AKD4675 [AKM]

Stereo CODEC with MIC/RCV/HP/SPK-AMP; 立体声编解码器与MIC / RCV / HP / SPK- AMP
AKD4675
型号: AKD4675
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

Stereo CODEC with MIC/RCV/HP/SPK-AMP
立体声编解码器与MIC / RCV / HP / SPK- AMP

解码器 编解码器
文件: 总178页 (文件大小:2125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
[AK4675]  
AK4675  
Stereo CODEC with MIC/RCV/HP/SPK-AMP  
GENERAL DESCRIPTION  
The AK4675 is a stereo CODEC with a built-in Microphone-Amplifier, Receiver-Amplifier, cap-less  
Headphone-Amplifier and stereo audio class-D Speaker-Amplifier. The AK4675 features dual PCM I/F in  
addition to audio I/F that allows easy interfacing in mobile phone designs with Bluetooth I/F. The  
Speaker-Amplifier includes ALC (Automatic Level Control) circuit what is able to stabilize each output  
sound levels. The AK4675 is available in an 83pin BGA, utilizing less board space than competitive  
offerings.  
FEATURES  
1. Recording Function (Stereo CODEC)  
4 Stereo Input Selector x 2ch  
4 Stereo Inputs (Single-ended) or 2 Stereo Input (Full-differential)  
MIC Amplifier: +30dB ∼ −12dB, 3dB step  
Digital ALC (Automatic Level Control): +36dB ∼ −54dB, 0.375dB Step, Mute  
Wind-noise Reduction Filter  
Stereo Separation Emphasis  
5-band Programmable Notch Filter  
Audio Interface Format: 16bit MSB justified, I2S, DSP Mode  
2. Playback Function (Stereo CODEC)  
Digital Volume (+12dB ∼ −115.0dB, 0.5dB Step, Mute)  
Digital ALC (Automatic Level Control): +36dB ∼ −54dB, 0.375dB Step, Mute  
Stereo Separation Emphasis  
5-band EQ  
Stereo Line Output  
Mono Receiver-Amp  
- BTL Output  
- Output Power: 30mW@32Ω (AVDD=3.3V)  
Stereo Cap-less Headphone Amplifier  
- Mono / Stereo Mode  
- Output Power: 64mW x 2ch @ 16Ω, SVDDA=3.3V, THD+N = –40dB  
- THD+N: -58dB @ 16Ω, Po=30mW, SVDDA=3.3V  
- Output Noise Level: 24μVrms  
- Outputs Volume: +12dB to –50dB, 2dB Step  
- Pop Noise Free at Power-ON/OFF and Mute  
Class-D Speaker Amplifier  
- BTL output  
- Output Power: 1.6W @ 8Ω, SVDDA=5.0V  
0.8W @ 8Ω, SVDDA=3.6V  
- THD+N: –65dB @8Ω, Po=0.25W, SVDDA=3.6V  
- Output Noise Level: 71μVrms  
- ALC (Automatic Level Control) Circuit  
- Pop Noise Free at Power-ON/OFF and Mute  
- External filter-less  
- Short Protection circuit  
Thermal Shutdown / Short protection circuit  
Analog Mixing: 4 Stereo Input  
Audio Interface Format: 16bit MSB justified, 16bit LSB justified, 16-24bit I2S, DSP  
Mode  
3. Dual PCM I/F for Baseband & Bluetooth Interface  
MS0963-E-00  
2008/05  
- 1 -  
[AK4675]  
Sample Rate Converter (Up sample: up to x6: Down sample: down to x1/6)  
Sample Rate: 8kHz  
Digital Volume  
Audio Interface Format:  
- 16bit Linear, 8bit A-law, 8bit μ-law  
- Short/Long Frame, I2S, MSB justified  
4. 10bit SAR ADC  
3 Input Selectors  
5. Power Management  
6. Master Clock:  
(1) PLL Mode  
Frequencies: 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz,  
24MHz, 26MHz, 27MHz (MCKI pin)  
1fs (LRCK pin)  
32fs or 64fs (BICK pin)  
(2) External Clock Mode  
Sampling Rate: 256fs, 384fs, 512fs, 768fs or 1024fs (MCKI pin)  
7. Output Master Clock Frequencies: 32fs/64fs/128fs/256fs  
8. Sampling Rate (Stereo CODEC):  
PLL Slave Mode (LRCK pin): 8kHz 48kHz  
PLL Slave Mode (BICK pin): 8kHz 48kHz  
PLL Slave Mode (MCKI pin):  
8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz  
PLL Master Mode:  
8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz  
EXT Master/Slave Mode:  
8kHz 48kHz (256fs, 384fs), 8kHz 26kHz (512fs, 768fs),  
8kHz 13kHz (1024fs)  
9. μP I/F: I2C Bus (Ver 1.0, 400kHz High Speed Mode)  
10. Master/Slave mode  
11. Ta = –30 85°C  
12. Power Supply:  
Analog1: 2.2 3.6V  
Analog2: 2.6 3.6V  
Digital I/F: 1.6 3.6V  
Speaker Amp: 3.0 5.5V  
13. Package: 83pin BGA (5.5mm x 5.5mm, 0.5mm pitch)  
MS0963-E-00  
2008/05  
- 2 -  
[AK4675]  
Block Diagram (CODEC Block)  
SAIN2  
SAVDD  
VSS3  
AVDD  
VSS1  
VCOM  
SAIN1  
SAIN3  
DVDD  
VSS4  
TEST  
GPO1  
GPO2  
TEST5  
SCL  
PMSAD  
MDT  
PMMP
MPWR  
A/D  
MIC Power  
Supply  
Control  
Register  
SDA  
MIC-Amp  
PMMICL  
TEST4  
LIN1/IN1+  
RIN1/IN1−  
LIN2/IN2  
PMADL or PMADR  
A/D  
Internal  
MIC  
TEST6  
PDN  
HPF  
PMMICR  
External  
MIC  
PFSEL=0  
PMADL  
or  
RIN2/IN2  
PMADR  
HPF  
LPF  
LIN3/IN3  
RIN3/IN3  
PFSEL=1  
PMDAL  
or  
BICK  
LRCK  
SDTO  
SDTI  
Stereo  
PMDAR Separation  
LIN4/IN4  
RIN4/IN4  
or  
5-band  
PMSRA  
Audio  
I/F  
Notch  
ALC  
MIX  
PMDAL  
or  
PMDAR  
SVOLA  
PMLO1  
PMDAL or PMDAR or  
LOUT1/RCP  
ROUT1/RC  
M
I
X
S
E
L
MCKI  
DATT 5-band  
SMUTE EQ  
D/A  
Stereo Line Out  
or  
Mono Receiver  
PMRO1  
MCKO  
PMPLL  
PLL  
VCOC  
PMLO2S  
PMPCM  
VCOCBT  
LOUT2S  
ROUT2S  
PLLBT  
Stereo Line Out  
PMSRA  
SRC-A  
PMRO2S  
BICKA  
SYNCA  
SDTOA  
SDTIA  
SVOLB  
PCM  
I/F A  
PMSRB  
SRC-B  
PMLO3  
PMRO3  
DATT-B  
LOUT3/LOP  
ROUT3/LON  
BICKB  
SYNCB  
SDTOB  
SDTIB  
DATT-C  
Stereo Line Out  
PCM  
I/F B  
BVOL  
PVDD  
VSS2  
TVDD2  
TVDD3  
Figure 1. Block Diagram (CODEC Block)  
MS0963-E-00  
2008/05  
- 3 -  
[AK4675]  
Block Diagram (HP/SPK-Amp Block)  
TEST3  
TEST2  
AVDDA  
VSS1A  
SVDDA  
PMSP  
SPP  
SPN  
SPIN  
ALCA  
VSS2A  
PMMHL  
PMHPL  
PMV1  
Mixing  
HPL  
LIN1A  
Vol  
VOL  
VOL  
Selector  
Mixing  
Vol  
RIN1A  
HPR  
Selector  
PMHPR  
PMMHR  
PMVCMA  
VCOMA  
VCOMA  
PMOSC  
Int Osc or Ext Clock  
MCKIA  
TVDDA  
PMCP  
R1  
R2  
CP  
CN  
SDA  
SCL  
Charge  
Pump  
Serial I/F  
VBATO  
PVDDA VSS3A PVEE  
PDNA  
VBATIN  
Figure 2. Block Diagram (HP/SPK-Amp Block)  
MS0963-E-00  
2008/05  
- 4 -  
[AK4675]  
Ordering Guide  
AK4675EG  
AKD4675  
30 +85°C  
83pin BGA (0.5mm pitch)  
Evaluation board for AK4675  
Pin Layout  
10  
9
8
7
AK4675  
6
Top View  
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
10  
9
TEST  
AVDD  
VSS1  
HPR  
VCOM  
VCOC  
HPL  
PVDDA  
SDTOA  
VSS2  
VSS3A  
CP  
SDTIA  
PDNA  
VSS4  
DVDD  
NC  
GPO2  
BICKA  
MCKIA  
SDA  
ROUT1  
/RCN  
VBATO VCOCBT  
PVEE  
PVDD  
SYNCA  
TVDD2  
CN  
RIN4  
VCOMA  
ROUT3  
/LON  
8
TVDDA  
TEST6  
MCKO  
MCKI  
LRCK  
/IN4−  
LOUT3  
/LOP  
LIN4  
/IN4+  
RIN2  
LIN3  
/IN3+  
7
VBATIN  
LOUT1  
/RCP  
RIN3  
/IN3−  
LIN2  
6
RIN1A  
SAIN2  
SAIN1  
SAVDD  
SCL  
Top View  
5
TEST5  
PDN  
BICK  
/IN2−  
4
SAIN3  
VSS1A  
/IN2+  
RIN1  
/IN1−  
LIN1  
/IN1+  
3
2
1
SDTOB  
VSS3  
VSS2A  
E
SDTO  
SPN  
TVDD3  
F
BICKB  
SYNCB  
SPP  
NC  
SDTIB  
TEST2  
H
TEST3  
TEST4  
SDTI  
J
AVDDA  
SPIN  
GPO1  
K
LIN1A  
MDT  
A
MPWR  
LOUT2S  
B
ROUT2S  
NC  
SVDDA  
D
NC  
C
G
MS0963-E-00  
2008/05  
- 5 -  
[AK4675]  
PIN/FUNCTION  
No. Pin Name  
A1 MDT  
I/O  
I
O
I
I
I
Function  
MIC Detection Pin (Internal pull down by typ. 500kΩ)  
MIC Power Supply Pin  
B2 MPWR  
B4 SAIN3  
C5 SAIN2  
C4 SAIN1  
D3 SAVDD  
E2 VSS3  
10bit SAR ADC Analog Input 3 Pin  
10bit SAR ADC Analog Input 2 Pin  
10bit SAR ADC Analog Input 1 Pin  
10bit SAR ADC Power Supply Pin  
Ground 3 Pin for CODEC  
-
-
2.2V ~ 3.6V  
1.6V ~ 3.6V  
F1 TVDD3  
E3 SDTOB  
G2 SYNCB  
G3 BICKB  
H2 SDTIB  
J1 SDTI  
-
O
Digital I/O Power Supply 3 Pin for CODEC  
Serial Data Output B Pin  
I/O Sync Signal B Pin  
I/O Serial Data Clock B Pin  
I
I
O
Serial Data Input B Pin  
Audio Serial Data Input Pin  
General Purpose Output 1 Pin  
TEST Pin  
This pin must be open.  
Audio Serial Data Output Pin  
CODEC Power-Down Mode Pin  
“H”: Power-up  
K1 GPO1  
J2 TEST4  
F3 SDTO  
O
O
J4 PDN  
I
“L”: Power-down, reset and initializes the control registers for CODEC. “L” time  
of 150ns or more after power-up is needed to reset the AK4675.  
H4 LRCK  
H5 MCKI  
H6 MCKO  
I/O Input / Output Channel Clock Pin  
I
O
External Master Clock Input Pin  
Master Clock Output Pin  
Test Pin  
H7 TEST6  
K5 BICK  
J5 TEST5  
I
Connect to DVDD.  
I/O Audio Serial Data Clock Pin  
TEST Pin  
This pin must be connected to VSS4.  
I
K6 SCL  
J8 VSS4  
J7 DVDD  
K7 SDA  
K10 GPO2  
I
-
-
Control Data Clock Input Pin  
Ground 4 Pin for CODEC  
Digital Power Supply Pin for CODEC  
1.6V ~ 3.6V  
I/O Control Data Input/Output Pin  
General Purpose Output 2 Pin  
O
MS0963-E-00  
2008/05  
- 6 -  
[AK4675]  
No. Pin Name  
J10 SDTIA  
K9 BICKA  
G9 SYNCA  
F9 SDTOA  
G8 TVDD2  
F8 VSS2  
I/O  
I
Function  
Serial Data Input A Pin  
I/O Serial Data Clock A Pin  
I/O Sync Signal A Pin  
O
-
-
-
Serial Data Output A Pin  
Digital I/O Power Supply 2 Pin for CODEC  
Ground 2 Pin for CODEC  
1.6V ~ 3.6V  
2.2V ~ 3.6V  
E8 PVDD  
PLLBT Power Supply Pin  
Output Pin for Loop Filter of PLLBT Circuit  
This pin must be connected to VSS2 pin with one resistor and capacitor in series.  
Output Pin for Loop Filter of PLL Circuit  
This pin must be connected to VSS1 pin with one resistor and capacitor in series.  
Common Voltage Output Pin, 0.5 x AVDD  
Bias voltage of ADC inputs and DAC outputs.  
Test Pin  
D9 VCOCBT  
D10 VCOC  
C10 VCOM  
A10 TEST  
O
O
O
-
This pin must be open.  
A9 AVDD  
A8 VSS1  
-
-
Analog Power Supply Pin for CODEC  
Ground 1 Pin for CODEC  
2.2V ~ 3.6V  
ROUT1  
RCN  
LOUT1  
RCP  
ROUT3  
LON  
LOUT3  
LOP  
RIN4  
IN4−  
LIN4  
IN4+  
RIN3  
IN3−  
LIN3  
IN3+  
RIN2  
IN2−  
LIN2  
IN2+  
RIN1  
IN1−  
LIN1  
IN1+  
O
O
O
O
O
O
O
O
I
I
I
I
I
I
I
I
I
I
I
I
I
Rch Stereo Line Output 1 Pin (RCV bit = “0”: Stereo Line Output)  
Receiver-Amp Negative Output Pin (RCV bit = “1”: Receiver Output)  
Lch Stereo Line Output 1 Pin (RCV bit = “0”: Stereo Line Output)  
Receiver-Amp Positive Output Pin (RCV bit = “1”: Receiver Output)  
Rch Stereo Line Output 3 Pin (LODIF bit = “0”: Single-ended Stereo Output)  
Negative Line Output Pin (LODIF bit = “1”: Full-differential Mono Output)  
Lch Stereo Line Output 3 Pin (LODIF bit = “0”: Single-ended Stereo Output)  
Positive Line Output Pin (LODIF bit = “1”: Full-differential Mono Output)  
Rch Analog Input 4 Pin (MDIF4 bit = “0”: Single-ended Input)  
Negative Line Input 4 Pin (MDIF4 bit = “1”: Full-differential Input)  
Lch Analog Input 4 Pin (MDIF4 bit = “0”: Single-ended Input)  
Positive Line Input 4 Pin (MDIF4 bit = “1”: Full-differential Input)  
Rch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input)  
Negative Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input)  
Lch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input)  
Positive Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input)  
Rch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input)  
Negative Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input)  
Lch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input)  
Positive Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input)  
Rch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input)  
Negative Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input)  
Lch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input)  
Positive Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input)  
Rch Stereo Line Output 2 Pin  
B9  
A6  
B8  
B7  
D8  
B6  
A5  
C7  
B5  
A4  
B3  
I
I
I
O
O
A3  
C2 ROUT2S  
B1 LOUT2S  
Lch Stereo Line Output 2 Pin  
MS0963-E-00  
2008/05  
- 7 -  
[AK4675]  
No. Pin Name  
H1 TEST2  
I/O  
-
Function  
Test 2 Pin  
This pin must be open.  
No Connect Pin  
H3 NC  
-
No internal bonding. This pin must be opened or connected to the ground.  
K3 AVDDA  
K4 VSS1A  
-
-
HP/SPK-Amp Analog Power Supply Pin  
HP/SPK-Amp Ground 1 Pin  
2.6V ~ 3.6V  
HP/SPK-Amp Digital Interface Power Supply Pin  
This pin must be connected to DVDD.  
No Connect Pin  
No internal bonding. This pin must be opened or connected to the ground.  
HP/SPK-Amp External Clock Input Pin (Internal Pull-down pin to VSS1A: typ.  
100kΩ)  
1.6V ~ 3.6V  
H8 TVDDA  
J6 NC  
-
-
I
K8 MCKIA  
HP/SPK-Amp Power-Down Mode Pin  
“H”: Power-up  
J9 PDNA  
I
“L”: Power-down, reset and initializes the control registers for HP/SPK-Amp. “L”  
time of 150ns or more after power-up is needed to reset the AK4675.  
Positive Charge Pump Capacitor Terminal Pin  
H10 CP  
H9 CN  
O
I
Negative Charge Pump Capacitor Terminal Pin  
F10 PVDDA  
G10 VSS3A  
E9 PVEE  
E10 HPL  
-
-
Charge Pump Circuit Positive Power Supply Pin  
HP/SPK-Amp Ground 3 Pin  
Charge Pump Circuit Negative Voltage Output Pin  
Lch Headphone-Amp Output Pin  
Rch Headphone-Amp Output Pin  
Battery Monitor Input Pin  
Battery Monitor Output Pin  
HP/SPK-Amp Analog Common Voltage Output Pin  
Rch HP-Amp Input Pin  
2.6V ~ 3.6V  
O
O
O
I
O
O
I
B10 HPR  
A7 VBATIN  
C9 VBATO  
C8 VCOMA  
C6 RIN1A  
A2 LIN1A  
I
Lch HP-Amp Input Pin  
No Connect Pin  
D2 NC  
C1 NC  
-
-
No internal bonding. This pin must be opened or connected to the ground.  
No Connect Pin  
No internal bonding. This pin must be opened or connected to the ground.  
D1 SVDDA  
E1 VSS2A  
G1 SPP  
-
-
O
O
Speaker-Amp Power Supply Pin  
HP/SPK-Amp Ground 2 Pin  
Positive Speaker-Amp Output Pin  
Negative Speaker-Amp Output Pin  
TEST Pin  
3.0V ~ 5.5V  
F2 SPN  
J3 TEST3  
K2 SPIN  
-
I
This pin must be open.  
Speaker-Amp Input Pin  
Note 1. All input pins except analog input pins (MDT, LIN1/IN1+, RIN1/IN1, LIN2/IN2+, RIN2/IN2, LIN3/IN3+,  
RIN3/IN3, LIN4/IN4+, RIN4/IN4, SAIN1, SAIN2, SAIN3, LIN1A, RIN1A, SPIN, VBATIN) must not be left  
floating. I/O pins except the SDA pin (LRCK, BICK, SYNCA, BICKA, SYNCB, BICK) must be processed  
appropriately as shown in “Master Mode/Slave Mode” and “PCM I/F Master Mode/Slave Mode”. The PDA pin  
should be pulled-up externally and connected to (DVDD+0.3)V or less.  
MS0963-E-00  
2008/05  
- 8 -  
[AK4675]  
Handling of Unused Pins  
The unused I/O pins must be processed appropriately as below.  
Classification  
Pin Name  
Setting  
MPWR, MDT, VCOC, ROUT3/LON, LOUT3/LOP,  
ROUT2S, LOUT2S, ROUT1/RCN, LOUT1/RCP,  
RIN4/IN4, LIN4/IN4+, RIN3/IN3, LIN3/IN3+,  
RIN2/IN2, LIN2/IN2+, RIN1/IN1, LIN1/IN1+,  
VCOCBT, SAIN1, SAIN2, SAIN3, HPL, HPR, SPIN,  
SPP, SPN, LIN1A, RIN1A, VBATIN, VBATO, TEST2  
MCKO, SDTOA, SDTOB, GPO1, GPO2, BICKA,  
SYNCA, BICKB, SYNCB  
Analog  
These pins msut be open.  
Digital  
These pins must be open.  
These pins must be connected to  
VSS4.  
MCKI, , SDTIA, SDTIB  
MCKIA  
These pins must be connected to  
VSS1A.  
MS0963-E-00  
2008/05  
- 9 -  
[AK4675]  
ABSOLUTE MAXIMUM RATINGS  
(VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V; Note 2, Note 3)  
Parameter  
Power Supplies:  
(Note 4)  
Symbol  
AVDD  
PVDD  
SAVDD  
DVDD  
TVDD2  
TVDD3  
AVDDA  
TVDDA  
Min  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
-
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
30  
65  
-
max  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
4.0  
±10  
Units  
V
V
V
V
V
V
V
V
V
V
mA  
V
V
V
V
V
V
CODEC Analog  
PLLBT  
10bit SAR ADC  
CODEC Digital  
CODEC Digital I/O 2  
CODEC Digital I/O 3  
HP/SPK-Amp Analog  
HP/SPK-Amp Digital I/F  
Speaker-Amp & Headphone-Amp SVDDA  
Charge Pump  
PVDDA  
IIN  
Input Current, Any Pin Except Supplies  
Analog Input Voltage 1 (Note 5)  
Analog Input Voltage 2 (Note 6)  
Analog Input Voltage 3 (Note 7)  
Analog Input Voltage 4 (Note 8)  
Digital Input Voltage 1 (Note 9)  
Digital Input Voltage 2 (Note 10)  
Digital Input Voltage 3 (Note 11)  
Digital Input Voltage 4 (Note 12)  
Ambient Temperature (powered applied)  
Storage Temperature  
VINA1  
VINA2  
VINA3  
VINA4  
VIND1  
VIND2  
VIND3  
VIND4  
Ta  
AVDD+0.3  
SAVDD+0.3  
(AVDDA+0.3) or 6.0  
6.0  
DVDD+0.3  
TVDD2+0.3  
TVDD3+0.3  
(TVDDA+0.3) or 6.0  
85  
V
V
°C  
°C  
W
W
Tstg  
Pd1  
Pd2  
150  
0.91  
1.18  
Maximum Power Dissipation Ta=85ºC (Note 14)  
(Note 13)  
Ta=70ºC (Note 15)  
-
Note 2. All voltages with respect to ground.  
Note 3. VSS1, VSS2, VSS3, VSS4, VSS1A, VSS2A and VSS3A must be connected to the same analog  
ground plane.  
Note 4. TVDDA should be connected to DVDD.  
Note 5. RIN4/IN4, LIN4/IN4+, RIN3/IN3, LIN3/IN3+, RIN2/IN2, LIN2/IN2+, RIN1/IN1, LIN1/IN1+ pins  
Note 6. SAIN1, SAIN2, SAIN3 pins  
Note 7. LIN1A, RIN1A, SPIN pins. The maximum value is smaller value between (AVDDA+0.3)V and 6.0V.  
Note 8. VBATIN pin  
Note 9. PDN, SCL, SDA, SDTI, LRCK, BICK, MCKI pins  
Pull-up resistors at SDA and SCL pins should be connected to (DVDD+0.3)V or less voltage.  
Note 10. BICKA, SYNCA, SDTIA pins  
Note 11. BICKB, SYNCB, SDTIB pins  
Note 12. PDNA, MCKIA pins. The maximum value is smaller value between (AVDDA+0.3)V and 6.0V.  
Note 13. In case that the PCB wiring density is 300%. This power is the AK4675 internal dissipation that does not include  
power of externally connected speaker and headphone.  
Note 14. When Ta=85°C, the HP-Amp power must be under 30mW@16Ω and SPK-Amp power must be 1.0W@8Ω.  
Note 15. When Ta=70°C, the HP-Amp power must be under 30mW@16Ω and SPK-Amp power must be 1.6W@8Ω.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
MS0963-E-00  
2008/05  
- 10 -  
 
[AK4675]  
RECOMMENDED OPERATING CONDITIONS  
(VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V; Note 2)  
Parameter  
Symbol  
AVDD  
PVDD  
SAVDD  
DVDD  
TVDD2  
TVDD3  
AVDDA  
TVDDA  
min  
2.2  
2.2  
2.2  
1.6  
1.6  
1.6  
2.6  
1.6  
3.0  
2.6  
0.1  
0.3  
0.3  
0.3  
typ  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.6  
3.3  
0
max  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
5.5  
3.6  
+0.1  
+0.3  
-
Units  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Power Supplies CODEC Analog  
(Note 16) PLLBT  
10bit SAR ADC  
CODEC Digital  
CODEC Digital I/O 2  
CODEC Digital I/O 3  
HP/SPK-Amp Analog  
HP/SPK-Amp Digital I/F  
Speaker-Amp & Headphone-Amp  
SVDDA  
PVDDA  
Charge Pump  
Difference 1  
Difference 2  
Difference 3  
Difference 4  
AVDDPVDD  
PVDDA–AVDDA  
SVDDA–AVDDA  
DVDD–TVDDA  
0
-
0
+0.3  
Note 2. All voltages with respect to ground.  
Note 16. TVDDA must be connected to DVDD. The power-up sequence between AVDD, PVDD, SAVDD, DVDD,  
TVDD2, TVDD3, AVDDA, TVDDA, SVDDA and PVDDA is not critical. However, the PDN and PDNA pin  
must be held to “L” until all power supply pins are supplied. After all power supplies are filled, PDN and PDNA  
pins should be set to “H”.  
* The AK4675 supports the following two cases of partial power ON/OFF. In these cases, PDNA pin should be “L” and  
all power management bits (PMVCM, PMMP, PMMICL, PMMICR, PMADL, PMADR, PMDAL, PMDAR, PMPLL,  
PMLOOPL, PMLOOPR, PMAINL1, PMAINR1, PMAINL2, PMAINR2, PMAINL3, PMAINR3, PMAINL4,  
PMAINR4, PMLO1, PMRO1, PMLO2S, PMRO2S, PMLO3, PMRO3, PMSRA, PMSRB, PMPCM, and PMSAD)  
should be OFF or PDN and PDNA pins should be “L”.  
1. DVDD=TVDDA=SVDDA=ON, AVDD=PVDD=SAVDD=TVDD2=TVDD3=AVDDA=PVDDA=OFF  
2. DVDD=TVDDA=ON, AVDD=PVDD=SAVDD=TVDD2=TVDD3=AVDDA=PVDDA=SVDDA=OFF  
When the power state is changed from OFF to ON in the above cases, the PDN and PDNA pins should be set to “H” after  
all power supply pins are supplied.  
When DVDD and TVDDA are powered OFF, AVDD, PVDD, SAVDD, TVDD2, TVDD3, AVDDA, TVDDA, SVDDA  
or PVDDA must be powered OFF. When only DVDD and TVDDA are OFF, leak current of 10mA to 100mA may occur.  
* AKEMD assumes no responsibility for the usage beyond the conditions in this datasheet.  
MS0963-E-00  
2008/05  
- 11 -  
 
[AK4675]  
ANALOG CHARACTERISTICS (CODEC)  
(Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=AVDDA=PVDDA=TVDDA=3.3V, SVDDA=3.6V;  
VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V; Signal Frequency=1kHz; 16bit Data; fs=44.1kHz,  
BICK=64fs, LP bit = “0”; Measurement frequency=20Hz 20kHz; unless otherwise specified)  
min  
typ  
max  
Units  
Parameter  
MIC Amplifier: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins; PMAINL1/R1/L2/R2/L3/R3/L4/R4 bits = “0”  
Input Resistance  
MGNL/R0 bit = “0”  
MGNL/R0 bit = “1”  
28  
20  
42  
30  
56  
40  
kΩ  
kΩ  
Gain (Note 17)  
Max (MGNL/R3-0 bits = “FH”)  
Min (MGNL/R3-0 bits = “1H”)  
-
-
+30  
12  
-
-
dB  
dB  
MIC Power Supply: MPWR pin  
Output Voltage (Note 18)  
Load Resistance  
Load Capacitance  
2.47  
0.5  
-
2.64  
-
-
2.81  
-
30  
V
kΩ  
pF  
MIC Detection: MDT pin  
Comparator Voltage Level (Note 19)  
Internal pull down Resistance  
Stereo ADC Analog Input Characteristics:  
0.247  
750  
0.165  
250  
mV  
kΩ  
500  
LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins Stereo ADC IVOL, IVOL=0dB, ALC=OFF  
Resolution  
-
-
0.176  
1.98  
82  
87  
86  
95  
86  
95  
90  
16  
0.203  
2.28  
-
-
-
-
-
-
-
-
0.8  
0.8  
Bits  
Vpp  
Vpp  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(Note 21)  
(Note 22)  
(Note 21)  
(Note 22)  
(Note 21)  
(Note 22)  
(Note 21)  
(Note 22)  
(Note 21)  
(Note 22)  
(Note 21)  
(Note 22)  
0.150  
Input Voltage (Note 20)  
1.68  
72  
-
75  
-
75  
-
75  
-
S/(N+D) (1dBFS)  
D-Range (60dBFS, A-weighted)  
S/N (A-weighted)  
Interchannel Isolation  
100  
0.1  
0.1  
dB  
dB  
dB  
-
-
Interchannel Gain Mismatch  
Note 17. In case of full-differential input, MGAIN=0dB (min) and AVDD=2.4V (min).  
Note 18. Output voltage is proportional to AVDD voltage. Vout = 0.8 x AVDD (typ).  
Note 19. Comparator Voltage Level is proportional to AVDD voltage. Vth = 0.05 x AVDD(min), 0.075 x AVDD(max).  
Note 20. Input voltage is proportional to AVDD voltage. Vin = 0.053 x AVDD (typ)@MGNL3-0=MGNR3-0 bits =  
“CH” (+21dB), Vin = 0.6 x AVDD(typ)@MGNL3-0=MGNR3-0 bits = “5H” (0dB).  
Note 21. MGNL3-0=MGNR3-0 bits = “CH” (+21dB).  
Note 22. MGNL3-0=MGNR3-0 bits = “5H” (0dB).  
MS0963-E-00  
2008/05  
- 12 -  
 
