45  
-
1/fFCK-tBFCK  
-
55  
%
tBCK  
1/64fFCK  
0.4 x tBCK  
0.4 x tBCK  
-
1/16fFCK  
ns  
Pulse Width Low  
tBCKL  
tBCKH  
-
-
-
ns  
Pulse Width High  
-
ns  
Audio Interface Timing  
DSP Mode: (Figure 10,Figure 11)  
FCK to BICK (Note 31)  
FCK to BICK (Note 32)  
BICK to FCK (Note 31)  
BICK to FCK (Note 32)  
BICK to SDTO (BCKP = 0)  
BICK to SDTO (BCKP = 1)  
SDTI Hold Time  
tFCKB  
tFCKB  
tBFCK  
tBFCK  
tBSD  
0.4 x tBCK  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.4 x tBCK  
0.4 x tBCK  
-
0.4 x tBCK  
-
-
80  
80  
-
tBSD  
-
tSDH  
50  
50  
SDTI Setup Time  
tSDS  
-
Except DSP Mode: (Figure 13)  
FCK Edge to BICK (Note 33)  
BICK to FCK Edge (Note 33)  
FCK to SDTO (MSB) (Except I2S mode)  
BICK to SDTO  
tFCKB  
tBFCK  
tFSD  
50  
50  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
80  
80  
-
tBSD  
tSDH  
tSDS  
-
SDTI Hold Time  
50  
50  
SDTI Setup Time  
-
MS0396-E-00  
2005/06  
- 12 -  
ASAHI KASEI  
[AK4632]  
Parameter  
Symbol  
min  
typ  
Max  
Units  
EXT Slave Mode (Figure 12)  
MCKI Frequency: 256fs  
512fs  
fCLK  
fCLK  
fCLK  
tCLKL  
tCLKH  
fFCK  
1.8816  
3.7632  
7.5264  
0.4/fCLK  
0.4/fCLK  
7.35  
2.048  
12.288  
MHz  
MHz  
MHz  
ns  
4.096  
13.312  
1024fs  
8.192  
13.312  
Pulse Width Low  
Pulse Width High  
FCK Frequency (MCKI = 256fs)  
(MCKI = 512fs)  
(MCKI = 1024fs)  
Duty Cycle  
-
-
-
-
ns  
8
8
8
-
48  
26  
13  
55  
-
kHz  
kHz  
%
fFCK  
7.35  
fFCK  
7.35  
duty  
45  
BICK Period  
tBCK  
tBCKL  
tBCKH  
312.5  
130  
-
ns  
ns  
ns  
BICK Pulse Width Low  
Pulse Width High  
-
-
130  
-
-
Audio Interface Timing (Figure 13)  
FCK Edge to BICK (Note 33)  
BICK to FCK Edge (Note 33)  
FCK to SDTO (MSB) (Except I2S mode)  
BICK to SDTO  
tFCKB  
tBFCK  
tFSD  
50  
50  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
80  
80  
-
tBSD  
tSDH  
tSDS  
-
SDTI Hold Time  
50  
50  
SDTI Setup Time  
-
Note 30. Duty Cycle = (the width of L) / (the period of clock) × 100  
Note 31. MSBS, BCKP bits = 00or 11”  
Note 32. MSBS, BCKP bits = 01or 10”  
Note 33. BICK rising edge must not occur at the same time as FCK edge.  
Parameter  
Symbol  
min  
typ  
max  
Units  
Control Interface Timing:  
CCLK Period  
tCCK  
tCCKL  
tCCKH  
tCDS  
200  
80  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK Pulse Width Low  
Pulse Width High  
CDTI Setup Time  
CDTI Hold Time  
80  
40  
tCDH  
tCSW  
tCSS  
40  
CSN HTime  
CSN to CCLK “  
CCLK to CSN “  
150  
150  
50  
tCSH  
Reset Timing  
PDN Pulse Width  
(Note 34)  
(Note 35)  
tPD  
150  
-
-
-
-
ns  
PMADC to SDTO valid  
tPDV  
1059  
1/fs  
Note 34. The AK4632 can be reset by the PDN pin = L”  
Note 35. This is the count of FCK from the PMADC = 1.  
MS0396-E-00  
2005/06  
- 13 -  
ASAHI KASEI  
[AK4632]  
„ Timing Diagram  
1/fCLK  
VIH  
VIL  
MCKI  
tCLKH  
dFCK  
tCLKL  
dFCK  
1/fFCK  
50%DVDD  
FCK  
1/fMCK  
MCKO  
50%DVDD  
tMCKOH  
tMCKOL  
dMCK = tMCKOL x fMCK x 100  
Figure 3. Clock Timing (PLL Master mode)  
FCK  
50%DVDD  
tBCK  
tDBF  
dBCK  
BICK  
(BCKP = "0")  
50%DVDD  
50%DVDD  
BICK  
(BCKP = "1")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH  
VIL  
SDTI  
MSB  
Figure 4. Audio Interface Timing (PLL Master mode & DSP mode: MSBS = 0)  
MS0396-E-00  
2005/06  
- 14 -  
ASAHI KASEI  
[AK4632]  
FCK  
50%DVDD  
tBCK  
tDBF  
dBCK  
BICK  
(BCKP = "1")  
50%DVDD  
50%DVDD  
BICK  
(BCKP = "0")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH  
VIL  
SDTI  
MSB  
Figure 5. Audio Interface Timing (PLL Master mode & DSP mode: MSBS = 1)  
50%DVDD  
FCK  
tBFCK  
dBCK  
BICK  
SDTO  
SDTI  
50%DVDD  
50%DVDD  
tFSD  
tBSD  
tSDS  
tSDH  
VIH  
VIL  
Figure 6. Audio Interface Timing (PLL Master mode & Except DSP mode)  
MS0396-E-00  
2005/06  
- 15 -  
ASAHI KASEI  
[AK4632]  
1/fFCK  
VIH  
VIL  
FCK  
tFCKH  
tBCKH  
tBFCK  
tBCK  
VIH  
VIL  
BICK  
(BCKP = "0")  
tBCKL  
VIH  
VIL  
BICK  
(BCKP = "1")  
Figure 7. Clock Timing (PLL Slave mode; PLL Reference clock = FCK or BICK pin & DSP mode; MSBS = 0)  
1/fFCK  
VIH  
FCK  
VIL  
tFCKH  
tBCKH  
tBFCK  
tBCK  
VIH  
VIL  
BICK  
(BCKP = "1")  
tBCKL  
VIH  
VIL  
BICK  
(BCKP = "0")  
Figure 8. Clock Timing (PLL Slave mode; PLL Reference Clock = FCK or BICK pin & DSP mode; MSBS = 1)  
MS0396-E-00  
2005/06  
- 16 -  
ASAHI KASEI  
[AK4632]  
1/fCLK  
VIH  
VIL  
MCKI  
tCLKH  
tCLKL  
1/fFCK  
VIH  
VIL  
FCK  
tFCKH  
tFCKL  
tBCK  
VIH  
VIL  
BICK  
tBCKH  
tBCKL  
1/fMCK  
50%DVDD  
MCKO  
tMCKOH  
tMCKOL  
dMCK = tMCKOL x fMCK x 100  
Figure 9. Clock Timing (PLL Slave mode; PLL Reference Clock = MCKI pin & Except DSP mode)  
MS0396-E-00  
2005/06  
- 17 -  
ASAHI KASEI  
[AK4632]  
tFCKH  
VIH  
VIL  
FCK  
tFCKB  
VIH  
VIL  
BICK  
(BCKP = "0")  
VIH  
VIL  
BICK  
(BCKP = "1")  
tBSD  
SDTO  
SDTI  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH  
VIL  
MSB  
Figure 10. Audio Interface Timing (PLL Slave mode & DSP mode; MSBS = 0)  
tFCKH  
VIH  
FCK  
VIL  
tFCKB  
VIH  
VIL  
BICK  
(BCKP = "1")  
VIH  
VIL  
BICK  
(BCKP = "0")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDS  
tSDH  
VIH  
VIL  
SDTI  
MSB  
Figure 11. Audio Interface Timing (PLL Slave mode, DSP mode; MSBS = 1)  
- 18 -  
MS0396-E-00  
2005/06  
ASAHI KASEI  
[AK4632]  
1/fCLK  
VIH  
VIL  
MCKI  
tCLKH  
tCLKL  
1/fFCK  
VIH  
VIL  
FCK  
tFCKH  
tBCKH  
tFCKL  
tBCKL  
tBCK  
VIH  
VIL  
BICK  
Figure 12. Clock Timing (EXT Slave mode)  
VIH  
FCK  
VIL  
tBFCK  
tFCKB  
VIH  
VIL  
BICK  
SDTO  
SDTI  
tFSD  
tBSD  
50%DVDD  
MSB  
tSDS  
tSDH  
VIH  
VIL  
Figure 13. Audio Interface Timing (PLL, EXT Slave mode & Except DSP mode)  
MS0396-E-00  
2005/06  
- 19 -  
ASAHI KASEI  
[AK4632]  
VIH  
CSN  
VIL  
tCSS  
tCCKL  
tCCKH  
VIH  
VIL  
CCLK  
CDTI  
tCCK  
tCDH  
tCDS  
VIH  
VIL  
C1  
C0  
R/W  
Figure 14. WRITE Command Input Timing  
tCSW  
VIH  
VIL  
CSN  
tCSH  
VIH  
VIL  
CCLK  
CDTI  
VIH  
VIL  
D2  
D1  
D0  
Figure 15. WRITE Data Input Timing  
VIH  
VIL  
CSN  
tPDV  
SDTO  
50%DVDD  
Figure 16. Power Down & Reset Timing 1  
tPD  
PDN  
VIL  
Figure 17. Power Down & Reset Timing 2  
MS0396-E-00  
2005/06  
- 20 -  
ASAHI KASEI  
[AK4632]  
OPERATION OVERVIEW  
„ System Clock  
There are the following four clock modes to interface with external devices. (See Table 1 and Table 2)  
Mode  
PMPLL bit M/S bit  
PLL3-0 bit  
See Table 4  
MCKPD bit  
0
Figure  
Figure 19  
PLL Master Mode  
PLL Slave Mode 1  
(PLL Reference Clock: MCKI pin)  
PLL Slave Mode 2  
(PLL Reference Clock: FCK or BICK pin)  
1
1
1
0
See Table 4  
See Table 4  
0
1
Figure 20  
1
0
Figure 21  
EXT Slave Mode  
Invalid state (Note 36)  
0
0
0
1
X
X
0
X
Figure 22  
-
Table 1. Clock Mode Setting (X: Don’t care)  
Note 36. If this mode is selected, the invalid clocks are output from MCKO, FCK and BICK pins.  
Mode  
MCKO bit  
MCKO pin  
MCKI pin  
BICK pin  
FCK pin  
Master Clock  
Input for PLL  
(Note 37)  
0
1
16fs/32fs/64fs  
Output  
1fs  
Output  
LOutput  
PLL Master Mode  
256fs Output  
Master Clock  
Input for PLL  
(Note 37)  
0
1
LOutput  
PLL Slave Mode 1  
(PLL Reference Clock: MCKI pin)  
16fs/32fs/64fs  
Input  
1fs  
Input  
256fs Output  
PLL Slave Mode 2  
(PLL Reference Clock: FCK or BICK pin)  
16fs/32fs/64fs  
Input  
1fs  
Input  
0
0
GND  
LOutput  
LOutput  
256fs/  
512fs/  
1024fs  
Input  
1fs  
Input  
32fs  
Input  
EXT Slave Mode  
Note 37. 11.2896MHz/12MHz/12.288MHz/13.5MHz/24MHz/27MHz  
Table 2. Clock pins state in Clock Mode  
[Pull-down resistor of MCKI pin]  
When the master clock is input, MCKPD bit should be 0. When the MCKI pin is floating, the pin should be pulled-down  
by internal 25kresistor at MCKPD bit = 1(Default).  
MCKI  
MCKPD bit ="0"  
25kΩ  
AK4632  
Figure 18. Pull-down resistor of MCKI pin  
MS0396-E-00  
2005/06  
- 21 -  
ASAHI KASEI  
[AK4632]  
„ Master Mode/Slave Mode  
The M/S bit selects either master or slave modes. M/S bit = 1selects master mode and 0selects slave mode. When the  
AK4632 is power-down mode (PDN pin = L) and exits reset state, the AK4632 is slave mode. After exiting reset state,  
the AK4632 goes master mode by changing M/S bit = 1.  
When the AK4632 is used by master mode, FCK and BICK pins are a floating state until M/S bit becomes 1. FCK and  
BICK pins of the AK4632 should be pulled-down or pulled-up by about 100kresistor externally to avoid the floating  
state.  
M/S bit  
Mode  
0
1
Slave Mode  
Master Mode  
Default  
Table 3. Select Master/Salve Mode  
„ PLL Mode  
When PMPLL bit is 1, a fully integrated analog phase locked loop (PLL) generates a clock that is selected by the  
PLL3-0 and FS3-0 bits. The PLL lock time is shown in Table 4, whenever the AK4632 is supplied to a stable clocks after  
PLL is powered-up (PMPLL bit = 01) or sampling frequency changes.  
1) Setting of PLL Mode  
PLL  
Reference  
Clock Input  
Pin  
R and C of  
VCOC pin  
PLL Lock  
Time  
(max)  
PLL3 PLL2 PLL1 PLL0  
Input  
Frequency  
Mode  
bit  
bit  
bit  
bit  
C[F]  
R[]  
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
FCK pin  
BICK pin  
BICK pin  
BICK pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
N/A  
1fs  
16fs  
32fs  
6.8k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
220n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
10n  
160ms  
2ms  
2ms  
Default  
64fs  
2ms  
11.2896MHz  
12.288MHz  
12MHz  
24MHz  
13.5MHz  
27MHz  
40ms  
40ms  
40ms  
40ms  
40ms  
40ms  
12  
13  
Others  
1
10n  
Others  
Table 4. Setting of PLL Mode (*fs: Sampling Frequency)  
2) Setting of sampling frequency in PLL Mode.  
When PLL2 bit is 1(PLL reference clock input is MCKI pin), the sampling frequency is selected by FS2-0 bits as  
defined in Table 5.  
Mode  
0
1
2
3
4
5
6
7
10  
11  
14  
15  
Others  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
Sampling Frequency  
8kHz  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Default  
12kHz  
16kHz  
24kHz  
7.35kHz  
11.025kHz  
14.7kHz  
22.05kHz  
32kHz  
48kHz  
29.4kHz  
44.1kHz  
N/A  
Others  
Table 5. Setting of Sampling Frequency at PLL2 bit = 1and PMPLL bit = 1”  
MS0396-E-00  
2005/06  
- 22 -  
ASAHI KASEI  
[AK4632]  
When PLL2 bit is 0(PLL reference clock input is FCK or BICK pin), the sampling frequency is selected by FS3,  
FS1-0 bits. (See Table 6)  
Mode  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
Sampling Frequency Range  
0
0
0
0
1
1
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
0
1
0
1
0
1
0
1
2
3
6
7
0
0
1
1
1
1
Default  
7.35kHz fs 8kHz  
8kHz < fs 12kHz  
12kHz < fs 16kHz  
16kHz < fs 24kHz  
24kHz < fs 32kHz  
32kHz < fs 48kHz  
N/A  
Others  
Others  
Table 6. Setting of Sampling Frequency at PLL2 bit = 0and PMPLL bit = 1”  
„ PLL Unlock State  
1) PLL Master Mode (PMPLL bit = 1, M/S bit = 1)  
In this mode, irregular frequency clocks are output from FCK, BICK and MCKO pins after PMPLL bit = 0Æ 1or  
sampling frequency is changed. After that PLL is unlocked, BICK and FCK pins output Lfor a moment, and invalid  
frequency clock is output from MCKO pin at MCKO bit = 1. If MCKO bit is 0, MCKO pin is output to L. (See  