[AK4675]  
min  
-
typ  
-
max  
16  
Units  
Bits  
Parameter  
Stereo DAC Characteristics:  
Resolution  
Stereo Line Output Characteristics:  
Stereo DAC LOUT1/ROUT1/LOUT3/ROUT3 pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L1VL=L3VL=0dB,  
RCV bit = “0”, RL=10kΩ; unless otherwise specified.  
Output Voltage (Note 23)  
S/(N+D) (0dBFS)  
S/N (A-weighted)  
Interchannel Isolation  
Interchannel Gain Mismatch  
Load Resistance  
1.78  
75  
82  
85  
-
1.98  
85  
92  
100  
0.1  
-
2.18  
-
-
-
0.5  
-
Vpp  
dB  
dB  
dB  
dB  
kΩ  
pF  
10  
-
Load Capacitance  
-
30  
Stereo Line Output Characteristics:  
Stereo DAC LOUT2S/ROUT2S pins, ALC=OFF, IVOL=0dB, OVOL=0dB, RL=25kΩ; unless otherwise specified.  
Output Voltage (Note 23)  
S/(N+D) (0dBFS)  
S/N (A-weighted)  
Interchannel Isolation  
Interchannel Gain Mismatch  
Load Resistance  
1.78  
72  
82  
85  
-
1.98  
85  
92  
100  
0.1  
-
2.18  
-
-
-
0.5  
-
Vpp  
dB  
dB  
dB  
dB  
kΩ  
pF  
25  
-
Load Capacitance  
-
30  
Mono Receiver-Amp Output Characteristics:  
Stereo DAC RCP/RCN pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L1VL=0dB, RCV bit = “1”, RL=32Ω, BTL;  
unless otherwise specified.  
Output Voltage (Note 24)  
1.57  
-
1.96  
2.77  
2.35  
-
Vpp  
Vpp  
6dBFS, RL=32Ω (Po=15mW)  
3dBFS, RL=32Ω (Po=30mW)  
S/(N+D)  
40  
-
82  
32  
-
60  
20  
92  
-
-
-
-
-
30  
dB  
dB  
dB  
Ω
6dBFS, RL=32Ω (Po=15mW)  
3dBFS, RL=32Ω (Po=30mW)  
S/N (A-weighted)  
Load Resistance  
Load Capacitance  
-
pF  
Note 23. The Output voltage is proportional to the AVDD voltage. Vout = 0.6 x AVDD (typ).  
Note 24. The Output voltage is proportional to the AVDD voltage. Vout = (RCP) (RCN) = 0.59 x AVDD  
(typ)@6dBFS.  
Note 25. VSS1 load capacitance to output pins.  
MS0963-E-00  
2008/05  
- 13 -  
 
[AK4675]  
Units  
min  
typ  
max  
Parameter  
Mono Line Output Characteristics: Stereo DAC LOP/LON pins, ALC=OFF, IVOL=0dB, OVOL=0dB,  
L3VL=0dB, LODIF bit = “1”, RL=10kΩ for each pin (Full-differential)  
Output Voltage (Note 26)  
S/(N+D) (0dBFS)  
S/N (A-weighted)  
Load Resistance (LOP/LON pins, respectively)  
Load Capacitance (LOP/LON pins, respectively)  
3.52  
75  
85  
10  
-
3.96  
85  
95  
-
4.36  
-
-
-
30  
Vpp  
dB  
dB  
kΩ  
pF  
-
Single-ended Line Input: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins;  
(MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
Maximum Input Voltage (Note 28)  
Gain  
-
1.98  
-
Vpp  
InputÆLOUT1/ROUT1/LOUT2S/ROUT2S/LOUT3/ROUT3 (LODIF=RCV bits = “0”)  
0
+1  
-
dB  
dB  
1  
Input Æ RCP/RCN/LOP/LON (LODIF=RCV bits = “1”)  
-
+6  
Full-differential Line Input: IN1+/, IN2+/, IN3+/, IN4+/pins;  
(MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
Maximum Input Voltage (Note 29)  
Gain  
-
1.98  
-
Vpp  
InputÆLOUT1/ROUT1/LOUT2S/ROUT2S/LOUT3/ROUT3 (LODIF=RCV bits = “0”)  
0
+1  
-
dB  
dB  
1  
Input Æ RCP/RCN/LOP/LON (LODIF=RCV bits = “1”, Note 30)  
-
+6  
Note 26. The Output voltage is proportional to the AVDD voltage. Vout = (LOP) (LON) = 1.2 x AVDD (typ).  
Note 27. VSS1 load capacitance to output pins.  
Note 28. The Maximum Input voltage is proportional to the AVDD voltage. Vin = 0.6 x AVDD (typ).  
Note 29. The Maximum Input voltage is proportional to the AVDD voltage. Vin = (IN4+) (IN4) = 0.6 x AVDD (typ).  
Note 30. Vout = (RCP) (RCN) at RCV bit = “1”, Vout = (LOP) (LON) at LODIF bit = “1”.  
MS0963-E-00  
2008/05  
- 14 -  
 
[AK4675]  
ANALOG CHARACTERISTICS (HP/SPK-Amp)  
(Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=AVDDA=PVDDA=TVDDA=3.3V, SVDDA=3.6V;  
VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V; Input Signal Frequency =1kHz; Measurement band  
width=10Hz 20kHz; Headphone-Amp: RL =16Ω; Speaker-Amp: RL =8Ω + 10μH; Charge Pump Circuit External  
Capacitance: C1=C2= 2.2μF (Figure 3); unless otherwise specified)  
Parameter  
min  
typ  
max  
Units  
LIN1A, RIN1A pins  
Input Resistance  
25  
50  
110  
kΩ  
Input Analog Volume: L1V3-0, R1V3-0 bits  
Step Size  
1
20  
2
-
3
+10  
dB  
dB  
Gain Control Range  
Headphone-Amp: (LIN1A/RIN1A Æ HPL/HPR pins), HPGA = 0dB  
Output Power (THD+N=1%) SVDDA=3.3V  
THD+N 0.7Vrms Single-ended Input, Po = 30mW  
Output Noise (A-weighted)  
Interchannel Gain Mismatch  
Load Resistance  
Load Capacitance  
Output Voltage: 0.7Vrms at single-ended Input  
PSRR  
-
-
-
-
16  
-
64  
-58  
24  
0.2  
-
-
-
40  
0.8  
-
mW  
dB  
μVrms  
dB  
Ω
pF  
-
300  
0.76  
0.62  
0.69  
Vrms  
217Hz (Note 31)  
1kHz (Note 31)  
217Hz (Note 32)  
1kHz (Note 32)  
-
-
-
-
60  
70  
70  
100  
80  
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
Interchannel Isolation  
80  
Headphone Analog Volume 1 (HPGA4-0 bits)  
Step Size  
0.5  
50  
2
-
3.5  
+12  
dB  
dB  
Gain Control Range  
SPIN pins  
Input Resistance  
15  
26  
36  
kΩ  
Speaker Analog Volume: SPGA5-0 bits  
Step Size  
0.1  
12  
0.5  
-
0.9  
+19.5  
dB  
dB  
Gain Control Range  
Class-D Speaker-Amp: SPIN Æ SPP/SPN; ALC = OFF, Input Volume=SPGA=0dB, BTL  
Output Power (THD+N=10%)  
SVDDA=5.0V  
SVDDA=3.6V  
-
-
1.6  
0.8  
-
-
W
W
Output Level (Note 33)  
SVDDA = 5.0V, Input Level = 0.85Vrms  
SVDDA = 3.6V, Input Level = 0.64Vrms  
SVDDA = 3.6V, Input Level = 0.46Vrms  
THD+N: Po=0.25W, Input Level=0.46Vrms(Note 33)  
Output Noise (A-weighted)  
Load Resistance  
-
-
2.7  
2.0  
1.48  
-65  
71  
-
-
-
Vrms  
Vrms  
Vrms  
dB  
μVrms  
Ω
1.33  
-
-
8
-
1.63  
-40  
150  
-
Load Capacitance (Note 34)  
PSRR  
-
300  
pF  
217Hz (Note 35)  
1kHz (Note 35)  
217Hz (Note 36)  
-
-
-
60  
50  
50  
-
-
-
dB  
dB  
dB  
1kHz (Note 36)  
-
50  
-
dB  
Switching Frequency  
Short Protection Current (Note 37)  
Start-Up Time  
150  
250  
40  
30  
400  
120  
48  
kHz  
mA  
ms  
18  
MS0963-E-00  
2008/05  
- 15 -  
[AK4675]  
Note 31. PSR is applied to AVDDA and PVDDA with 100mVpp. This is the value of convoluting sinusoidal voltage of  
100mVpp.  
Note 32. PSR is applied to SVDDA with 0.89Vpp. This is the value of convoluting sinusoidal voltage of 100mVpp.  
Note 33. When the input data is single-ended.  
Note 34. VSS1 load capacitance to output pins. For differential signals, the load capacitance will be twice as big as this  
value.  
Note 35. PSR is applied to AVDDA with 100mVpp. This is the value of convoluting sinusoidal voltage of 100mVpp.  
Note 36. PSR is applied to SVDDA with 100mVpp. This is the value of convoluting sinusoidal voltage of 100mVpp.  
Note 37. The average current between SVDDA and VSS2A, when the SPP pin and SPN pin are shorted and 1kHz,  
0.85Vrms sine wave is input at Single-ended mode.  
Headphone-amp negative voltage  
PVEE pin  
C1  
CN pin  
VSS3A  
Charge Pump Circuit  
C2  
CP pin  
Figure 3. Charge Pump Circuit External Capacitor  
Parameter  
min  
typ  
max  
Units  
Battery Monitor: (BATCPU bit = “1”)  
Input Resistance (VBATIN pin)  
5
10  
-
kΩ  
Attenuation (VBATO / VBATIN) (Note 38)  
Note 38. When input 4.4V to the VBATIN pin.  
0.245  
0.25  
0.255  
-
MS0963-E-00  
2008/05  
- 16 -  
 
[AK4675]  
ANALOG CHARACTERISTICS (Power Supply Current)  
(Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=AVDDA=PVDDA=TVDDA=3.3V, SVDDA=3.6V;  
VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V;  
Signal Frequency=1kHz; 16bit Data; fs=44.1kHz, BICK=64fs, LP bit = “0”; Measurement frequency=20Hz 20kHz;  
Headphone-Amp: RL =16Ω; Speaker-Amp: RL =8Ω + 10μH; Charge Pump Circuit External Capacitance: C1=C2=2.2μF  
(Figure 3); unless otherwise specified)  
Parameter  
min  
typ  
max  
Units  
Power Supplies:  
CODEC Block Power Up (PDN pin = “H”, All Circuits Power-up)  
(Note 39)  
(Note 40)  
(Note 41)  
-
-
-
20  
21  
8
-
30  
12  
mA  
mA  
mA  
AVDD+PVDD+DVDD  
+TVDD2+TVDD3+SAVDD  
HP/SPK-Amp Block Power Up (PDNA pin = “H”, All Circuits Power-up)  
AVDDA+TVDDA: ALL ON (Note 42)  
HP-Amp ON (Note 43)  
-
-
-
-
-
4.0  
2.0  
2.8  
1.3  
2.0  
1.0  
6.5  
-
-
3.2  
4.0  
4.0  
mA  
mA  
mA  
mA  
mA  
mA  
SPK-Amp ON (Note 44)  
PVDDA (No Output) HP-Amp ON  
SVDDA (No Output): HP-Amp ON  
SPK-Amp ON  
Power Down (PDN=PDNA pins = “L”) (Note 45)  
AVDD+PVDD+DVDD+TVDD2+TVDD3+SAVD  
D+ AVDDA+PVDDA+SVDDA+TVDDA  
-
1
60  
μA  
Note 39. EXT Slave Mode and LP bit = “0”, fs=44.1kHz, PMMICL = PMMICR = PMADL = PMADR = PMDAL =  
PMDAR = PMLO1 = PMRO1 = PMLO2S = PMRO2S = PMLO3 = PMRO3 =PMSAD = PMVCM bits = “1”,  
PMPLL = MCKO = PMMP = M/S = PMSRA = PMSRB = PMPCM bits = “0”.  
AVDD=12.1mA (typ), PVDD=0mA (typ), DVDD=5.6mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ),  
SAVDD=0.8mA (typ).  
Note 40. PLL Master Mode and LP bit = “0”, fs=44.1kHz, PMADL = PMMICL= PMMICR= PMADR = PMDAL =  
PMDAR = PMLO1 = PMRO1 = PMLO2S = PMRO2S = PMLO3 = PMRO3 =PMSAD = PMVCM = PMPLL =  
M/S = PMMP bits = “1”, MCKO = PMSRA = PMSRB = PMPCM bits = “0”, MCKI=11.2896MHz.  
AVDD=TBDmA (typ), PVDD=TBDmA (typ), DVDD=TBDmA (typ), TVDD2=TBDmA (typ),  
TVDD3=TBDmA (typ), SAVDD=TBDmA (typ).  
Note 41. EXT Slave Mode and LP bit = “1”, fs=8kHz, PMVCM = PMMP = PMMICL = PMADL = PMDAL = RCV =  
PMLO1 = PMRO1 = PMSRA = PMSRB = PMPCM = “1”.  
AVDD=3.2mA (typ), PVDD=0.8mA (typ), DVDD=2.7mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ),  
SAVDD=0mA (typ).  
Note 42. Headphone-Amp & Speaker-Amp are powered-up.  
(PMVCMA=PMOSC=PMCP=PMHPL=PMHPR=PMMHL=PMMHR=PMSPK=PMV1 bits= “1”)  
Note 43. Headphone-Amp is powered-up.  
(PMVCMA=PMOSC=PMCP=PMHPL=PMHPR=PMMHL=PMMHR=PMV1 bits= “1”,  
PMSPK bits= “0”)  
Note 44. Speaker-Amp is powered-up  
(PMVCMA=PMOSC=PMCP=PMSPK bits= “1”,  
PMHPL=PMHPR=PMMHL=PMMHR=PMV1 bits= “0”)  
Note 45. All digital input pins are fixed to each supply pin (DVDD, TVDD2 or TVDD3) or VSS4.  
MS0963-E-00  
2008/05  
- 17 -  
 
[AK4675]  
SRC CHARACTERISTICS  
(Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V;  
Signal Frequency=1kHz; 16bit Data; Measurement frequency=20Hz 3.4kHz; unless otherwise specified)  
Parameter  
Symbol  
min  
typ  
max  
Units  
SRC Characteristics (Down Sampling: SRC-A): SDTI Æ SRC-A Æ SDTOA/SDTOB  
Resolution  
Input Sample Rate (Note 47)  
Output Sample Rate (Note 47)  
THD+N (Input = 1kHz, 1dBFS, Note 46)  
FSO/FSI = 8kHz/44.1kHz  
-
8
-
-
-
8
16  
48  
-
Bits  
kHz  
kHz  
FSI (fs)  
FSO (fs2)  
-
-94  
-
dB  
Dynamic Range (Input = 1kHz, 60dBFS, Note 46)  
FSO/FSI = 8kHz/44.1kHz  
Ratio between Input and Output Sample Rate  
-
1/6  
97  
-
-
1
dB  
-
FSO/FSI  
SRC Characteristics (Up Sampling: SRC-B): SDTIA/SDTIB Æ SRC-B Æ SDTO  
Resolution  
Input Sample Rate (Note 47)  
Output Sample Rate (Note 47)  
THD+N (Input = 1kHz, 1dBFS, Note 46)  
FSO/FSI = 44.1kHz/8kHz  
-
-
8
-
8
-
16  
-
48  
Bits  
kHz  
kHz  
FSI (fs2)  
FSO (fs)  
-
-95  
-
dB  
Dynamic Range (Input = 1kHz, 60dBFS, Note 46)  
FSO/FSI = 44.1kHz/8kHz  
Ratio between Input and Output Sample Rate  
-
1
100  
-
-
6
dB  
-
FSO/FSI  
Note 46. Measured by Audio Precision System Two Cascade.  
Note 47. “fs” is the sampling frequency for Stereo CODEC. “fs2” is for PCM I/F.  
MS0963-E-00  
2008/05  
- 18 -  
 
[AK4675]  
ANALOG CHARACTERISTICS (10bit SAR ADC)  
(Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V; unless  
otherwise specified)  
Parameter  
min  
typ  
max  
Units  
10bit SAR ADC Characteristics  
Resolution  
No Missing Codes  
Integral Linearity Error  
DNL  
Analog Input Voltage Range  
Offset Error  
Gain Error  
-
9
-
-
0
-
10  
10  
-
-
-
±2  
Bits  
Bits  
LSB  
LSB  
V
LSB  
LSB  
%
-
SAVDD  
±3  
±1  
-
-
-
-
-
-
±2  
±1  
Accuracy (Note 48)  
Note 48. Accuracy is the difference between the output code when 1.1V is input to SAIN1, SAIN2 or SAIN3 pin and the  
“ideal” code at 1.1V.  
MS0963-E-00  
2008/05  
- 19 -  
 
[AK4675]  
FILTER CHARACTERISTICS (CODEC)  
(Ta=25°C; AVDD=PVDD=SAVDD=2.2 3.6V; DVDD=TVDD2=TVDD3=1.6 3.6V; fs=44.1kHz; Programmable  
Filter=OFF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband (Note 49)  
PB  
0
-
-
-
-
19.4  
19.9  
22.1  
-
-
-
19  
0
17.3  
-
-
-
kHz  
kHz  
kHz  
kHz  
kHz  
dB  
dB  
1/fs  
μs  
±0.16dB  
0.66dB  
1.1dB  
6.9dB  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 50)  
Group Delay Distortion  
SB  
PR  
SA  
GD  
ΔGD  
25.9  
-
-
69  
-
±0.1  
-
-
-
-
DAC Digital Filter (LPF):  
Passband (Note 49)  
PB  
0
-
-
20.0  
21.1  
-
-
-
17.4  
-
-
-
±0.1  
-
-
kHz  
kHz  
kHz  
kHz  
dB  
±0.1dB  
1.0dB  
3.0dB  
-
25.7  
-
68  
-
Stopband  
SB  
PR  
SA  
GD  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 50)  
dB  
1/fs  
19  
DAC Digital Filter (LPF) + SCF:  
FR  
-
-
dB  
Frequency Response: 0 20.0kHz  
±1.4  
Note 49. The passband and stopband frequencies scale with fs (system sampling rate).  
For example, DAC is PB=0.454 x fs (@0.7dB). Each response refers to that of 1kHz.  
Note 50. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the  
16-bit data of both channels from the input register to the output register of the ADC.  
For the DAC, this time is from setting the 16-bit data of both channels from the input register to the output of  
analog signal.  
MS0963-E-00  
2008/05  
- 20 -  
 
[AK4675]  
FILTER CHARACTERISTICS (SRC)  
(Ta=25°C; AVDD=PVDD=SAVDD=2.2 3.6V; DVDD=TVDD2=TVDD3=1.6 3.6V; fs2=8kHz; Programmable  
Filter=OFF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
Down Sampling (SRC-A): fs=8kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
5
3.0  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=11.025kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
4
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=12kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
4
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=16kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=22.05kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=24kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Note 51. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input  
register to the output register.  
MS0963-E-00  
2008/05  
- 21 -  
 
[AK4675]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Down Sampling (SRC-A): fs=32kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Down Sampling (SRC-A): fs=44.1kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Down Sampling (SRC-A): fs=48kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Note 51. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input  
register to the output register.  
MS0963-E-00  
2008/05  
- 22 -  
[AK4675]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Up Sampling (SRC-B): fs=8kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=11.025kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=12kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=16kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=22.05kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=24kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Note 51. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input  
register to the output register.  
MS0963-E-00  
2008/05  
- 23 -  
[AK4675]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Up Sampling (SRC-B): fs=32kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=44.1kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=48kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 51)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Note 51. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input  
register to the output register.  
MS0963-E-00  
2008/05  
- 24 -  
[AK4675]  
DC CHARACTERISTICS (CODEC, SRC)  
(Ta=25°C; AVDD=PVDD=SAVDD=2.2 3.6V; DVDD=TVDD2=TVDD3=1.6 3.6V)  
Parameter  
High-Level Input Voltage 1  
(Note 52)  
Low-Level Input Voltage 1  
(Note 52)  
High-Level Input Voltage 2  
(Note 53)  
Low-Level Input Voltage 2  
(Note 53)  
High-Level Input Voltage 3  
(Note 54)  
Low-Level Input Voltage 3  
(Note 54)  
Symbol  
VIH1  
VIH1  
VIL1  
VIL1  
VIH2  
VIH2  
VIL2  
VIL2  
VIH3  
VIH3  
VIL3  
VIL3  
min  
70%DVDD  
80%DVDD  
typ  
max  
-
-
Units  
V
V
V
V
V
V
V
V
V
V
V
V
2.2VDVDD3.6V  
1.6VDVDD<2.2V  
2.2VDVDD3.6V  
1.6VDVDD<2.2V  
2.2VTVDD23.6V  
1.6VTVDD2<2.2V  
2.2VTVDD23.6V  
1.6VTVDD2<2.2V  
2.2VTVDD33.6V  
1.6VTVDD3<2.2V  
2.2VTVDD33.6V  
1.6VTVDD3<2.2V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
30%DVDD  
20%DVDD  
70%TVDD2  
80%TVDD2  
-
-
-
-
30%TVDD2  
20%TVDD2  
-
70%TVDD3  
80%TVDD3  
-
-
-
30%TVDD3  
20%TVDD3  
High-Level Output Voltage  
VOH1  
VOH2  
VOH3  
-
-
-
-
-
-
V
V
V
(Note 55, Iout=200μA)  
(Note 56, Iout=200μA)  
(Note 57, Iout=200μA)  
DVDD0.2  
TVDD20.2  
TVDD30.2  
Low-Level Output Voltage  
VOL1  
VOL2  
VOL2  
-
-
-
-
-
-
0.2  
0.4  
20%DVDD  
V
V
V
(Except SDA pin: Iout=200μA)  
(SDA pin, 2.0VDVDD3.6V: Iout=3mA)  
(SDA pin, 1.6VDVDD<2.0V: Iout=3mA)  
Input Leakage Current  
(Note 58)  
(Note 59)  
Iind  
Iina  
-
-
-
-
±2  
±2  
μA  
μA  
Note 52. TEST5, SCL, SDA, TEST3, PDN, BICK, LRCK, SDTI, MCKI pins.  
Note 53. BICKA, SYNCA, SDTIA pins.  
Note 54. BICKB, SYNCB, SDTIB pins.  
Note 55. MCKO, BICK, LRCK, SDTO, GPO1, GPO2 pins.  
Note 56. BICKA, SYNCA, SDTOA pins.  
Note 57. BICKB, SYNCB, SDTOB pins.  
Note 58. SYNCB, BICKB, SDTIB, SDTI, LRCK, MCKI, BICK, SCL, SDA, SDTIA, BICKA, SYNCA pins. I/O pins  
(SYNCB, BICKB, LRCK, BICK, SDA, BICKA, SYNCA) are at the time of Input state.  
Note 59. SAIN1, SAIN2, SAIN3 pins.  
DC CHARACTERISTICS (HP/SPK-Amp)  
(Ta= 25°C; AVDDA=PVDDA=2.6 3.6V; SVDDA=2.6 5.5V, TVDDA=1.6 3.6V)  
Parameter  
High-Level Input Voltage  
(Note 60)  
Low-Level Input Voltage  
(Note 60)  
Input Leakage Current (Note 61)  
Symbol  
VIH4  
VIH4  
VIL4  
VIL4  
Iin  
min  
typ  
max  
-
-
Units  
V
V
V
V
-
-
-
-
-
(2.2VTVDDA3.6V)  
(1.6VTVDDA<2.2V)  
(2.2VTVDDA3.6V)  
(1.6VTVDDA<2.2V)  
70%TVDDA  
80%TVDDA  
-
-
-
30%TVDDA  
20%TVDDA  
±10  
μA  
Note 60. PDNA, MCKIA pins.  
Note 61. Except the MCKIA pin. The MCKIA pin has internal pulled-down device, nominally 100kΩ.  
MS0963-E-00  
2008/05  
- 25 -  
 
[AK4675]  
SWITCHING CHARACTERISTICS (CODEC, SRC)  
(Ta=25°C; AVDD=PVDD=SAVDD=2.2 3.6V; DVDD=TVDD2=TVDD3=1.6 3.6V; CL=20pF (except SDA pin) or  
400pF (SDA pin); unless otherwise specified)  
Parameter  
Symbol  
min  
typ  
max  
Units  
PLL Master Mode (PLL Reference Clock = MCKI pin)  
MCKI Input Timing  
Frequency  
fCLK  
tCLKL  
tCLKH  
11.2896  
0.4/fCLK  
0.4/fCLK  
-
-
-
27  
-
-
MHz  
ns  
ns  
Pulse Width Low  
Pulse Width High  
MCKO Output Timing  
Frequency  
fMCK  
0.256  
-
12.288  
MHz  
Duty Cycle  
Except 256fs at fs=32kHz  
dMCK  
dMCK  
40  
-
50  
33  
60  
-
%
%
256fs at fs=32kHz  
LRCK Output Timing  
Frequency  
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Output Timing  
fs  
8
-
-
-
48  
-
-
kHz  
ns  
%
tLRCKH  
Duty  
tBCK  
50  
Period  
BCKO bit = “0”  
BCKO bit = “1”  
tBCK  
tBCK  
dBCK  
-
-
-
1/(32fs)  
1/(64fs)  
50  
-
-
-
ns  
ns  
%
Duty Cycle  
PLL Slave Mode (PLL Reference Clock = MCKI pin)  
MCKI Input Timing  
Frequency  
fCLK  
tCLKL  
tCLKH  
11.2896  
0.4/fCLK  
0.4/fCLK  
-
-
-
27  
-
-
MHz  
ns  
ns  
Pulse Width Low  
Pulse Width High  
MCKO Output Timing  
Frequency  
fMCK  
0.256  
-
12.288  
MHz  
Duty Cycle  
Except 256fs at fs=32kHz, 29.4kHz  
256fs at fs=32kHz, 29.4kHz  
LRCK Input Timing  
dMCK  
dMCK  
40  
-
50  
33  
60  
-
%
%
Frequency  
fs  
8
tBCK60  
45  
-
-
-
48  
1/fs tBCK  
55  
kHz  
ns  
%
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Input Timing  
Period  
tLRCKH  
Duty  
tBCK  
tBCKL  
tBCKH  
1/(64fs)  
0.4 x tBCK  
0.4 x tBCK  
-
-
-
1/(32fs)  
ns  
ns  
ns  
Pulse Width Low  
Pulse Width High  
-
-
MS0963-E-00  
2008/05  
- 26 -  
[AK4675]  
Parameter  
Symbol  
min  
typ  
max  
Units  
PLL Slave Mode (PLL Reference Clock = LRCK pin)  
LRCK Input Timing  
Frequency  
fs  
8
tBCK60  
45  
-
-
-
48  
1/fs tBCK  
55  
kHz  
ns  
%
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Input Timing  
Period  
tLRCKH  
Duty  
tBCK  
tBCKL  
tBCKH  
1/(64fs)  
130  
130  
-
-
-
1/(32fs)  
ns  
ns  
ns  
Pulse Width Low  
Pulse Width High  
-
-
PLL Slave Mode (PLL Reference Clock = BICK pin)  
LRCK Input Timing  
Frequency  
fs  
8
tBCK60  
45  
-
-
-
48  
1/fs tBCK  
55  
kHz  
ns  
%
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Input Timing  
tLRCKH  
Duty  
Period  
PLL3-0 bits = “0010”  
PLL3-0 bits = “0011”  
tBCK  
tBCK  
tBCKL  
tBCKH  
-
-
1/(32fs)  
1/(64fs)  
-
-
-
-
ns  
ns  
ns  
ns  
Pulse Width Low  
Pulse Width High  
0.4 x tBCK  
0.4 x tBCK  
-
-
External Slave Mode  
MCKI Input Timing  
Frequency  
256fs  
fCLK  
fCLK  
fCLK  
fCLK  
fCLK  
tCLKL  
tCLKH  
2.048  
3.072  
4.096  
6.144  
8.192  
0.4/fCLK  
0.4/fCLK  
-
-
-
-
-
-
-
12.288  
18.432  
13.312  
19.968  
13.312  
-
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
384fs  
512fs  
768fs  
1024fs  
Pulse Width Low  
Pulse Width High  
-
ns  
LRCK Input Timing  
Frequency  
256fs/384fs  
512fs/768fs  
1024fs  
fs  
fs  
fs  
8
8
-
-
-
-
-
48  
26  
kHz  
kHz  
kHz  
ns  
8
tBCK60  
45  
13  
1/fs tBCK  
55  
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Input Timing  
Period  
tLRCKH  
Duty  
%
tBCK  
tBCKL  
tBCKH  
312.5  
130  
130  
-
-
-
-
-
-
ns  
ns  
ns  
Pulse Width Low  
Pulse Width High  
External Master Mode  
MCKI Input Timing  
Frequency  
256fs  
384fs  
512fs  
768fs  
1024fs  
fCLK  
fCLK  
fCLK  
fCLK  
fCLK  
tCLKL  
tCLKH  
2.048  
3.072  
4.096  
6.144  
8.192  
0.4/fCLK  
0.4/fCLK  
-
-
-
-
-
-
-
12.288  
18.432  
13.312  
19.968  
13.312  
-
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
Pulse Width Low  
Pulse Width High  
-
ns  
LRCK Output Timing  
Frequency  
fs  
8
-
-
-
48  
-
-
kHz  
ns  
%
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Output Timing  
tLRCKH  
Duty  
tBCK  
50  
Period  
BCKO bit = “0”  
BCKO bit = “1”  
tBCK  
tBCK  
dBCK  
-
-
-
1/(32fs)  
1/(64fs)  
50  
-
-
-
ns  
ns  
%
Duty Cycle  
MS0963-E-00  
2008/05  
- 27 -  
[AK4675]  
Units  
Parameter  
Symbol  
min  
typ  
max  
Audio Interface Timing (DSP Mode)  
Master Mode  
tDBF  
tDBF  
tBSD  
tBSD  
tSDH  
tSDS  
0.5 x tBCK 0.5 x tBCK + 40  
0.5 x tBCK 0.5 x tBCK + 40  
ns  
ns  
ns  
ns  
ns  
ns  
LRCK “” to BICK “” (Note 62)  
LRCK “” to BICK “” (Note 63)  
BICK “” to SDTO (BCKP bit = “0”)  
BICK “” to SDTO (BCKP bit = “1”)  
SDTI Hold Time  
0.5 x tBCK 40  
0.5 x tBCK 40  
-
-
-
-
70  
70  
-
70  
70  
50  
SDTI Setup Time  
50  
-
Slave Mode  
tLRB  
tLRB  
tBLR  
tBLR  
tBSD  
tBSD  
tSDH  
tSDS  
0.4 x tBCK  
0.4 x tBCK  
0.4 x tBCK  
0.4 x tBCK  
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LRCK “” to BICK “” (Note 62)  
LRCK “” to BICK “” (Note 63)  
BCLK “” to LRCK “” (Note 62)  
BICK “” to LRCK “” (Note 63)  
BICK “” to SDTO (BCKP bit = “0”)  
BICK “” to SDTO (BCKP bit = “1”)  
SDTI Hold Time  
-
-
-
50  
50  
80  
80  
-
SDTI Setup Time  
-
Audio Interface Timing (Right/Left justified & I2S)  
Master Mode  
tMBLR  
tLRD  
-
-
40  
70  
ns  
ns  
BICK “” to LRCK Edge (Note 64)  
LRCK Edge to SDTO (MSB)  
(Except I2S mode)  
40  
70  
tBSD  
tSDH  
tSDS  
-
-
-
70  
-
-
ns  
ns  
ns  
BICK “” to SDTO  
70  
50  
50  
SDTI Hold Time  
SDTI Setup Time  
Slave Mode  
tLRB  
tBLR  
tLRD  
50  
50  
-
-
-
-
-
-
80  
ns  
ns  
ns  
LRCK Edge to BICK “” (Note 64)  
BICK “” to LRCK Edge (Note 64)  
LRCK Edge to SDTO (MSB)  
(Except I2S mode)  
tBSD  
tSDH  
tSDS  
-
50  
50  
-
-
-
80  
-
-
ns  
ns  
ns  
BICK “” to SDTO  
SDTI Hold Time  
SDTI Setup Time  
Note 62. MSBS, BCKP bits = “00” or “11”.  
Note 63. MSBS, BCKP bits = “01” or “10”.  
Note 64. BICK rising edge must not occur at the same time as LRCK edge.  
MS0963-E-00  
2008/05  
- 28 -  
 
[AK4675]  
Units  
Parameter  
Symbol  
min  
typ  
max  
PCM Interface Timing (BICKA, SYNCA, SDTIA, SDTOA pins; Slave Mode):  
SYNCA Timing  
Frequency  
fs2  
-
8
-
kHz  
Serial Interface Timing at Short/long Frame Sync  
BICKA Frequency  
BICKA Period  
fBCK2  
tBCK2  
tBCKL2  
tBCKH2  
tSYB2  
tSYB2  
tBSY2  
tBSY2  
tSYD2  
tBSD2  
tBSD2  
tSDH2  
tSDS2  
tSYL2  
tSYH2  
128  
488  
200  
200  
50  
50  
50  
50  
-
-
-
50  
50  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2048  
-
-
-
-
-
-
-
80  
80  
80  
-
-
-
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BICKA Pulse Width Low  
Pulse Width High  
SYNCA Edge to BICKA “” (Note 65)  
SYNCA Edge to BICKA “” (Note 66)  
BICKA “” to SYNCA Edge (Note 65)  
BICKA “” to SYNCA Edge (Note 66)  
SYNCA to SDTOA (MSB) (Except Short Frame)  
BICKA “” to SDTOA (BCKPA bit = “0”)  
BICKA “” to SDTOA (BCKPA bit = “1”)  
SDTIA Hold Time  
SDTIA Setup Time  
SYNCA Pulse Width Low  
Pulse Width High  
0.8 x tBCK2  
0.8 x tBCK2  
-
Serial Interface Timing at MSB justified and I2S  
BICKA Frequency  
fBCK2  
tBCK2  
tBCKL2  
tBCKH2  
tSYB2  
tBSY2  
tSYD2  
tBSD2  
tSDH2  
tSDH2  
dSYC2  
256  
488  
200  
200  
50  
50  
-
-
-
-
-
-
-
-
-
-
2048  
-
-
-
-
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
%
BICKA Period  
BICKA Pulse Width Low  
Pulse Width High  
SYNCA Edge to BICKA “”  
BICKA “” to SYNCA Edge  
SYNCA to SDTOA (MSB) (Except I2S mode)  
BICKA “” to SDTOA  
SDTIA Hold Time  
SDTIA Setup Time  
-
80  
80  
-
-
55  
-
50  
50  
45  
-
50  
SYNCA Duty Cycle  
Note 65. MSBSA, BCKPA bits = “00” or “11”.  
Note 66. MSBSA, BCKPA bits = “01” or “10”.  
MS0963-E-00  
2008/05  
- 29 -  
 
[AK4675]  
Parameter  
Symbol  
min  
typ  
max  
Units  
PCM Interface Timing (BICKA, SYNCA, SDTIA, SDTOA pins; Master Mode):  
SYNCA Timing  
Frequency  
fs2  
-
8
-
kHz  
BICKA Timing  
Period (BCKO2 bit = “0”)  
(BCKO2 bit = “1”)  
Duty Cycle  
tBCK2  
tBCK2  
dBCK2  
-
-
-
1/(16fs2)  
1/(32fs2)  
50  
-
-
-
kHz  
kHz  
%
Serial Interface Timing at Short/long Frame Sync  
SYNCA Edge to BICKA “” (Note 65)  
SYNCA Edge to BICKA “” (Note 66)  
BICKA “” to SDTOA (BCKPA bit = “0”)  
BICKA “” to SDTOA (BCKPA bit = “1”)  
SDTIA Hold Time  
0.5 x tBCK2  
0.5 x tBCK2 + 40  
0.5 x tBCK2 40  
tSYB2  
tSYB2  
tBSD2  
tBSD2  
tSDH2  
tSDS2  
tSYH2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 x tBCK2  
0.5 x tBCK2 + 40  
0.5 x tBCK2 40  
-
-
-
-
70  
70  
-
-
-
70  
70  
50  
50  
-
SDTIA Setup Time  
SYNCA Pulse Width High  
Serial Interface Timing at MSB justified and I2S  
BICKA “” to SYNCA Edge  
SYNCA to SDTOA (MSB) (Except I2S mode)  
BICKA “” to SDTOA  
SDTIA Hold Time  
SDTIA Setup Time  
SYNCA Duty Cycle  
tBCK2  
tBSY2  
tSYD2  
tBSD2  
tSDH2  
tSDH2  
dSYC2  
-
-
-
-
-
40  
70  
70  
-
-
-
ns  
ns  
ns  
ns  
ns  
%
40  
70  
70  
50  
50  
-
50  
Note 65. MSBSA, BCKPA bits = “00” or “11”.  
Note 66. MSBSA, BCKPA bits = “01” or “10”.  
MS0963-E-00  
2008/05  
- 30 -  
[AK4675]  
Units  
Parameter  
Symbol  
min  
typ  
max  
PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins; Slave Mode):  
SYNCB Timing  
Frequency  
fs2  
-
8
-
kHz  
Serial Interface Timing at Short/long Frame Sync  
BICKB Frequency  
BICKB Period  
fBCK3  
tBCK3  
tBCKL3  
tBCKH3  
tSYB3  
tSYB3  
tBSY3  
tBSY3  
tSYD3  
tBSD3  
tBSD3  
tSDH3  
tSDS3  
tSYL3  
tSYH3  
128  
488  
200  
200  
50  
50  
50  
50  
-
-
-
50  
50  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2048  
-
-
-
-
-
-
-
80  
80  
80  
-
-
-
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BICKB Pulse Width Low  
Pulse Width High  
SYNCB Edge to BICKB “” (Note 67)  
SYNCB Edge to BICKB “” (Note 68)  
BICKB “” to SYNCB Edge (Note 67)  
BICKB “” to SYNCB Edge (Note 68)  
SYNCB to SDTOB (MSB) (Except Short Frame)  
BICKB “” to SDTOB (BCKPB bit = “0”)  
BICKB “” to SDTOB (BCKPB bit = “1”)  
SDTIB Hold Time  
SDTIB Setup Time  
SYNCB Pulse Width Low  
Pulse Width High  
0.8 x tBCK2  
0.8 x tBCK2  
-
Serial Interface Timing at MSB justified and I2S  
BICKB Frequency  
fBCK3  
tBCK3  
tBCKL3  
tBCKH3  
tSYB3  
tBSY3  
tSYD3  
tBSD3  
tSDH3  
tSDH3  
dSYC3  
256  
488  
200  
200  
50  
50  
-
-
-
-
-
-
-
-
-
-
2048  
-
-
-
-
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
%
BICKB Period  
BICKB Pulse Width Low  
Pulse Width High  
SYNCB Edge to BICKB “”  
BICKB “” to SYNCB Edge  
SYNCB to SDTOB (MSB) (Except I2S mode)  
BICKB “” to SDTOB  
SDTIB Hold Time  
SDTIB Setup Time  
-
80  
80  
-
-
55  
-
50  
50  
45  
-
50  
SYNCB Duty Cycle  
Note 67. MSBSB, BCKPB bits = “00” or “11”.  
Note 68. MSBSB, BCKPB bits = “01” or “10”.  
MS0963-E-00  
2008/05  
- 31 -  
 
[AK4675]  
Parameter  
Symbol  
min  
typ  
max  
Units  
PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins; Master Mode):  
SYNCB Timing  
Frequency  
fs2  
-
8
-
kHz  
BICKB Timing  
Period (BCKO2 bit = “0”)  
(BCKO2 bit = “1”)  
Duty Cycle  
tBCK2  
tBCK2  
dBCK2  
-
-
-
1/(16fs2)  
1/(32fs2)  
50  
-
-
-
kHz  
kHz  
%
Serial Interface Timing at Short/long Frame Sync  
SYNCB Edge to BICKB “” (Note 67)  
SYNCB Edge to BICKB “” (Note 68)  
BICKB “” to SDTOB (BCKPB bit = “0”)  
BICKB “” to SDTOB (BCKPB bit = “1”)  
SDTIB Hold Time  
0.5 x tBCK2  
0.5 x tBCK2 + 40  
0.5 x tBCK2 40  
tSYB3  
tSYB3  
tBSD3  
tBSD3  
tSDH3  
tSDS3  
tSYH3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 x tBCK2  
0.5 x tBCK2 + 40  
0.5 x tBCK2 40  
-
-
-
-
70  
70  
-
-
-
70  
70  
50  
50  
-
SDTIB Setup Time  
SYNCB Pulse Width High  
Serial Interface Timing at MSB justified and I2S  
BICKB “” to SYNCB Edge  
SYNCB to SDTOB (MSB) (Except I2S mode)  
BICKB “” to SDTOB  
SDTIB Hold Time  
SDTIB Setup Time  
SYNCB Duty Cycle  
tBCK2  
tBSY3  
tSYD3  
tBSD3  
tSDH3  
tSDH3  
dSYC3  
-
-
-
-
-
40  
70  
70  
-
-
-
ns  
ns  
ns  
ns  
ns  
%
40  
70  
70  
50  
50  
-
50  
Note 67. MSBSB, BCKPB bits = “00” or “11”.  
Note 68. MSBSB, BCKPB bits = “01” or “10”.  
MS0963-E-00  
2008/05  
- 32 -  
[AK4675]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Control Interface Timing (I2C Bus mode): (Note 69)  
SCL Clock Frequency (Note 70)  
fSCL  
tBUF  
30  
1.3  
0.6  
1.3  
0.6  
0.6  
0
0.1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
-
-
-
-
-
-
-
0.3  
0.3  
-
400  
50  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
pF  
ns  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low Time  
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
Clock High Time  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling (Note 71)  
SDA Setup Time from SCL Rising  
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
tF  
tSU:STO  
Cb  
0.6  
-
0
Capacitive Load on Bus  
Pulse Width of Spike Noise Suppressed by Input Filter  
tSP  
Power-down & Reset Timing  
PDN Pulse Width (Note 72)  
tPD  
150  
-
-
-
-
-
ns  
tPDV  
tPDV2  
tPDV3  
-
-
-
1059  
21  
135  
1/fs  
1/fs2  
1/fs  
PMADL or PMADR “” to SDTO valid (Note 73)  
PMSRA “” to SDTOA valid (Note 74)  
PMSRB “” to SDTO valid (Note 75)  
Note 69. I2C is a registered trademark of Philips Semiconductors.  
Note 70. In case that SAR ADC data is read out via I2C bus, SCL should be input corresponding 2 byte data including  
ACK (Figure 110).  
Note 71. Data must be held long enough to bridge the 300ns-transition time of SCL.  
Note 72. CODEC & SRC blocks of the AK4675 can be reset by bringing PDN pin = “L” to “H” only upon power up  
Note 73. This is the count of LRCK “” from the PMADL or PMADR bit = “1” when PMSRB bit = “0”.  
Note 74. The signal path is SDTI SRC-A SDTOA and PLLBT is locked.  
Note 75. The signal path is SDTIA SRC-B SDTO.  
MS0963-E-00  
2008/05  
- 33 -  
 
[AK4675]  
SWITCHING CHARACTERISTICS (HP/SPK-Amp)  
(Ta= 25°C; AVDDA=PVDDA=2.6 3.6V; SVDDA=2.6 5.5V; TVDDA=1.6 3.6V)  
Parameter  
Symbol  
min  
typ  
max  
Units  
MCKIA Input Timing (OSCN bit = “1”)  
Frequency  
fCLK  
fCLKL  
fCLKH  
2.048  
0.4/fCLK  
0.4/fCLK  
-
-
-
3.072  
-
-
MHz  
ns  
ns  
Pulse Width Low  
Pulse Width High  
Power-down & Reset Timing  
PDNA Pulse Width (Note 76)  
tPD  
150  
-
-
ns  
Note 76. HP/SPK-Amp blocks can be reset by power up of the AK4675 when the PDNA pin = “L”.  
MS0963-E-00  
2008/05  
- 34 -  
 
[AK4675]  
Timing Diagram (CODEC, SRC)  
1/fCLK  
VIH1  
VIL1  
MCKI  
tCLKH  
tCLKL  
1/fs  
50%DVDD  
LRCK  
tLRCKH  
tLRCKL  
Duty = tLRCKH x fs x 100  
tLRCKL x fs x 100  
tBCK  
50%DVDD  
BICK  
tBCKH  
tBCKL  
dBCK = tBCKH / tBCK x 100  
tBCKL / tBCK x 100  
1/fMCK  
MCKO  
50%DVDD  
tMCKL  
dMCK = tMCKL x fMCK x 100  
Figure 4. Clock Timing (PLL/EXT Master mode)  
Note 77. MCKO is not available at EXT Master mode.  
tLRCKH  
LRCK  
50%DVDD  
tBCK  
tDBF  
dBCK  
BICK  
(BCKP = "0")  
50%DVDD  
50%DVDD  
BICK  
(BCKP = "1")  
tBSD  
SDTO  
SDTI  
50%DVDD  
MSB  
tSDS  
tSDH  
VIH1  
VIL1  
Figure 5. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “0”)  
MS0963-E-00  
2008/05  
- 35 -  
[AK4675]  
tLRCKH  
LRCK  
50%DVDD  
tBCK  
tDBF  
dBCK  
BICK  
(BCKP = "1")  
50%DVDD  
50%DVDD  
BICK  
(BCKP = "0")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDS  
tSDH  
VIH1  
VIL1  
SDTI  
Figure 6. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “1”)  
50%DVDD  
LRCK  
tBLR  
tBCKL  
tBSD  
BICK  
SDTO  
SDTI  
50%DVDD  
50%DVDD  
tLRD  
tSDS  
tSDH  
VIH  
VIL  
Figure 7. Audio Interface Timing (PLL/EXT Master mode, Except DSP mode)  
MS0963-E-00  
2008/05  
- 36 -  
[AK4675]  
1/fs  
VIH1  
VIL1  
LRCK  
tLRCKH  
tBCK  
tBLR  
VIH1  
VIL1  
BICK  
(BCKP = "0")  
tBCKH  
tBCKL  
VIH1  
VIL1  
BICK  
(BCKP = "1")  
Figure 8. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “0”)  
1/fs  
VIH1  
LRCK  
VIL1  
tLRCKH  
tBCK  
tBLR  
VIH1  
VIL1  
BICK  
(BCKP = "1")  
tBCKH  
tBCKL  
VIH1  
VIL1  
BICK  
(BCKP = "0")  
Figure 9. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “1”)  
MS0963-E-00  
2008/05  
- 37 -  
[AK4675]  
1/fCLK  
VIH1  
VIL1  
MCKI  
LRCK  
tCLKH  
tCLKL  
1/fs  
VIH1  
VIL1  
tLRCKH  
tBCK  
tLRCKL  
Duty = tLRCKH x fs x 100  
= tLRCKL x fs x 100  
VIH1  
VIL1  
BICK  
tBCKH  
tBCKL  
tMCKL  
fMCK  
50%DVDD  
MCKO  
dMCK = tMCKL x fMCK x 100  
Figure 10. Clock Timing (PLL Slave mode; PLL Reference Clock = MCKI pin, Except DSP mode)  
tLRCKH  
VIH1  
LRCK  
VIL1  
tLRB  
VIH1  
BICK  
VIL1  
(BCKP = "0")  
VIH1  
BICK  
(BCKP = "1")  
VIL1  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH1  
VIL1  
SDTI  
MSB  
Figure 11. Audio Interface Timing (PLL Slave mode, DSP mode; MSBS = “0”)  
MS0963-E-00  
2008/05  
- 38 -  
[AK4675]  
tLRCKH  
VIH1  
VIL1  
LRCK  
tLRB  
VIH1  
VIL1  
BICK  
(BCKP = "1")  
VIH1  
VIL1  
BICK  
(BCKP = "0")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH1  
VIL1  
SDTI  
MSB  
Figure 12. Audio Interface Timing (PLL Slave mode, DSP mode, MSBS = “1”)  
1/fCLK  
VIH1  
MCKI  
VIL1  
tCLKH  
tCLKL  
1/fs  
VIH1  
VIL1  
LRCK  
BICK  
Duty = tLRCKH x fs x 100  
tLRCKL x fs x 100  
tLRCKH  
tBCK  
tLRCKL  
VIH1  
VIL1  
tBCKH  
tBCKL  
Figure 13. Clock Timing (EXT Slave mode)  
MS0963-E-00  
2008/05  
- 39 -  
[AK4675]  
VIH1  
VIL1  
LRCK  
tBLR  
tLRB  
VIH1  
VIL1  
BICK  
SDTO  
SDTI  
tLRD  
tBSD  
50%DVDD  
MSB  
tSDS  
tSDH  
VIH1  
VIL1  
Figure 14. Audio Interface Timing (PLL/EXT Slave mode, Except DSP mode)  
1/fs2  
VIH2  
VIL2  
SYNCA  
tSYH2  
tSYL2  
tBCK2  
dSYC2 = tSYL2 x fs2 x 100  
VIH2  
VIL2  
BICKA  
tBCKH2  
tBCKL2  
dBCK2 = tBCKL2 / tBCK2 x 100  
Figure 15. Clock Timing of PCM I/F A (SYNCA, BICKA)  
MS0963-E-00  
2008/05  
- 40 -  
[AK4675]  
VIH2  
VIL2  
SYNCA  
tSYB2  
tBSY2  
VIH2  
VIL2  
BICKA  
(BCKPA = “0”)  
VIH2  
VIL2  
BICKA  
(BCKPA = “1”)  
tSYD2  
tBSD2  
SDTOA  
50%TVDD2  
tSDS2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 16. PCM I/F A Timing at short and long frame sync (SYNCA, BICKA, SDTOA, SDTIA)  
VIH2  
SYNCA  
VIL2  
tSYB2  
tBSY2  
VIH2  
VIL2  
BICKA  
(BCKPA = “1”)  
VIH2  
VIL2  
BICKA  
(BCKPA = “0”)  
tBSD2  
tSDS2  
SDTOA  
50%TVDD2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 17. PCM I/F B Timing at MSB justified and I2S (SYNCA, BICKA, SDTOA, SDTIA)  
MS0963-E-00  
2008/05  
- 41 -  
[AK4675]  
VIH2  
VIL2  
SYNCA  
BICKA  
tBSY2  
tSYD2  
tSYB2  
VIH2  
VIL2  
tBSD2  
SDTOA  
50%TVDD2  
tSDS2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 18. PCM I/F A Timing at MSB justified and I2S (Slave mode)  
1/fs2  
50%TVDD2  
SYNCA  
tSYH2  
tSYL2  
dSYC2 = tSYL2 x fs2 x 100  
tBCK2 = 1/fBCK2  
50%TVDD2  
BICKA  
tBCKH2  
tBCKL2  
dBCK2 = tBCKL2 / tBCK2 x 100  
Figure 19. Clock Timing of PCM I/F A (Master mode)  
MS0963-E-00  
2008/05  
- 42 -  
[AK4675]  
SYNCA  
50%TVDD2  
50%TVDD2  
tSYB2  
BICKA  
(BCKPA = “0”)  
BICKA  
50%TVDD2  
50%TVDD2  
(BCKPA = “1”)  
tBSD2  
SDTOA  
tSDS2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 20. PCM I/F A Timing at short and long frame sync (Master mode; MSBSA = “0”)  
SYNCA  
50%TVDD2  
50%TVDD2  
tSYB2  
BICKA  
(BCKPA = “1”)  
BICKA  
50%TVDD2  
50%TVDD2  
(BCKPA = “0”)  
tBSD2  
tSDS2  
SDTOA  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 21. PCM I/F A Timing at short and long frame sync (Master mode; MSBSA = “1”)  
MS0963-E-00  
2008/05  
- 43 -  
[AK4675]  
50%TVDD2  
50%TVDD2  
50%TVDD2  
SYNCA  
BICKA  
tMBSY2  
tSYD2  
tBSD2  
SDTOA  
tSDS2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 22. PCM I/F A Timing at MSB justified and I2S (Master mode)  
1/fs2  
VIH3  
VIL3  
SYNCB  
tSYH3  
tSYL3  
dSYC3 = tSYH3 x fs2 x 100  
tSYL3 x fs2 x 100  
tBCK3 = 1/fBCK3  
VIH3  
VIL3  
BICKB  
tBCKH3  
tBCKL3  
Figure 23. Clock Timing of PCM I/F B (Slave mode)  
MS0963-E-00  
2008/05  
- 44 -  
[AK4675]  
VIH3  
VIL3  
SYNCB  
tSYB3  
tBSY3  
VIH3  
VIL3  
BICKB  
(BCKPB = “0”)  
VIH3  
VIL3  
BICKB  
(BCKPB = “1”)  
tSYD3  
tBSD3  
SDTOB  
50%TVDD3  
tSDS3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 24. PCM I/F B Timing at short and long frame sync (Slave mode; MSBSB = “0”)  
VIH3  
SYNCB  
VIL3  
tSYB3  
tBSY3  
VIH3  
VIL3  
BICKB  
(BCKPB = “1”)  
VIH3  
VIL3  
BICKB  
(BCKPB = “0”)  
tBSD3  
tSDS3  
SDTOB  
50%TVDD3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 25. PCM I/F B Timing at MSB justified and I2S (Slave mode; MSBSB = “1”)  
MS0963-E-00  
2008/05  
- 45 -  
[AK4675]  
VIH3  
VIL3  
SYNCB  
BICKB  
tBSY3  
tSYD3  
tSYB3  
VIH3  
VIL3  
tBSD3  
SDTOB  
50%TVDD3  
tSDS3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 26. PCM I/F B Timing at MSB justified and I2S (Slave mode)  
1/fs2  
50%TVDD3  
SYNCB  
tSYH3  
tSYL3  
dSYC3 = tSYL3 x fs2 x 100  
tBCK3 = 1/fBCK3  
50%TVDD3  
BICKB  
tBCKH3  
tBCKL3  
dBCK3 = tBCKL3 / tBCK3 x 100  
Figure 27. Clock Timing of PCM I/F B (Master mode)  
MS0963-E-00  
2008/05  
- 46 -  
[AK4675]  
SYNCB  
50%TVDD3  
50%TVDD3  
tSYB3  
BICKB  
(BCKPB = “0”)  
BICKB  
50%TVDD3  
50%TVDD3  
(BCKPB = “1”)  
tBSD3  
SDTOB  
tSDS3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 28. PCM I/F B Timing at short and long frame sync (Master mode; MSBSB = “0”)  
SYNCB  
50%TVDD3  
50%TVDD3  
tSYB3  
BICKB  
(BCKPB = “1”)  
BICKB  
50%TVDD3  
50%TVDD3  
(BCKPB = “0”)  
tBSD3  
tSDS3  
SDTOB  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 29. PCM I/F B Timing at short and long frame sync (Master mode; MSBSB = “1”)  
MS0963-E-00  
2008/05  
- 47 -  
[AK4675]  
50%TVDD3  
50%TVDD3  
50%TVDD3  
SYNCB  
BICKB  
tMBSY3  
tSYD3  
tBSD3  
SDTOB  
tSDS3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 30. PCM I/F B Timing at MSB justified and I2S (Master mode)  
VIH1  
VIL1  
SDA  
SCL  
tBUF  
tLOW  
tHIGH  
tR  
tF  
tSP  
VIH1  
VIL1  
tHD:STA  
Start  
tHD:DAT  
tSU:DAT  
tSU:STA  
Start  
tSU:STO  
Stop  
Stop  
Figure 31. I2C Bus Mode Timing  
MS0963-E-00  
2008/05  
- 48 -  
[AK4675]  
PMADL bit  
or  
PMADR bit  
tPDV  
SDTO  
50%DVDD  
Figure 32. Power Down & Reset Timing 1  
tPD  
PDN  
VIL1  
Figure 33. Power Down & Reset Timing 2  
PMSRA bit  
SDTOA  
tPDV2  
50%TVDD2  
Figure 34. Power Down & Reset Timing 3  
PMSRB bit  
SDTO  
tPDV3  
50%DVDD  
Figure 35. Power Down & Reset Timing 4  
MS0963-E-00  
2008/05  
- 49 -  
[AK4675]  
Timing Diagram (HP/SPK-Amp)  
1/fCLK  
VIH4  
VIL4  
MCKIA  
tCLKH  
tCLKL  
Figure 36. MCKIA Input Timing  
tPD  
PDNA  
VIL4  
Figure 37. Power-down & Reset Timing  
MS0963-E-00  
2008/05  
- 50 -  
[AK4675]  
OPERATION OVERVIEW  
System Clock (Audio I/F)  
There are the following five clock modes to interface with external devices. (Table 1 and Table 2.)  
Mode  
PMPLL bit  
1
M/S bit  
1
PLL3-0 bits  
See Table 4  
Figure  
Figure 38  
PLL Master Mode (Note 78)  
PLL Slave Mode 1  
(PLL Reference Clock: MCKI pin)  
PLL Slave Mode 2  
(PLL Reference Clock: LRCK or BICK pin)  
EXT Slave Mode  
EXT Master Mode  
1
1
0
0
See Table 4  
See Table 4  
Figure 39  
Figure 40  
Figure 41  
Figure 42  
Figure 43  
0
0
0
1
x
x
Note 78. If M/S bit = “1”, PMPLL bit = “0” and MCKO bit = “1” during the setting of PLL Master Mode, the invalid  
clocks are output from MCKO pin when MCKO bit is “1”.  
Table 1. Clock Mode Setting (x: Don’t care)  
Mode  
MCKO bit MCKO pin  
MCKI pin  
BICK pin  
Output  
(Selected by  
BCKO bit)  
LRCK pin  
0
1
0
1
“L”  
Selected by  
PLL3-0 bits  
Output  
(1fs)  
PLL Master Mode  
Selected by  
PS1-0 bits  
“L”  
Selected by  
PS1-0 bits  
Input  
(32fs)  
PLL Slave Mode  
(PLL Reference Clock: MCKI pin)  
Selected by  
PLL3-0 bits  
Input  
(1fs)  
Input  
(Selected by  
PLL3-0 bits)  
Input  
(32fs)  
Output  
PLL Slave Mode  
(PLL Reference Clock: LRCK or BICK pin)  
Input  
(1fs)  
0
0
0
“L”  
“L”  
“L”  
GND  
Selected by  
FS1-0 bits  
Input  
(1fs)  
EXT Slave Mode  
EXT Master Mode  
Selected by  
FS1-0 bits  
Output  
(1fs)  
(Selected by  
BCKO bit)  
Table 2. Clock pins state in Clock Mode  
Master Mode/Slave Mode  
The M/S bit selects either master or slave mode. M/S bit = “1” selects master mode and “0” selects slave mode. When the  
AK4675 is power-down mode (PDN pin = “L”) and exits reset state, the AK4675 is in slave mode. After exiting reset  
state, the AK4675 goes to master mode by changing M/S bit = “1”.  
When the AK4675 is in master mode, LRCK and BICK pins are a floating state until M/S bit becomes “1”. LRCK and  
BICK pins of the AK4675 should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the  
floating state.  
M/S bit  
Mode  
0
1
Slave Mode  
Master Mode  
(default)  
Table 3. Select Master/Slave Mode  
MS0963-E-00  
2008/05  
- 51 -  
 