Table 7)  
After the PLL is locked, a first period of FCK and BICK may be invalid clock, but these clocks return to normal state after  
a period of 1/fs.  
MCKO pin  
MCKO bit = 0MCKO bit = 1”  
PLL State  
BICK pin  
FCK pin  
Invalid  
Invalid  
256fs Output  
Invalid  
LOutput  
See Table 9  
Invalid  
LOutput  
1fs Output  
After that PMPLL bit 0Æ 1”  
PLL Unlock  
PLL Lock  
LOutput  
LOutput  
LOutput  
Table 7. Clock Operation at PLL Master Mode (PMPLL bit = 1, M/S bit = 1)  
2) PLL Slave Mode (PMPLL bit = 1, M/S bit = 0)  
In this mode, an invalid clock is output from MCKO pin after PMPLL bit = 0Æ 1or sampling frequency is changed.  
After that, 256fs is output from MCKO pin when PLL is locked. ADC and DAC output invalid data when the PLL is  
unlocked. For DAC, the output signal should be muted by writing 0to DACA and DACM bits in Addr=02H.  
MCKO pin  
PLL State  
MCKO bit = 0”  
LOutput  
MCKO bit = 1”  
Invalid  
After that PMPLL bit 0Æ 1”  
PLL Unlock  
Invalid  
LOutput  
PLL Lock  
256fs Output  
LOutput  
Table 8. Clock Operation at PLL Slave Mode (PMPLL bit = 1, M/S bit = 0)  
MS0396-E-00  
2005/06  
- 23 -  
ASAHI KASEI  
[AK4632]  
„ PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
When an external clock (11.2896MHz, 12MHz , 12.288MHz, 13.5MHz, 24MHz or 27MHz) is input to MCKI pin, the  
MCKO, BICK and FCK clocks are generated by an internal PLL circuit. The MCKO output frequency is fixed to 256fs,  
the output is enabled by MCKO bit. The BICK is selected among 16fs, 32fs or 64fs, by BCKO1-0 bits. (See Table 9)  
When BICK output frequency is 16fs, the audio interface format supports only Mode 0 (DSP Mode).  
11.2896MHz, 12MHz, 12.288MHz  
13.5MHz, 24MHz, 27MHz  
AK4632  
DSP or P  
µ
MCKI  
256fs  
16fs, 32fs, 64fs  
1fs  
MCKO  
BICK  
FCK  
MCLK  
BCLK  
FCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 19. PLL Master Mode  
BICK Output  
Frequency  
Mode  
BCKO1  
BCKO0  
0
1
2
3
0
0
1
1
0
1
0
1
16fs  
32fs  
64fs  
N/A  
Default  
Table 9. BICK Output Frequency at Master Mode  
MS0396-E-00  
2005/06  
- 24 -  
ASAHI KASEI  
[AK4632]  
„ PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)  
A reference clock of PLL is selected among the input clocks to MCKI, BICK or FCK pin. The required clock to the  
AK4632 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits. When BICK input frequency  
is 16fs, the audio interface format supports only Mode 0 (DSP Mode).  
a) PLL reference clock: BICK or FCK pin  
In the case of using BICK as PLL reference clock, the sampling frequency corresponds to 7.35kHz to 48kHz by  
changing FS3-0 bits. In the case of using FCK, the sampling frequency corresponds to 7.35kHz to 26kHz. (SeeTable  
6)  
AK4632  
MCKO  
DSP or P  
µ
MCKI  
BICK  
FCK  
16fs, 32fs, 64fs  
1fs  
BCLK  
FCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 20. PLL Slave Mode 1 (PLL Reference Clock: FCK or BICK pin)  
b) PLL reference clock: MCKI pin  
BICK and FCK inputs should be synchronized with MCKO output. The phase between MCKO and FCK dose not  
matter. Sampling frequency can be selected by FS3-0 bits. (See Table 5)  
11.2896MHz, 12MHz, 12.288MHz  
13.5MHz, 24MHz, 27MHz  
AK4632  
DSP or P  
µ
MCKI  
256fs  
16fs, 32fs, 64fs  
1fs  
MCKO  
BICK  
FCK  
MCLK  
BCLK  
FCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 21. PLL Slave Mode 2 (PLL Reference Clock: MCKI pin)  
The external clocks (MCKI, BICK and FCK) should always be present whenever the ADC or DAC is in operation  
(PMADC bit = 1or PMDAC bit = 1). If these clocks are not provided, the AK4632 may draw excess current and it is  
not possible to operate properly because utilizes dynamic refreshed logic internally. If the external clocks are not present,  
the ADC and DAC should be in the power-down mode (PMADC bit =PMDAC bit = 0).  
MS0396-E-00  
2005/06  
- 25 -  
ASAHI KASEI  
[AK4632]  
„ EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”)  
When PMPLL bit is 0, the AK4632 becomes EXT mode. Master clock is input from MCKI pin, the internal PLL circuit  
is not operated. This mode is compatible with I/F of the normal audio CODEC. The clocks required to operate are MCKI  
(256fs, 512fs or 1024fs), FCK (fs) and BICK (32fs). The master clock (MCKI) should be synchronized with FCK. The  
phase between these clocks does not matter. The input frequency of MCKI is selected by FS3-0 bits. (See Table 10)  
Mode  
FS3-2 bits  
FS1 bit  
FS0 bit  
MCKI Input  
Frequency  
256fs  
Sampling Frequency  
Range  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
0
1
0
1
Default  
0
1
2
3
0
0
1
1
7.35kHz fs 48kHz  
7.35kHz < fs 13kHz  
7.35kHz < fs 48kHz  
7.35kHz < fs 26kHz  
1024fs  
256fs  
512fs  
Table 10. MCKI Frequency at EXT Slave Mode (PMPLL bit = 0, M/S bit = 0)  
External Slave Mode does not support Mode 0 (DSP Mode) of Audio Interface Format.  
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise.  
When the out-of-band noise can be improved by using higher frequency of the master clock. The S/N of the DAC output  
through AOUT amp at fs=8kHz is shown in Table 11.  
S/N  
MCKI  
(fs=8kHz, 20kHzLPF + A-weight)  
256fs  
512fs  
1024fs  
83dB  
93dB  
93dB  
Table 11. Relationship between MCKI and S/N of AOUT  
The external clocks (MCKI, BICK and FCK) should always be present whenever the ADC or DAC is in operation  
(PMADC bit = 1or PMDAC bit = 1). If these clocks are not provided, the AK4632 may draw excess current and it is  
not possible to operate properly because utilizes dynamic refreshed logic internally. If the external clocks are not present,  
the ADC and DAC should be in the power-down mode (PMADC bit = PMDAC bit = 0).  
AK4632  
MCKO  
DSP or P  
µ
256fs, 512fs or 1024fs  
MCKI  
BICK  
FCK  
MCLK  
BCLK  
FCK  
32fs, 64fs  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 22. EXT Slave Mode  
MS0396-E-00  
2005/06  
- 26 -  
ASAHI KASEI  
[AK4632]  
„ Audio Interface Format  
Four types of data formats are available and are selected by setting the DIF1-0 bits. (See Table 12) In all modes, the serial  
data is MSB first, 2’s complement format. Audio interface formats can be used in both master and slave modes. FCK and  
BICK are output from AK4632 in master mode, but must be input to AK4632 in slave mode.  
In Mode 1-3, the SDTO is clocked out on the falling edge of BICK and the SDTI is latched on the rising edge.  
Mode  
DIF1  
DIF0  
SDTO (ADC)  
DSP Mode  
SDTI (DAC)  
DSP Mode  
MSB justified  
MSB justified  
BICK  
16fs  
32fs  
32fs  
32fs  
Figure  
See Table 13  
Figure 27  
Figure 28  
Figure 29  
0
1
2
3
0
0
1
1
0
1
0
1
MSB justified  
MSB justified  
Default  
I2S compatible I2S compatible  
Table 12. Audio Interface Format  
In Mode0 (DSP mode), the audio I/F timing is changed by BCKP and MSBS bits.  
When BCKP bit is 0, SDTO data is output by rising edge of BICK, SDTI data is latched by falling edge of BICK.  
When BCKP bit is 1, SDTO data is output by falling edge of BICK, SDTI data is latched by rising edge of BICK.  
MSB data position of SDTO and SDTI can be shifted by MSBS bit. The shifted period is a half of BICK.  
MSBS bit BCKP bit  
Audio Interface Format  
Figure 23  
0
0
1
1
0
1
0
1
Default  
Figure 24  
Figure 25  
Figure 26  
Table 13. Audio Interface Format in Mode 0  
If 16-bit data that ADC outputs is converted to 8-bit data by removing LSB 8-bit, 1at 16bit data is converted to 1at  
8-bit data. And when the DAC playbacks this 8-bit data, 1at 8-bit data will be converted to 256at 16-bit data and  
this is a large offset. This offset can be removed by adding the offset of 128to 16-bit data before converting to 8-bit  
data.  
„ System Reset  
Upon power-up, reset the AK4632 by bringing the PDN pin = L. This ensures that all internal registers reset to their  
initial values.  
The ADC enters an initialization cycle that starts when the PMADC bit is changed from 0to 1. The initialization cycle  
time is 1059/fs, or 133ms@fs=8kHz. During the initialization cycle, the ADC digital data outputs of both channels are  
forced to a 2's compliment, 0. The ADC output reflects the analog input signal after the initialization cycle is complete.  
The DAC does not require an initialization cycle.  
MS0396-E-00  
2005/06  
- 27 -  
ASAHI KASEI  
[AK4632]  
FCK  
15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
2
2
BICK(16fs)  
SDTO(o)  
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
14  
14  
14  
14  
SDTI(i)  
15  
0
1
8
14  
15 16  
17  
18 29  
30 31  
0
1
8
8
9
10  
11  
12 13  
30 31  
0
2
2
BICK(32fs)  
SDTO(o)  
15  
15  
8
2
2
1
1
0
15  
15  
8
8
2
2
1
1
0
0
14  
14  
14  
14  
0
Don’t Care  
SDTI(i)  
Don’t Care  
1/fs  
1/fs  
15:MSB, 0:LSB  
Figure 23. Mode 0 Timing (BCKP = 0, MSBS = 0)  
FCK  
15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
2
2
BICK(16fs)  
SDTO(o)  
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
14  
14  
14  
14  
SDTI(i)  
15  
0
1
8
14  
15 16  
17  
18 29  
30 31  
0
1
8
8
9
10  
11  
12 13  
30 31  
0
2
2
BICK(32fs)  
SDTO(o)  
15  
15  
8
2
2
1
1
0
15  
15  
8
8
2
2
1
1
0
14  
14  
14  
14  
0
0
Don’t Care  
SDTI(i)  
Don’t Care  
1/fs  
1/fs  
15:MSB, 0:LSB  
Figure 24. Mode 0 Timing (BCKP = 1, MSBS = 0)  
MS0396-E-00  
2005/06  
- 28 -  
ASAHI KASEI  
[AK4632]  
FCK  
15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
2
2
BICK(16fs)  
SDTO(o)  
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
14  
14  
14  
14  
SDTI(i)  
15  
0
1
8
14  
15 16  
17  
18 29  
30 31  
0
1
8
8
9
10  
11  
12 13  
30 31  
0
2
2
BICK(32fs)  
SDTO(o)  
15  
15  
8
2
2
1
1
0
15  
15  
8
8
2
2
1
1
0
0
14  
14  
14  
14  
0
Don’t Care  
SDTI(i)  
Don’t Care  
1/fs  
1/fs  
15:MSB, 0:LSB  
Figure 25. Mode 0 Timing (BCKP = 0, MSBS = 1)  
FCK  
15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
2
2
BICK(16fs)  
SDTO(o)  
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
14  
14  
14  
14  
SDTI(i)  
15  
0
1
8
14  
15 16  
17  
18 29  
30 31  
0
1
8
8
9
10  
11  
12 13  
30 31  
0
2
2
BICK(32fs)  
SDTO(o)  
15  
15  
8
2
2
1
1
0
15  
15  
8
8
2
2
1
1
0
14  
14  
14  
14  
0
0
Don’t Care  
SDTI(i)  
Don’t Care  
1/fs  
1/fs  
15:MSB, 0:LSB  
Figure 26. Mode 0 Timing (BCKP = 1, MSBS = 1)  
MS0396-E-00  
2005/06  
- 29 -  
ASAHI KASEI  
[AK4632]  
FCK  
0
1
2
3
8
9
10 11  
12  
13 14  
15  
0
1
2
3
8
9
10 11  
12  
13 14  
15  
0
1
BICK(32fs)  
SDTO(o)  
15 14  
8
7
7
6
6
5
4
4
3
3
2
1
1
0
0
15  
15  
13  
SDTI(i)  
15 14  
5
2
13  
Don’t Care  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
BICK(64fs)  
SDTO(o)  
15 14 13  
2
1
0
15  
Don’t Care  
15:MSB, 0:LSB  
15 14  
1
0
Don’t Care  
SDTI(i)  
Data  
1/fs  
Figure 27. Mode 1 Timing  
FCK  
0
1
2
8
9
10 11  
12  
13 14  
15  
0
1
2
8
9
10 11  
12  
13 14  
15  
0
1
BICK(32fs)  
SDTO(o)  
15 14  
8
8
7
7
6
6
5
4
4
3
3
2
1
1
0
0
15  
15  
SDTI(I)  
15 14  
5
2
Don’t Care  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
2
3
14  
14  
15 16  
17  
18  
31  
0
1
BICK(64fs)  
SDTO(o)  
15 14 13 13  
2
2
1
1
0
0
15  
15  
SDTI(i)  
15 14 13 13  
15:MSB, 0:LSB  
Don’t Care  