[AK4675]  
PLL Mode (PMPLL bit = “1”)  
When PMPLL bit is “1”, an integrated analog phase locked loop (PLL) generates a clock that is selected by the PLL3-0  
and FS3-0 bits. The PLL lock time is shown in Table 4, when the AK4675 is supplied stable clock after PLL is  
powered-up (PMPLL bit = “0” “1”) or sampling frequency is changed. When AIN3 bit = “1”, the PLL is not available.  
1) Setting of PLL Mode  
R and C of  
VCOC pin  
PLL Lock  
Time  
(max)  
PLL3  
bit  
PLL2  
bit  
PLL1  
bit  
PLL0  
bit  
PLL Reference  
Clock Input Pin  
Input  
Frequency  
Mode  
C[F]  
R[Ω]  
0
2
0
0
0
0
0
1
0
0
LRCK pin  
BICK pin  
1fs  
6.8k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
220n  
4.7n  
10n  
4.7n  
10n  
4.7n  
4.7n  
10n  
10n  
4.7n  
10n  
10n  
220n  
220n  
160ms  
2ms  
4ms  
2ms  
4ms  
40ms  
40ms  
40ms  
40ms  
40ms  
40ms  
40ms  
60ms  
60ms  
32fs  
3
0
0
1
1
BICK pin  
64fs  
4
5
6
7
8
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
1
1
0
0
0
1
1
0
1
0
1
0
0
1
0
1
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
N/A  
11.2896MHz  
12.288MHz  
12MHz  
(default)  
24MHz  
19.2MHz  
13.5MHz  
27MHz  
13MHz  
26MHz  
12  
13  
14  
15  
Others  
Others  
Table 4. Setting of PLL Mode (*fs: Sampling Frequency)  
2) Setting of sampling frequency in PLL Mode  
When PLL reference clock input is MCKI pin, the sampling frequency is selected by FS3-0 bits as defined in Table 5.  
Mode  
0
1
2
3
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
Sampling Frequency  
8kHz  
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
0
0
1
0
0
1
1
0
1
1
1
1
0
1
0
1
1
1
0
1
1
12kHz  
16kHz  
24kHz  
11.025kHz  
22.05kHz  
32kHz  
48kHz  
44.1kHz  
N/A  
5
7
10  
11  
15  
Others  
(default)  
Others  
Table 5. Setting of Sampling Frequency at PMPLL bit = “1” (Reference Clock = MCKI pin)  
MS0963-E-00  
2008/05  
- 52 -  
 
[AK4675]  
When PLL reference clock input is LRCK or BICK pin, the sampling frequency is selected by FS3-2 bits (Table 6).  
Mode  
0
1
2
FS3 bit  
FS2 bit  
FS1 bit  
Don’t care  
Don’t care  
Don’t care  
FS0 bit  
Don’t care  
Don’t care  
Don’t care  
Sampling Frequency Range  
0
0
1
0
1
8kHz fs 12kHz  
12kHz < fs 24kHz  
24kHz < fs 48kHz  
N/A  
Don’t care  
(default)  
Others  
Others  
Table 6. Setting of Sampling Frequency at PMPLL bit = “1” (Reference Clock = LRCK or BICK pin)  
PLL Unlock State  
1) PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
In this mode, the LRCK and BICK pins go to “L” and irregular frequency clock is output from the MCKO pins at MCKO  
bit is “1” before the PLL goes to lock state after PMPLL bit = “0” Æ “1”. If MCKO bit is “0”, the MCKO pin goes to “L”.  
(Table 7)  
After the PLL is locked, a first period of LRCK and BICK may be invalid clock, but these clocks return to normal state  
after a period of 1/fs.  
When sampling frequency is changed, the BICK and LRCK pins do not output irregular frequency clocks but go to “L” by  
setting PMPLL bit to “0”.  
MCKO pin  
MCKO bit = “0” MCKO bit = “1”  
PLL State  
BICK pin  
LRCK pin  
After that PMPLL bit “0” Æ “1”  
PLL Unlock (except above case)  
PLL Lock  
“L” Output  
“L” Output  
“L” Output  
Invalid  
Invalid  
See Table 9  
“L” Output  
Invalid  
See Table 10  
“L” Output  
Invalid  
1fs Output  
Table 7. Clock Operation at PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
2) PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)  
In this mode, an invalid clock is output from the MCKO pin before the PLL goes to lock state after PMPLL bit = “0” Æ  
“1”. After that, the clock selected by Table 9 is output from the MCKO pin when PLL is locked. ADC and DAC output  
invalid data when the PLL is unlocked. For DAC, the output signal should be muted by writing “0” to DACL, DACR,  
DACH and DACS bits.  
MCKO pin  
PLL State  
MCKO bit = “0” MCKO bit = “1”  
After that PMPLL bit “0” Æ “1”  
PLL Unlock  
PLL Lock  
“L” Output  
“L” Output  
“L” Output  
Invalid  
Invalid  
Output  
Table 8. Clock Operation at PLL Slave Mode (PMPLL bit = “0”, M/S bit = “0”)  
MS0963-E-00  
2008/05  
- 53 -  
 
[AK4675]  
PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
When an external clock (11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz or 27MHz)  
is input to the MCKI pin, the MCKO, BICK and LRCK clocks are generated by an internal PLL circuit. The MCKO  
output frequency is selected by PS1-0 bits (Table 9) and the output is enabled by MCKO bit. The BICK output frequency  
is selected between 32fs or 64fs, by BCKO bit (Table 10).  
11.2896MHz, 12MHz, 12.288MHz, 13MHz,  
13.5MHz, 19.2MHz, 24MHz, 26MHz,  
27MHz  
AK4675  
DSP or μP  
MCKI  
256fs/128fs/64fs/32fs  
MCLK  
BCLK  
LRCK  
MCKO  
BICK  
32fs, 64fs  
1fs  
LRCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 38. PLL Master Mode  
Mode  
PS1 bit  
PS0 bit  
MCKO pin  
0
1
2
3
0
0
1
1
0
1
0
1
256fs  
128fs  
64fs  
(default)  
32fs  
Table 9. MCKO Frequency (PLL mode, MCKO bit = “1”)  
BCKO bit  
BICK Output Frequency  
0
1
32fs  
64fs  
(default)  
Table 10. BICK Output Frequency at Master Mode  
MS0963-E-00  
2008/05  
- 54 -  
 
[AK4675]  
PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)  
A reference clock of PLL is selected among the input clocks to the MCKI, BICK or LRCK pin. The required clock to the  
AK4675 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits (Table 4).  
a) PLL reference clock: MCKI pin  
The BICK and LRCK inputs should be synchronized with MCKO output. The phase between MCKO and LRCK dose not  
matter. The MCKO pin outputs the frequency selected by PS1-0 bits (Table 9) and the output is enabled by MCKO bit.  
Sampling frequency can be selected by FS3-0 bits (Table 5).  
In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this  
case, BICK and LRCK can be stopped.  
11.2896MHz, 12MHz, 12.288MHz, 13MHz,  
13.5MHz, 19.2MHz, 24MHz, 26MHz,  
27MHz  
AK4675  
DSP or μP  
MCKI  
256fs/128fs/64fs/32fs  
MCLK  
BCLK  
LRCK  
MCKO  
BICK  
32fs  
1fs  
LRCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 39. PLL Slave Mode 1 (PLL Reference Clock: MCKI pin)  
MS0963-E-00  
2008/05  
- 55 -  
 
[AK4675]  
b) PLL reference clock: BICK or LRCK pin  
Sampling frequency corresponds to 8kHz to 48kHz by changing FS3-0 bits. (Table 6)  
AK4675  
MCKO  
DSP or μP  
MCKI  
BICK  
LRCK  
32fs or 64fs  
1fs  
BCLK  
LRCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 40. PLL Slave Mode 2 (PLL Reference Clock: BICK pin)  
AK4675  
MCKO  
DSP or μP  
MCKI  
32fs  
BCLK  
LRCK  
BICK  
1fs  
LRCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 41. PLL Slave Mode 2 (PLL Reference Clock: LRCK pin)  
MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”,  
PMDAL bit = “1” or PMDAR bit = “1”). If MCKI is not provided, the AK4675 may draw excess current and it is not  
possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and  
DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”).  
MS0963-E-00  
2008/05  
- 56 -  
 
[AK4675]  
EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”)  
When PMPLL bit is “0”, the AK4675 becomes EXT mode. Master clock is input from the MCKI pin, the internal PLL  
circuit is not operated. This mode is compatible with I/F of the normal audio CODEC. The clocks required to operate are  
MCKI (256fs, 384fs, 512fs, 768fs or 1024fs), LRCK (fs) and BICK (32fs). The master clock (MCKI) should be  
synchronized with LRCK. The phase between these clocks does not matter. The input frequency of MCKI is selected by  
FS1-0 bits (Table 11).  
In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this  
case, BICK and LRCK can be stopped.  
MCKI Input  
Frequency  
Sampling Frequency  
Range  
Mode  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
x
0
1
4
5
6
7
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
1
0
1
256fs  
1024fs  
384fs  
768fs  
512fs  
256fs  
N/A  
8kHz 48kHz  
8kHz 13kHz  
8kHz 48kHz  
8kHz 26kHz  
8kHz 26kHz  
8kHz 48kHz  
N/A  
x
x
x
x
x
(default)  
Others  
Others  
(N/A: Not available, x: Don’t care)  
Table 11. MCKI Frequency at EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”)  
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise.  
The out-of-band noise can be improved by using higher frequency of the master clock. The S/N of the DAC output  
through LOUT/ROUT pins at fs=8kHz is shown in Table 12.  
S/N  
MCKI  
(fs=8kHz, 20kHzLPF + A-weighted)  
256fs  
512fs  
1024fs  
83dB  
93dB  
93dB  
Table 12. Relationship between MCKI and S/N of LOUT1/ROUT1 pins  
The external clocks (MCKI, BICK and LRCK) should always be present whenever the ADC or DAC is in operation  
(PMADL bit = “1”, PMADR bit = “1”, PMDAL bit = “1” or PMDAR bit = “1”). If these clocks are not provided, the  
AK4675 may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic  
internally. If the external clocks are not present, the ADC and DAC should be in the power-down mode  
(PMADL=PMADR=PMDAL=PMDAR bits = “0”).  
AK4675  
MCKO  
DSP or μP  
256fs, 384fs, 512fs,  
768fs or 1024fs  
MCKI  
BICK  
LRCK  
MCLK  
BCLK  
LRCK  
32fs  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 42. EXT Slave Mode  
MS0963-E-00  
2008/05  
- 57 -  
 
[AK4675]  
EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”)  
The AK4675 becomes EXT Master Mode by setting PMPLL bit = “0” and M/S bit = “1”. Master clock is input from the  
MCKI pin, the internal PLL circuit is not operated. The clock required to operate is MCKI (256fs, 384fs, 512fs, 768fs or  
1024fs). The input frequency of MCKI is selected by FS2-0 bits (Table 13).  
MCKI Input  
Frequency  
Sampling Frequency  
Range  
Mode  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
x
x
x
x
x
x
0
1
4
5
6
7
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
1
0
1
256fs  
1024fs  
384fs  
768fs  
512fs  
256fs  
N/A  
8kHz 48kHz  
8kHz 13kHz  
8kHz 48kHz  
8kHz 26kHz  
8kHz 26kHz  
8kHz 48kHz  
N/A  
(default)  
Others  
Others  
(N/A: Not available, x: Don’t care)  
Table 13. MCKI Frequency at EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”)  
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise.  
The out-of-band noise can be improved by using higher frequency of the master clock. The S/N of the DAC output  
through the LOUT/ROUT pins at fs=8kHz is shown in Table 14.  
S/N  
MCKI  
(fs=8kHz, 20kHzLPF + A-weighted)  
256fs  
512fs  
1024fs  
83dB  
93dB  
93dB  
Table 14. Relationship between MCKI and S/N of LOUT1/ROUT1 pins  
MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”,  
PMDAL bit = “0” or PMDAR bit = “1”). If MCKI is not provided, the AK4675 may draw excess current and it is not  
possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and  
DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”).  
AK4675  
MCKO  
DSP or μP  
256fs, 384fs, 512fs,  
768fs or 1024fs  
MCKI  
BICK  
LRCK  
MCLK  
BCLK  
LRCK  
32fs or 64fs  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 43. EXT Master Mode  
BCKO bit  
BICK Output Frequency  
0
1
32fs  
64fs  
(default)  
Table 15. BICK Output Frequency at Master Mode  
MS0963-E-00  
2008/05  
- 58 -  
 
[AK4675]  
System Reset  
The PDNA pin must keep “L” until all power supply pins are supplied, and must be set to “H”. After exiting reset (PDNA  
pin: “L” Æ “H”), all blocks of HP/SPK-Amp blocks (Input Volume, VCOMA, Oscillator, Mixer, Headphone-Amp,  
Speaker-Amp and charge pump circuit) switch to the power-down state. The contents of the control register are  
maintained until this reset by the PDNA pin.  
Upon power-up, CODEC & SRC blocks of the AK4675 must be reset by bringing the PDN pin = “L”. This ensures that  
all internal registers of CODEC & SRC blocks reset to their initial values.  
The ADC enters initialization cycle when the PMADL or PMADR bit is changed from “0” to “1” if PMDAL and  
PMDAR bits are “0”. The initialization cycle time is 1059/fs=24ms@fs=44.1kHz. During initialization cycle, the ADC  
digital data outputs of both channels are forced to a 2’s complement, “0”. The ADC output reflects the analog input signal  
after the initialization cycle is complete. When PMDAL or PMDAR is “1”, the ADC does not require an initialization  
cycle.  
MS0963-E-00  
2008/05  
- 59 -  
[AK4675]  
Audio Interface Format  
Four types of data formats are available and are selected by setting the DIF1-0 bits (Table 16). In all modes, the serial data  
is MSB first, 2’s complement format. Audio interface formats can be used in both master and slave modes. LRCK and  
BICK are output from the AK4675 in master mode, but must be input to the AK4675 in slave mode.  
Mode  
DIF1 bit  
DIF0 bit  
SDTO (ADC)  
DSP Mode  
MSB justified LSB justified  
MSB justified MSB justified  
I2S compatible I2S compatible  
Table 16. Audio Interface Format  
SDTI (DAC)  
DSP Mode  
BICK  
32fs  
32fs  
32fs  
32fs  
Figure  
0
1
2
3
0
0
1
1
0
1
0
1
Table 17  
Figure 48  
Figure 49  
Figure 50  
(default)  
In modes 1-3, the SDTO is clocked out on the falling edge (“”) of BICK and the SDTI is latched on the rising edge (“”).  
In Modes 0 (DSP mode), the audio I/F timing is changed by BCKP and MSBS bits (Table 17).  
DIF1  
DIF0  
MSBS BCKP  
Audio Interface Format  
Figure  
MSB of SDTO is output by the rising edge (“”) of the  
first BICK after the rising edge (“”) of LRCK.  
MSB of SDTI is latched by the falling edge (“”) of the  
BICK just after the output timing of SDTO’s MSB.  
MSB of SDTO is output by the falling edge (“”) of the  
first BICK after the rising edge (“”) of LRCK.  
MSB of SDTI is latched by the rising edge (“”) of the  
BICK just after the output timing of SDTO’s MSB.  
MSB of SDTO is output by next rising edge (“”) of the  
falling edge (“”) of the first BICK after the rising edge  
(“”) of LRCK.  
MSB of SDTI is latched by the falling edge (“”) of the  
BICK just after the output timing of SDTO’s MSB.  
MSB of SDTO is output by next falling edge (“”) of the  
rising edge (“”) of the first BICK after the rising edge  
(“”) of LRCK.  
0
0
0
1
Figure 44 (default)  
Figure 45  
Figure 46  
0
0
1
1
0
1
Figure 47  
MSB of SDTI is latched by the rising edge (“”) of the  
BICK just after the output timing of SDTO’s MSB.  
Table 17. Audio Interface Format in Mode 0  
If 16-bit data that ADC outputs is converted to 8-bit data by removing LSB 8-bit, “1” at 16bit data is converted to “1”  
at 8-bit data. And when the DAC playbacks this 8-bit data, “1” at 8-bit data will be converted to “256” at 16-bit data  
and this is a large offset. This offset can be removed by adding the offset of “128” to 16-bit data before converting to 8-bit  
data.  
MS0963-E-00  
2008/05  
- 60 -  
 
[AK4675]  
LRCK  
(Master)  
LRCK  
(Slave)  
15  
0
1
8
9
10  
11  
12 13  
14 15  
16  
17  
24  
25 26  
27  
26 29  
30 31  
0
2
18  
BICK(32fs)  
SDTO(o)  
Lch  
15  
Rch  
0
0
8
8
7
7
6
6
5
5
4
4
3
2
2
1
0
0
15  
8
8
7
7
6
5
5
4
4
3
2
2
1
0
0
14  
14  
Lch  
15  
Rch  
15  
3
1
6
3
1
14  
14  
SDTI(i)  
15  
0
1
14  
15 16  
17  
18  
30 31  
32 33  
46  
47 48  
49  
50  
62 63  
2
34  
BICK(64fs)  
SDTO(o)  
Lch  
15  
Rch  
15  
2
2
1
1
0
0
2
1
1
0
0
14  
14  
14  
14  
Lch  
15  
Rch  
15  
2
SDTI(i)  
1/fs  
15:MSB, 0:LSB  
Figure 44. Mode 0 Timing (BCKP = “0”, MSBS = “0”)  
LRCK  
(Master)  
LRCK  
(Slave)  
15  
0
1
8
9
10  
11  
12 13  
14 15  
16  
17  
24  
25 26  
27  
26 29  
30 31  
0
2
18  
BICK(32fs)  
SDTO(o)  
Lch  
15  
Rch  
0
0
8
8
7
7
6
6
5
5
4
4
3
2
2
1
0
0
15  
8
8
7
7
6
5
5
4
4
3
2
2
1
0
0
14  
14  
Lch  
15  
Rch  
15  
3
1
6
3
1
14  
14  
SDTI(i)  
15  
0
1
14  
15 16  
17  
18  
30 31  
32 33  
46  
47 48  
49  
50  
62 63  
2
34  
BICK(64fs)  
SDTO(o)  
Lch  
15  
Rch  
15  
2
2
1
1
0
0
2
1
1
0
0
14  
14  
14  
14  
Rch  
Lch  
15  
15  
2
SDTI(i)  
1/fs  
15:MSB, 0:LSB  
Figure 45. Mode 0 Timing (BCKP = “1”, MSBS = “0”)  
MS0963-E-00  
2008/05  
- 61 -  
 
[AK4675]  
LRCK  
(Master)  
LRCK  
(Slave)  
15  
0
1
8
9
10  
11  
12 13  
14 15  
16  
17  
24  
25 26  
27  
26 29  
30 31  
0
2
18  
BICK(32fs)  
SDTO(o)  
Lch  
15  
Rch  
0
0
8
8
7
7
6
6
5
5
4
4
3
2
2
1
0
0
15  
8
8
7
7
6
5
5
4
4
3
2
2
1
0
0
14  
14  
Lch  
15  
Rch  
15  
3
1
6
3
1
14  
14  
SDTI(i)  
15  
0
1
14  
15 16  
17  
18  
30 31  
32 33  
46  
47 48  
49  
50  
62 63  
2
34  
BICK(64fs)  
SDTO(o)  
Lch  
15  
Rch  
15  
2
2
1
1
0
0
2
1
1
0
0
14  
14  
14  
14  
Lch  
15  
Rch  
15  
2
SDTI(i)  
1/fs  
15:MSB, 0:LSB  
Figure 46. Mode 0 Timing (BCKP = “0”, MSBS = “1”)  
LRCK  
(Master)  
LRCK  
(Slave)  
15  
0
1
8
9
10  
11  
12 13  
14 15  
16  
17  
24  
25 26  
27  
26 29  
30 31  
0
2
18  
BICK(32fs)  
SDTO(o)  
Lch  
15  
Rch  
0
0
8
8
7
7
6
6
5
5
4
4
3
2
2
1
0
0
15  
8
8
7
7
6
5
5
4
4
3
2
2
1
0
0
14  
14  
Lch  
15  
Rch  
15  
3
1
6
3
1
14  
14  
SDTI(i)  
15  
0
1
14  
15 16  
17  
18  
30 31  
32 33  
46  
47 48  
49  
50  
62 63  
2
34  
BICK(64fs)  
SDTO(o)  
Lch  
15  
Rch  
15  
2
2
1
1
0
0
2
1
1
0
0
14  
14  
14  
Lch  
15  
Rch  
15  
2
14  
SDTI(i)  
1/fs  
15:MSB, 0:LSB  
Figure 47. Mode 0 Timing (BCKP = “1”, MSBS = “1”)  
MS0963-E-00  
2008/05  
- 62 -  
 
[AK4675]  
LRCK  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICK(32fs)  
SDTO(o)  
15 14 13  
15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15 14 13  
0 15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15  
0 15  
SDTI(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
31 0 1  
BICK(64fs)  
SDTO(o)  
15 14 13  
1
0
15 14 13  
1
0
15  
Don't Care  
15:MSB, 0:LSB  
15 14  
1
0
Don't Care  
15 14  
2
1
0
SDTI(i)  
Lch Data  
Rch Data  
Figure 48. Mode 1 Timing  
LRCK  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICK(32fs)  
SDTO(o)  
15 14 13  
15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15 14 13  
0 15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15  
0 15  
SDTI(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
31 0 1  
BICK(64fs)  
SDTO(o)  
15 14 13  
1
0
0
15 14 13  
15 14 13  
1
0
0
15  
15 14 13  
1
Don't Care  
1
Don't Care 15  
SDTI(i)  
15:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 49. Mode 2 Timing  
MS0963-E-00  
2008/05  
- 63 -  
 
[AK4675]  
LRCK  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICK(32fs)  
SDTO(o)  
0 15 14  
0 15 14  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15 14  
0 15 14  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
SDTI(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
31 0 1  
BICK(64fs)  
SDTO(o)  
15 14  
15 14  
2
2
1
1
0
0
15 14  
15 14  
2
2
1
1
0
0
Don't Care  
Don't Care  
SDTI(i)  
15:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 50. Mode 3 Timing  
MS0963-E-00  
2008/05  
- 64 -  
 
[AK4675]  
MIC/LINE Input Selector  
The AK4675 has input selector. When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “0”, INL1-0 and INR1-0 bits select  
LIN1/LIN2/LIN3/LIN4 and RIN1/RIN2/RIN3/RIN4, respectively. When MDIF1, MDIF2, MDIF3 and MDIF4 bits are  
“1”, LIN1/RIN1, LIN2/RIN2, LIN3/RIN3 and LIN4/RIN4 pins become IN1+/, IN2+/, IN3+/and IN4+/pins,  
respectively. In this case, full-differential input is available (Figure 52).  
MDIF1 MDIF2 MDIF3 MDIF4  
INL1  
0
INL0  
0
INR1  
0
INR0  
0
Lch  
LIN1  
Rch  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
0
0
1
0
RIN1  
RIN2  
RIN3  
RIN4  
RIN1  
RIN2  
RIN3  
RIN4  
RIN1  
RIN2  
RIN3  
RIN4  
RIN1  
RIN2  
RIN3  
RIN4  
(default)  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
0
0
1
1
0
0
0
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
LIN1  
LIN1  
LIN1  
LIN2  
LIN2  
LIN2  
LIN2  
LIN3  
LIN3  
LIN3  
LIN3  
LIN4  
LIN4  
LIN4  
LIN4  
LIN1  
IN4+/−  
IN4+/−  
IN4+/−  
RIN1  
RIN2  
RIN4  
IN4+/−  
IN2+/−  
IN2+/−  
IN2+/−  
IN2+/−  
RIN2  
LIN2  
LIN3  
IN3+/−  
IN3+/−  
IN3+/−  
IN3+/−  
LIN1  
LIN3  
LIN4  
IN3+/−  
IN1+/−  
IN1+/−  
IN1+/−  
IN1+/−  
IN1+/−  
RIN3  
RIN4  
IN4+/−  
IN2+/−  
Others  
Table 18. MIC-Amp Input Signal  
N/A  
MS0963-E-00  
2008/05  
- 65 -  
 
[AK4675]  
AK4675  
INL1-0 bits  
LIN1/IN1+ pin  
ADC Lch  
RIN1/IN1pin  
MIC-Amp Lch  
MDIF1 bit  
MDIF3 bit  
INR1-0 bits  
LIN2/IN2+ pin  
ADC Rch  
RIN2/IN2pin  
MIC-Amp Rch  
MDIF2 bit  
MDIF4 bit  
LIN3/IN3+ pin  
RIN3/IN3pin  
LIN4/IN4+ pin  
RIN4/IN4pin  
Lineout  
Figure 51. Mic/Line Input Selector  
AK4675  
MPWR pin  
1k  
1k  
MIC-Amp  
IN1+ pin  
IN1pin  
Figure 52. Connection Example for Full-differential Mic Input (MDIF1/2/3/4 bits = “1”)  
AK4675  
MIC-Amp  
IN1+ pin  
IN1pin  
Figure 53. Connection Example for Full-differential Mic Input (MDIF1/2/3/4 bits = “1”)  
MS0963-E-00  
2008/05  
- 66 -  
 