Don’t Care  
Data  
1/fs  
Figure 28. Mode 2 Timing  
MS0396-E-00  
2005/06  
- 30 -  
ASAHI KASEI  
[AK4632]  
FCK  
0
1
2
3
4
9
10 11  
12  
13 14  
15  
0
1
2
3
4
9
10 11  
12  
13 14  
15  
0
1
BICK(32fs)  
SDTO(o)  
15  
13  
7
7
7
6
5
5
4
4
3
2
2
1
1
0
0
14  
SDTI(i)  
15 14 13  
6
3
0
1
2
3
4
14  
15 16  
17  
18  
31  
0
1
2
3
4
14  
15 16  
17  
18  
31  
0
1
BICK(64fs)  
SDTO(o)  
15 14  
2
2
1
1
0
0
13  
15 14 13  
15:MSB, 0:LSB  
Don’t Care  
Don’t Care  
SDTI(i)  
Data  
1/fs  
Figure 29. Mode 3 Timing  
„ Digital High Pass Filter  
The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 1.25Hz  
(@fs=8kHz) and scales with sampling rate (fs).  
„ MIC Gain Amplifier  
The AK4632 has a Gain Amplifier for Microphone input. This gain is 0dB, +20dB, +26dB or +32dB, selected by the  
MGAIN1-0 bit. The typical input impedance is 30k.  
MGAIN1 bit MGAIN0 bit  
Input Gain  
0dB  
+20dB  
+26dB  
+32dB  
0
0
1
1
0
1
0
1
Default  
Table 14. Input Gain  
„ MIC Power  
The MPI pin supplies power for the Microphone. This output voltage is typically 0.75 x AVDD and the load resistance is  
minimum 2k. No capacitor must not be connected directly to MPI pin. (See Figure 30)  
MIC Power  
MPI pin  
2k Ω  
Microphone  
MIC pin  
MIC-Amp  
Figure 30. MIC Block Circuit  
MS0396-E-00  
2005/06  
- 31 -  
ASAHI KASEI  
[AK4632]  
„ Manual Mode  
The AK4632 becomes a manual mode at ALC1 bit = 0. This mode is used in the case shown below.  
1. After exiting reset state, set up the registers for the ALC1 operation (ZTM1-0, LMTH and etc)  
2. When the registers for the ALC1 operation (Limiter period, Recovery period and etc) are changed.  
For example; When the change of the sampling frequency.  
3. When IPGA is used as a manual volume.  
When IPGA6-0 bits are written at manual mode, the counter for zero cross time out is reset and restart. The IPGA6-0 bits  
value are reflected to IPGA at zero cross or zero cross time out. The time of zero cross time out is set by ZTM1-0 bits.  
When writing to IPGA6-0 bits continually, the control register should be written by an interval of more than zero crossing  
timeout.  
„ MIC-ALC Operation  
The ALC (Automatic Level Control) of MIC input is done by ALC1 block when ALC1 bit is 1.  
[1] ALC1 Limiter Operation  
When the ALC1 limiter is enabled, and IPGA output exceeds the ALC1 limiter detection level (LMTH), the IPGA value  
is attenuated by the amount defined in the ALC1 limiter ATT step (LMAT1-0 bits) automatically.  
When the ZELM bit = 1, the timeout period is set by the LTM1-0 bits. The operation for attenuation is done  
continuously until the input signal level becomes LMTH or less. If the ALC1 bit does not change into 0after completing  
the attenuation, the attenuation operation repeats while the input signal level equals or exceeds LMTH.  
When the ZELM bit = 0, the timeout period is set by the ZTM1-0 bits. This enables the zero-crossing attenuation  
function so that the IPGA value is attenuated at the zero-detect points of the waveform.  
[2] ALC1 Recovery Operation  
The ALC1 recovery refers to the amount of time that the AK4632 will allow a signal to exceed a predetermined limiting  
value prior to enabling the limiting function. The ALC1 recovery operation uses the WTM1-0 bits to define the wait  
period used after completing an ALC1 limiter operation. If the input signal does not exceed the ALC1 Recovery Waiting  
Counter Reset Level, the ALC1 recovery operation starts. The IPGA value increases automatically during this operation  
up to the reference level (REF6-0 bits). The ALC1 recovery operation is done at a period set by the WTM1-0 bits. Zero  
crossing is detected during WTM1-0 period, the ALC1 recovery operation waits WTM1-0 period and the next recovery  
operation starts.  
During the ALC1 recovery operation, when input signal level exceeds the ALC1 limiter detection level (LMTH), the  
ALC1 recovery operation changes immediately into an ALC1 limiter operation.  
In the case of (Recovery waiting counter reset level) IPGA Output Level < Limiter detection levelduring the ALC1  
recovery operation, the wait timer for the ALC1 recovery operation is reset. Therefore, in the case of (Recovery waiting  
counter reset level) > IPGA Output Level, the wait timer for the ALC1 recovery operation starts.  
The ALC1 operation corresponds to the impulse noise. When the impulse noise is input, the ALC1 recovery operation  
becomes faster than a normal recovery operation.  
MS0396-E-00  
2005/06  
- 32 -  
ASAHI KASEI  
[AK4632]  
[3] Example of ALC1 Operation  
Table 15 shows the example of the ALC1 setting. In case of this example, ALC1 operation starts from 0dB.  
fs=8kHz  
Operation  
fs=16kHz  
Data Operation  
Register Name Comment  
Data  
1
00  
0
LMTH  
LTM1-0  
ZELM  
Limiter detection Level  
-4dBFS  
Don’t use  
Enable  
1
00  
0
-4dBFS  
Don’t use  
Enable  
Limiter operation period at ZELM = 1  
Limiter zero crossing detection  
Zero crossing timeout period  
Recovery waiting period  
ZTM1-0  
00  
16ms  
01  
16ms  
WTM1-0  
*WTM1-0 bits should be the same data  
as ZTM1-0 bits  
00  
16ms  
01  
16ms  
REF6-0  
IPGA6-0  
LMAT1-0  
RATT  
Maximum gain at recovery operation  
IPGA gain at the start of ALC1 operation  
Limiter ATT Step  
Recovery GAIN Step  
ALC1 Enable bit  
47H  
10H  
00  
0
+27.5dB  
0dB  
1 step  
1 step  
Enable  
47H  
10H  
00  
0
+27.5dB  
0dB  
1 step  
1 step  
Enable  
ALC1  
1
1
Table 15. Examples of the ALC1 Setting  
The following registers should not be changed during the ALC1 operation. These bits should be changed, after the ALC1  
operation is finished by ALC1 bit = 0or PMMIC bit = 0.  
LTM1-0, LMTH, LMAT1-0, WTM1-0, ZTM1-0, RATT, REF6-0, ZELM bits  
When setting IPGA gain at the start of ALC1 operation, IPGA6-0 bits should be set while PMMIC bit is 1and ALC1 bit  
is 0. When PMMIC bit = 1, IPGA6-0 bits value aren’t reflected to IPGA. When ALC1 bit is changed from 1to 0,  
IPGA holds the last gain value set automatically by ALC1 operation.  
Example:  
Limiter = Zero crossing Enable  
Recovery Cycle = 16ms @ fs= 8kHz  
Limiter and Recovery Step = 1  
Maximum Gain = +27.5dB  
Limiter Detection Level = -4dBFS  
Manual Mode  
ALC2 bit = “1” (default)  
WR (ZTM1-0, WTM1-0, LTM1-0)  
WR (REF6-0)  
(1) Addr=06H, Data=00H  
(2) Addr=08H, Data=47H  
(3) Addr=09H, Data=10H  
(4) Addr=07H, Data=61H  
* The value of IPGA should be  
the same or smaller than REF’s  
WR (IPGA6-0)  
WR (ALC1= “1”, LMAT1-0, RATT, LMTH, ZELM)  
ALC1 Operation  
Note : WR : Write  
Figure 31. Registers set-up sequence at the ALC1 operation  
MS0396-E-00  
2005/06  
- 33 -  
ASAHI KASEI  
[AK4632]  
„ Digital Output Volume  
The AK4632 has a digital output volume (256 levels, 0.5dB step, Mute). The volume can be set by the DVOL7-0 bits. The  
volume is included in front of a DAC block, a input data of DAC is changed from +12 to –115dB with MUTE. This  
volume has a soft transition function. It takes 1061/fs or 256/fs from 00H to FFH.  
DVOL7-0  
00H  
01H  
02H  
Gain  
+12.0dB  
+11.5dB  
+11.0dB  
18H  
0dB  
Default  
FDH  
FEH  
FFH  
114.5dB  
115.0dB  
MUTE (−∞)  
Table 16. Digital Output Volume Code Table  
The transition time from 00H to FFH of DVOL7-0 bits  
DVTM bit  
Transition Time  
1061/fs  
fs=8kHz  
133msec  
32msec  
fs=22.05kHz  
48msec  
0
1
256/fs  
12msec  
Table 17.Setting of transition time  
„ BEEP Input  
When the PMBP bit is set to 1, the beep input is powered-up. And when the BEEPS bit is set to 1, the input signal  
from the BEEP pin is output to Speaker-Amp. When the BEEPA bit is set to 1, the input signal from the BEEP pin is  
output to the mono line output amplifier. The external resister Ri adjusts the signal level of BEEP input. The gains are  
shown in Table 18, when Ri = 20k. These gain are in inverse proportion to Ri.  
Rf  
Ri  
-
+
BEEP  
Figure 32. Block Diagram of BEEP pin  
SPKG1-0 bits  
BEEP Æ SPP/SPN Gain  
+7.89dB  
BEEP Æ AOUT Gain  
00  
01  
10  
11  
0dB  
0dB  
0dB  
0dB  
+9.93dB  
+14.11dB  
+16.15dB  
Table 18. Beep input gain at Ri = 20kΩ  
MS0396-E-00  
2005/06  
- 34 -  
ASAHI KASEI  
[AK4632]  
„ MONO LINE OUTPUT (AOUT pin)  
A signal of DAC is output from AOUT pin. When the DACA bit is 0, this output is OFF. The load resistance is  
10k(min). When PMAO bit is 0and AOPSN bit is 0, the mono line output enters power-down and is pulled down by  
100(typ). If PMAO bit is controlled at AOPSN bit = 1, POP noise will be reduced at power-up and down. Then, this  
line should be pulled down by 20kof resister after C-coupling shown in Figure 33. This rising and falling time is max  
300 ms at C=1.0µF . When PMAO bit is 1and AOPSN bit is 0, the mono line output enters power-up state.  
1µF  
220Ω  
AOUT  
20kΩ  
Figure 33. AOUT external circuit in case of using POP Reduction function.  
AOUT Control Sequence in case of using POP Reduction Circuit  
(2 )  
(5 )  
P M A O b it  
(1 )  
(3 )  
(4 )  
(6 )  
A O P S N b it  
A O U T p in  
N o rm a l O u tp u t  
3 0 0 m s  
3 0 0 m s  
Figure 34. Mono Line Output Control Sequence in case of using POP Reduction function..  
(1) Set AOPSN bit = 1. Mono line output enters the power-save mode.  
(2) Set PMAO bit = 1. Mono line output exits the power-down mode.  
AOUT pin rises up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1µF.  
(3) Set AOPSN bit = 0after AOUT pin rises up. Mono line output exits the power-save mode.  
Mono line output is enabled.  
(4) Set AOPSN bit = 1. Mono line output enters power-save mode.  
(5) Set PMAO bit = 1. Mono line output enters power-down mode.  
AOUT pin falls down to AVSS. Fall time is 200ms (max 300ms) at C=1µF.  
(6) Set AOPSN bit = 0after AOUT pin falls down. Mono line output exits the power-save mode.  
MS0396-E-00  
2005/06  
- 35 -  
ASAHI KASEI  
[AK4632]  
„ Speaker Output  
The power supply voltage for Speaker-Amp SVDD can be set to from 2.6V to 5.25V. However, SVDD should be set to  
from 2.6V to 3.6V, when the load resistance is less than 50(ex. a dynamic speaker).  
The output signal from DAC is input to the Speaker-amp via the ALC2 circuit. This Speaker-amp is a mono output  
controlled by BTL and a gain of the Speaker-Amp is set by SPKG1-0 bit. In the case of ALC2 OFF, the output voltage  
depends on AVDD and SPKG1-0 bits. In the case of ALC2 ON, the output voltage depends on SVDD and SPKG1-0 bits.  
The output level of ALC2 is proportional to SVDD.  
SPKG1-0 bits  
Gain  
0dB  
+2.04dB  
+6.22dB  
+8.26dB  
00  
01  
10  
11  
(Note) These Gain from the level at SPKG1-0bits= 00.  
Table 19. Gain of Speaker-Amp at ALC2 OFF  
Output Voltage from Speaker-Amp  
Output Voltage from  
SPKG1-0 bits  
AVDD  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
SVDD  
3.3V  
3.3V  
3.3V  
3.3V  
5.0V  
5.0V  
5.0V  
5.0V  
at ALC2 OFF and DAC Input=0dBFS  
Speaker-Amp at ALC ON  
00  
01  
10  
11  
00  
01  
10  
11  
3.27Vpp, 167mW@8Ω  
4.15Vpp, 269mW@8Ω  
6.91Vpp (Note)  
8.50Vpp (Note)  
3.27Vpp  
3.09Vpp, 150mW@8Ω  
3.92Vpp, 240mW@8Ω  
Not Available  
Not Available  
Not Available  