[AK4675]  
MIC Gain Amplifier  
The AK4675 has a gain amplifier for microphone input. The gain of MIC-Amp Lch and Rch is independently selected by  
the MGNL3-0 and MGNR3-0 bits (Table 19). The typical input impedance is 42kΩ(typ)@MGNL/R0 bits = “0” or  
30kΩ(typ)@MGNL/R0 bits = “1”.  
MGNL3  
MGNR3  
MGNL2  
MGNR2  
MGNL1  
MGNR1  
MGNL0  
MGNR0  
Mode  
Input Gain  
Input Resistance  
0
1
2
3
4
5
6
7
8
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
N/A  
12dB  
9dB  
6dB  
3dB  
N/A  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
0dB  
(default)  
+3dB  
+6dB  
+9dB  
+12dB  
+15dB  
+18dB  
+21dB  
+24dB  
+27dB  
+30dB  
9
10  
11  
12  
13  
14  
15  
Table 19. Mic Input Gain  
MS0963-E-00  
2008/05  
- 67 -  
 
[AK4675]  
MIC Power  
When PMMP bit = “1”, the MPWR pin supplies power for the microphone. This output voltage is typically 0.8 x AVDD  
and the load resistance is minimum 0.5kΩ. In case of using two sets of stereo mic, the load resistance is minimum 2kΩ for  
each channel. Any capacitor must not be connected directly to the MPWR pin (Figure 54).  
PMMP bit  
MPWR pin  
Hi-Z  
Output  
0
1
(default)  
Table 20. MIC Power  
MIC Power  
MPWR pin  
Microphone  
Microphone  
Microphone  
Microphone  
LIN1 pin  
RIN1 pin  
LIN2 pin  
RIN2 pin  
Figure 54. MIC Block Circuit  
MS0963-E-00  
2008/05  
- 68 -  
 
[AK4675]  
MIC Detection  
The AK4675 has a detect function of microphone inputs.  
The followings show the example of external microphone detection sequence:  
(1) PMMP bit should be set to “1” after CPU detects the jack insertion of microphone or headphone.  
(2) The MPWR pin drives external microphone.  
(3) The GPO2 pin (at GPOM2 bit = “1”) and DTMIC bit are set as Table 21. In case of Headset (with Mic), the input  
voltage of the MDT pin is higher than 0.075 x AVDD because of the relationship between the bias resistance at the  
MPWR pin (typ. 2.2kΩ) and the microphone impedance. In case of Headphone (No Mic), the input voltage of the  
MDT pin is 0V because the pin of headphone jack is connected to the MDT pin is assigned as ground.  
Input Level of MDT pin  
GPO2 pin  
DTMIC bit  
Result  
H
L
1
0
Mic (Headset)  
No Mic (Headphone)  
0.075 x AVDD  
< 0.050 x AVDD  
Table 21. Microphone Detection Result  
PMMP bit  
MPWR  
AK4675  
LIN1  
LIN2  
MDT  
G
M
R
R
L
L
Headset  
DTMIC bit  
typ.  
500k  
or  
0.075 x AVDD  
G
Headphone  
Figure 55. Microphone Power Supply and Mic Detection  
MS0963-E-00  
2008/05  
- 69 -  
 
[AK4675]  
Digital Block  
Digital block is composed as Figure 56. Each block can be powered-down by power management bit (PMADL, PMADR,  
PMDAL, PMDAR, PMSRA, PMSRB and PMPCM bits). When blocks from HPF to MIX are powered-down, both MIX  
and SVOLA blocks should not be selected by SDOL/R bits and PFMXL/R bits.  
PMADL or PMADR  
HPF  
A/D  
HPFAD  
PFSEL  
PFSEL=0  
PMADL  
or  
PMADR  
HPF  
LPF  
HPF  
LPF  
PFSEL=1  
PMDAL  
or  
PMDAR  
or  
Stereo  
Separation  
FIL3, EQ0,  
GN1-0  
PMSRA  
5-band  
Notch  
EQ1-5  
ALC, IVL/R  
ADM  
ALC  
MIX  
SDOL/R1-0 SDOD  
SDTO Lch  
SDTO Rch  
SVAL/R2-0  
SVOLA  
SRMXL/R1-0  
DAM, MIXD OVL/R  
EQ  
M
I
X
S
E
L
SDTI Lch  
SDTI Rch  
DATT 5-band  
D/A  
SMUTE  
EQ  
SDIM1-0  
PMDAL  
PMDAL or PMDAR or PMSRA  
PFMXL/R1-0  
or PMDAR  
SRA1-0, MIXD  
PMPCM  
PMSRA  
SDOA  
SDOAD  
SRC-A  
SDTOA  
SDTIA  
SVB2-0  
SVOLB  
PMSRB  
SRC-B  
DATT-B  
BVL7-0  
BVMX1-0  
SBMX1-0  
CVL7-0  
DATT-C  
BIV2-0  
SDTOB  
SDTIB  
SDOBD  
BIVOL  
Figure 56. Path Select of Digital Block  
MS0963-E-00  
2008/05  
- 70 -  
 
[AK4675]  
(1) ADC: Include the Digital Filter (LPF) for ADC as shown in “FILTER CHRACTERISTICS”.  
(2) DAC: Include the Digital Filter (LPF) for DAC as shown in “FILTER CHRACTERISTICS”.  
(3) HPF: High Pass Filter. Applicable to use as Wind-Noise Reduction Filter. (See “Digital Programmable Filter”.)  
(4) LPF: Low Pass Filter (See “Digital Programmable Filter”.)  
(5) Stereo Separation: Stereo Separation Emphasis Filter & Gain Comparison. (See “Digital Programmable Filter”.)  
Gain Comparison is composed with EQ0 and Gain blocks. This block adjusts the frequency response after Stereo  
Separation Emphasis.  
(6) 5-Band Notch: Applicable to use as Equalizer or Notch Filter. (See “Digital Programmable Filter”.)  
(7) ALC: Input Digital Volume with ALC function. (See “Input Digital Volume” and “ALC Operation”.)  
(8) SVOLA: Side Tone Volume at Internal MIC/SPK or External Headset Phone Call. (See “Side Tone Volume  
(SVOLA)”.)  
(9) 5-Band EQ: Equalizer for playback path. (See “5-band Equalizer”.)  
(10)DATT: Digital Volume for playback path. (See “Digital Output Volume”.)  
(11)SMUTE: Soft mute. (See “Soft Mute”.)  
(12)DATT-B: Digital Volume for Recording of Received Voice. (See “Digital Volume for Recording of Received  
Voice”)  
(13)DATT-C: Digital Volume of Received Voice. (See “Digital Volume of Received Voice”)  
(14)SVOLA: Side Tone Volume at B/T Headset Phone Call. (See “Side Tone Volume for B/T Phone Call”.)  
Mode  
PMADL  
PMADR  
PMDAL  
PMDAR  
PFSEL  
Figure  
Recording Mode  
1
1
0
1
1
0
0
1
0
1
1
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
0
0
1
Figure 57  
Recording &  
Playback Mode  
Figure 58  
Figure 59  
Playback Mode  
Table 22. Recode/Playback Mode  
2nd Order  
HPF  
1st Order  
LPF  
Stereo  
Separation  
Gain  
Compensation  
5 Band  
Notch  
ALC  
(Volume)  
ADC  
Figure 57. Path at Recording Mode  
2nd Order  
HPF  
1st Order  
LPF  
Stereo  
Separation  
Gain  
Compensation  
5 Band  
Notch  
ALC  
(Volume)  
ADC  
DAC  
5 Band  
EQ  
DEM  
SMUTE  
DATT  
Figure 58. Path at Recording & Playback Mode  
1st Order  
HPF  
“0” Data  
ADC  
DAC  
5 Band  
EQ  
5 Band  
EQ  
Gain  
Compensation  
Stereo  
Separation  
1st Order  
LPF  
1st Order  
HPF  
ALC  
(Volume)  
DEM  
SMUTE  
DATT  
Figure 59. Path at Playback Mode  
MS0963-E-00  
2008/05  
- 71 -  
 
[AK4675]  
Digital Programmable Filter  
(1) High Pass Filter (HPF)  
Normally, this HPF is used for a Wind-Noise Reduction Filter. This is composed with 2 steps of 1st order HPF. The  
coefficient of both HPF is the same and set by F1A13-0 bits and F1B13-0 bits. HPFAD bit controls ON/OFF of the 1st  
step HPF and HPF bit controls ON/OFF of the 2nd step HPF. When the HPF is OFF, the audio data passes this block by  
0dB gain. The coefficient should be set when HPFAD=HPF bits = “0” or PMADL=PMADR=PMDAL=PMDAR bits =  
“0”.  
fs: Sampling frequency  
fc: Cut-off frequency  
Register setting (Note 79)  
HPF: F1A[13:0] bits =A, F1B[13:0] bits =B  
(MSB=F1A13, F1B13; LSB=F1A0, F1B0)  
1 / tan (πfc/fs)  
1 1 / tan (πfc/fs)  
1 + 1 / tan (πfc/fs)  
A =  
,
B =  
1 + 1 / tan (πfc/fs)  
Transfer function  
1 z −  
1
H(z) = A  
1 + Bz −  
1
The cut-off frequency should be set as below.  
fc/fs 0.0001 (fc min = 4.41Hz at 44.1kHz)  
(2) Low Pass Filter (LPF)  
This is composed with 1st order LPF. F2A13-0 bits and F2B13-0 bits set the coefficient of LPF. LPF bit controls ON/OFF  
of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when LPF  
bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”.  
fs: Sampling frequency  
fc: Cut-off frequency  
Register setting (Note 79)  
LPF: F2A[13:0] bits =A, F2B[13:0] bits =B  
(MSB=F2A13, F1B13; LSB=F2A0, F2B0)  
1
1 1 / tan (πfc/fs)  
1 + 1 / tan (πfc/fs)  
A =  
,
B =  
1 + 1 / tan (πfc/fs)  
Transfer function  
1 + z −  
1
H(z) = A  
1 + Bz −  
1
The cut-off frequency should be set as below.  
fc/fs 0.05 (fc min = 2205Hz at 44.1kHz)  
MS0963-E-00  
2008/05  
- 72 -  
 
[AK4675]  
(3) Stereo Separation Emphasis Filter (FIL3)  
FIL3 is used to emphasize the stereo separation of stereo mic recording data or playback data. F3A13-0 and F3B13-0 bits  
set the filter coefficient of FIL3. FIL3 becomes High Pass Filter (HPF) at F3AS bit = “0”, and Low Pass Filter (LPF) at  
F3AS bit = “1”. FIL3 bit controls ON/OFF of FIL3. When Stereo Separation Emphasis Filter is OFF, the audio data  
passes this block by 0dB gain. The coefficient should be set when FIL3 bit = “0” or PMADL = PMADR = PMDAL =  
PMDAR bits = “0”.  
1) When FIL3 is set to “HPF”  
fs: Sampling frequency  
fc: Cut-off frequency  
K: Filter gain [dB] (0dB K ≥ −10dB)  
Register setting (Note 79)  
FIL3: F3AS bit = “0”, F3A[13:0] bits =A, F3B[13:0] bits =B  
(MSB=F3A13, F3B13; LSB=F3A0, F3B0)  
1 / tan (πfc/fs)  
1 1 / tan (πfc/fs)  
1 + 1 / tan (πfc/fs)  
A = 10K/20  
x
,
B =  
1 + 1 / tan (πfc/fs)  
Transfer function  
1 z −  
1
H(z) = A  
1 + Bz −  
1
2) When FIL3 is set to “LPF”  
fs: Sampling frequency  
fc: Cut-off frequency  
K: Filter gain [dB] (0dB K ≥ −10dB)  
Register setting (Note 79)  
FIL3: F3AS bit = “1”, F3A[13:0] bits =A, F3B[13:0] bits =B  
(MSB=F3A13, F3B13; LSB= F3A0, F3B0)  
1
1 1 / tan (πfc/fs)  
1 + 1 / tan (πfc/fs)  
A = 10K/20  
x
,
B =  
1 + 1 / tan (πfc/fs)  
Transfer function  
1 + z −  
1
H(z) = A  
1 + Bz −  
1
MS0963-E-00  
2008/05  
- 73 -  
[AK4675]  
(4) Gain Compensation (EQ0)  
Gain Compensation is used to compensate the frequency response and the gain that is changed by Stereo Separation  
Emphasis Filter. Gain Compensation is composed with Equalizer (EQ0) and the Gain (0dB/+12dB/+24dB). E0A15-0,  
E0B13-0 and E0C15-0 bits set the coefficient of EQ0. GN1-0 bits set the gain (Table 23). EQ0 bit controls ON/OFF of  
EQ0. When EQ is OFF and the gain is 0dB, the audio data passes this block by 0dB gain. The coefficient should be set  
when EQ0 bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”.  
fs: Sampling frequency  
fc1: Pole frequency  
fc2: Zero-point frequency  
K: Filter gain [dB] (Maximum +12dB)  
Register setting (Note 79)  
E0A[15:0] bits =A, E0B[13:0] bits =B, E0C[15:0] bits =C  
(MSB=E0A15, E0B13, E0C15; LSB=E0A0, E0B0, E0C0)  
1 + 1 / tan (πfc2/fs)  
1 + 1 / tan (πfc1/fs)  
1 1 / tan (πfc1/fs)  
1 + 1 / tan (πfc1/fs)  
1 1 / tan (πfc2/fs)  
1 + 1 / tan (πfc1/fs)  
A = 10K/20  
x
,
B =  
,
C =10K/20 x  
Transfer function  
A + Cz −  
H(z) =  
1
1 + Bz 1  
Gain[dB]  
K
fc1  
fc2  
Frequency  
Figure 60. EQ0 Frequency Response  
GN1  
GN0  
Gain  
0dB  
+12dB  
+24dB  
0
0
1
0
1
x
(default)  
Table 23. Gain select of gain block (x: Don’t care)  
MS0963-E-00  
2008/05  
- 74 -  
 
[AK4675]  
(5) 5-band Notch  
This block can be used as Equalizer or Notch Filter. 5-band Equalizer (EQ1, EQ2, EQ3, EQ4 and EQ5) is ON/OFF  
independently by EQ1, EQ2, EQ3, EQ4 and EQ5 bits. When Equalizer is OFF, the audio data passes this block by 0dB  
gain. E1A15-0, E1B15-0 and E1C15-0 bits set the coefficient of EQ1. E2A15-0, E2B15-0 and E2C15-0 bits set the  
coefficient of EQ2. E3A15-0, E3B15-0 and E3C15-0 bits set the coefficient of EQ3. E4A15-0, E4B15-0 and E4C15-0  
bits set the coefficient of EQ4. E5A15-0, E5B15-0 and E5C15-0 bits set the coefficient of EQ5. The EQx (x=15)  
coefficient should be set when EQx bit = 0or PMADL=PMADR=PMDAL=PMDAR bits = “0”.  
fs: Sampling frequency  
fo1 ~ fo5: Center frequency  
fb1 ~ fb5: Band width where the gain is 3dB different from center frequency  
K1 ~ K5 : Gain (1 Kn 3)  
Register setting (Note 79)  
EQ1: E1A[15:0] bits =A1, E1B[15:0] bits =B1, E1C[15:0] bits =C1  
EQ2: E2A[15:0] bits =A2, E2B[15:0] bits =B2, E2C[15:0] bits =C2  
EQ3: E3A[15:0] bits =A3, E3B[15:0] bits =B3, E3C[15:0] bits =C3  
EQ4: E4A[15:0] bits =A4, E4B[15:0] bits =B4, E4C[15:0] bits =C4  
EQ5: E5A[15:0] bits =A5, E5B[15:0] bits =B5, E5C[15:0] bits =C5  
(MSB=E1A15, E1B15, E1C15, E2A15, E2B15, E2C15, E3A15, E3B15, E3C15, E4A15, E4B15, E4C15,  
E5A15, E5B15, E5C15; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0, E3C0, E4A0, E4B0,  
E4C0, E5A0, E5B0, E5C0)  
2
tan (πfbn/fs)  
1 tan (πfbn/fs)  
1 + tan (πfbn/fs)  
An = Kn x  
,
Cn =  
Bn = cos(2π fon/fs) x  
,
1 + tan (πfbn/fs)  
1 + tan (πfbn/fs)  
(n = 1, 2, 3, 4, 5)  
Transfer function  
H(z) = 1 + h1(z) + h2(z) + h3(z) + h4(z) + h5(z)  
1 z −  
2
hn (z) = An  
1Bnz 1Cnz 2  
(n = 1, 2, 3, 4, 5)  
The center frequency should be set as below.  
fon / fs < 0.497  
Note 79. [Translation the filter coefficient calculated by the equations above from real number to binary code (2’s  
complement)]  
X = (Real number of filter coefficient calculated by the equations above) x 213  
X should be rounded to integer, and then should be translated to binary code (2’s complement).  
MSB of each filter coefficient setting register is sine bit.  
MS0963-E-00  
2008/05  
- 75 -  
 
[AK4675]  
ALC Operation  
The ALC (Automatic Level Control) is done by ALC block when ALC bit is “1”. ALC circuit operates at playback path  
for Playback mode and operates at recording path for Recording mode as shown in Table 22.  
1. ALC Limiter Operation  
During the ALC limiter operation, when either Lch or Rch exceeds the ALC limiter detection level (Table 24), the IVL  
and IVR values (same value) are attenuated automatically by the amount defined by the ALC limiter ATT step (Table 25).  
When ZELMN bit = “0” (zero cross detection is enabled), the IVL and IVR values are changed by ALC limiter operation  
at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. ZTM1-0 bits set the zero crossing  
timeout periods of both ALC limiter and recovery operation (Table 26). IVL and IVR values are attenuated 1 step  
immediately (period: 1/fs) by ALC limiter operation when output level is over FS (Digital Full Scale). When output level  
is not over FS, the IVL and IVR values are changed at the individual zero crossing points of Lch and Rch or at the zero  
crossing timeout.  
When ZELMN bit = “1” (zero cross detection is disabled), IVL and IVR values are immediately (period: 1/fs) changed by  
ALC limiter operation. Attenuation step is fixed to 1 step regardless of the setting of LMAT1-0 bits.  
The attenuate operation is executed continuously until the input signal level becomes ALC limiter detection level (Table  
24) or less. After completing the attenuate operation, unless ALC bit is changed to “0”, the operation repeats when the  
input signal level exceeds LMTH1-0 bits.  
LMTH1 LMTH0 ALC Limier Detection Level  
ALC Recovery Waiting Counter Reset Level  
2.5dBFS > ALC Output ≥ −4.1dBFS  
4.1dBFS > ALC Output ≥ −6.0dBFS  
6.0dBFS > ALC Output ≥ −8.5dBFS  
8.5dBFS > ALC Output ≥ −12dBFS  
0
0
1
1
0
1
0
1
(default)  
ALC Output ≥ −2.5dBFS  
ALC Output ≥ −4.1dBFS  
ALC Output ≥ −6.0dBFS  
ALC Output ≥ −8.5dBFS  
Table 24. ALC Limiter Detection Level / Recovery Counter Reset Level  
ALC Limiter ATT Step  
LMAT1  
LMAT0  
ALC Output  
ALC Output  
ALC Output  
ALC Output  
LMTH  
FS  
FS + 6dB  
FS + 12dB  
0
0
1
1
0
1
0
1
1
2
2
1
1
2
4
2
1
2
4
4
1
2
8
8
(default)  
Table 25. ALC Limiter ATT Step (x: Don’t care)  
Zero Crossing Timeout Period  
ZTM1  
ZTM0  
8kHz  
16ms  
32ms  
64ms  
128ms  
16kHz  
8ms  
16ms  
32ms  
64ms  
44.1kHz  
2.9ms  
5.8ms  
11.6ms  
23.2ms  
0
0
1
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
(default)  
Table 26. ALC Zero Crossing Timeout Period  
MS0963-E-00  
2008/05  
- 76 -  
 
[AK4675]  
2. ALC Recovery Operation  
ALC recovery operation waits for the WTM2-0 bits (Table 27) to be set after completing ALC limiter operation. If the  
input signal does not exceed “ALC recovery waiting counter reset level” (Table 24) during the wait time, ALC recovery  
operation is executed. The IVL and IVR values are automatically incremented by RGAIN1-0 bits (Table 28) up to the set  
reference level (Table 29) with zero crossing detection which timeout period is set by ZTM1-0 bits (Table 26). Then the  
IVL and IVR are set to the same value for both channels. ALC recovery operation is executed at a period set by WTM2-0  
bits. When zero cross is detected at both channels during the wait period set by WTM2-0 bits, ALC recovery operation  
waits until WTM2-0 period and the next recovery operation is executed. If ZTM1-0 is longer than WTM2-0 and no zero  
crossing occurs, the ALC recovery operation is executed at a period set by ZTM1-0 bits.  
For example, when the current IVL and IVR values are 30H and RGAIN1-0 bits are set to “01”, IVL and IVR values are  
changed to 32H by the auto limiter operation and then the input signal level is gained by 0.75dB (=0.375dB x 2). When  
the IVL and IVR values exceed the reference level (REF7-0 bits), the IVL and IVR values are not increased.  
When  
“ALC recovery waiting counter reset level (LMTH1-0) Output Signal < ALC limiter detection level (LMTH1-0)”  
during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When  
“ALC recovery waiting counter reset level (LMTH1-0) > Output Signal”,  
the waiting timer of ALC recovery operation starts.  
The ALC operation corresponds to the impulse noise. When the impulse noise is input, the ALC recovery operation  
becomes faster than a normal recovery operation (Fast Recovery Operation). When large noise is input to microphone  
instantaneously, the quality of small level in the large noise can be improved by this fast recovery operation. The speed of  
fast recovery operation is set by RFST1-0 bits (Table 30).  
ALC Recovery Operation Waiting Period  
WTM2  
WTM1  
WTM0  
8kHz  
16kHz  
44.1kHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
2048/fs  
4096/fs  
8192/fs  
16384/fs  
16ms  
32ms  
64ms  
128ms  
256ms  
512ms  
1024ms  
2048ms  
8ms  
16ms  
32ms  
64ms  
128ms  
256ms  
512ms  
1024ms  
2.9ms  
5.8ms  
(default)  
11.6ms  
23.2ms  
46.4ms  
92.9ms  
185.8ms  
371.5ms  
Table 27. ALC Recovery Operation Waiting Period  
RGAIN1  
RGAIN0  
GAIN STEP  
1 step 0.375dB (default)  
0
0
1
1
0
1
0
1
2 step  
3 step  
4 step  
0.750dB  
1.125dB  
1.500dB  
Table 28. ALC Recovery GAIN Step  
MS0963-E-00  
2008/05  
- 77 -  
 
[AK4675]  
REF7-0 bits  
GAIN (dB)  
+36.0  
+35.625  
+35.25  
:
Step  
F1H  
F0H  
EFH  
:
E1H  
:
+30.0  
:
(default)  
0.375dB  
92H  
91H  
90H  
:
+0.375  
0.0  
0.375  
:
2H  
1H  
0H  
53.625  
54.0  
MUTE  
Table 29. Reference Level at ALC Recovery Operation  
RFST1 bit  
RFST0 bit  
Recovery Speed  
4 times  
0
0
1
1
0
1
0
1
(default)  
8 times  
16times  
N/A  
Table 30. Fast Recovery Speed Setting (N/A: Not available)  
MS0963-E-00  
2008/05  
- 78 -  
 
[AK4675]  
3. Example of ALC Operation  
Table 31 and Table 32 show the examples of the ALC setting for mic recording and playback, respectively.  
fs=8kHz  
Operation  
fs=44.1kHz  
Operation  
Register Name Comment  
Data  
01  
0
Data  
01  
0
LMTH1-0  
ZELMN  
Limiter detection Level  
4.1dBFS  
Enable  
4.1dBFS  
Enable  
Limiter zero crossing detection  
Zero crossing timeout period  
* ZTM1-0 bits should be equal to or  
shorter than WTM2-0 bits.  
ZTM1-0  
01  
32ms  
11  
23.2ms  
WTM2-0  
REF7-0  
IVL7-0,  
IVR7-0  
Recovery waiting period  
Maximum gain at recovery operation  
001  
E1H  
32ms  
+30dB  
100  
E1H  
46.4ms  
+30dB  
Gain of IVOL  
E1H  
+30dB  
E1H  
+30dB  
LMAT1-0  
RGAIN1-0  
RFST1-0  
ALC  
Limiter ATT step  
Recovery GAIN step  
Fast Recovery Speed  
ALC enable  
00  
00  
00  
1
1 step  
1 step  
4 times  
Enable  
00  
00  
00  
1
1 step  
1 step  
4 times  
Enable  
Table 31. Example of the ALC setting (Recording Path)  
fs=8kHz  
fs=44.1kHz  
Register Name Comment  
Data  
01  
0
Operation  
Data  
01  
0
Operation  
LMTH1-0  
ZELMN  
ZTM1-0  
Limiter detection Level  
4.1dBFS  
Enable  
32ms  
4.1dBFS  
Enable  
23.2ms  
Limiter zero crossing detection  
Zero crossing timeout period  
Recovery waiting period  
01  
11  
WTM2-0  
*WTM2-0 bits should be the same data  
as ZTM1-0 bits  
001  
32ms  
100  
46.4ms  
REF7-0  
IVL7-0,  
IVR7-0  
Maximum gain at recovery operation  
A1H  
91H  
+6dB  
0dB  
A1H  
91H  
+6dB  
0dB  
Gain of IVOL  
LMAT1-0  
RGAIN1-0  
RFST1-0  
ALC  
Limiter ATT step  
Recovery GAIN step  
Fast Recovery Speed  
ALC enable  
00  
00  
00  
1
1 step  
1 step  
4 times  
Enable  
00  
00  
00  
1
1 step  
1 step  
4 times  
Enable  
Table 32. Example of the ALC setting (Playback Path)  
MS0963-E-00  
2008/05  
- 79 -  
 
[AK4675]  
The following registers should not be changed during ALC operation. These bits should be changed after ALC operation  
is finished by ALC bit = “0”.  
Each bit of LMTH1-0, LMAT1-0, WTM2-0, ZTM1-0, RGAIN1-0, REF7-0, ZELMN and RFST1-0.  
Example:  
Limiter = Zero crossing Enable  
Recovery Cycle = 32ms@8kHz  
Zero Crossing Timeout Period = 32ms@8kHz  
Limiter and Recovery Step = 1  
Fast Recovery Speed = 4 step  
Gain of IVOL = +30dB  
Maximum Gain = +30.0dB  
Limiter Detection Level = 4.1dBFS  
Manual Mode  
ALC bit = “1”  
WR (IVL7-0)  
WR (IVR7-0)  
WR (REF7-0)  
(1) Addr=12H, Data=E1H  
(2) Addr=13H, Data=E1H  
(3) Addr=14H, Data=E1H  
* The value of IVOL should be  
the same or smaller than REF’s  
WR (ZTM1-0, WTM2-0, RFST1-0)  
WR (LMTH1-0, RGAIN1-0, LMAT1-0, ZELMN)  
WR (ALC = “1”)  
(4) Addr=16H, Data=05H  
(5) Addr=17H, Data=01H  
(6) Addr=18H, Data=03H  
ALC Operation  
Note : WR : Write  
Figure 61. Registers set-up sequence at ALC operation  
MS0963-E-00  
2008/05  
- 80 -  
[AK4675]  
Input Digital Volume (Manual Mode)  
The input digital volume becomes a manual mode when ALC bit is “0”. This mode is used in the case shown below.  
1. After exiting reset state, set-up the registers for the ALC operation (ZTM1-0, LMTH1-0 and etc)  
2. When the registers for the ALC operation (Limiter period, Recovery period and etc) are changed.  
For example, in the case that the change of the sampling frequency.  
3. When IVOL is used as a manual volume.  
IVL7-0 and IVR7-0 bits set the gain of the volume control (Table 33). When IVOLC bit is “0”, IVL7-0 and IVR7-0 bits  
control Lch and Rch volume values independently. When IVOLC bit is “1”, IVL7-0 bits controls both channels. The  
IVOL value is changed at zero crossing or timeout. Zero crossing timeout period is set by ZTM1-0 bits. If IVL7-0 or  
IVR7-0 bits are written during PMADL=PMADR bits = “0”, IVOL operation starts with the written values at the end of  
the ADC initialization cycle after PMADL or PMADR bit is changed to “1”.  
IVL7-0 bits  
IVR7-0 bits  
GAIN (dB)  
Step  
F1H  
F0H  
EFH  
:
+36.0  
+35.625  
+35.25  
:
92H  
91H  
90H  
:
+0.375  
0.0  
0.375  
:
0.375dB  
(default)  
03H  
02H  
01H  
00H  
53.25  
53.625  
54  
MUTE  
Table 33. Input Digital Volume Setting  
Side Tone Volume (SVOLA)  
The AK4675 has the channel independent side tone volume (5 levels, 6dB step). The volume can be set by the  
SVAL/R2-0 bits. The volume is included at mixing path from ALC to 5-band EQ. The output data of ALC is changed  
from 0 to –24dB.  
SVAL/R2-0  
Gain  
0dB  
0H  
1H  
2H  
3H  
4H  
(default)  
6dB  
12dB  
18dB  
24dB  
N/A  
Others  
Table 34. Side Tone Volume A Code Table (N/A: Not available)  
MS0963-E-00  
2008/05  
- 81 -  
 