Not Available  
6.34Vpp  
4.15Vpp  
6.91Vpp  
8.50Vpp  
8.02Vpp  
(Note) This output voltage is assumed that the signal is not clipped. In actual, the signal will be clipped when DAC  
outputs 0dBFS signal. The output power is 400mW@8, SVDD=3.3V.  
Table 20. Speaker-Amp Output Voltage  
[Caution for using Piezo Speaker]  
When a piezo speaker (load capacitance > 30pF) is used, resistances more than 10should be inserted between SPP/SPN  
pins and speaker in series, respectively, as shown in Figure 35. Zener diodes should be inserted between speaker and  
GND as shown in Figure 35, in order to protect SPK-Amp of AK4632 from the power that the piezo speaker outputs  
when the speaker is pressured. Zener diodes of the following Zener voltage should be used.  
92% of SVDD Zener voltage of Zener diodo(ZD of Figure 35) SVDD+0.3V  
Ex) In case of SVDD = 5.0V : 4.6V ZD 5.3V  
For example, Zener diode which Zener voltage is 5.1V(Min :4.97V, Max 5.24V) can be used.  
MS0396-E-00  
2005/06  
- 36 -  
ASAHI KASEI  
[AK4632]  
ZD  
SPK-Amp  
10Ω  
SPP  
SPN  
10Ω  
ZD  
Figure 35. Circuit of Speaker Output(Load Capacitance > 30pF)  
<Control Sequence of Speaker Amp>  
Speaker blocks (MOUT, ALC2 and Speaker-amp) can be powered-up/down by controlling the PMSPK bit. When the  
PMSPK bit is 0, the MOUT, SPP and SPN pins are placed in a Hi-Z state.  
When the PMSPK bit is 1and SPPS bit is 0, the Speaker-amp enters power-save-mode. In this mode, the SPP pin is  
placed in a Hi-Z state and the SPN pin goes to SVDD/2 voltage. And then the Speaker output gradually changes to the  
SVDD/2 voltage and this mode can reduce pop noise at power-up. When the AK4632 is powered-down, pop noise can be  
also reduced by first entering power-save-mode.  
PMSPK bit  
SPPS bit  
SPP pin  
SPN pin  
Hi-Z  
Hi-Z  
SVDD/2  
SVDD/2  
>0  
Hi-Z  
Hi-Z  
>t1(Note)  
Figure 36. Power-up/Power-down Timing for Speaker-Amp  
(Note)  
t1depends on the time constant of input resistance of MIN and capacitor between MOUT pin and MIN pin. If  
Speaker-Amp output is enabled before MIN-Amp (ALC2) becomes stable, pop noise may occur.  
Ex) C of MOUT pin – MIN pin = 0.1 µF, Input resistance of MIN pin = 36k(Max) : t1 = 5τ = 18ms  
C of MOUT pin – MIN pin and the Input resistance(Rin) of MIN pin compose of HPF which cut off  
frequency(fc) are the followings.  
fc = 66Hz@Rin=24k(typ), 133Hz@Rin=12k(min), 44Hz@Rin=36k(max)  
MS0396-E-00  
2005/06  
- 37 -  
ASAHI KASEI  
[AK4632]  
„ SPK-ALC Operation  
The ALC (Automatic Level Control) operation of speaker output is done by ALC2 block when ALC2 bit is 1. Input  
resistance of the ALC2 is 24k(typ) and centered around VCOM voltage. The ALC2 level diagram is shown in Figure  
37 ~Figure 40.  
The limiter detection level is proportional to SVDD voltage. The output level is limited by the ALC2 circuit when the  
input signal exceeds –7.1dBV (@SPKG1 bit = 0, SVDD=3.3V or @SPKG1 bit = 1, SVDD = 5V). When a  
continuous signal of –7.1dBV or greater is input to the ALC2 circuit, the change period of the ALC2 limiter operation is  
250µs (=2/fs@fs=8kHz) and the attenuation level is 0.5dB/step.  
The ALC2 recovery operation uses zero crossings and gains of 1dB/step. The ALC2 recovery operation is done until the  
input level of the Speaker-amp goes to –9.1dBV (@SPKG1 bit = 0, SVDD=3.3V or @SPKG1 bit = 1, SVDD = 5V).  
Maximum gain of the ALC2 recovery operation is set by RFS5-0 bits.  
When the input signal is between –9.1dBV and –7.1dBV, the ALC2 limiter or recovery operations are not done.  
When the PMSPK bit changes from 0to 1, the initilization cycle (512/fs = 64ms @fs=8kHz at ROTM bit = 0) starts.  
The ALC2 is disabled (The ALC2 gain is fixed to -3.5dB.) during the initilization cycle and the ALC2 starts from  
–2dBafter completing the initilization cycle. The ROTM bit and RFS5-0 bits set during the PMSPK bit = 0.  
When the ALC2 is disable, a gain of the ALC2 block is fixed to -3.5dB. Therefore, a gain of internal speaker block is  
shown in Table 22.  
Parameter  
ALC2 Limiter operation  
5.2dBV  
ALC2 Recovery operation  
7.2dBV  
Operation Start Level  
fs=8kHz  
Period  
2/fs = 250µs  
2/fs = 125µs  
No  
512/fs=64ms  
fs=16kHz  
Zero-crossing Detection  
ATT/GAIN  
512/fs=32ms  
Yes (Timeout = Period Time)  
1dB step  
0.5dB step  
Table 21. Limiter /Recovery of ALC2 (ROTM bit = 0)  
SPKG1-0 bits  
Gain  
00  
01  
10  
11  
+4.4dB  
+6.4dB  
+10.6dB  
+12.7dB  
Table 22. Gain of Speaker-Amp at ALC2 OFF(Full-differential Output)  
MS0396-E-00  
2005/06  
- 38 -  
ASAHI KASEI  
[AK4632]  
0.8dBV  
0dBV  
+7.9dB  
FS-4.0dB = -7.1dBV  
-3.1dBV  
-3.1dBV  
-1.2dBV  
+7.9dB  
Full-differential  
Single-ended  
FS  
-4.0dB  
+2.0dB  
-5.2dBV  
+1.9dB  
-8dB  
-10dBV  
-11.1dBV  
-15.1dBV  
FS-6.0dB = -9.1dBV  
FS-12dB  
-15.1dBV  
+6.0dB  
+14.0dB  
-20dBV  
-30dBV  
-8dB  
-23.1dBV  
DVOL  
DAC  
ALC2  
SPK-AMP  
(AVDD=3.3V, SVDD=3.3V, DVOL=8.0dB/0dB, SPKG1-0 bit = 00,) * FS = Full Scale  
Figure 37. Speaker-Amp Output Level Diagram  
10dBV  
Full-differential  
2.8dBV  
FS-4dB = -7.1dBV  
+9.9dB  
0.8dBV  
0dBV  
+9.9dB  
-3.2dBV  
-3.1dBV  
-3.1dBV  
Single-ended  
FS  
+3.9dB  
-4.0dB  
+2.0dB  
-8dB  
-10dBV  
-20dBV  
-30dBV  
-11.1dBV  
-15.1dBV  
FS-6.0dB = -9.1dBV  
FS-12dB  
+6.0dB  
+14.0dB  
-15.1dBV  
-8dB  
-23.1dBV  
DVOL  
DAC  
ALC2  
SPK-AMP  
(AVDD=3.3V, SVDD=3.3V, DVOL=8.0dB/0dB, SPKG1-0 bit = 01,) * FS = Full Scale  
Figure 38. Speaker-Amp Output Level Diagram  
MS0396-E-00  
2005/06  
- 39 -  
ASAHI KASEI  
[AK4632]  
10dBV  
7.0dBV  
Full-differential  
5.0dBV  
1.0dBV  
+14.1dB  
+14.1dB  
Single-ended  
0dBV  
-3.1dBV  
-3.1dBV  
FS-4dB = -7.1dBV  
-4.0dB  
+2.0dB  
+8.1dB  
FS  
-8dB  
-10dBV  
-20dBV  
-30dBV  
-11.1dBV  
-15.1dBV  
FS-6.0dB = -9.1dBV  
FS-12dB  
+6.0dB  
+14.0dB  
-15.1dBV  
-8dB  
-23.1dBV  
DVOL  
DAC  
ALC2  
SPK-AMP  
(AVDD=3.3V, SVDD=5.0V, DVOL=8.0dB/0dB, SPKG1-0 bit = 10,) * FS = Full Scale  
Figure 39. Speaker-Amp Output Level Diagram  
10dBV  
9.1dBV  
+16.2dB  
+16.2dB  
Full-differential  
7.1dBV  
3.1dBV  
Single-ended  
0dBV  
+10.2dB  
-3.1dBV  
-3.1dBV  
FS-4dB = -7.1dBV  
-4.0dB  
+2.0dB  
FS  
-8dB  
-10dBV  
-20dBV  
-30dBV  
-11.1dBV  
-15.1dBV  
FS-6.0dB = -9.1dBV  
FS-12dB  
+6.0dB  
+14.0dB  
-15.1dBV  
-8dB  
-23.1dBV  
DVOL  
DAC  
ALC2  
SPK-AMP  
(AVDD=3.3V, SVDD=5.0V, DVOL=8.0dB/0dB, SPKG1-0 bit = 11,) * FS = Full Scale  
Figure 40. Speaker-Amp Output Level Diagram  
MS0396-E-00  
2005/06  
- 40 -  
ASAHI KASEI  
[AK4632]  
„ Video Block  
Video-Amp has a drivability for a load resistance of 150. The AK4632 has a composite input and output. A Low Pass  
Filter(LPF) and Gain Control Amp(GCA) are integrated and both DC output and Sag Compensation circuit are supported  
as shown in Figure 41 and Figure 42. The capacitance for Sag Compensation circuit is 100µ F+2.2µ F or 47µ F+1.0µ F.  
When DC output is used, VOUT pin and VSAG pin must be shorted. The output clamp voltage is 150mV(typ) at DC  
output. SAGC1-0 bits and VVDD voltage should be set as shown in Table 23. Table 25 shows the gain and step of the  
gain control. The gain is set by VGCA4-0 bits. PMV bit controls the power up and down of the video block. VOUT pin  
outputs AVSS level at PMV bit = 1.  
C1  
75Ω  
YIN  
CLAMP  
LPF  
GCA  
VOUT  
VSAG  
+6dB  
-1dB ~ +10.5dB  
Step 0.5dB  
C2  
(C1=100µ F, C2=2.2µ F) or (C1=47µ F, C2=1.0µ F)  
Figure 41. Video block (using Sag Compensation circuit)  
75Ω  
YIN  
CLAMP  
LPF  
GCA  
VOUT  
VSAG  
+6dB  
-1dB ~ +10.5dB  
Step 0.5dB  
Figure 42. Video block (at DC Output))  
VVDD voltage  
SAGC1 bit  
SAGC0 bit  
Output Circuit  
DC output  
0
0
1
1
0
1
0
1
Default  
2.8 V VVDD 3.6V  
Not Available  
Sag compensation  
Sag compensation  
2.85V VVDD < 4.75V  
4.5 V VVDD < 5.25V  
Table 23. Setting of VVDD and video output circuit.  
Output Circuit  
VVDD voltage  
GCA setting  
0dB  
0dB  
-1dB (Note)  
0dB  
DC output  
2.8 V VVDD 3.6V  
3.135 V VVDD 5.25V  
2.85V VVDD < 3.135 V  
3.135 V VVDD 5.25V  
2.85V VVDD < 3.135 V  
Sag compensation  
100µ F+2.2µ F  
47µ F+1.0µ F  
Sag compensation  
-1dB (Note)  
Note : When the sag compensation circuit is used at less than 3.135V of VVDD, the GCA should be set to -1dB in  
order to avoid clipping of output video signal. Note that the video will become dark at that time.  
Table 24. Gain compensation  
MS0396-E-00  
2005/06  
- 41 -  
ASAHI KASEI  
[AK4632]  
VGCA4-0 bits  
GAIN(dB)  
STEP  
0.5dB  
17H  
16H  
15H  
:
+10.5dB  
+10.0dB  
+9.5dB  
:
04H  
03H  
02H  
01H  
00H  
+1.0dB  
+0.5dB  
0.0dB  
Default  
-0.5dB  
-1.0dB  
Table 25. Setting of GCA  
„ Serial Control Interface  
Internal registers may be written by using the 3-wire µP interface pins (CSN, CCLK and CDTI). The data on this interface  
consists of a 2-bit Chip address (Fixed to 10), Read/Write (Fixed to 1), Register address (MSB first, 5bits) and  
Control data (MSB first, 8bits). Address and data is clocked in on the rising edge of CCLK and data is clocked out on the  
falling edge. The clock speed of CCLK is 5MHz (max). The value of internal registers is initialized at PDN pin = L.  
CSN  
2
6
7
8
9
10 11  
12 13 14 15  
0
1
3
4
5
CCLK  
CDTI  
R/W  
C1 C0  
A4 A3 A2 A2 A0 D7 D6 D5 D4 D3 D2 D1 D0  
“1” “0” “1”  
C1-C0: Chip Address (C1 = “1”, C0 = “0”); Fixed to “10”  
R/W: READ/WRITE (“1”: WRITE, “0”: READ); Fixed to “1”  
A4-A0: Register Address  
D7-D0: Control data  
Figure 43. Serial Control I/F Timing  
MS0396-E-00  
2005/06  
- 42 -  
ASAHI KASEI  
[AK4632]  
„ Register Map  
Addr  
Register Name  
D7  
0
PMV  
SPPS  
D6  
PMVCM  
0
BEEPS  
AOPSN  
PLL2  
0
ROTM  
ALC2  
REF6  
IPGA6  
DVOL6  
0
D5  
PMBP  
0
ALC2S  
MGAIN1  
PLL1  
D4  
PMSPK  
0
DACA  
SPKG1  
PLL0  
MSBS  
ZTM0  
ZELM  
REF4  
D3  
PMAO  
M/S  
D2  
D1  
D0  
00H Power Management 1  
01H Power Management 2  
02H Signal Select 1  
PMDAC  
MCKPD  
MPWR  
BEEPA  
BCKO0  
FS2  
WTM0  
LMAT0  
REF2  
PMMIC  
MCKO  
MICAD  
ALC1M  
DIF1  
PMADC  
PMPLL  
MGAIN0  
ALC1A  
DIF0  
DACM  
SPKG0  
BCKO1  
BCKP  
WTM1  
LMAT1  
REF3  
IPGA3  
DVOL3  
RFS3  
03H Signal Select 2  
0
04H Mode Control 1  
05H Mode Control 2  
06H Timer Select  
07H ALC Mode Control 1  
08H ALC Mode Control 2  
09H Input PGA Control  
0AH Digital Volume Control  
0BH ALC2 Mode Control  
0CH Video Mode Control  
PLL3  
0
DVTM  
FS3  
FS1  
FS0  
ZTM1  
ALC1  
REF5  
IPGA5  
DVOL5  
RFS5  
LTM1  
RATT  
REF1  
IPGA1  
DVOL1  
RFS1  
LTM0  
LMTH  
REF0  
IPGA0  
DVOL0  
RFS0  
0
0
0
IPGA4  
DVOL4  
RFS4  
IPGA2  
DVOL2  
RFS2  
DVOL7  
0
0
SAGC1  
SAGC0  
VGCA4  
VGCA3  
VGCA2  
VGCA1  
VGCA0  
The PDN pin = Lresets the registers to their default values.  
Note: Unused bits must contain a 0value.  
Note: Only write to address 00H to 0CH.  
MS0396-E-00  
2005/06  
- 43 -  
ASAHI KASEI  
[AK4632]  
„ Register Definitions  
Addr Register Name  
D7  
0
0
D6  
PMVCM  
0
D5  
PMBP  
0
D4  
PMSPK  
0
D3  
PMAO  
0
D2  
D1  
D0  
00H  
Power Management 1  
Default  
PMDAC PMMIC PMADC  
0
0
0
PMADC: ADC Block Power Control  
0: Power down (Default)  
1: Power up  
When the PMADC bit changes from 0to 1, the initialization cycle (1059/fs=133ms@8kHz) starts. After  
initializing, digital data of the ADC is output.  
PMMIC: MIC In Block (MIC-Amp and ALC1) Power Control  
0: Power down (Default)  
1: Power up  
PMDAC: DAC Block Power Control  
0: Power down (Default)  
1: Power up  
PMAO: Mono Line Out Power Control  
0: Power down (Default)  
1: Power up  
PMSPK: Speaker Block Power Control  
0: Power down (Default)  
1: Power up  
PMBP: BEEP In Power Control  
0: Power down (Default)  
1: Power up  
Even if PMBP bit is 0, the path is still connected between BEEP and AOUT/SPK-Amp. BEEPS and BEEPA  
bits should be set to 0to disconnect these paths.  
PMVCM: VCOM Block Power Control  
0: Power down (Default)  
1: Power up  
Each block can be powered-down respectively by writing 0in each bit. When the PDN pin is L, all blocks are  
powered-down.  
When PMPLL and MCKO bits and all bits in 00H address are 0, all blocks are powered-down. Though the IPGA  
resisters are initialized, the other registers remain unchanged. (refer to the IPGA6-0 bits description)  
When any of the blocks are powered-up, the PMVCM bit must be set to 1. When PMPLL and MCKO bits and all  
bits in 00H address are 0, PMVCM bit can write to 0.  
When BEEP signal is output from Speaker-Amp (Signal path: BEEP pin Æ SPP/SPN pins) or Mono Lineout-Amp  
(Signal path: BEEP pin Æ AOUT pin) only, the clocks may not be present. When ADC, DAC, ALC1 or ALC2 is in  
operation, the clocks must always be present.  
MS0396-E-00  
2005/06  
- 44 -  
ASAHI KASEI  
[AK4632]  
Addr  
01H  
Register Name  
Power Management 2  
Default  
D7  
PMV  
0
D6  
0
0
D5  
0
0
D4  
0
0
D3  
M/S  
0
D2  
MCKPD  
1
D1  
MCKO  
0
D0  
PMPLL  
0
PMPLL: PLL Block Power Control Select  
0: PLL is Power down and External is selected. (Default)  
1: PLL is Power up and PLL Mode is selected.  
MCKO: Master Clock Output Enable  
0: LOutput (Default)  
1: 256fs Output  
MCKPD: MCKI pin pull down control  
0: Master Clock input enable  
1: Pull down by 25k(typ.) (Default)  
M/S: Select Master / Slave Mode  
0: Slave Mode (Default)  
1: Master Mode  
PMV: Video Block Power Control  
0: Power down (Default)  
1: Power up  
MS0396-E-00  
2005/06  
- 45 -  
ASAHI KASEI  
[AK4632]  
Addr Register Name  
D7  
SPPS  
0
D6  
BEEPS  
0
D5  
ALC2S  
0
D4  
DACA  
0
D3  
DACM  
0
D2  
MPWR  
0
D1  
MICAD  
0
D0  
MGAIN0  
1
02H  
Signal Select 1  
Default  
MGAIN1-0 : 1st MIC-amp Gain control(See Table 26)  
MGAIN 1 bit is located at D6 bit of 03H  
MGAIN1 bit MGAIN0 bit  
Input Gain  
0dB  
+20dB  
+26dB  
+32dB  
0
0
1
1
0
1
0
1
Default  
Table 26. Input Gain  
MICAD: Switch Control from MIC In to ADC.  
0: OFF (Default)  
1: ON  
When MICAD bit is 1, the ALC1 output signal is input to ADC.  
MPWR: Power Supply Control for Microphone  
0: OFF (Default)  
1: ON  
When PMMIC bit is 1, MPWR bit is enabled.  
DACM: Switch Control from DAC to mono amp.  
0: OFF (Default)  
1: ON  
When PMSPK bit is 1, DACM bit is enabled. When PMSPK bit is 0, MOUT pin is Hi-Z state.  
DACA: Switch Control from DAC to mono line amp  
0: OFF (Default)  
1: ON  
When PMAO bit is 1, DACA bit is enabled. When PMAO bit is 0, the AOUT pin is AVSS.  
ALC2S: ALC2 output to Speaker-Amp Enable  
0: OFF (Default)  
1: ON  
When ALC2S bit is 1, the ALC2 output signal is input to Speaker-Amp.  
BEEPS: BEEP pin to Speaker-Amp Enable  
0: OFF (Default)  
1: ON  
When BEEPS bit is 1, the beep signal is input to Speaker-Amp.  
SPPS: Speaker-amp Power-Save-Mode  
0: Power Save Mode (Default)  
1: Normal Operation  
When SPPS bit is 1, the Speaker-amp is in power-save-mode and the SPP pin becomes Hi-z and SPN pin is  
set to SVDD/2 voltage. When the PMSPK bit = 1, this bit is valid. After the PDN pin changes from Lto  
H, the PMSPK bit is 0, which powers down Speaker-amp.  
MS0396-E-00  
2005/06  
- 46 -  
ASAHI KASEI  
[AK4632]  
D0  
Addr Register Name  
D7  
0
0
D6  
0
0
D5  
MGAIN1  
0
D4  
D3  
D2  
BEEPA  
0
D1  
03H  
Signal Select 2  
Default  
SPKG1 SPKG0  
ALC1M ALC1A  
0
0
0
0
ALC1A: Switch Control from ALC1 output signal to mono line output amp.  
0: OFF (Default)  
1: ON  
When PMAO bit is 1, ALC1A bit is enabled. When PMAO bit is 0, the AOUT pin is AVSS.  
ALC1M: Switch Control from ALC1 output signal to mono amp.  
0: OFF (Default)  
1: ON  
When PMSPK bit is 1, ALC1M is enabled. When PMSPK bit is 0, the MOUT pin goes Hi-Z state.  
BEEPA: Switch Control from beep signal to mono line output amp.  
0: OFF (Default)  
1: ON  
When PMAO bit is 1, BEEPA is enabled. When PMAO bit is 0, the AOUT pin is AVSS.  
SPKG1-0: Select Speaker-Amp Output Gain (See Table 27)  
SPKG1-0 bits  
Gain  
0dB  
+2.2dB  
+4.4dB  
+8.7dB  
00  
01  
10  
11  
Table 27. Gain of Speaker-Amp  
MGAIN1: Mic-Amplifier Gain Control(See Table 26)  
ALC1M  
DACM  
IPGA  
DAC  
ALC2S  
MIX  
ALC2  
SPK  
BEEPS  
BEEP  
ALC1A  
DACA  
AOUT  
BEEPA  
Figure 44. Speaker and Mono Lineout-Amps switch control  
MS0396-E-00  
2005/06  
- 47 -  
ASAHI KASEI  
[AK4632]  
AOPSN: Mono Line Output Power-Save Mode  
0: Normal Operation  
1: Power-Save Mode (Default)  
Power-save mode is enable at AOPSN bit = 1. POP noise at power-up/down can be reduced by changing  
at AOPSN bit = 1. (See Figure 34)  
Addr Register Name  
D7  
PLL3  
0
D6  
PLL2  
0
D5  
PLL1  
0
D4  
PLL0  
0
D3  
D2  
D1  
DIF1  
1
D0  
DIF0  
0
04H  
Mode Control 1  
Default  
BCKO1 BCKO0  
0
0
DIF1-0: Audio Interface Format (See Table 28)  
Mode DIF1 bit DIF0 bit SDTO (ADC)  
SDTI (DAC)  
DSP Mode  
LSB justified  
BICK  
Figure  
See Table 34  
Figure 27  
Figure 28  
Figure 29  
0
1
2
3
0
0
1
1
0
1
0
1
DSP Mode  
MSB justified  
MSB justified MSB justified  
I2S compatible I2S compatible  
Table 28. Audio Interface Format  
16fs  
32fs  
32fs  
32fs  
Default  
BCKO1-0: Select BICK output frequency at Master Mode (See Table 29)  
BICK Output  
Frequency  
16fs  
Mode  
BCKO1 bit  
BCKO0 bit  
0
1
2
3
0
0
1
1
0
1
0
1
Default  
32fs  
64fs  
N/A  
Table 29. BICK Output Frequency at Master Mode  
PLL3-0: Select input frequency at PLL mode (See Table 30)  
PLL3  
bit  
PLL2  
bit  
PLL1  
bit  
PLL0  
bit  
PLL Reference  
Clock Input Pin  
Input  
Frequency  
Mode  
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
FCK pin  
BICK pin  
BICK pin  
BICK pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
N/A  
1fs  
16fs  
32fs  
64fs  
Default  
11.2896MHz  
12.288MHz  
12MHz  
24MHz  
13.5MHz  
27MHz  
12  
13  
Others  
1
Others  
Table 30. Setting of PLL Mode (*fs: Sampling Frequency)  
MS0396-E-00  
2005/06  
- 48 -  
ASAHI KASEI  
[AK4632]  
Addr Register Name  
D7  
0
0
D6  
0
0
D5  
FS3  
0
D4  
MSBS  
0
D3  
BCKP  
0
D2  
FS2  
0
D1  
FS1  
0
D0  
FS0  
0
05H  
Mode Control 2  
Default  
FS3-0: Setting of Sampling Frequency (See Table 31 and Table 32) and MCKI Frequency (See Table 33)  
These bits are selected to sampling frequency at PLL mode and MCKI frequency at EXT mode.  
Mode  
0
1
2
3
4
5
6
7
10  
11  
14  
15  
Others  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
Sampling Frequency  
8kHz  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Default  
12kHz  
16kHz  
24kHz  
7.35kHz  
11.025kHz  
14.7kHz  
22.05kHz  
32kHz  
48kHz  
29.4kHz  
44.1kHz  
N/A  
Others  
Table 31. Setting of Sampling Frequency at PLL2 bit = 1and PMPLL bit = 1”  
Mode  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
Sampling Frequency Range  
0
0
0
0
1
1
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
0
1
0
1
0
1
0
1
2
3
6
7
0
0
1
1
1
1
Default  
7.35kHz fs 8kHz  
8kHz < fs 12kHz  
12kHz < fs 16kHz  
16kHz < fs 24kHz  
24kHz < fs 32kHz  
32kHz < fs 48kHz  
N/A  
Others  
Others  
Table 32. Setting of Sampling Frequency at PLL2 bit = 0and PMPLL bit = 1”  
Mode  
FS3-2 bits  
FS1 bit  
FS0 bit  
MCKI Input  
Frequency  
Sampling Frequency  
Range  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
0
1
0
1
256fs  
1024fs  
256fs  
512fs  
Default  
0
1
2
3
0
0
1
1
7.35kHz fs 48kHz  
7.35kHz < fs 13kHz  
7.35kHz < fs 48kHz  
7.35kHz < fs 26kHz  
Table 33. MCKI Frequency at EXT Slave Mode (PMPLL bit = 0, M/S bit = 0)  
BCKP, MSBS: 00(Default) (See Table 34)  
MSBS bit BCKP bit  
Audio Interface Format  
Figure 23  
0
0
1
1
0
1
0
1
Default  
Figure 24  
Figure 25  
Figure 26  
Table 34. Audio Interface Format in Mode 0  
MS0396-E-00  
2005/06  
- 49 -  
ASAHI KASEI  
[AK4632]  
Addr Register Name  
D7  
DVTM  
0
D6  
ROTM  
0
D5  
ZTM1  
0
D4  
ZTM0  
0
D3  
WTM1  
0
D2  
WTM0  
0
D1  
LTM1  
0
D0  
LTM0  
0
06H  
Timer Select  
Default  
LTM1-0: ALC1 limiter operation period at zero crossing disable (ZELM bit = 1) (See Table 35)  
The IPGA value is changed immediately. When the IPGA value is changed continuously, the change is done  
by the period specified by the LTM1-0 bits. Default is 00(0.5/fs).  
ALC1 Limiter Operation Period  
LTM1 bit LTM0 bit  
8kHz  
63µs  
125µs  
250µs  
500µs  
16kHz  
31µs  
63µs  
125µs  
250µs  
0
0
1
1
0
1
0
1
0.5/fs  
1/fs  
2/fs  
Default  
4/fs  
Table 35. ALC1 Limiter Operation Period at zero crossing disable (ZELM bit=1)  
WTM1-0: ALC1 Recovery Waiting Period (See Table 36)  
A period of recovery operation when any limiter operation does not occur during the ALC1 operation.  
Default is 00(128/fs).  
ALC1 Recovery Operation Waiting Period  
WTM1 bit WTM0 bit  
8kHz  
16ms  
32ms  
64ms  
128ms  
16kHz  
8ms  
16ms  
32ms  
64ms  
0
0
1
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
Default  
Table 36. ALC1 Recovery Operation Waiting Period  
ZTM1-0: ALC1 Zero crossing timeout Period (See Table 37)  
When the IPGA perform zero crossing or timeout, the IPGA value is changed by the µP WRITE operation,  
ALC1 recovery operation or ALC1 limiter operation (ZELM bit = 0). Default is 00(128/fs).  
Zero Crossing Timeout Period  
ZTM1 bit ZTM0 bit  
8kHz  
16ms  
32ms  
64ms  
128ms  
16kHz  
8ms  
16ms  
32ms  
64ms  
0
0
1
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
Default  
Table 37. Zero Crossing Timeout Period  
ROTM: Period time for ALC2 Recovery operation, ALC2 Zero Crossing Timeout and ALC2 initializing cycle.  
0: 512/fs (Default)  
1: 1024/fs  
The ROTM bit is set during the PMSPK bit = 0.  
DVTM :Digital Volume Soft Transition Time Control  
0: 1061/fs (Default)  
1: 256/fs  
This is the time to FFH from 00H of DVOL7-0 bits.  
MS0396-E-00  
2005/06  
- 50 -  
ASAHI KASEI  
[AK4632]  
Addr Register Name  
D7  
0
0
D6  
ALC2  
1
D5  
ALC1  
0
D4  
ZELM  
0
D3  
D2  
D1  
RATT  
0
D0  
LMTH  
0
07H  
ALC Mode Control 1  
Default  
LMAT1 LMAT0  
0
0
LMTH: ALC1 Limiter Detection Level / Recovery Waiting Counter Reset Level (See Table 38 )  
The ALC1 limiter detection level and the ALC1 recovery counter reset level may be offset by about ±2dB.  
Default is 0.  
LMTH bit  
ALC1 Limiter Detection Level  
ADC Input ≥ −6.0dBFS  
ADC Input ≥ −4.0dBFS  
ALC1 Recovery Waiting Counter Reset Level  
6.0dBFS > ADC Input ≥ −8.0dBFS  
4.0dBFS > ADC Input ≥ −6.0dBFS  
0
1
Default  
Table 38. ALC1 Limiter Detection Level / Recovery Waiting Counter Reset Level  