[AK4675]  
5-Band Equalizer  
The AK4675 has 5-Band Equalizer before DAC of Stereo CODEC.  
The center frequencies and cut/boost amount are the followings.  
Center frequency: 100Hz, 250Hz, 1kHz, 3.5kHz, 10kHz (Note 80, Note 81, Note 82)  
Cut/Boost amount: –10.5dB +12dB, 1.5dB step  
Note 80: These are the frequencies when the sampling frequency is 44.1kHz. These frequencies are proportional to the  
sampling frequency.  
Note 81: 100Hz is not center frequency but the frequency component lower than 100Hz is controlled.  
Note 82: 10kHz is not center frequency but the frequency component higher than 10kHz is controlled.  
EQ bit controls ON/OFF of this Equalizer and these Boost amount are set by EQA3-0, EQB3-0, EQC3-0, EQD3-0 and  
EQE3-0 bits, respectively, as shown in Table 35.  
EQA3-0: Select the boost level of 100Hz  
EQB3-0: Select the boost level of 250Hz  
EQC3-0: Select the boost level of 1kHz  
EQD3-0: Select the boost level of 3.5kHz  
EQE3-0: Select the boost level of 10kHz  
EQx3-0  
0H  
1H  
2H  
3H  
:
Boost amount  
+12.0dB  
+10.5dB  
+9.0dB  
+7.5dB  
:
8H  
:
0dB  
:
(default)  
DH  
EH  
FH  
7.5dB  
9.0dB  
10.5dB  
Table 35. Boost amount of 5-Band Equalizer  
MS0963-E-00  
2008/05  
- 82 -  
 
[AK4675]  
Digital Output Volume  
The AK4675 has a digital output volume (256 levels, 0.5dB step, Mute). The volume can be set by the OVL7-0 and  
OVR7-0 bits. The volume is included in front of a DAC block. The input data of DAC is changed from +12 to –115dB or  
MUTE. When the OVOLC bit = “1”, the OVL7-0 bits control both Lch and Rch attenuation levels. When the OVOLC bit  
= “0”, the OVL7-0 bits control Lch level and OVR7-0 bits control Rch level. This volume has a soft transition function.  
The OVTM bit sets the transition time between set values of OVL/R7-0 bits as either 1061/fs or 256/fs (Table 37). When  
OVTM bit = “0”, a soft transition between the set values occurs (1062 levels). It takes 1061/fs (=24ms@fs=44.1kHz)  
from 00H (+12dB) to FFH (MUTE).  
OVL/R7-0  
00H  
01H  
02H  
:
Gain  
+12.0dB  
+11.5dB  
+11.0dB  
:
Step  
0.5dB  
18H  
:
0dB  
:
(default)  
FDH  
FEH  
FFH  
114.5dB  
115.0dB  
MUTE (−∞)  
Table 36. Digital Volume Code Table  
Transition time between DVL/R7-0 bits = 00H and FFH  
OVTM bit  
Setting  
1061/fs  
256/fs  
fs=8kHz  
133ms  
32ms  
fs=44.1kHz  
24ms  
0
1
(default)  
6ms  
Table 37. Transition Time Setting of Digital Output Volume  
MS0963-E-00  
2008/05  
- 83 -  
 
[AK4675]  
Soft Mute  
Soft mute operation is performed in the digital domain. When the SMUTE bit goes to “1”, the output signal is attenuated  
by −∞ (“0”) during the cycle set by the OVTM bit. When the SMUTE bit is returned to “0”, the mute is cancelled and the  
output attenuation gradually changes to the value set by the OVL/R7-0 bits during the cycle set of the OVTM bit. If the  
soft mute is cancelled within the cycle set by the OVTM bit after starting the operation, the attenuation is discontinued and  
returned to the value set by the OVL/R7-0 bits. The soft mute is effective for changing the signal source without stopping  
the signal transmission (Figure 62).  
SMUTE bit  
OVTM bit  
(1)  
OVTM bit  
OVL/R7-0 bits  
Attenuation  
(3)  
-∞  
GD  
GD  
(2)  
Analog Output  
Figure 62. Soft Mute Function  
(1) The output signal is attenuated until −∞ (“0”) by the cycle set by the OVTM bit.  
(2) Analog output corresponding to digital input has group delay (GD).  
(3) If the soft mute is cancelled within the cycle set by the OVTM bit, the attenuation is discounted and returned to the  
value set by the OVL/R7-0 bits.  
MS0963-E-00  
2008/05  
- 84 -  
 
[AK4675]  
Digital Volume Control for Recording of Received Voice (DATT-B)  
The AK4675 has a digital output volume control (DATT-B: 256 levels, 0.5dB step, Mute) for recording of received voice.  
The volume can be set by the BVL7-0 bits. The volume is included in front of an SRC-B block. The input data of SRC-B  
is changed from +12 to –115dB or MUTE. This volume has a soft transition function. The transition time between set  
values of BVL7-0 bits is 256/fs2. It takes 256/fs2 (=32ms@fs2=8kHz) from 00H (+12dB) to FFH (MUTE).  
BVL7-0  
00H  
01H  
02H  
:
Gain  
+12.0dB  
+11.5dB  
+11.0dB  
:
Step  
0.5dB  
18H  
:
0dB  
:
(default)  
FDH  
FEH  
FFH  
114.5dB  
115.0dB  
MUTE (−∞)  
Table 38. Digital Volume B Code Table  
Digital Volume Control for Received Voice (DATT-C)  
The AK4675 has a digital output volume control (DATT-C: 256 levels, 0.5dB step, Mute) for received voice. The volume  
can be set by the CVL7-0 bits. The volume is included in front of SDTOB output. The input data of SRC-C is changed  
from +12 to –115dB or MUTE. This volume has a soft transition function. The transition time between set values of  
CVL7-0 bits is 256/fs2. It takes 256/fs2 (=32ms@fs2=8kHz) from 00H (+12dB) to FFH (MUTE).  
CVL7-0  
00H  
01H  
02H  
:
Gain  
+12.0dB  
+11.5dB  
+11.0dB  
:
Step  
0.5dB  
18H  
:
0dB  
:
(default)  
FDH  
FEH  
FFH  
114.5dB  
115.0dB  
MUTE (−∞)  
Table 39. Digital Volume C Code Table  
Side Tone Volume Control for B/T Phone Call (SVOLB)  
The AK4675 has a side tone volume control (5 levels, 6dB step) for B/T phone call. The volume can be set by the SVL2-0  
bits. The volume is included at mixing path from SRC-A to DATT-C. The output data of SRC-A is changed from 0 to  
–24dB.  
SVB2-0  
0H  
Gain  
0dB  
(default)  
1H  
2H  
3H  
4H  
6dB  
12dB  
18dB  
24dB  
N/A  
Others  
Table 40. Side Tone Volume B Code Table (N/A: Not available)  
MS0963-E-00  
2008/05  
- 85 -  
 
[AK4675]  
Digital Volume Control for B/T MIC Input (BIVOL)  
The AK4675 has a digital volume control (5 levels, 6dB step) for B/T mic input. The volume can be set by the BIV2-0  
bits. The volume is included at SDTIB input. The input data is changed from 0 to –24dB.  
BIV2-0  
0H  
Gain  
0dB  
(default)  
1H  
2H  
3H  
4H  
6dB  
12dB  
18dB  
24dB  
N/A  
Others  
Table 41. B/T Mic Volume Code Table (N/A: Not available)  
Path & Mixing Setting of Digital Block (Figure 56.)  
PMADL and PMADR bits set both ADC power management and output data selection. In case of mono operation, the  
same data is output to both channel slots.  
PMADL  
PMADR  
ADC Lch data  
All “0”  
Rch Input Signal  
Lch Input Signal  
Lch Input Signal  
ADC Rch data  
All “0”  
Rch Input Signal  
Lch Input Signal  
Rch Input Signal  
0
0
1
1
0
1
0
1
(default)  
Table 42. ADC Mono/Stereo Select  
PFSEL bit select the input data of programmable filter.  
PFSEL  
Programmable Filter Input  
0
1
ADC Output (selected by Table 42.) (default)  
SDTI Input (selected by Table 48)  
Table 43. Programmable Filter Input Signal Select  
When ADM bit is “1”, ALC output data is output to both channels of SDTO and SVOLA as (L+R)/2, respectively.  
ADM  
0
1
Lch  
L
(L+R)/2  
Rch  
R
(L+R)/2  
(default)  
Table 44. ALC Output Mono Mixing  
MS0963-E-00  
2008/05  
- 86 -  
 
[AK4675]  
SDOL1-0 and SDOR1-0 bits set the data mixing for each channel of SDTO from the data selected by Table 44 and SRC-B  
output data.  
SDOL1  
SDOL0  
SDTO Lch  
0
0
1
1
0
1
0
1
Lch Signal selected by Table 44  
(default)  
SRC-B  
(Lch Signal selected by Table 44) + (SRC-B)  
N/A  
Table 45. SDTO Lch Output Mixing (N/A: Not available)  
SDOR1  
SDOR0  
SDTO Rch  
0
0
1
1
0
1
0
1
Rch Signal selected by Table 44  
(default)  
SRC-B  
(Rch Signal selected by Table 44) + (SRC-B)  
N/A  
Table 46. SDTO Rch Output Mixing (N/A: Not available)  
When SDOD bit is “1”, SDTO output data can be disabled (fixed to “L”). Input data of SVOLA is not disabled.  
SDOD  
SDTO  
0
1
Enable (Output) (default)  
Disable (“L”)  
Table 47. SDTO Disable  
SDIM1-0 bits select stereo or mono of SDTI input data. In case of mono mode, the same data is input to both channels.  
SDIM1  
SDIM0  
Lch  
L
L
R
N/A  
Rch  
R
L
0
0
1
1
0
1
0
1
(default)  
R
Table 48. SDTI Stereo/Mono Select (N/A: Not available)  
PFMXL1-0 and PFMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 48  
and SVOLA output data.  
PFMXL1 PFMXL0  
5-band EQ Lch Input  
Lch Signal selected by Table 48  
SVOLA Lch  
0
0
1
1
0
1
0
1
(default)  
(Lch Signal selected by Table 48) + (SVOLA Lch)  
N/A  
Table 49. 5-band EQ Lch Input Mixing 1 (N/A: Not available)  
PFMXR1 PFMXR0  
5-band EQ Rch Input  
Rch Signal selected by Table 48  
SVOLA Rch  
0
0
1
1
0
1
0
1
(default)  
(Rch Signal selected by Table 48) + (SVOLA Rch)  
N/A  
Table 50. 5-band EQ Rch Input Mixing 1 (N/A: Not available)  
MS0963-E-00  
2008/05  
- 87 -  
 
[AK4675]  
SRMXL1-0 and SRMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table  
49/Table 50 and SVOLA output data.  
SRMXL1 SRMXL0  
5-band EQ Lch Input  
Signal selected by Table 49  
SRC-B  
0
0
1
1
0
1
0
1
(default)  
(Signal selected by Table 49) + (SRC-B)  
N/A  
Table 51. 5-band EQ Lch Input Mixing 2 (N/A: Not available)  
SRMXR1 SRMXR0  
5-band EQ Rch Input  
Signal selected by Table 50  
SRC-B  
0
0
1
1
0
1
0
1
(default)  
(Signal selected by Table 50) + (SRC-B)  
N/A  
Table 52. 5-band EQ Rch Input Mixing 2 (N/A: Not available)  
DAM and MIXD bits set the data mixing for DAC input.  
DAM  
MIXD  
Lch  
L
L+R  
Rch  
R
L+R  
0
1
1
x
0
1
(default)  
(L+R)/2  
(L+R)/2  
Table 53. DAC Mono Mixing (x: Don’t care)  
SRA1-0 and MIXD bits set the data mixing for SRC-A input.  
SRA1  
SRA0  
MIXD  
SRC-A  
L
0
0
1
1
1
0
1
0
0
1
x
x
0
1
x
(default)  
R
L+R  
(L+R)/2  
N/A  
Table 54. SRC-A Input Mixing (x: Don’t care, N/A: Not available)  
SDOA bit selects the output data of SDTOA.  
SDOA  
SDTOA  
SRC-A  
SDTIB  
0
1
(default)  
Table 55. SDTOA Output Select  
When SDOAD bit is “1”, SDTOA output data can be disabled (fixed to “L”). Input data of SVOLB is not disabled.  
SDOAD  
SDTOA  
0
1
Enable (Output) (default)  
Disable (“L”)  
Table 56. SDTOA Disable  
MS0963-E-00  
2008/05  
- 88 -  
 
[AK4675]  
SBMX1-0 bits set the data mixing from SDTIA input and SVOLB output. The mixed data is output to SDTOB via  
DATT-C.  
SBMX1  
SBMX0  
DATT-C Input  
SDTIA  
SVOLB  
(SDTIA) + (SVOLB)  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 57. SDTOB Mixing (N/A: Not available)  
When SDOBD bit is “1”, SDTOB output data can be disabled (fixed to “L”).  
SDOBD  
SDTOB  
0
1
Enable (Output) (default)  
Disable (“L”)  
Table 58. SDTOB Disable  
BVMX1-0 bits set the data mixing for SRC-B from SDTIA input (DATT-B output) and SDTIB input (BIVOL output).  
BVMX1  
BVMX0  
SRC-B Input  
SDTIA  
SDTIB  
(SDTIA) + (SDTIB)  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 59. SRC-B Input Mixing (N/A: Not available)  
MS0963-E-00  
2008/05  
- 89 -  
 
[AK4675]  
Analog Mixing: Single-ended Input (LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins)  
AK4675 supports analog mixing function from each line input to each line output (Figure 63).  
When the analog mixing is used, A/D converter is also available if PMADL or PMADR bit is “1”. When  
PMAINL1=PMAINR1=PMAINL2=PMAINR2=PMAINL3=PMAINR3=PMAINL4=PMAINR4=PMMICL=PMMICR  
bits = “1”, the input resistance of LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins becomes 25kΩ (typ) at  
MGNL/R0 bits = “0” and 20kΩ (typ) at MGNL/R0 bits = “1”, respectively.  
L1G1-0, L2G1-0, L3G1-0, L4G1-0 and LPG1-0 bits adjust the gain for each path (Table 60, Table 61, Table 62, Table 63,  
Table 64).  
AK4675  
INL4-0 bits  
LIN1/IN1+ pin  
ADC Lch  
RIN1/IN1pin  
MIC-Amp Lch  
MDIF1 bit  
MDIF3 bit  
INR4-0 bits  
LIN2/IN2+ pin  
ADC Rch  
RIN2/IN2pin  
MIC-Amp Rch  
MDIF2 bit  
MDIF4 bit  
LIN3/IN3+ pin  
RIN3/IN3pin  
LIN4/IN4+ pin  
RIN4/IN4pin  
Figure 63, 64, 66, 67  
Figure 68, 69  
Figure 72, 73, 75, 76  
LOUT1 pin  
ROUT1 pin  
LOUT2S pin  
ROUT2S pin  
LOUT3 pin  
ROUT3 pin  
Figure 63. Analog Mixing Circuit  
MS0963-E-00  
2008/05  
- 90 -  
 
[AK4675]  
L1G1 bit  
L1G0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 60. LIN1/RIN1 (or IN1+/) Mixing Gain (typ) (N/A: Not available)  
L2G1 bit  
L2G0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 61. LIN2/RIN2 (or IN2+/) Mixing Gain (typ) (N/A: Not available)  
L3G1 bit  
L3G0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 62. LIN3/RIN3 (or IN3+/) Mixing Gain (typ) (N/A: Not available)  
L4G1 bit  
L4G0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 63. LIN4/RIN4 (or IN4+/) Mixing Gain (typ) (N/A: Not available)  
LPG1 bit  
LPG0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 64. MIC-Amp Mixing Gain (typ) (N/A: Not available)  
Analog Mixing: Full-differential Input (IN1+/IN1/IN2+/IN2/IN3+/IN3/IN4+/IN4pins)  
When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “1”, LIN1/RIN1, LIN2/RIN2, LIN3/RIN3 and LIN4/RIN4 pins  
become IN1+/, IN2+/, IN3+/and IN4+/pins, respectively, and analog mixing is available.  
When the analog mixing is used, A/D converter is also available if PMADL or PMADR bit is “1”. When  
PMAINL1=PMAINR1=PMAINL2=PMAINR2=PMAINL3=PMAINR3=PMAINL4=PMAINR4=PMMICL=PMMICR  
bits = “1”, the input resistance of IN1+/, IN2+/, IN3+/and IN4+/pins becomes 25kΩ (typ) at MGNL/R0 bits = “0”  
and 20kΩ (typ) at MGNL/R0 bits = “1”, respectively.  
L1G1-0, L2G1-0, L3G1-0, L4G1-0 and LPG1-0 bits adjust the gain for each path (Table 60, Table 61, Table 62, Table 63,  
Table 64).  
MS0963-E-00  
2008/05  
- 91 -  
 
[AK4675]  
Stereo Line Output (LOUT1/ROUT1 pins)  
When DACL and DACR bits are “1”, Lch/Rch signal of DAC is output from the LOUT1/ROUT1 pins which is  
single-ended. When DACL and DACR bits are “0”, output signal is muted and LOUT1/ROUT1 pins output VCOM  
voltage. The load impedance is 10kΩ (min.). When the PMLO1=PMRO1=LOPS1 bits = “0”, LOUT1/ROUT1 enters  
power-down mode and the output is pulled-down to VSS1 by 100kΩ(typ). When the LOPS1 bit is “1”, LOUT1/ROUT1  
enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO1 and PMRO1 bits at LOPS1  
bit = “1”. In this case, output signal line should be pulled-down to VSS1 by 20kΩ after AC coupled as Figure 64. Rise/Fall  
time is 300ms(max) at C=1μF and AVDD=3.3V. When PMLO1=PMRO1 bits = “1” and LOPS1 bit = “0”,  
LOUT1/ROUT1 is in normal operation.  
L1VL2-0 bits control the volume of LOUT1/ROUT1.  
When LOM bit = “1”, DAC output signal is output to LOUT1 and ROUT1 pins as (L+R) mono signal.  
When LOOPM bit = “1”, the MIC-Amp signal is output to LOUT1 and ROUT1 pins as (L+R) mono signal.  
LOPS1  
0
PMLO1  
Mode  
LOUT1 pin  
0
1
0
1
Power-down  
Normal Operation  
Power-save  
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
(default)  
(default)  
1
Power-save  
Table 65. Stereo Line Output Mode Select (LOUT1)  
LOPS1  
0
PMRO1  
Mode  
ROUT1 pin  
0
1
0
1
Power-down  
Normal Operation  
Power-save  
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
1
Power-save  
Table 66. Stereo Line Output Mode Select (ROUT1)  
L1VL2-0  
6H  
Attenuation  
+6dB  
5H  
0dB  
(default)  
4H  
6dB  
3H  
2H  
1H  
0H  
12dB  
18dB  
24dB  
MUTE  
Table 67. Stereo Line Output Volume Setting  
LOUT1  
ROUT1  
1μF  
220Ω  
20kΩ  
Figure 64. External Circuit for Stereo Line Output (in case of using Pop Noise Reduction Circuit)  
MS0963-E-00  
2008/05  
- 92 -  
 
[AK4675]  
<Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)>  
(2 )  
(5 )  
P M L O 1 b it  
P M R O 1 b it  
(1 )  
(3 )  
(4 )  
(6 )  
L O P S 1 b it  
L O U T 1 p in  
R O U T 1 p in  
N o rm a l O u tp u t  
3 0 0 m s  
3 0 0 m s  
Figure 65. Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)  
(1) Set LOPS1 bit = “1”. Stereo line output enters the power-save mode.  
(2) Set PMLO1=PMRO1 bits = “1”. Stereo line output exits the power-down mode.  
LOUT1 and ROUT1 pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and  
AVDD=3.3V.  
(3) Set LOPS1 bit = “0” after LOUT1 and ROUT1 pins rise up. Stereo line output exits the power-save mode.  
Stereo line output is enabled.  
(4) Set LOPS1 bit = “1”. Stereo line output enters power-save mode.  
(5) Set PMLO1=PMRO1 bits = “0”. Stereo line output enters power-down mode.  
LOUT1 and ROUT1 pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V.  
(6) Set LOPS1 bit = “0” after LOUT1 and ROUT1 pins fall down. Stereo line output exits the power-save mode.  
MS0963-E-00  
2008/05  
- 93 -  
[AK4675]  
<Analog Mixing Circuit for LOUT1/ROUT1>  
DACL, DACR, LOM, LINL1, RINR1, LINL2, RINR2, LINL3, RINR3, LINL4, RINR4, LOOPL, LOOPR and LOOPM  
bits control each path switch.  
LINL1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINL2 bit  
LINL3 bit  
LINL4 bit  
M
I
LOOPL bit  
LOUT1 pin  
L1VL2-0 bits  
X
LOOPR bit x LOOPM bit  
MIC-Amp Lch  
DACL bit  
DATT  
Stereo DAC Lch  
0dB  
DACR bit x LOM bit  
RINR1 bit  
RINR2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
RINR3 bit  
RINR4 bit  
M
I
LOOPL bit x LOOPM bit  
ROUT1 pin  
L1VL2-0 bits  
X
LOOPR bit  
+6/0/6dB  
DACL bit x LOM bit  
MIC-Amp Rch  
DACR bit  
DATT  
Stereo DAC Rch  
0dB  
Figure 66. LOUT1/ROUT1 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0963-E-00  
2008/05  
- 94 -  
[AK4675]  
LINL1 bit  
LINL2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN1+/pins  
IN3+/pins  
LINL3 bit  
LINL4 bit  
M
I
LOOPL bit  
LOUT1 pin  
L1VL2-0 bits  
X
LOOPR bit x LOOPM bit  
MIC-Amp Lch  
DACL bit  
DATT  
Stereo DAC Lch  
DACR bit x LOM bit  
RINL1 bit  
RINR2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN2+/pins  
IN4+/pins  
RINR3 bit  
RINR4 bit  
M
I
LOOPL bit x LOOPM bit  
ROUT1 pin  
L1VL2-0 bits  
X
LOOPR bit  
DACL bit x LOM bit  
MIC-Amp Rch  
DACR bit  
DATT  
Stereo DAC Rch  
Figure 67. LOUT1/ROUT1 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
MS0963-E-00  
2008/05  
- 95 -  
[AK4675]  
Receiver-Amp (RCP/RCN pins)  
When RCV bit = “1”, LOUT1/ROUT1 pins become RCP/RCN pins, respectively. Lch/Rch signal of DAC or  
LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the RCP/RCN pins which is BTL as (L+R) signal. The  
load impedance is 32Ω (min). When the PMLO1 = PMRO1 bits = “0”, the mono receiver output enters power-down  
mode and the output is Hi-Z. When the PMLO1 = PMRO1 bits = “1” and LOPS1 bit = “1”, mono receiver output enters  
power-save mode. Pop noise at power-up/down can be reduced by changing PMLO1 and PMRO1 bits at LOPS1 bit =  
“0”. When PMLO1 = PMRO1 bits = “1” and LOPS1 bit = “0”, mono receiver output enters in normal operation.  
L1VL3-0 bits control the volume of mono receiver output.  
L1VL2-0  
6H  
Attenuation  
+12dB  
+6dB  
5H  
(default)  
4H  
0dB  
3H  
6dB  
2H  
1H  
0H  
12dB  
18dB  
MUTE  
Table 68. Mono Receiver Output Volume Setting  
PMLO1/RO1  
0
LOPS1  
Mode  
Power-down  
Power-save  
RCP  
Hi-Z  
Hi-Z  
RCN  
Hi-Z  
VCOM  
x
1
0
(default)  
1
Normal Operation  
Normal Operation Normal Operation  
Table 69. Receiver-Amp Mode Setting (x: Don’t care)  
PMLO1 bit  
PMRO1 bit  
LOPS1 bit  
RCP pin  
RCN pin  
Hi-Z  
Hi-Z  
VCOM  
>1ms  
VCOM  
>0  
Hi-Z  
Hi-Z  
Figure 68. Power-up/Power-down Timing for Receiver-Amp  
MS0963-E-00  
2008/05  
- 96 -  
[AK4675]  
<Analog Mixing Circuit for Receiver Output>  
DACL, DACR, LINL1, RINR1, LINL2, RINR2, LINL3, RINR3, LINL4, RINR4, LOOPL and LOOPR bits control each  
path switch.  
When MDIF1/2/3/4 bits = “1”, RINR1/2/3/4 bits should be “0”.  
LINL1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINL2 bit  
LINL3 bit  
LINL4 bit  
LOOPL bit  
MIC-Amp Lch  
RINR1 bit  
RINR2 bit  
RINR3 bit  
RINR4 bit  
LOOPR bit  
M
I
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
RCP/RCN pins  
L1VL2-0 bits  
X
MIC-Amp Rch  
Stereo DAC Lch  
DACL bit  
DACR bit  
DATT  
0dB  
0dB  
DATT  
Stereo DAC Rch  
Figure 69. Receiver Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0963-E-00  
2008/05  
- 97 -  
[AK4675]  
LINL1 bit  
LINL2 bit  
LINL3 bit  
LINL4 bit  
LOOPL bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
IN1+/pins  
IN2+/pins  
IN3+/pins  
IN4+/pins  
RCP/RCN pins  
L1VL2-0 bits  
MIC-Amp Lch  
MIC-Amp Rch  
LOOPR bit  
M
I
+6/0/6dB  
DACL bit  
DACR bit  
X
DATT  
Stereo DAC Lch  
0dB  
0dB  
DATT  
Stereo DAC Rch  
Figure 70. Receiver Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
Stereo Line Output 2 (LOUT2S/ROUT2S pins)  
Power supply voltage for the LOUT2S/ROUT2S is supplied from the AVDD pin and centered on the 0.5 x AVDD (typ)  
voltage. The load resistance is 25kΩ (min).  
When LOM2 bit = “1”, DAC output signal is output to LOUT2S and ROUT2S pins as (L+R) mono signal.  
When LOOPM2 bit = “1”, the MIC-Amp signal is output to LOUT2S and ROUT2S pins as (L+R) mono signal.  
When PMLO2S and PMRO2S bits are “0”, the LOUT2S/ROUT2S is powered-down, and the outputs (LOUT2S and  
ROUT2S pins) go to “L” (VSS1).  
MS0963-E-00  
2008/05  
- 98 -  
[AK4675]  
<Analog Mixing Circuit for LOUT2S/ROUT2S>  
DACHL, DACHR, LOM2, LINH1, RINH1, LINH2, RINH2, LINH3, RINH3, LINH4, RINH4, LOOPHL, LOOPHR and  
LOOPM2 bits control each path switch.  
LINH1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINH2 bit  
LINH3 bit  
LINH4 bit  
M
I
LOOPHL bit  
LOUT2S pin  
X
LOOPHR bit x LOOPM2 bit  
DACHL bit  
MIC-Amp Lch  
DATT  
Stereo DAC Lch  
0dB  
DACHR bit x LOM2 bit  
RINH1 bit  
RINH2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
RINH3 bit  
RINH4 bit  
M
I
LOOPHL bit x LOOPM2 bit  
ROUT2S pin  
X
LOOPHR bit  
+6/0/6dB  
DACHL bit x LOM2 bit  
MIC-Amp Rch  
DACHR bit  
DATT  
Stereo DAC Rch  
0dB  
Figure 71. LOUT2S/ROUT2S Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0963-E-00  
2008/05  
- 99 -  
[AK4675]  
LINH1 bit  
LINH2 bit  
LINH3 bit  
LINH4 bit  
LOOPHL bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN1+/pins  
IN3+/pins  
M
I
LOUT2S pin  
X
LOOPHR bit x LOOPM2 bit  
DACHL bit  
MIC-Amp Lch  
DATT  
Stereo DAC Lch  
DACHR bit x LOM2 bit  
RINH1 bit  
RINH2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN2+/pins  
IN4+/pins  
RINH3 bit  
RINH4 bit  
M
I
LOOPHL bit x LOOPM2 bit  
ROUT2S pin  
X
LOOPHR bit  
DACHL bit x LOM2 bit  
MIC-Amp Rch  
DACHR bit  
DATT  
Stereo DAC Rch  
Figure 72. LOUT2S/ROUT2S Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
MS0963-E-00  
2008/05  
- 100 -  
[AK4675]  
Stereo Line Output 3 (LOUT3/ROUT3 pins)  
When DACSL and DACSR bits are “1”, Lch/Rch signal of DAC is output from the LOUT3/ROUT3 pins which is  
single-ended. When DACSL and DACSR bits are “0”, output signal is muted and LOUT3/ROUT3 pins output VCOM  
voltage. The load impedance is 10kΩ (min.). When the PMLO3=PMRO3=LOPS3 bits = “0”, LOUT3/ROUT3 enters  
power-down mode and the output is pulled-down to VSS1 by 100kΩ(typ). When the LOPS3 bit is “1”, LOUT3/ROUT3  
enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO3 and PMRO3 bits at LOPS3  
bit = “1”. In this case, output signal line should be pulled-down to VSS1 by 20kΩ after AC coupled as Figure 64. Rise/Fall  
time is 300ms(max) at C=1μF and AVDD=3.3V. When PMLO3=PMRO3 bits = “1” and LOPS3 bit = “0”,  
LOUT3/ROUT3 is in normal operation.  
L3VL3-0 bits control the volume of LOUT3/ROUT3.  
When LOM3 bit = “1”, DAC output signal is output to LOUT3 and ROUT3 pins as (L+R) mono signal.  
When LOOPM3 bit = “1”, the MIC-Amp signal is output to LOUT3 and ROUT3 pins as (L+R) mono signal.  
LOPS3  
0
PMLO3  
Mode  
LOUT3 pin  
0
1
0
1
Power-down  
Normal Operation  
Power-save  
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
(default)  
(default)  
1
Power-save  
Table 70. Stereo Line Output Mode Select (LOUT3)  
LOPS3  
0
PMRO3  
Mode  
ROUT3 pin  
0
1
0
1
Power-down  
Normal Operation  
Power-save  
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
1
Power-save  
Table 71. Stereo Line Output Mode Select (ROUT3)  
L3VL1  
L3VL0  
Attenuation  
+3dB  
1
1
0
0
1
0
1
0
0dB  
3dB  
6dB  
(default)  
Table 72. Stereo Line Output Volume Setting  
LOUT3  
ROUT3  
1μF  
220Ω  
20kΩ  
Figure 73. External Circuit for Stereo Line Output (when using Pop Noise Reduction Circuit)  
MS0963-E-00  
2008/05  
- 101 -  
 