RATT: ALC1 Recovery GAIN Step (See Table 39)  
During the ALC1 recovery operation, the number of steps changed from the current IPGA value is set. For  
example, when the current IPGA value is 30H and RATT bit = 1is set, the IPGA changes to 32H by the  
ALC1 recovery operation and the output signal level is gained up by 1dB (=0.5dB x 2). When the IPGA value  
exceeds the reference level (REF6-0 bits), the IPGA value does not increase.  
RATT bit  
GAIN STEP  
0
1
1
2
Default  
Table 39. ALC1 Recovery Gain Step Setting  
LMAT1-0: ALC1 Limiter ATT Step (See Table 40)  
During the ALC1 limiter operation, when IPGA output signal exceeds the ALC1 limiter detection level set by  
LMTH, the number of steps attenuated from the current IPGA value is set. For example, when the current  
IPGA value is 47H and the LMAT1-0 bits = 11, the IPGA transition to 43H when the ALC1 limiter  
operation starts, resulting in the input signal level being attenuated by 2dB (=0.5dB x 4). When the attenuation  
value exceeds IPGA = 00(8dB), it clips to 00.  
LMAT1 bit LMAT0 bit  
ATT STEP  
0
0
1
1
0
1
0
1
1
2
3
4
Default  
Table 40. ALC1 Limiter ATT Step Setting  
ZELM: Enable zero crossing detection at ALC1 Limiter operation  
0: Enable (Default)  
1: Disable  
When the ZELM bit = 0, the IPGA of each L/R channel perform a zero crossing or timeout independently  
and the IPGA value is changed by the ALC1 operation. The zero crossing timeout is the same as the ALC1  
recovery operation. When the ZELM bit = 1, the IPGA value is changed immediately.  
MS0396-E-00  
2005/06  
- 51 -  
ASAHI KASEI  
[AK4632]  
ALC1: ALC1 Enable  
0: ALC1 Disable (Default)  
1: ALC1 Enable  
When ALC1 bit is 1, the ALC1 operation is enabled.  
ALC2: ALC2 Enable  
0: ALC2 Disable  
1: ALC2 Enable (Default)  
After completing the initializing cycle (512/fs = 64ms @fs=8kHz at ROTM bit = 0), the ALC2 operation is  
enabled. When the PMSPK bit changes from 0to 1or PDN pin changes from Lto H, the initilization  
cycle starts.  
Addr Register Name  
08H ALC Mode Control 2  
Default  
D7  
0
0
D6  
REF6  
0
D5  
REF5  
1
D4  
REF4  
1
D3  
REF3  
0
D2  
REF2  
1
D1  
REF1  
1
D0  
REF0  
0
REF6-0: Reference value at ALC1 Recovery Operation (See Table 41)  
During the ALC1 recovery operation, if the IPGA value exceeds the setting reference value by gain operation,  
then the IPGA does not become larger than the reference value. For example, when REF7-0 = 30H, RATT =  
2step, IPGA = 2FH, even if the input signal does not exceed the ALC1 Recovery Waiting Counter Reset  
Level, the IPGA does not change to 2FH + 2step = 31H, and keeps 30H. Default is 36H.  
DATA (HEX)  
GAIN (dB)  
+27.5  
+27.0  
+26.5  
:
STEP  
47  
46  
45  
:
36  
:
+19.0  
:
Default  
10  
:
+0.0  
:
0.5dB  
06  
05  
04  
03  
02  
01  
00  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
Table 41. Setting Reference Value at ALC1 Recovery Operation  
MS0396-E-00  
2005/06  
- 52 -  
ASAHI KASEI  
[AK4632]  
Addr Register Name  
D7  
0
0
D6  
IPGA6  
0
D5  
IPGA5  
0
D4  
IPGA4  
1
D3  
IPGA3  
0
D2  
IPGA2  
0
D1  
IPGA1  
0
D0  
IPGA0  
0
09H  
Input PGA Control  
Default  
IPGA6-0: Input Analog PGA (See Table 42)  
Default: 10H(0dB)  
When IPGA gain is changed, IPGA6-0 bits should be written while PMMIC bit is 1and ALC1 bit is 0.  
IPGA6-0 bits should be set at 2/fs(250µs@fs=8kHz) after PMMIC bit is set to 1. IPGA gain is reset when  
PMMIC bit is 0, and then IPGA operation starts from the default value when PMMIC bit is changed to 1.  
When ALC1 bit is changed from 1to 0, IPGA holds the last gain value set automatically by ALC1  
operation.  
In a manual mode, IPGA can be set to any values in Table 42.The ZTM1-0 bits set zero crossing timeout  
period when IPGA value is changed. When the control register is written from the µP, the zero crossing  
counter is reset and its counter starts. When the signal zero crossing or zero crossing timeout, the written value  
from the µP becomes valid.  
DATA (HEX)  
GAIN (dB)  
+27.5  
+27.0  
+26.5  
:
STEP  
47  
46  
45  
:
36  
:
+19.0  
:
10  
:
+0.0  
:
Default  
0.5dB  
06  
05  
04  
03  
02  
01  
00  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
Table 42. Input Gain Setting  
Addr Register Name  
0AH Digital Volume Control  
Default  
D7  
DVOL7  
0
D6  
DVOL6  
0
D5  
D4  
D3  
D2  
D1  
D0  
DVOL5 DVOL4 DVOL3 DVOL2 DVOL1 DVOL0  
0
1
1
0
0
0
DVOL7-0: Output Digital Volume (See Table 43)  
The AK4632 has a digital output volume (256 levels, 0.5dB step, Mute). The gain can be set by the DVOL7-0  
bits. The volume is included in front of a DAC block, a input data of DAC is changed from +12 to –115dB  
with MUTE. This volume has a soft transition function. It takes 1061/fs (=133ms @ fs = 8kHz) or 256/fs  
(=32ms @ fs = 8kHz) from 00H to FFH. Soft Transition Time is set by DVTM bit.  
DVOL7-0  
00H  
01H  
02H  
Gain  
+12.0dB  
+11.5dB  
+11.0dB  
18H  
0dB  
Default  
FDH  
FEH  
FFH  
114.5dB  
115.0dB  
MUTE (−∞)  
Table 43. Digital Volume Code Table  
MS0396-E-00  
2005/06  
- 53 -  
ASAHI KASEI  
[AK4632]  
Addr Register Name  
0BH ALC2 Mode Control  
Default  
D7  
0
0
D6  
0
0
D5  
RFS5  
1
D4  
RFS4  
1
D3  
RFS3  
1
D2  
RFS2  
1
D1  
RFS1  
0
D0  
RFS0  
0
RFS6-0: Reference value at ALC2 Recovery Operation (See Table 44)  
REFS5-0 bits  
Volume[dB]  
+19.5  
+19.0  
+18.5  
+18.0  
:
Step  
3F  
3E  
3D  
3C  
:
Default  
0.5dB  
19  
18  
17  
:
+0.5  
+0.0  
-0.5  
:
03  
02  
01  
00  
-10.5  
-11.0  
-11.5  
-12.0  
Table 44. Setting Reference Value at ALC2 Recovery Operation  
Addr Register Name  
0CH Video Mode Control  
Default  
D7  
0
0
D6  
SAGC1  
0
D5  
D4  
D3  
D2  
D1  
D0  
SAGC0 VGCA4 VGCA3 VGCA2 VGCA1 VGCA0  
0
0
0
0
1
0
VGCA4-0: Gain Control of Video output(See Table 25)  
SAGC1-0: Select Video Output Circuit (See Table 23)  
MS0396-E-00  
2005/06  
- 54 -  
ASAHI KASEI  
[AK4632]  
SYSTEM DESIGN  
Figure 45 shows the system connection diagram. An evaluation board [AKD4632] is available which demonstrates the  
optimum layout, power supply arrangements and measurement results.  
20k  
C
2.2k  
0.22µ  
220  
1µ  
1µ  
0.1µ  
R
0.1µ  
10µ  
Cp Rp  
1
2
3
4
5
6
7
8
VCOC  
AVDD  
AVSS  
VVDD  
VIN  
24  
23  
MIN  
0.1µ  
10µ  
Analog Supply  
2.63.6V  
SVSS  
+
0.1µ  
0.1µ  
10µ  
10µ  
Analog Supply  
2.65.25V  
+
SVDD 22  
SPP 21  
Analog Supply  
2.85.25V  
R2  
+
Top View  
Speaker  
0.1u  
Cv  
SPN 20  
R1  
75  
ZD2  
ZD1  
MCKO 19  
MCKI 18  
DVSS 17  
VOUT  
VSAG  
PDN  
Cs  
SAGC1-0 bits = “00”  
Cv : Short  
Cs : Short  
SAGC1-0 bits = “10” or “11”  
Cv=100µF & Cs=2.2µF  
or  
Dynamic SPK :  
R1,R2 : Short  
ZD1,ZD2 : Open  
Peizo SPK :  
R1,R2 : 10Ω  
ZD1,ZD2 : Required  
Cv=47µF & Cs=1.0µF  
0.1µ  
10  
+
10µ  
DSP or µP  
Figure 45. Typical Connection Diagram  
Notes:  
- AVSS, DVSS and SVSS of the AK4632 should be distributed separately from the ground of external  
controllers.  
- The exposed pad on the bottom surface of the package must be open.  
- All digital input pins except pull-down pin should not be left floating.  
- Value of R and C of BEEP pin should depend on system.  
- When the AK4632 is EXT mode (PMPLL bit = 0), a resistor and capacitor of VCOC pin is not needed.  
- When the AK4632 is PLL mode (PMPLL bit = 1), a resistor and capacitor of VCOC pin is shown in Table 45.  
- Input resistance of AIN pin and Capacitance between MICOUT pin and AIN pin compose of HPF. When the  
capacitance is 0.22µF, the cut off frequency is typ.72Hz(typ)(min. 48Hz, max. 145Hz).  
Rp and Cp of  
VCOC pin  
PLL Lock  
Time  
(max)  
PLL3 PLL2 PLL1 PLL0 PLL Reference  
Input  
Frequency  
Mode  
bit  
bit  
bit  
bit  
Clock Input Pin  
Cp[F]  
Rp[]  
6.8k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
Default  
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
FCK pin  
BICK pin  
BICK pin  
BICK pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
N/A  
1fs  
16fs  
32fs  
220n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
10n  
160ms  
2ms  
2ms  
64fs  
2ms  
11.2896MHz  
12.288MHz  
12MHz  
24MHz  
13.5MHz  
27MHz  
40ms  
40ms  
40ms  
40ms  
40ms  
40ms  
12  
13  
Others  
1
10n  
Others  
Table 45. Setting of PLL Mode (*fs: Sampling Frequency)  
MS0396-E-00  
2005/06  
- 55 -  
ASAHI KASEI  
[AK4632]  
1. Grounding and Power Supply Decoupling  
The AK4632 requires careful attention to power supply and grounding arrangements. AVDD, DVDD, SVDD and VVDD  
are usually supplied from the system’s analog supply. If AVDD, DVDD, SVDD and VVDD are supplied separately, the  
correct power up sequence should be observed. AVSS, DVSS and SVSS of the AK4632 should be connected to the  
analog ground plane. System analog ground and digital ground should be connected together near to where the supplies  
are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4632 as possible, with the  
small value ceramic capacitor being the nearest.  
2. Voltage Reference  
VCOM is a signal ground of this chip. A 2.2µF electrolytic capacitor in parallel with a 0.1µF ceramic capacitor attached  
to the VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from the VCOM pin. All  
signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the  
AK4632.  
3. Analog Inputs  
The Mic and Beep inputs are single-ended. The input signal range scales with nominally at 0.06 x AVDD Vpp for the Mic  
input and 0.6 x AVDD Vpp for the Beep input, centered around the internal common voltage (approx. 0.45 x AVDD).  
Usually the input signal is AC coupled using a capacitor. The cut-off frequency is fc = (1/2πRC). The AK4632 can accept  
input voltages from AVSS to AVDD.  
4. Analog Outputs  
The input data format for the DAC is 2’s complement. The output voltage is a positive full scale for 7FFFH(@16bit) and  
a negative full scale for 8000H(@16bit). Mono output from the MOUT pin and Mono Line Output from the AOUT pin  
are centered at 0.45 x AVDD (typ). The Speaker-Amp output is centered at SVDD/2.  
MS0396-E-00  
2005/06  
- 56 -  
ASAHI KASEI  
[AK4632]  
CONTROL SEQUENCE  
„ Clock Set up  
When ADC, DAC, ALC1, ALC2 and IPGA are used, the clocks must be supplied.  
1. In case of PLL Master Mode.  
Power Supply  
Example:  
(1)  
Audio I/F Format: DSP Mode, BCKP = MSBS = “0”  
BICK frequency at Master Mode: 64fs  
Input Master Clock Select at PLL Mode: 11.2896MHz  
MCKO : Enable  
PDN pin  
(2)  
(3)  
PMVCM bit  
(Addr:00H, D6)  
Sampling Frequency:8kHz  
(4)  
MCKPD bit  
(Addr:01H, D2)  
(1) Power Supply & PDN pin = “L” Æ “H”  
(5)  
MCKO bit  
(Addr:01H, D1)  
(2)Addr:01H, Data:0CH  
Addr:04H, Data:48H  
Addr:05H, Data:00H  
PMPLL bit  
(Addr:01H, D0)  
(6)  
MCKI pin  
Input  
(3)Addr:00H, Data:40H  
(4)Addr:01H, Data:0BH  
M/S bit  
(Addr:01H, D3)  
40msec(max)  
(7)  
BICK pin  
FCK pin  
Output  
Output  
(8)  
1msec (max)  
MCKO, BICK and FCK output  
40msec(max)  
(9)  
(10)  
MCKO pin  
Figure 46. Clock Set Up Sequence (1)  
<Example>  
(1) After Power Up, PDN pin = LH”  
Ltime (1) of 150ns or more is needed to reset the AK4632.  