[AK4675]  
<Stereo Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit)>  
(2 )  
(5 )  
P M L O 3 b it  
P M R O 3 b it  
(1 )  
(3 )  
(4 )  
(6 )  
L O P S 3 b it  
L O U T 3 , R O U T 3 p in s  
N o rm a l O u tp u t  
3 0 0 m s  
3 0 0 m s  
Figure 74. Stereo Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit)  
(1) Set LOPS3 bit = “1”. Stereo line output enters the power-save mode.  
(2) Set PMLO3=PMRO3 bits = “1”. Stereo line output exits the power-down mode.  
LOUT3 and ROUT3 pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and  
AVDD=3.3V.  
(3) Set LOPS3 bit = “0” after LOUT3 and ROUT3 pins rise up. Stereo line output exits the power-save mode.  
Stereo line output is enabled.  
(4) Set LOPS3 bit = “1”. Stereo line output enters power-save mode.  
(5) Set PMLO3=PMRO3 bits = “0”. Stereo line output enters power-down mode.  
LOUT3 and ROUT3 pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V.  
(6) Set LOPS3 bit = “0” after LOUT3 and ROUT3 pins fall down. Stereo line output exits the power-save mode.  
MS0963-E-00  
2008/05  
- 102 -  
[AK4675]  
<Analog Mixing Circuit for LOUT3/ROUT3>  
DACSL, DACSR, LOM3, LINS1, RINS1, LINS2, RINS2, LINS3, RINS3, LINS4, RINS4, LOOPSL, LOOPSR and  
LOM3 bits control each path switch. The summing gain for each path is 0dB (typ).  
LINS1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINS2 bit  
LINS3 bit  
LINS4 bit  
M
I
LOOPSL bit  
LOUT3 pin  
L3VL1-0 bits  
X
LOOPSR bit x LOOPM3 bit  
MIC-Amp Lch  
DACSL bit  
DATT  
Stereo DAC Lch  
0dB  
DACSR bit x LOM3 bit  
RINS1 bit  
RINS2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
RINS3 bit  
RINS4 bit  
M
I
LOOPSL bit x LOOPM3 bit  
ROUT3 pin  
L3VL1-0 bits  
X
LOOPSR bit  
+6/0/6dB  
DACSL bit x LOM3 bit  
MIC-Amp Rch  
DACSR bit  
DATT  
Stereo DAC Rch  
0dB  
Figure 75. LOUT3/ROUT3 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0963-E-00  
2008/05  
- 103 -  
[AK4675]  
LINS1 bit  
LINS2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN1+/pins  
IN3+/pins  
LINS3 bit  
LINS4 bit  
M
I
LOOPSL bit  
LOUT3 pin  
L3VL1-0 bits  
X
LOOPSR bit x LOOPM3 bit  
MIC-Amp Lch  
DACSL bit  
DATT  
Stereo DAC Lch  
DACSR bit x LOM3 bit  
RINS1 bit  
RINS2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN2+/pins  
IN4+/pins  
RINS3 bit  
RINS4 bit  
M
I
LOOPSL bit x LOOPM3 bit  
ROUT3 pin  
L3VL1-0 bits  
X
LOOPSR bit  
DACSL bit x LOM3 bit  
MIC-Amp Rch  
DACSR bit  
DATT  
Stereo DAC Rch  
Figure 76. LOUT3/ROUT3 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
MS0963-E-00  
2008/05  
- 104 -  
[AK4675]  
Full-differential Mono Line Output (LOP/LON pins)  
When LODIF bit = “1”, LOUT3/ROUT3 pins become LOP/LON pins, respectively. Lch/Rch signal of DAC or  
LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the LOP/LON pins which is full-differential as (L+R)  
signal. The load impedance is 10kΩ (min) for the LOP and LON pins, respectively. When the PMLO3 = PMRO3 bits =  
“0”, the mono line output enters power-down mode and the output is pulled-down to VSS1. When the PMLO3 = PMRO3  
bits = “1” and LOPS3 bit = “1”, mono line output enters power-save mode. Pop noise at power-up/down can be reduced  
by changing PMLO3 and PMRO3 bits at LOPS3 bit = “0”. When PMLO3 = PMRO3 bits = “1” and LOPS3 bit = “0”,  
mono line output enters in normal operation. L3VL1-0 bits set the volume of mono line output.  
L3VL1-0  
3H  
Attenuation  
+9dB  
2H  
+6dB  
(default)  
1H  
+3dB  
0H  
0dB  
Table 73. Mono Line Output Gain Setting  
LOPS3  
0
PMLO3/RO3  
Mode  
LOP/LON pins  
0
1
0
1
Power-down  
Normal Operation  
Power-save  
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
(default)  
1
Power-save  
Table 74. Mono Line Output Mode Setting (x: Don’t care)  
<Full-differential Mono Line Output Control Sequence (in case of using Pop Noise Reduction  
Circuit)>  
(2 )  
(5 )  
P M L O 3 b it  
P M R O 3 b it  
(1 )  
(3 )  
(4 )  
(6 )  
L O P S 3 b it  
L O P , L O N p in s  
N o rm a l O u tp u t  
3 0 0 m s  
3 0 0 m s  
Figure 77. Mono Line Output 3 Control Sequence (when using Pop Noise Reduction Circuit)  
(1) Set LOPS3 bit = “1”. Mono line output enters the power-save mode.  
(2) Set PMLO3 = PMRO3 bits = “1”. Mono line output exits the power-down mode.  
The LOP and LON pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and  
AVDD=3.3V.  
(3) Set LOPS3 bit = “0” after LOP and LON pins rise up. Mono line output exits the power-save mode.  
Mono line output is enabled.  
(4) Set LOPS3 bit = “1”. Mono line output enters power-save mode.  
(5) Set PMLO3 = PMRO3 bits = “0”. Mono line output enters power-down mode.  
The LOP and LON pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V.  
(6) Set LOPS3 bit = “0” after LOP and LON pins fall down. Mono line output exits the power-save mode.  
MS0963-E-00  
2008/05  
- 105 -  
[AK4675]  
<Analog Mixing Circuit for Mono Line Output>  
DACSL, DACSR, LINS1, RINS1, LINS2, RINS2, LINS3, RINS3, LINS4, RINS4, LOOPSL and LOOPSR bits control  
each path switch. The summing gain for each path is 0dB (typ).  
When MDIF1/2/3/4 bits = “1”, RINS1/2/3/4 bits should be “0”.  
LINS1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINS2 bit  
LINS3 bit  
LINS4 bit  
LOOPSL bit  
MIC-Amp Lch  
RINS1 bit  
RINS2 bit  
RINS3 bit  
RINS4 bit  
LOOPSR bit  
M
I
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
LOP/LON pins  
L3VL1-0 bits  
X
MIC-Amp Rch  
Stereo DAC Lch  
DACSL bit  
DACSR bit  
DATT  
0dB  
0dB  
DATT  
Stereo DAC Rch  
Figure 78. Mono Line Output Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0963-E-00  
2008/05  
- 106 -  
[AK4675]  
LINS1 bit  
LINS2 bit  
LINS3 bit  
LINS4 bit  
LOOPSL bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
IN1+/pins  
IN2+/pins  
IN3+/pins  
IN4+/pins  
LOP/LON pins  
L3VL1-0 bits  
MIC-Amp Lch  
MIC-Amp Rch  
LOOPSR bit  
M
I
+6/0/6dB  
DACSL bit  
DACSR bit  
X
DATT  
Stereo DAC Lch  
0dB  
0dB  
DATT  
Stereo DAC Rch  
Figure 79. Mono Line Output Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
MS0963-E-00  
2008/05  
- 107 -  
[AK4675]  
Headphone Volume (LIN1A/RIN1A pins)  
The AK4675 has the mixing circuits for headphone amplifier. The each mixing circuit can be controlled independently.  
When all input paths are OFF, the mixing circuit outputs VCOMA voltage. The volume of each input pin can be  
controlled independently. The input volume range is from +10 dB to –20dB by 2dB step. When the input volume is  
changed, pop noise may occur. The input volume has power management mode that is common to the left and right  
channels. The power-up/down of input volume can be controlled by PMV1 bit. The power-up time of the input volume is  
16.4ms (typ.) and 26.3ms(max) at OSCN bit = “0”. when OSCN bit = “1”, power-up time depends on both the MSEL bit  
setting and the MCKIA frequency (Table 75). During power-up time, the input volume block outputs VCOMA voltage  
regardless of the input signal. AC coupling capacitor of 0.22μF or less should be connected at the LIN1A/RIN1A pins to  
reduce pop noise at the power-up of the input volume block.  
MSEL bit  
0
MCKIA Freq  
Power-Up Time  
2.048MHz  
2.8224MHz  
3.072MHz  
16ms (32768/MCKIA)  
17.1ms (49152/MCKIA)  
16ms (49152/MCKIA)  
1
Table 75. Input Volume Power-Up Time (OSCN bit = “1”)  
L1V3-0 bits  
R1V3-0 bits  
GAIN (dB)  
Step  
2dB  
FH  
EH  
:
CH  
BH  
AH  
9H  
8H  
:
+10  
+8  
-
+4  
+2  
0
2  
4  
:
(default)  
2H  
1H  
0H  
16  
18  
20  
Table 76. Input Volume Setting  
HPLL1bit  
Mixing  
LIN1A  
VOL(L1V3-0 bits)  
&
To Lch Headphone-Amp  
To Rch Headphone-Amp  
HPLR1 bit  
Selector  
HPRL1 bit  
Mixing  
&
HPRR1 bit  
RIN1A  
VOL(R1V3-0 bits)  
Selector  
Figure 80. Input Selector & Volume  
MS0963-E-00  
2008/05  
- 108 -  
 
[AK4675]  
Headphone-Amp (HPL/HPR pins)  
Power supply voltage for headphone amplifiers is applied from PVDDA and PVEE pins. The PVEE pin outputs the  
negative voltage generated by the internal charge pump circuit. The headphone amplifier is single-ended outputs and  
centered on 0V (VSS3A). Therefore, the capacitor for AC-coupling can be removed. The minimum load resistance is  
16Ω. When the input signal level is 0.7Vrms, the output voltage is 0.69Vrms (= 30mW @ 16Ω) at HPGA4-0 bits = 0dB  
and HPG bit = 0dB. HPGA3-0 and HPG bits control the output level of headphone-amp. HPGA4-0 bits can control from  
+12dB to –50dB by 2dB step and HPG bit can control 0dB or +6dB. The volume is common to L/R channels. When the  
volume is changed, pop noise may occur.  
HPGA4-0 bits  
GAIN (dB)  
Step  
1FH  
1EH  
:
+12  
+10  
-
1AH  
19H  
18H  
17H  
16H  
:
+2  
0
2  
4  
6  
:
(default)  
2dB  
2H  
1H  
0H  
46  
48  
50  
Table 77. Headphone-Amp Volume Setting  
Mixing & Selector  
HP Volume  
HP-Amp  
Input Volume  
Input  
(0dB)  
(+1.94dB)  
(HPGA=0dB)  
(-1.94dB @ Vol =0dB)  
Figure 81. Headphone-Amp Path Level Diagram  
MS0963-E-00  
2008/05  
- 109 -  
 
[AK4675]  
The headphone output is enabled when HPMTN bit is “1” and muted when HPMTN bit is “0”. PTS1-0 bits set the mute  
ON/OFF time when MOFF1 bit is “0”. When MOFF1 bit is “1”, the ON/OFF is switched immediately.  
When PMHPL and PMHPR bits are “0”, the headphone-amps are powered-down completely. At that time, the HPL and  
HPR pins go to VSS3 voltage via the internal pulled-down resistor. The pulled-down resistor is 20Ω (typ) at HPZ bit =  
“0”, 25kΩ(typ) at HPZ bit = “1”. The power-up/down time is 16.4ms (typ.) and 26.3ms (max.)when MOFF0 bit is “0”.  
When MOFF1 bit is “1”, the power up/down is switched immediately.  
PMCP/PMVCM PMHPL/R HPMTN  
HPZ  
Mode  
Power-down & Mute  
Power-down  
Mute  
Normal Operation  
HPL/R pins  
x
x
1
1
0
0
1
1
x
x
0
1
0
1
0
0
(default)  
Pull-down by 20Ω (typ)  
Pull-down by 25kΩ (typ)  
VSS3A  
Normal Operation  
Table 78. Headphone Amplifier Mode Setting (x: Don’t’ care)  
<Wired OR with External Headphone-Amp>  
In case of OSCN bit = “0”, when PMVCMA=PMCP=PMOSC bits are “1” (charge pump circuit is powered-up), the  
AK4675 HP-Amp can be connected to the external single supply HP-Amp by “wired OR”. In case of OSCN bit = “1”,  
when PMVCMA=PMCP=HPZ bits are “1” (charge pump circuit is powered-up), the AK4675 HP-Amp can be connected  
to the external single supply HP-Amp by “wired OR”. The external HP-Amp can output the signal up to ±PVDDA [Vpp]  
after the charge pump circuit is powered-up.  
HPL pin  
AK4675  
Headphone  
HPR pin  
Another  
HP-Amp  
Figure 82. Wired OR with External HP-Amp  
MS0963-E-00  
2008/05  
- 110 -  
[AK4675]  
Charge Pump Circuit  
The charge pump operates by the output of a regulator which uses PVDDA voltage. The negative power supply (PVEE)  
for headphone amplifiers is generated from internal charge pump circuit. The internal charge pump circuit generates  
negative voltage from PVDDA voltage. The generated voltage (PVEE) is used to headphone amplifiers. When PMCP bit  
is set to “1”, the charge pump circuit is powered-up. PMVCMA and PMOSC bits must be set to “1”.  
PMOSC and PMVCM bits should be set to “1” when OSCN bit is “0”. PMVCM bit should be set to “1” and PMOSC bit  
set to “0” when OSCN bit is “1”. The power-up time of charge pump circuit is typically 6.2ms and maximum 10ms at  
OSCN bit = “0”. when OSCN bit = “1”, the power-up time is shown in Table 79. When PMHPL or PMHPR bit is set to  
“1”, the Headphone-Amp is powered-up after the charge pump circuit is powered-up. Figure 87 shows the power-up  
sequence.  
MSEL bit  
0
MCKIA Freq  
2.048MHz  
2.8224MHz  
3.072MHz  
Power-Up Time  
6m (12288/MCKIA)  
6.5ms (18432/MCKIA)  
6ms (18432/MCKIA)  
1
Table 79. Charge Pump Circuit Power-Up Time (OSCN bit = “1”)  
Transition Time  
PUT1-0 bits set the power-up/down time of headphone-amp and PTS1-0 bits set the mute ON/OFF time of  
headphone-amp. These operations are soft transition.  
MOFF bit set the Enable/Disable for the soft transition. The soft transition is disabled while these bits are “1”, and  
ON/OFF is switched immediately.  
As shown in Table 80, if the soft transition is enabled, the register value of same address must be changed by an interval  
more than transition time. The write operation is ignored if the same values are written as the previous write operation.  
Address  
0DH  
Register Name  
HPMTN bit  
Enable / Disable  
MOFF bit  
PTS1-0 bits  
Table 80. Registers with Transition Time  
MUTE ON/OFF Time  
PTS1  
PTS0  
OSCN bit = “0”  
OSCN bit = “1”  
typ.  
max  
MSEL bit= “0”  
MSEL bit = “1”  
0
0
1
1
0
1
0
1
16.4ms  
32.8ms  
65.6ms  
131.2ms  
26.3ms  
51.5ms  
105.0ms  
210.0ms  
32768/MCKIA  
65536/MCKIA  
131072/MCKIA 196608/MCKIA  
262144/MCKIA 393216/MCKIA  
49152/MCKIA (default)  
98304/MCKIA  
Table 81. Headphone-Amp Mute ON/OFF Transition Time  
MS0963-E-00  
2008/05  
- 111 -  
 
[AK4675]  
Speaker-ALC Operation  
The ALC (Automatic Level Control) operation of speaker-amp output is executed by ALCA block when ALCA bit = “1”.  
When ALCA bit is “0”, the speaker volume depends on the setting value of SPGA5-0 bits.  
(1) ALC Limiter Operation  
During ALCA limiter operation, when either Lch or Rch exceeds the ALCA limiter detection level (LMTHA bit), the  
SPGA value (same value for Lch and Rch) is attenuated automatically by the ALCA limiter ATT step (LMATA1-0 bits).  
When ZELMNA bit is set to “0” (zero crossing detection is enabled), the SPGA value is changed by ALCA limiter  
operation at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. ZTMA1-0 bits set the zero  
crossing timeout period of both ALCA limiter and recovery operation.  
When ZELMNA bit = “1” (zero crossing detection is disabled), SPGA value is immediately changed by ALCA limiter  
operation. The changing period is typ. 125μs and max. 200μs at OSCN bit = “0”, 256/MCKIA (=125μs  
@MCKIA=2.048MHz at OSCN bit = “1” & MSEL bit = “0”, 384/MCKIA (= 125μs @MCKI=3.072MHz) at OSCN bit  
= “1” & MSEL bit = “1”. Attenuation step is fixed to 1 step regardless of the setting of LMATA1-0 bits.  
The attenuate operation is executed continuously until the input signal level becomes ALCA limiter detection level or  
less. After completing the attenuation operation, unless ALCA bit is changed to “0”, the operation repeats when the input  
signal level exceeds LMTHA bit.  
LMTHA  
ALCA Limiter Detection  
Level  
ALCA Recovery Waiting Counter Reset Level  
0
1
(default)  
ALCA Output ≥ −7.5dBV  
ALCA Output ≥ −11.5dBV  
7.5dBV > ALCA Output ≥ −9.5dBV  
11.5dBV > ALCA Output ≥ −13.5dBV  
Note: ALCA limiter detection level and ALCA recovery waiting counter reset level do not  
depend on operation voltage.  
Table 82. ALCA Limiter Detection Level / Recovery Counter Reset Level (2.0Vpp = 3dBV)  
ZELMNA LMATA1 LMATA0  
ALCA Limiter ATT Step  
0
0
1
1
x
0
1
0
1
x
1 step  
2 step  
4 step  
8 step  
1step  
0.5dB  
1.0dB  
2.0dB  
4.0dB  
0.5dB  
(default)  
0
1
Table 83. ALCA Limiter ATT Step (x: Don’t’ care)  
Zero Crossing Timeout  
ZTMA1  
ZTMA0  
OSCN bit = “0”  
OSCN bit = “1”  
typ.  
max  
MSEL bit= “0”  
32768/MCKIA  
65536/MCKIA  
131072/MCKIA 196608/MCKIA  
262144/MCKIA 393216/MCKIA  
MSEL bit = “1”  
49152/MCKIA  
98304/MCKIA (default)  
0
0
1
1
0
1
0
1
16.4ms  
32.8ms  
65.6ms  
131.2ms  
26.3ms  
51.5ms  
105.0ms  
210.0ms  
Table 84. ALCA Zero Crossing Timeout Period  
MS0963-E-00  
2008/05  
- 112 -  
 
[AK4675]  
(2) ALCA Recovery Operation  
ALCA recovery operation waits for the WTMA2-0 bits to be set after completing ALCA limiter operation. If the input  
signal does not exceed “ALCA recovery waiting counter reset level” during the wait time, ALCA recovery operation is  
executed. The SPGA value is automatically incremented by RGAINA1-0 bits up to the set reference level (REFA5-0 bits)  
with zero crossing detection which timeout period is set by ZTMA1-0 bits. Then the SPGA is set to the same value for  
both channels. ALCA recovery operation is executed at a period set by WTMA2-0 bits. When zero cross is detected at  
both channels during the wait period set by WTMA2-0 bits, ALCA recovery operation waits until WTMA2-0 period and  
the next recovery operation is executed. The setting period of WTMA2-0 bits should be same as ZTMA1-0 bits or longer  
period.  
When RGAINA1-0 bits are set to “10”, ALCA recovery operation is not executed though ALCA limiter  
operation is executed.  
During the ALCA recovery operation, when the ALCA output level exceeds ALCA limiter detection level (LMTHA bit),  
the ALCA limiter operation is done immediately.  
When  
“ALCA recovery waiting counter reset level ALCA Output Signal < ALCA limiter detection level (LMTHA1-0)”  
during the ALCA recovery operation, the waiting timer of ALCA recovery operation is reset. When  
“ALCA recovery waiting counter reset level > ALCA Output Signal”,  
the waiting timer of ALCA recovery operation starts.  
The ALCA operation corresponds to the impulse noise. When the impulse noise is input, the ALCA recovery operation  
becomes faster than a normal recovery operation.  
Recovery Waiting Timer  
WTMA2  
WTMA1  
WTMA0  
OSCN bit = “0”  
OSCN bit = “1”  
MSEL bit = “0”  
typ.  
max  
MSEL bit = “1”  
49152/MCKIA  
98304/MCKIA  
196608/MCKIA  
393216/MCKIA  
786432/MCKIA  
1572864/MCKI (default)  
A
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
16.4ms  
32.8ms  
65.6ms  
131.2ms  
262.4ms  
524.8ms  
26.3ms  
51.5ms  
105.0ms  
210.0ms  
419.9ms  
839.7ms  
32768/MCKIA  
65536/MCKIA  
131072/MCKIA  
262144/MCKIA  
524288/MCKIA  
1048576/MCKIA  
1
1
1
1
0
1
1049.6ms 1679.4ms 2097152/MCKIA  
2099.2ms 3358.8ms 4194304/MCKIA  
3145728/MCKI  
A
6291456/MCKI  
A
Table 85. ALCA Recovery Waiting Timer Period  
RGAINA1 RGAINA0 GAIN STEP  
0
0
1
1
0
1
0
1
1 step  
2 step  
0 step  
0.5dB  
1.0dB  
0dB  
(default)  
Reserved  
Table 86. ALCA Recovery GAIN Step  
MS0963-E-00  
2008/05  
- 113 -  
 
[AK4675]  
REFA5-0  
3FH  
3EH  
3DH  
3CH  
:
GAIN (dB)  
+19.5  
+19.0  
+18.5  
+18.0  
:
Step  
(default)  
19H  
18H  
17H  
:
+0.5  
0.0  
0.5  
:
0.5dB  
02H  
01H  
00H  
11.0  
11.5  
12.0  
Table 87. Reference Level at ALCA Recovery Operation  
MS0963-E-00  
2008/05  
- 114 -  
 
[AK4675]  
(3) Example of ALCA Operation  
Table 88 shows the example of the ALCA setting. The ALCA starts from the value of SPGA5-0 bits.  
Register Name Comment  
Data  
0
Parameter  
LMTHA  
Limiter detection Level  
7.5dBV  
ZELMNA  
WTMA2-0  
REFA5-0  
LMATA1-0  
RGAINA1-0  
ZTMA1-0  
ALCA  
Limiter Zero crossing Enable  
Recovery waiting period  
Maximum gain at recovery operation  
Limiter ATT Step  
Recovery GAIN Step  
Zero-crossing Timeout  
ALCA Enable bit  
0
Limiter Zero Crossing Enable  
Typ. 524.8ms (@ OSCN bit = “0”)  
101  
3CH  
00  
00  
01  
1
+18dB  
0.5dB  
0.5dB  
Typ. 32.8ms (@ OSCN bit = “0”)  
Enable  
Table 88. Example of the ALCA setting  
The following registers must not be changed during ALCA operation. These bits should be changed after ALCA  
operation is finished by ALCA bit = “0”.  
- LMTHA, LMATA1-0, WTMA2-0, RGAINA1-0, REFA5-0, ZTMA1-0, ZELMNA bits  
Example:  
Limiter: Zero Crossing Enable  
Recovery Cycle = typ. 524.8ms (@ OSCN bit = “0”)  
Limiter and Recovery Step = 1  
Maximum Gain = +18dB  
Limiter Detection Level = 7.5dBV  
ALCA bit = “1”  
ALCA=OFF  
WR (SPGA5-0)  
(1) Addr=0EH, Data=3CH  
WR (REFA5-0)  
(2) Addr=0FH, Data=3CH  
(3) Addr=10H, Data=0DH  
(4) Addr =11H, Data=40H  
WR (ZTMA1-0, WTMA2-0)  
WR (ZELMNA, LMATA1-0, RGAINA1-0, LMTHA, ALCA=”1”)  
ALCA Operation  
Note : WR : Write  
Figure 83. Registers set-up sequence at ALCA operation  
MS0963-E-00  
2008/05  
- 115 -  
 
[AK4675]  
Speaker Volume (SPGA: Manual Mode)  
The speaker volume becomes manual mode when ALCA bit is “0”. This mode is used in the case shown below.  
1. After exiting reset state, set-up the registers for ALCA operation (ZTMA1-0, LMTHA and etc).  
2. When the registers for ALCA operation (Limiter period, Recovery period and etc) are changed.  
For example; when the change of the sampling frequency.  
3. When SPGA is used as a manual volume.  
SPGA5-0 bits set the gain of the volume control. The SPGA value is changed at zero crossing or timeout. Zero crossing  
timeout period is set by ZTMA1-0 bits. In case of OSCN bit = “0”, the write operation to SPGA5-0 bits is prohibited  
during 1.6ms after PMSPL or PMSPR bit is set to “1”. In case of OSCN bit = “1”, the write operation to SPGA5-0 bits is  
prohibited during the power-up time of the speaker volume block (Table 91) after PMSPL or PMSPR bit is set to “1”. The  
speaker volume is powered-up as the default value (0dB) regardless of the setting of SPKG5-0 bits.  
SPGA5-0  
3FH  
3EH  
3DH  
3CH  
:
GAIN (dB)  
+19.5  
+19.0  
+18.5  
+18.0  
:
Step  
19H  
18H  
17H  
:
+0.5  
0.0  
0.5  
:
0.5dB  
(default)  
02H  
01H  
00H  
11.0  
11.5  
12.0  
Table 89. Speaker-Amp Volume Setting  
When writing to the SPGA5-0 bits continuously, the control register should be written in an interval more than zero  
crossing timeout.  
ALCA bit  
ALCA Status  
SPGA5-0 bits  
Internal SPGA  
Disable  
Enable  
3CH(+18dB)  
Disable  
3CH(+18dB)  
3CH(+18dB) --> 19H(+0.5dB)  
3CH(+18dB)  
(1)  
(2)  
Figure 84. SPGA value during ALCA operation  
(1) ALCA operation starts from the SPGA value when ALCA bit is changed to “1”.  
(2) Writing to SPGA registers is ignored during ALCA operation. After ALCA is disabled, the SPGA changes to the last  
written data by twice period of zero crossing or timeout. When ALCA is enabled again, ALCA bit should be set to  
“1” in an interval more than zero crossing timeout period after ALCA bit = “0”.  
MS0963-E-00  
2008/05  
- 116 -  
 