(2) DIF1-0, PLL3-0, FS3-0, BCKO1-0, MSBS, BCKP and M/S bits should be set during this period.  
(3) Power UpVCOM: PMVCM bit = 01”  
VCOM should first be powered-up before the other block operates.  
(4) Release the pull-down resistor of the MCKI pin: MCKPD bit = 10”  
(5) In case of using MCKO output: MCKO bit = 1”  
In case of not using MCKO output: MCKO bit = 0”  
(6) PLL lock time is 40ms(max) after PMPLL bit changes from 0to 1and MCKI is supplied from an external  
source.  
(7) The AK4632 starts to output the FCK and BICK clocks after the PLL becomes stable. The normal operation of  
the block which a clock is necessary for becomes possible.  
(8) The invalid frequencies are output from FCK and BICK pins during this period.  
(9) The invalid frequency is output from MCKO pin during this period.  
(10) The normal clock is output from MCKO pin after the PLL is locked.  
MS0396-E-00  
2005/06  
- 57 -  
ASAHI KASEI  
[AK4632]  
2. When the external clocks (FCK or BICK pin) are used in PLL Slave Mode.  
Example:  
Audio I/F Format : DSP Mode, BCKP = MSBS = “0”  
PLL Reference clock: BICK  
Power Supply  
PDN pin  
BICK frequency: 64fs  
Sampling Frequency: 8kHz  
(1)  
(2)  
(3)  
(1) Power Supply & PDN pin = “L” Æ “H”  
PMVCM bit  
(Addr:00H, D6)  
(4) "H"  
MCKPD bit  
(Addr:01H, D2)  
(2) Addr:04H, Data:30H  
Addr:05H, Data:00H  
PMPLL bit  
(Addr:01H, D0)  
(3) Addr:00H, Data:40H  
(4) Addr:01H, Data:05H  
BICK and FCK input  
FCK pin  
BICK pin  
Input  
(5)  
Internal Clock  
(6)  
Figure 47. Clock Set Up Sequence (2)  
<Example>  
(1)After Power Up: PDN pin LH”  
Ltime (1) of 150ns or more is needed to reset the AK4632.  
(2) DIF1-0, FS3-0, PLL3-0, MSBS and BCKP bits should be set during this period.  
(3)Power Up VCOM: PMVCM bit = 01”  
VCOM should first be powered up before the other block operates.  
(4)Pull down of the MCKI pin: MCKPD bit = 1”  
(5)PLL starts after the PMPLL bit changes from 0to 1and PLL reference clock (FCK or BICK pin) is supplied.  
PLL lock time is 160ms(max) when FCK is a PLL reference clock. And PLL lock time is 2ms(max) when BICK  
is a PLL reference clock.  
(6)Normal operation stats after the PLL is locked.  
MS0396-E-00  
2005/06  
- 58 -  
ASAHI KASEI  
[AK4632]  
3. When the external clock (MCKI pin) is used in PLL Slave Mode.  
Example:  
Audio I/F Format: DSP Mode, BCKP = MSBS = “0”  
Power Supply  
BICK frequency at Master Mode: 64fs  
Input Master Clock Select at PLL Mode: 11.2896MHz  
MCKO : Enable  
(1)  
Sampling Frequency:8kHz  
PDN pin  
(2)  
(3)  
PMVCM bit  
(Addr:00H, D6)  
(1) Power Supply & PDN pin = “L” Æ “H”  
(4)  
MCKPD bit  
(Addr:01H, D2)  
(2)Addr:01H, Data:04H  
Addr:04H, Data:48H  
Addr:05H, Data:00H  
(5)  
MCKO bit  
(Addr:01H, D1)  
PMPLL bit  
(Addr:01H, D0)  
(3)Addr:00H, Data:40H  
(4)Addr:01H, Data:03H  
MCKO output start  
(6)  
MCKI pin  
Input  
40msec(max)  
(7)  
MCKO pin  
(8)  
Output  
Input  
(9)  
BICK pin  
FCK pin  
BICK and FCK input start  
Figure 48. Clock Set Up Sequence (3)  
<Example>  
(1) After Power Up: PDN pin LH”  
Ltime (1) of 150ns or more is needed to reset the AK4632.  
(2) DIF1-0, PLL3-0, FS3-0, BCKO1-0, MSBS, BCKP and M/S bits should be set during this period.  
(3) Power Up VCOM: PMVCM bit = 01”  
VCOM should first be powered up before the other block operates.  
(4) Release the pull-down resistor of the MCKI pin: MCKPD bit = 10”  
(5) Enable MCKO output: MCKO bit = 1”  
(6) PLL starts after the PMPLL bit changes from 0to 1and PLL reference clock (MCKI pin) is supplied. PLL  
lock time is 40ms(max).  
(7) The normal clock is output from MCKO after PLL is locked.  
(8) The invalid frequency is output from MCKO during this period.  
(9) BICK and FCK clocks should be synchronized with MCKO clock.  
MS0396-E-00  
2005/06  
- 59 -  
ASAHI KASEI  
4. EXT Slave Mode  
Power Supply  
[AK4632]  
Example  
Audio I/F Format:MSB justified (ADC and DAC)  
Input MCKI frequency: 1024fs  
Sampling Frequency:8kHz  
MCKO: Disable  
(1)  
PDN pin  
(1) Power Supply & PDN pin = “L” Æ “H”  
(2)  
(3)  
PMVCM bit  
(Addr:00H, D6)  
(2) Addr:04H, Data:02H  
Addr:05H, Data:01H  
MCKPD bit  
(Addr:01H, D2)  
(4)  
"L"  
(3) Addr:00H, Data:40H  
(4) Addr:01H, Data:00H  
MCKI, BICK and FCK input  
PMPLL bit  
(Addr:01H, D0)  
(5)  
(5)  
MCKI pin  
Input  
Input  
FCK pin  
BICK pin  
Figure 49. Clock Set Up Sequence (4)  
<Example>  
(1)After Power Up: PDN pin LH”  
Ltime (1) of 150ns or more is needed to reset the AK4632.  
(2)DIF1-0 and FS1-0 bits should be set during this period.  
(3)Power Up VCOM: PMVCM bit = 01”  
VCOM should first be powered up before the other block operates.  
(4)Release the pull-down resistor of the MCKI pin: MCKPD bit = 10”  
Power down PLL: PMPLL bit = 0”  
(5)Normal operation starts after the MCKI, FCK and BICK are supplied.  
MS0396-E-00  
2005/06  
- 60 -  
ASAHI KASEI  
[AK4632]  
„ MIC Input Recording  
Example:  
PLL Master Mode  
Audio I/F Format:DSP Mode, BCKP=MSBS=“0”  
Sampling Frequency:8kHz  
Pre MIC AMP:+20dB  
FS3-0 bits  
XXXX  
XXX  
(Addr:05H,  
MIC Power On  
D5,D2-0)  
ALC1 setting:Refer to Figrure 29  
ALC2 bit=“1”(default)  
(1)  
MIC Control  
001  
X1X  
(1) Addr:05H, Data:00H  
(2) Addr:02H, Data:07H  
(Addr:02H, D2-0)  
(2)  
ALC1 Control 1  
XXH  
00H  
47H  
(Addr:06H)  
(3)  
ALC1 Control 2  
XXH  
XXH  
(3) Addr:06H, Data:00H  
(4) Addr:08H, Data:47H  
(5) Addr:07H, Data:61H  
(6) Addr:00H, Data:43H  
Recording  
(Addr:08H)  
(4)  
ALC1 Control 3  
61H or 21H  
(Addr:07H)  
(5)  
ALC1 State  
ALC1 Disable  
ALC1 Disable  
ALC1 Enable  
PMADC bit  
(Addr:00H, D0)  
(6)  
(7)  
PMMIC bit  
(Addr:00H, D1)  
1059 / fs  
ADC Internal  
State  
Power Down  
Normal State Power Down  
Initialize  
(7) Addr:00H, Data:40H  
Figure 50. MIC Input Recording Sequence  
<Example>  
This sequence is an example of ALC1 setting at s=8kHz. If the parameter of the ALC1 is changed, please refer to  
Figure 31. Registers set-up sequence at the ALC1 operation“  
At first, clocks should be supplied according to Clock Set Upsequence.  
(1) Set up a sampling frequency (FS3-0 bit). When the AK4632 is PLL mode, MIC and ADC should be powered-up  
in consideration of PLL lock time after a sampling frequency is changed.  
(2) Set up MIC input (Addr: 02H)  
(3) Set up Timer Select for ALC1 (Addr: 06H)  
(4) Set up REF value for ALC1 (Addr: 08H)  
(5) Set up LMTH, RATT, LMAT1-0 and ALC1 bits (Addr: 07H)  
(6) Power Up MIC and ADC: PMMIC bit = PMADC bit = 01”  
The initialization cycle time of ADC is 1059/fs=133ms@fs=8kHz.  
After the ALC1 bit is set to 1and MIC block is powered-up, the ALC1 operation starts from IPGA default  
value (0dB).  
(7) Power Down MIC and ADC: PMMIC bit = PMADC bit = 10”  
When the registers for the ALC1 operation are not changed, ALC1 bit may be keeping 1. The ALC1 operation  
is disabled because the MIC block is powered-down. If the registers for the ALC1 operation are also changed  
when the sampling frequency is changed, it should be done after the AK4632 goes to the manual mode (ALC1 bit  
= 0) or MIC block is powered-down (PMMIC bit = 0). IPGA gain is reset when PMMIC bit is 0, and then  
IPGA operation starts from the default value when PMMIC bit is changed to 1.  
MS0396-E-00  
2005/06  
- 61 -  
ASAHI KASEI  
[AK4632]  
„ Speaker-amp Output  
Example:  
PLL, Master Mode  
Audio I/F Format :DSP Mode, BCKP=MSBS= “0”  
Sampling Frequency: 8kHz  
Digital Volume: -8dB  
FS2-0 bits  
XXXX  
XXXX  
(Addr:05H,  
D5, D2-0)  
(1)  
(8)  
ALC2 : Enable  
DACM bit  
(1) Addr:05H, Data:00H  
(2) Addr:02H, Data:28H  
(Addr:02H, D3)  
(2)  
ALC2S bit  
(Addr:02H, D5)  
ALC2 bit  
0
(3) Addr:07H, Data:40H  
(4) Addr:0AH, Data:28H  
(5) Addr:00H, Data:54H  
(6) Addr:02H, Data:A8H  
Playback  
X
(Addr:07H, D6)  
(3)  
DVOL7-0 bits  
0001100  
XXXXXXX  
(Addr:0AH, D7-0)  
(4)  
(9)  
PMDAC bit  
(Addr:00H, D2)  
(5)  
PMSPK bit  
(Addr:00H, D4)  
(6)  
SPPS bit  
(Addr:02H, D7)  
(7)  
SPP pin  
Hi-Z  
Normal Output  
Hi-Z  
(7) Addr:02H, Data:28H  
(8) Addr:00H, Data:40H  
SPN pin  
Hi-Z  
SVDD/2 Normal Output SVDD/2 Hi-Z  
Figure 51. Speaker-Amp Output Sequence  
<Example>  
At first, clocks should be supplied according to Clock Set Upsequence.  
(1) Set up a sampling frequency (FS3-0 bits). When the AK4632 is PLL mode, DAC and Speaker-Amp should be  
powered-up in consideration of PLL lock time after a sampling frequency is changed.  
(2) Set up the path of DAC Æ SPK-Amp”  
DACM = ALC2S bit: 01”  
(3) Set up the ALC2 Enable/Disable  
(4) Set up the digital volume (Addr: 0AH)  
After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by  
the soft transition.  
(5) Power Up of DAC and Speaker-Amp: PMDAC bit = PMSPK bit = 01”  
When ALC2 bit = 1, the ALC2 is disabled (ALC2 gain is fiexed to –2dB) during the initilization cycle  
(512/fs = 64ms @ fs=8kHz, ROTM bit = 0) and the ALC2 starts from –2dBafter completing the  
initilization cycle.  
(6) Exit the power-save-mode of Speaker-Amp: SPPS bit = 01”  
(6)time depends on the time constant of input impedance of MIN pin and capacitor between MIN pin and  
MOUT pin. If Speaker-Amp output is enabled before MIN-Amp (ALC2) becomes stable, pop noise may occur.  
e.g. Input Impedance of MIN pin =36k(max), C=0.1µF: Recommended wait time is more than 5τ = 18ms.  
(7) Enter the power-save-mode of Speaker-Amp: SPPS bit = 10”  
(8) Disable the path of DAC Æ SPK-Amp”  
DACM = ALC2S bit: 10”  
(9) Power Down DAC and Speaker-Amp: PMDAC bit = PMSPK bit = 10”  
MS0396-E-00  
2005/06  
- 62 -  
ASAHI KASEI  
[AK4632]  
„ BEEP signal output from Speaker-Amp  
Clocks can be stopped.  
CLOCK  
Example:  
(1) Addr:07H, Data:00H  
ALC2 bit  
(Addr:07H, D6)  
0 or 1  
0
(1)  
(2) Addr:00H, Data:70H  
(3) Addr:02H, Data:60H  
(4) Addr:02H, Data:E0H  
BEEP Signal Output  
PMBP bit  
(Addr:00H, D2)  
(2)  
(6)  
PMSPK bit  
(Addr:00H, D4)  
ALC2S bit  
(Addr:02H, D5)  
0 or 1  
0
(3)  
(7)  
BEEPS bit  
(Addr:02H, D6)  
(4)  
SPPS bit  
(Addr:02H, D7)  
(5) Addr:02H, Data:60H  
(5)  
SPP pin  
SPN pin  
Hi-Z  
Normal Output  
Hi-Z  
(6) Addr:00H, Data:40H  
(7) Addr:02H, Data:00H  
Hi-Z  
SVDD/2 Normal Output SVDD/2 Hi-Z  
Figure 52. BEPP-Amp Æ Speaker-AmpOutput Sequence  
<Example>  
The clocks can be stopped when only BEEP-Amp and Speaker-Amp are operating. However ALC2 must be  
disabled.  
(1) ALC2 Disable: ALC2 bit = 0”  
(2) Power Up BEEP-Amp and Speaker-Amp: PMBP bit = PMSPK bit = 01”  
(3) Disable the path of ALC2 Æ SPK-Amp: ALC2S bit = 0”  
Enable the path of BEEP Æ SPK-Amp: BEEPS bit = 01”  
(4) Exit the power-save-mode of Speaker-Amp: SPPS bit = 01”  
(4)time depends on the time constant of external resistor and capacitor connected to BEEP pin. If  
Speaker-Amp output is enabled before input of BEEP-Amp becomes stable, pop noise may occur.  
e.g. R=20k, C=0.1µF: Recommended wait time is more than 5τ = 10ms.  
(5) Enter the power-save-mode of Speaker-Amp: SPPS bit = 10”  
(6) Power Down BEEP-Amp and Speaker-Amp: PMBP bit = PMSPK bit = 10”  
(7) Disable the path of BEEP Æ SPK-Amp: BEEPS bit = 10”  
MS0396-E-00  
2005/06  
- 63 -  
ASAHI KASEI  
[AK4632]  
„ MONO LINEOUT  
1. In case of using an external mute circuit.(Compatible with AK4536/AK4630)  
Example:  
PLL, Master Mode  
Audio I/F Format :DSP Mode, BCKP=MSBS= “0”  
Sampling Frequency: 8kHz  
Digital Volume: -8dB  
FS3-0 bits  
(Addr:05H,  
D5,D2-0)  
XXXX  
XXXX  
(1) Addr:05H, Data:00H  
(2) Addr:02H, Data:10H  
(1)  
(6)  
DACA bit  
(Addr:02H, D4)  
(2)  
(3)  
DVOL7-0 bits  
(3) Addr:0AH, Data:28H  
(4) Addr:00H, Data:4CH  
Playback  
00011000  
XXXXXXX  
(Addr:0AH, D7-0)  
PMDAC bit  
(Addr:00H, D2)  
(5)  
(4)  
PMAO bit  
(Addr:00H, D3)  
AOUT pin  
Hi-Z  
Hi-Z  
Normal Output  
(5) Addr:00H, Data:40H  
(6) Addr:02H, Data:00H  
Figure 53. Mono Lineout Sequence  
<Example>  
At first, clocks should be supplied according to Clock Set Upsequence.  
(1) Set up a sampling frequency (FS3-0 bits). When the AK4632 is PLL mode, DAC and Mono Line Amp should  
be powered-up in consideration of PLL lock time after a sampling frequency is changed.  
(2) Set up the path of DAC Æ Mono Line Amp”  
DACA bit: 01”  
(3) Set up the digital volume (Addr: 0AH)  
After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by  
the soft transition.  
(4) Power Up of DAC and Mono Line Amp: PMDAC bit = PMAO bit = 01”  
When DAC and Mono Line Amp are powered-up, the pop noise occurs from AOUT pin. Therefore AOUT pin  
should be muted by external circuit.  
(5) Power Down of DAC and Mono Line Amp: PMDAC bit = PMAO bit = 10”  
When DAC and Mono Line Amp are powered-down, the pop noise occurs from AOUT pin. Therefore AOUT  
pin should be muted by external circuit.  
(6) Disable the path of DAC Æ Mono Line Amp”  
DACA bit: 10”  
MS0396-E-00  
2005/06  
- 64 -  
ASAHI KASEI  
[AK4632]  
2. In case of using POP reduction circuit of AK4632.  
Example:  
PLL, Master Mode  
Audio I/F Format :DSP Mode, BCKP=MSBS= “0”  
Sampling Frequency: 8kHz  
Digital Volume: -8dB  
MGAIN1=SPKG1=SPKG0=BEEPA=ALC1M  
=ALC1A= “0”  
(1) Addr:05H, Data:00H  
(2) Addr:02H, Data:10H  
(3) Addr:0AH, Data:28H  
(4) Addr:03H, Data:40H  
(5) Addr:00H, Data:4CH  
(6) Addr:03H, Data:00H  
Playback  
FS2-0 bits  
XXXX  
XXXX  
(Addr:05H,  
D5,D2-0)  
(1)  
(9)  
DACA bit  
(Addr:02H, D4)  
(2)  
(3)  
DVOL7-0 bits  
(Addr:0AH, D7-0)  
00011000  
XXXXXXX  
PSAON bit  
(Addr:03H, D6)  
(4)  
(6)  
(7)  
(10)  
PMDAC bit  
(Addr:00H, D2)  
(7) Addr:03H, Data:40H  
(8) Addr:00H, Data:40H  
(9) Addr:02H, Data:00H  
(10) Addr:03H, Data:00H  
(5)  
(8)  
PMAO bit  
(Addr:00H, D3)  
>300 ms  
>300 ms  
Normal Output  
AOUT pin  
Figure 54. Mono Lineout Sequence  
<Example>  
At first, clocks should be supplied according to Clock Set Upsequence.  
(1) Set up a sampling frequency (FS3-0 bits). When the AK4632 is PLL mode, DAC and Mono Line Amp should  
be powered-up in consideration of PLL lock time after a sampling frequency is changed.  
(2) Set up the path of DAC Æ Mono Line Amp: DACA bit: 01”  
(3) Set up the digital volume (Addr: 0AH)  
After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by  
the soft transition.  
(4) Enter power-save mode of Mono Line Amp: AOPSN bit = 01”  
(5) Power Up of DAC and Mono Line Amp: PMDAC bit = PMAO bit = 01”  
AOUT pin rises up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1µF.  
(6) Exit power-save mode of Mono Line Amp after AOUT pin rises up. : AOPSN bit = 10”  
Mono Line Amp goes to normal operation.  
(7) Enter power-save mode of Mono Line Amp: AOPSN bit = 01”  
(8) Power Down of DAC and Mono Line Amp: PMDAC bit = PMAO bit = 10”  
AOUT pin falls down to AVSS. Fall time is 200ms (max 300ms) at C=1µF.  
(9) Disable the path of DAC Æ Mono Line Amp: DACA bit: 10”  
(10)Exit power-save mode of Mono Line Amp after AOUT pin falls down. : AOPSN bit = 10”  
MS0396-E-00  
2005/06  
- 65 -  
ASAHI KASEI  
[AK4632]  
„ Video Signal Input and Output  
Example:  
Clocks  
Clocks can be stopped, if only video output is enable.  
1
Audio Function :No use  
PLL Master Mode  
VIDEO Output : DC Output  
VGCA : 0dB  
PMVCM bit  
(Addr:00H, D6)  
X
(1)  
(2)  
(1) Addr:00H, Data:45H  
(2) Addr:0CH, Data:02H  
(3) Addr:01H, Data:8BH  
SAGC1-0 bits  
(Addr:0CH, D6-5)  
X X  
X X  
VGCA4-0 bits  
(Addr:0CH, D4-0)  
X X X X X  
X X X X X  
(4)  
(3)  
PMV bit  
(Addr:01H, D7)  
Video Output  
VOUT pin  
AVSS  
AVSS  
Normal Output  
(4) Addr:01H, Data:0BH  
Figure 55. Video Output Sequence  
<Example>  
When the only video function is used, the clocks are not needed to input.  
(1) Power Up of VCOM : PMVCM bit = 01”  
(2) Set up the output circuit(SAGC1-0bits) and GCA(VGCA4-0 bits)  
(3 ) Power Up of Video-Amp : PMV bit = 01”  
The video signal that is input to VIN pin starts output from VOUT pin.  
(4) Power Down of Video-Amp : PMV bit = 10”  
The output from VOUT pin stops. VOUT pin goes to AVSS.  
If any audio functions are not used, VCOM can be powered-down(PMVCM bit =0)  
MS0396-E-00  
2005/06  
- 66 -  
ASAHI KASEI  
[AK4632]  
„ Stop of Clock  
Master clock can be stopped when ADC, DAC, ALC1, ALC2 and IPGA don’t operate.  
1. In case of PLL Master Mode  
Example:  
(1)  
Audio I/F Format: DSP Mode, BCKP = MSBS = “0”  
BICK frequency at Master Mode : 64fs  
Input Master Clock Select at PLL Mode : 11.2896MHz  
Sampling Frequency:8kHz  
PMPLL bit  
(Addr:01H,D0)  
(2)  
MCKO bit  
"H"or"L"  
(1) (2) (3) Addr:01H, Data:0CH  
Stop an external MCKI  
(Addr:01H,D1)  
(3)  
MCKPD bit  
(Addr:01H,D2)  
(4)  
External MCKI  
Input  
Figure 56. Clock Stopping Sequence (1)  
<Example>  
(1) Power down PLL: PMPLL bit = 10”  
(2) Stop MCKO clock: MCKO bit = 10”  
(3) Pull down the MCKI pin: MCKPD bit = 01”  
When the external master clock becomes Hi-Z, MCKI pin should be pulled down.  
(4) Stop an external master clock.  
2. When an external clocks (FCK or BICK pins) are used in PLL Slave Mode.  
Example  
Audio I/F Format : DSP Mode, BCKP = MSBS = “0”  
(1)  
PLL Reference clock: BICK  
BICK frequency: 64fs  
PMPLL bit  
(Addr:01H,D0)  
Sampling Frequency: 8kHz  
(2)  
(2)  
External BICK  
External FCK  
Input  
Input  
(1) Addr:01H, Data:04H  
(2) Stop the external clocks  
Figure 57. Clock Stopping Sequence (2)  
<Example>  
(1) Power down PLL: PMPLL bit = 10”  
(2) Stop the external BICK and FCK clocks  
MS0396-E-00  
2005/06  
- 67 -  
ASAHI KASEI  
[AK4632]  
3. When an external clock (MCKI pin) is used in PLL Slave Mode.  
(1)  
PMPLL bit  
(Addr:01H,D0)  
(1)  
Example  
MCKO bit  
(Addr:01H,D1)  
Audio I/F Format : DSP Mode, BCKP = MSBS = “0”  
PLL Reference clock: MCKI  
BICK frequency: 64fs  
Sampling Frequency: 8kHz  
(1)  
MCKPD bit  
(Addr:01H,D2)  
(1) Addr:01H, Data:04H  
(2)  
External MCKI  
Input  
(2) Stop the external clocks  
Figure 58. Clock Stopping Sequence (3)  
<Example>  
(1) Power down PLL: PMPLL bit = 10”  
Stop MCKO output: MCKO bit = 10”  
Pull down the MCKI pin: MCKPD bit = 01”  
When the external master clock becomes Hi-Z, MCKI pin should be pulled down.  
(2) Stop the external master clock.  
4. EXT Slave Mode  
Example  
Audio I/F Format :MSB justified(ADC and DAC)  
Input MCKI frequency:1024fs  
Sampling Frequency:8kHz  
(1)  
MCKPD bit  
(Addr:01H,D2)  
(2)  
(1) Addr:01H, Data:04H  
External MCKI  
External BICK  
External FCK  
Input  
Input  
Input  
(2)  
(2)  
(2) Stop the external clocks  
Figure 59. Clock Stopping Sequence (4)  
<Example>  
(1) Pull down the MCKI pin: MCKPD bit = 01”  
When the external master clock becomes Hi-Z, MCKI pin should be pulled down.  
(2) Stop the external MCKI, BICK and FCK clocks.  
„ Power down  
If the clocks are supplied, power down VCOM (PMVCM bit: 10) after all blocks except for VCOM are  
powered-down and a master clock stops. The AK4632 is also powered-down by PDN pin = L. When PDN pin = L,  
the registers are initialized.  
MS0396-E-00  
2005/06  
- 68 -  
ASAHI KASEI  
[AK4632]  
PACKAGE  
32pin QFN (Unit: mm)  
5.00 ± 0.10  
4.75 ± 0.10  
0.40 ± 0.10  
24  
17  
25  
16  
B
Exposed  
Pad  
9
32  
32  
1
C0.42  
1
8
A
3.5  
+0.07  
0.23 -0.05  
0.50  
AB  
M
0.10  
C
C
0.08  
Note) The exposed pad on the bottom surface of the package must be open.  
„ Material & Lead finish  
Package molding compound:  
Lead frame material:  
Epoxy  
Cu  
Lead frame surface treatment:  
Solder (Pb free) plate  
MS0396-E-00  
2005/06  
- 69 -  
ASAHI KASEI  
[AK4632]  
MARKING  
4632  
XXXX  
1
XXXX : Date code identifier (4 digits)  
Revision History  
Date (YY/MM/DD) Revision Reason  
05/06/01 00 First Edition  
Page  
Contents  
IMPORTANT NOTICE  
These products and their specifications are subject to change without notice. Before considering  
any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or  
authorized distributor concerning their current status.  
AKM assumes no liability for infringement of any patent, intellectual property, or other right in the  
application or use of any information contained herein.  
Any export of these products, or devices or systems containing them, may require an export license  
or other official approval under the law and regulations of the country of export pertaining to customs  
and tariffs, currency exchange, or strategic materials.  
AKM products are neither intended nor authorized for use as critical components in any safety, life  
support, or other hazard related device or system, and AKM assumes no responsibility relating to any  
such use, except with the express written consent of the Representative Director of AKM. As used  
here:  
a. A hazard related device or system is one designed or intended for life support or maintenance of  
safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its  
failure to function or perform may reasonably be expected to result in loss of life or in significant  
injury or damage to person or property.  
b. A critical component is one whose failure to function or perform may reasonably be expected to  
result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or  
system containing it, and which must therefore meet very high standards of performance and  
reliability.  
It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or  
otherwise places the product with a third party to notify that party in advance of the above content  
and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability  
for and hold AKM harmless from any and all claims arising from the use of said product in the  
absence of such notification.  
MS0396-E-00  
2005/06  
- 70 -  

相关型号:

AKD4632-A

AK4632 Evaluation board Rev.0
AKM

AKD4633

16-Bit Mono CODEC with ALC & MIC/SPK-AMP
AKM

AKD4633-A

16bit mono CODEC with MIC/SPK amplifier.
AKM

AKD4634

16-Bit Mono CODEC with ALC & MIC/SPK-AMP
AKM

AKD4634-A

16bit mono CODEC with MIC/SPK/VIDEO amplifier.
AKM

AKD4635

16-Bit Mono CODEC with ALC & MIC/SPK/Video-AMP
AKM

AKD4636

16-Bit Mono CODEC with ALC & MIC/SPK/Video-AMP
AKM

AKD4640

AKD4640 EVALUATION BOARD
AKM

AKD4641

16 BIT CODEC WITH BLUETOOTH INTERFACE
AKM

AKD4641EN

16-Bit ツヒ CODEC with Bluetooth Interface
AKM

AKD4641EN-A

16bit stereo CODEC with built-in Microphone-amplifier and 16bit Mono CODEC for Bluetooth Interface.
AKM

AKD4642

Stereo CODEC with MIC/HP/SPK-AMP
AKM