[AK4675]  
Class-D Speaker-Amp  
The output signal from ALC block is converted by PWM and is outputted from the SPP/SPN pins by BLT. The signal of  
ALC block is input from the SPIN pin. A 0.1uF capacitor should be connected between the LOUT3 (ROUT3) pin and the  
SPIN pin in order to cancel DC offset of Line Out circuit.  
LOUT3 (ROUT3) SPIN pin  
SPGA5-0bits  
typ.26kΩ  
0.1μF  
Line Out  
-
+
ALCA  
AK4675  
Figure 85. Example of normal connection for Speaker (fc = 66Hz @ -3dB)  
When the input signal level is 0.56Vrms, the speaker-amp outputs 0.6W. The internal default gain is +11.76dB.  
The SPK-Amp outputs 0.6W(/1ch) when 0.56Vrm mono signal is input at single-end mode and ALC = OFF  
(SPGA=0dB).  
When ALCA = ON (ALCA bit= “1”), ALCA outputs -7.5dBV ~ -9.5dBV if LMTHA bit = “0”, and outputs -11.5dBV ~  
-13.5dBV if LMTHA bit = “1”. REFA5-0 bits set the reference level. The internal gain of the class-D speaker amplifier is  
fixed to +11.76dB.  
ALCA  
Class-D  
SPIN  
ALCA OFF: SPGA5-0bit  
ON: REF5-0bit  
(+11.76dB)  
Figure 86. Speaker-Amp Path Level Diagram  
MS0963-E-00  
2008/05  
- 117 -  
[AK4675]  
When PMSPL and PMSPR bits are set to “0”, the speaker block (ALC + Speaker-Amp) can be powered-down  
completely. In case of OSCN bit = “0”, the power-up/down time is 30ms (typ.) and 48ms (max.). In case of OSCN bit =  
“1”, the power-up/down time depends on MSEL bit setting and MCKIA frequency (Table 90).  
MSEL bit  
0
MCKIA Freq  
Power-Up Time  
2.048MHz  
2.8224MHz  
3.072MHz  
19.5ms (40000/MCKIA)  
21.5ms (60000/MCKIA)  
19.5ms (60000/MCKIA)  
1
Table 90. Class D SPK-Amp Power-Up Time (OSC bit = “1”)  
In case of OSCN bit = “0”, the write operation to SPGA5-0 bits is prohibited during 1.6ms after PMSPL or PMSPR bit is  
set to “1”. In case of OSCN bit = “1”, the write operation to SPGA5-0 bits is prohibited during the power-up time of the  
speaker volume block (Table 91) after PMSPL or PMSPR bit is set to “1”.  
MSEL bit  
0
MCKIA Freq  
Power-Up Time  
2.048MHz  
2.8224MHz  
3.072MHz  
1ms (2048/MCKIA)  
1.1ms (3072/MCKIA)  
1ms (3072/MCKIA)  
1
Table 91. Write Operation Prohibited Time of Speaker Volume after Power-up (OSCN bit = “1”)  
PMSP bits  
Speaker-Amp  
0
1
Power-down & Hi-Z  
Power-up & Output  
(default)  
Table 92. Speaker-Amp Output State  
Thermal Shutdown Function  
When the internal device temperature rises up irregularly (e.g. output pins of speaker amplifier are shortened), the charge  
pump circuit, headphone amplifier and speaker amplifier are automatically powered-down and then THDET bit becomes  
“1”. The powered-down charge pump circuit, headphone amplifier and speaker amplifier do not return to normal  
operation unless HP/SPK-Amp blocks of the AK4675 are reset by the PDNA pin “L”. The device status can be monitored  
by THDET bit.  
HP/SPK-Amp Operation Clock  
The AK4675 includes built-in clock oscillator for the internal operation of Class-D Speaker-Amp and Charge Pump  
circuit. The AK4675 supports both internal oscillator mode and external clock mode (MCKIA pin). MSEL bit selects the  
clock frequency for the MCKIA pin.  
OSCN bit  
Operation Clock  
Internal OSC  
External Clock (MCKIA pin)  
0
1
(default)  
Table 93. Internal Oscillator / External Clock select  
MSEL bit  
MCKIA Frequency  
2.048MHz  
2.8224MHz or 3.072MHz  
0
1
(default)  
Table 94. MCKIA Input Frequency Select  
MS0963-E-00  
2008/05  
- 118 -  
 
[AK4675]  
HP/SPK-Amp Block Power-Up/Down Sequence  
1) HP-Amp  
Power Supply  
(1)  
PDNA pin  
(2)  
PMVCMA bit  
PMOSC bit  
PMMHL/R bit  
MCKIA Input  
(3)  
Don’t care  
Don’t care  
PMCP bit  
PVEE pin  
(4)  
0V  
PVEE  
0V  
0s  
(11)  
PMV1 bit  
(5)  
Input Volume  
Output State  
Hi-Z  
VCOMA  
Hi-Z  
PMHPL/R bits  
(6)  
HPMTN bit  
0V  
Normal  
MUTE  
(7)  
MUTE  
(9)  
0V  
HPL/HPR pins  
(10)  
(8)  
Figure 87. HP-Amp Power-up/down Sequence Example  
(1) PDNA pin should be changed from “L” to “H” after power up.  
“L” time of 150ns or more is needed to reset the AK4675.  
The PDNA pin must be held to “L” until all power supply pins are supplied. After that, the PDNA pin should be  
set to “H”.  
(2) PTS1-0, MOFF, HPGA4-0, OSCN, MSEL bits should be set during this period.  
(3) In case of OSCN bit = “0”, the external clock (MCKIA pin) is not needed.  
In case of OSCN bit = “1”, the external clock (MCKIA pin) is needed.  
(4) Power-up of Charge Pump, VCOMA and HP-Amp Mixer & Selector (and the internal clock oscillator in case of  
OSCN bit = “0”): PMCP = PMMHL = PMMHR = PMOSC = PMVCMA bits = “0” Æ “1”  
The PVEE pin becomes PVEE voltage within 10ms (max.) at OSCN bit = “1” or within the time in Table 79 at OSCN  
bit = “1”.  
(5) Power-up of input volume: PMV1 bit = “0” Æ “1”  
Input volume setting (L1V3-0, R1V3-0 bits)  
Input path setting (HPLL1, HPLR1, HPRR1, HPRL1 bits)  
Input volume block is powered-up within 26.3ms (max.) at OSCN bit = “0” or within the time in Table 75 at  
OSCN bit = “1”. Input path and volume can be set when input volume block is powered up.  
(6) If PMCP and PMHPL/R bits are set to “1” at the same time or PMHPL/R bits are set to “1” during the power-up time  
of the Charge Pump circuit, Headphone-Amp is powered-up after the Charge Pump circuit is powered-up.  
(7) Headphone-Amp power-up: PMHPL/R bits = “0” Æ “1”  
Headphone-Amp is in the mute state and outputs the DC offset. Headphone-Amp power-up time depends on the  
setting of OSCN bit. When OSCN bit = “0”, it is 26.3ms (max.) When OSCN bit = “1”, refer to Table 81.  
(8) Headphone-Amp mute release: HPMTN bit = “0” Æ “1”  
Headphone-Amp goes to the normal operation after the transition time. Headphone-Amp mute release time  
depends on the setting of PTS1-0 and MOFF1 bits.  
(9) Headphone-Amp mute: HPMTN bit = “1” Æ “0”  
MS0963-E-00  
2008/05  
- 119 -  
 
[AK4675]  
Headphone-Amp goes to mute state after the transition time set by PTS1-0 and MOFF1 bits.  
(10)Headphone-Amp power-down: PMHPL/R bits = “1” Æ “0”  
Headphone-Amp is powered-down immediately.  
(11)Power-down of Charge Pump, VCOMA and HP-Amp Mixer & Selector (and the internal clock oscillator in case of  
OSCN bit = “0”): PMCP = PMMHL = PMMHR = PMOSC = PMVCMA bits = “1” Æ “0”  
The PVEE pin goes 0V according to the time constant of the capacitor at the PVEE pin and the internal resistor. The  
internal resistor is typ. 17.5kΩ. Charge Pump circuit can be powered-up during this period.  
MS0963-E-00  
2008/05  
- 120 -  
[AK4675]  
2) SPK-Amp (SPIN to SPP/SPN)  
Power Supply  
(1)  
PDNA pin  
(2)  
PMVCMA bit  
PMOSC bit  
Don’t care  
MCKIA Input  
(3)  
Don’t care  
(9)500us  
(4)0s  
PMSPK bit  
SPIN pin  
(5)  
(5)  
Hi-Z  
Hi-Z  
VCOMA  
Hi-Z  
VCOMA  
(6)1.6ms  
(6) 1.6ms  
SPGA bits  
Default  
Default  
xxH  
xxH  
Default  
Disable  
ALCA bit  
(7)  
(7)  
Disable  
Enable  
Enable  
ALCA state  
Disable  
0V  
(10)VCOM(No signal)  
Signal Output  
(10)VCOM(No signal)  
0V  
Signal Output  
0V  
LOUT3/ROUT3 pins  
SPP/SPN pins  
(8)  
(8)  
0V  
0V  
Normal  
Normal  
0V  
Figure 88. SPK-Amp Power-up/down Sequence Example  
(1) The PDNA pin should be changed from “L” to “H” after the power is supplied.  
“L” time of 150ns or more is needed to reset the AK4675.  
The PDNA pin must be held to “L” until all power supply pins are applied. After that, the PDNA pin should be set  
to “H”.  
(2) Power-up of VCOMA (and the internal clock oscillator in case of OSCN bit = “0”): PMVCMA= PMOSC bits = “0”  
Æ “1”. OSCN and MSEL bits should be set during this period.  
(3) In case of OSCN bit = “0”, the external clock (MCKIA pin) is not needed.  
In case of OSCN bit = “1”, the external clock (MCKIA pin) is needed.  
(4) Speaker-Amp power-up: PMSPK bit = “0”Æ “1”  
Stereo line output3 power-up: PMLO3/RO3 bits = “0”Æ “1”(LOPS3 bit = “0”)  
(5) The SPIN pin goes to “H” in 26.3ms (max) when OSCN bit = “0”, in the time shown in Table 75 when OSCN bit=  
“1”.  
(6) SPGA5-0 bits setting: When PMSP bits = “0”, SPGA5-0 bits are default value (0dB). The setting of SPKG5-0 and  
ALCA bits is enabled at 1.6ms or more after PMSP bits are set to “1” at OSCN bit = “0” or after the power-up time in  
Table 91 at OSCN bit = “1”.  
(7) ALCA setting: ALCA is enabled at 30ms (max.) in case of OSCN bit = “0”, at 36864/MCKIA (= 18ms @ MCKIA =  
2.048MHz) in case of OSCN bit = “1” & MSEL bit = “0”, or 55296/MCKIA (= 18ms @ MCKIA = 3.072MHz) in  
case of OSCN bit = MSEL bit = “1”. Refer to “Example of ALCA Operation”.  
(8) Speaker-Amp goes to normal operation at 48ms (max.) after PMSPL/R bits is changed to “1” in case of OSCN bit =  
“0” or after the power-up time in Table 90 in case of OSCN bit = “1”.  
MS0963-E-00  
2008/05  
- 121 -  
[AK4675]  
(9) Once Speaker-Amp is powered-down, Speaker-Amp can be powered-up again at 500μs or more later in case of  
OSCN bit = “0”, at 1024/MCKIA (=500μs @ MCKI = 2.048MHz) or more later in case of OSCN bit = “1” & MSEL  
bit = “0”, 1536/MCKIA (=500μs @ MCKIA = 3.072MHz) or more later in case of OSCN bit = MSEL bit = “1”.  
(10)Signal input to the SPIN pin is prohibited when ALCA bit = “0”. The path selecting bits of the stereo line output3  
(LOUT3/ROUT3 pins) must be set OFF(DACSL/R, LINS1, LINS2, LINS3, LINS4, RINS1, RINS2, RINS3, RINS4,  
LOOPSL/R bits = “0”).  
MS0963-E-00  
2008/05  
- 122 -  
[AK4675]  
System Clock (PCM I/F)  
A reference clock of PLLBT is selected among the input clocks to the SYNCA, BICKA, SYNCB or BICKB pin. The  
required clock to PCM I/F is generated by an internal PLLBT circuit. PLLBT circuit is powered up by PMPCM bit. Input  
frequency is selected by PLLBT3-0 bits (Table 95). BCKO2 bit select the output clock frequency of the BICKA or  
BICKB pin (Table 96).  
The AK4675 does not support master mode for both PCM I/F A and B nor slave mode for both PCM I/F A and B.  
Whether PCM I/F A or B should be set as slave mode. When PMPCM bit is “0”, SYNCA, BICKA, SYNCB and BICKB  
pins are Hi-Z. Table 97 indicates the output data of the SDTOA and SDTOB pins in case of PMPCM bit = “0” and during  
lock time in Table 95, respectively. Table 98 indicates the output clock at master mode during lock time in Table 95.  
The AK4675 does not support master mode for both PCM I/F A and B nor slave mode for both PCM I/F A and B. When  
PMPCM bit is “0”, the SYNCA, BICKA, SYNCB and BICKB pins are Hi-Z.  
R, C at  
VCOCBT pin  
Reference Clock  
Input Pin  
Lock Time  
(max)  
Mode  
PLLBT3 PLLBT2 PLLBT1 PLLBT0  
Frequency  
R
C
0
1
2
3
4
5
6
7
11  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0
1
1
1
SYNCA  
BICKA  
BICKA  
BICKA  
SYNCB  
BICKB  
BICKB  
BICKB  
BICKA  
BICKB  
N/A  
1fs2  
16fs2  
32fs2  
64fs2  
1fs2  
16fs2  
32fs2  
64fs2  
48fs2  
48fs2  
6.8k  
10k  
10k  
10k  
6.8k  
10k  
10k  
10k  
10k  
10k  
220n  
4.7n  
4.7n  
4.7n  
220n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
260ms  
40ms  
40ms  
40ms  
260ms  
40ms  
40ms  
40ms  
40ms  
40ms  
(default)  
15  
Others  
Note 83. Mode 1 is available at only FMTA1 bit = “0”.  
Note 84. Mode 5 is available at only FMTB1 bit = “0”.  
Table 95. PLLBT Reference Clock  
BICKA/BICKB  
Output Frequency  
16fs2  
BCKO2 bit  
0
1
(default)  
32fs2  
Table 96. BICKA/B Output Frequency  
PMPCM bit = “1”  
During Lock time  
After PMPCM bit = “0” “1”  
& Before SYNCA/SYNCB Input  
Mode  
PMPCM bit = “0”  
16bit Linear  
8bit A-Law  
8bit μ-Law  
L
L
L
L
H
H
“0000H”  
“11010101b”  
“11111111b”  
Table 97. SDTOA, SDTOB pins Output Data  
Format  
SYNCA, SYNCB  
BICKA, BICKB  
Except for I2S  
I2S  
L
H
L
L
Table 98. Output Clock during Lock Time  
MS0963-E-00  
2008/05  
- 123 -  
 
[AK4675]  
a) PLLBT reference clock: SYNCA or BICKA pin  
The PLLBT circuit generates the required clock for PCM I/F from SYNCA or BICKA. Generated clocks are output via  
the SYNCB and BICKB pins.  
AK4675  
Phone Module  
1fs2  
SYNCA  
SYNC  
16fs2  
BICK  
SDTI  
SDTO  
BICKA  
SDTOA  
SDTIA  
Bluetooth Module  
1fs2  
SYNC  
SYNCB  
16fs2 or 32fs2  
BICK  
SDTI  
SDTO  
BICKB  
SDTOB  
SDTIB  
Figure 89. PCM I/F (PLLBT Reference Clock: SYNCA or BICKA pin)  
b) PLLBT reference clock: SYNCB or BICKB pin  
The PLLBT circuit generates the required clock for PCM I/F from SYNCB or BICKB. Generated clocks are output via  
the SYNCA and BICKA pins.  
AK4675  
Phone Module  
1fs2  
SYNCA  
SYNC  
16fs2 or 32fs2  
BICK  
SDTI  
SDTO  
BICKA  
SDTOA  
SDTIA  
Bluetooth Module  
1fs2  
SYNC  
SYNCB  
16fs2  
BICK  
SDTI  
SDTO  
BICKB  
SDTOB  
SDTIB  
Figure 90. PCM I/F (PLLBT Reference Clock: SYNCB or BICKB pin)  
PLLBT should always be powered-up (PMPCM bit = “1”) whenever SRC-A or SRC-B is in operation (PMSRA bit = “1”  
or PMSRB bit = “1”). If PLLBT is powered-down, the AK4675 may draw excess current and it is not possible to operate  
properly because utilizes dynamic refreshed logic internally. If PLLBT is powered-down, SRC-A and SRC-B should be  
in the power-down mode (PMSRA=PMSRB bits = “0”).  
MS0963-E-00  
2008/05  
- 124 -  
[AK4675]  
PCM I/F Master Mode/Slave Mode  
The PLLBT2 bit selects either master or slave mode (Table 99). When either PCM I/F A or PCM I/F B is set in slave  
mode, the other is set in master mode. (For example, when PCM I/F B is set in slave mode, PCM I/F A is set in master  
mode.) When the AK4675 is power-down mode (PDN pin = “L”) or PMPCM bit = “0”, each clock pins (SYNCA,  
BICKA, SYNCB, BICKB) of PCM I/F become a Hi-Z (Table 100).  
PLLBT3-0 bits should be set when PMPCM bit = “0” to avoid shorting out of the slave mode clock pins and master mode  
clock output.  
After setting the PDN pin = “H”, the PCM I/F clock pins are the Hi-Z state until PMPCM bit becomes “1”. The PCM I/F  
clock pins of master mode should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the  
floating state.  
PLLBT2 bit  
PCM I/F A  
Slave Mode  
Master Mode  
SYNCA, BICKA pins  
PCM I/F B  
Master Mode  
Slave Mode  
SYNCB, BICKB pins  
0
1
Input  
Output  
Output  
Input  
(default)  
Table 99. Select PCM I/F Master/Slave Mode  
PDN pin  
PMPCM bit  
SYNCA, BICKA pin  
SYNCB, BICKB pin  
L
H
-
0
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
I/O Select by PLLBT2 bit I/O Select by PLLBT2 bit  
1
(Table 99)  
(Table 100)  
Table 100. PCM I/F Clock I/O State  
MS0963-E-00  
2008/05  
- 125 -  
 
[AK4675]  
PCM I/F A & B Format  
The AK4675 supports dual PCM I/F (PCM I/F A & PCM I/F B) that supports 3 kind of I/F (16bit Linear, 8bit A-Law and  
8bit μ-Law) independently (Table 101, Table 102).  
Mode  
LAWA1  
LAWA0  
Format  
16bit Linear  
N/A  
8bit A-Law  
8bit μ-Law  
0
1
2
3
0
0
1
1
0
1
0
1
(default)  
(default)  
Table 101. PCM I/F A Mode  
Mode  
LAWB1  
LAWB0  
Format  
0
1
2
3
0
0
1
1
0
1
0
1
16bit Linear  
N/A  
8bit A-Law  
8bit μ-Law  
Table 102. PCM I/F B Mode  
Four types of data formats are available and are selected by setting the FMTA1-0 and FMTB1-0 bits independently (Table  
103, Table 104). In 16bit Linear mode, the serial data is MSB first, 2’s complement format. In 8bit A-Law and μ-Law  
Mode, the serial data is MSB first. PCM I/F formats can be used in both master and slave modes. SYNCA/B and  
BICKA/B are output from the AK4675 in master mode, but must be input to the AK4675 in slave mode.  
Mode  
FMTA1  
FMTA0  
Format  
Short Frame Sync  
Long Frame Sync  
MSB justified  
I2S  
BICKA  
16fs2  
16fs2  
32fs2  
32fs2  
Figure  
0
1
2
3
0
0
1
1
0
1
0
1
See Table 105 (default)  
See Table 107  
Figure 99  
Figure 100  
Table 103. PCM I/F A Format  
Mode  
FMTB1  
FMTB0  
Format  
Short Frame Sync  
Long Frame Sync  
MSB justified  
I2S  
BICKB  
Figure  
0
1
2
3
0
0
1
1
0
1
0
1
See Table 106 (default)  
See Table 108  
Figure 99  
16fs2  
16fs2  
32fs2  
32fs2  
Figure 100  
Table 104. PCM I/F B Format  
In modes 2/ 3, the SDTOA/B is clocked out on the falling edge (“”) of BICKA/B and the SDTIA/B is latched on the  
rising edge (“”).  
In Modes 0 and 1, PCM I/F A timing is changed by BCKPA and MSBSA bits, and PCM I/F B timing is changed by  
BCKPB and MSBSB bits.  
When BCKPA bit = “0”, the SDTOA is clocked out on the rising edge (“”) of BICKA and the SDTIA is latched on the  
falling edge (“”). When BCKPA bit = “1”, the SDTOA is clocked out on the falling edge (“”) of BICKA and the  
SDTIA is latched on the rising edge (“”).  
MSBSA bit can shift the MSB position of SDTOA and SDTIA by half period of BICKA.  
When BCKPB bit = “0”, the SDTOB is clocked out on the rising edge (“”) of BICKB and the SDTIB is latched on the  
falling edge (“”). When BCKPB bit = “1”, the SDTOB is clocked out on the falling edge (“”) of BICKB and the  
SDTIB is latched on the rising edge (“”).  
MSBSB bit can shift the MSB position of SDTOB and SDTIB by half period of BICKB.  
MS0963-E-00  
2008/05  
- 126 -  
 
[AK4675]  
Figure  
MSBSA BCKPA  
Data Interface Format  
MSB of SDTOA is output by the falling edge (“”) of SYNCA. MSB of SDTIA is  
latched by the falling edge (“”) of the BICKA just after the output timing of SDTOA’s Figure 91  
MSB.  
MSB of SDTOA is output by the falling edge (“”) of SYNCA. MSB of SDTIA is  
latched by the rising edge (“”) of the BICKA just after the output timing of SDTOA’s  
MSB.  
MSB of SDTOA is output by the rising edge (“”) of the first BICKA after the rising  
edge (“”) of SYNCA. MSB of SDTIA is latched by the falling edge (“”) of the BICKA Figure 93  
just after the output timing of SDTOA’s MSB.  
0
0
1
1
0
1
0
1
Figure 92  
MSB of SDTOA is output by the falling edge (“”) of the first BICKA after the rising  
edge (“”) of SYNCA. MSB of SDTIA is latched by the rising edge (“”) of the BICKA Figure 94  
just after the output timing of SDTOA’s MSB.  
Table 105. PCM I/F A Format in Mode 0  
MSBSB  
0
BCKPB  
0
Data Interface Format  
Figure  
MSB of SDTOB is output by the falling edge (“”) of SYNCB. MSB of SDTIB is latched  
by the falling edge (“”) of the BICKB just after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the falling edge (“”) of SYNCB. MSB of SDTIB is latched  
by the rising edge (“”) of the BICKB just after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the rising edge (“”) of the first BICKB after the rising edge  
(“”) of SYNCB. MSB of SDTIB is latched by the falling edge (“”) of the BICKB just  
after the output timing of SDTOB’s MSB.  
Figure 91  
0
1
1
0
Figure 92  
Figure 93  
MSB of SDTOB is output by the falling edge (“”) of the first BICKB after the rising  
edge (“”) of SYNCB. MSB of SDTIB is latched by the rising edge (“”) of the BICKB Figure 94  
just after the output timing of SDTOB’s MSB.  
1
1
Table 106. PCM I/F B Format in Mode 0  
MSBSA  
0
BCKPA  
0
Data Interface Format  
Figure  
MSB of SDTOA is output by the rising edge (“”) of SYNCA. MSB of SDTIA is latched  
by the falling edge (“”) of the BICKA just after the output timing of SDTOA’s MSB.  
MSB of SDTOA is output by the rising edge (“”) of SYNCA. MSB of SDTIA is latched  
by the rising edge (“”) of the BICKA just after the output timing of SDTOA’s MSB.  
MSB of SDTOA is output by the rising edge (“”) of the first BICKA after the falling  
Figure 95  
0
1
1
0
Figure 96  
edge (“”) of SYNCA. MSB of SDTIA is latched by the falling edge (“”) of the BICKA Figure 97  
just after the output timing of SDTOA’s MSB.  
MSB of SDTOA is output by the falling edge (“”) of the first BICKA after the falling  
edge (“”) of SYNCA. MSB of SDTIA is latched by the rising edge (“”) of the BICKA Figure 98  
just after the output timing of SDTOA’s MSB.  
1
1
Table 107. PCM I/F A Format in Mode 1  
MSBSB  
0
BCKPB  
0
Data Interface Format  
Figure  
MSB of SDTOB is output by the rising edge (“”) of SYNCB. MSB of SDTIB is latched  
by the falling edge (“”) of the BICKB just after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the rising edge (“”) of SYNCB. MSB of SDTIB is latched  
by the rising edge (“”) of the BICKB just after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the rising edge (“”) of the first BICKB after the falling  
Figure 95  
0
1
1
0
Figure 96  
edge (“”) of SYNCB. MSB of SDTIB is latched by the falling edge (“”) of the BICKB Figure 97  
just after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the falling edge (“”) of the first BICKB after the falling  
edge (“”) of SYNCB. MSB of SDTIB is latched by the rising edge (“”) of the BICKB Figure 98  
just after the output timing of SDTOB’s MSB.  
1
1
Table 108. PCM I/F B Format in Mode 1  
MS0963-E-00  
2008/05  
- 127 -  
 
[AK4675]  
1/fs2  
SYNCA  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
SDTIA  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
D7 D6  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6  
Figure 91. Timing of Short Frame Sync (MSBSA bit = “0”, BCKPA bit = “0”)  
1/fs2  
SYNCA  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
SDTIA  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
D7 D6  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6  
Figure 92. Timing of Short Frame Sync (MSBSA bit = “0”, BCKPA bit = “1”)  
1/fs2  
SYNCA  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
SDTIA  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
D7 D6  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6  
Figure 93. Timing of Short Frame Sync (MSBSA bit = “1”, BCKPA bit = “0”)  
MS0963-E-00  
2008/05  
- 128 -  
 
[AK4675]  
1/fs2  
SYNCA  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
SDTIA  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
D7 D6  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6  
Figure 94. Timing of Short Frame Sync (MSBSA bit = “1”, BCKPA bit = “1”)  
1/fs2  
SYNCA  
(Master)  
SYNCA  
(Slave)  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
Don’t Care  
Don’t Care  
SDTIA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
D7 D6 D5  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5  
Figure 95. Timing of Long Frame Sync (MSBSA bit = “0”, BCKPA bit = “0”)  
1/fs2  
SYNCA  
(Master)  
SYNCA  
(Slave)  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
Don’t Care  
Don’t Care  
SDTIA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
D7 D6 D5  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5  
Figure 96. Timing of Long Frame Sync (MSBSA bit = “0”, BCKPA bit = “1”)  
MS0963-E-00  
2008/05  
- 129 -  
 
[AK4675]  
1/fs2  
SYNCA  
(Master)  
SYNCA  
(Slave)  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
Don’t Care  
Don’t Care  
SDTIA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
D7 D6 D5  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5  
Figure 97. Timing of Long Frame Sync (MSBSA bit = “1”, BCKPA bit = “0”)  
1/fs2  
SYNCA  
(Master)  
SYNCA  
(Slave)  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
Don’t Care  
Don’t Care  
SDTIA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
D7 D6 D5  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5  
Figure 98. Timing of Long Frame Sync (MSBSA bit = “1”, BCKPA bit = “1”)  
MS0963-E-00  
2008/05  
- 130 -  
 
[AK4675]  
SYNCA  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICKA  
(32fs2)  
15 14 13  
15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
SDTOA(o)  
15  
31 0  
Don't Care  
Don't Care  
SDTIA(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
1
BICKA  
(64fs2)  
15 14 13  
1
0
0
15  
15  
SDTOA(o)  
15 14 13  
1
Don't Care  
Don't Care  
SDTIA(i)  
15:MSB, 0:LSB  
Figure 99. Timing of MSB justified  
SYNCA  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICKA  
(32fs2)  
15 14  
15 14  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
SDTOA(o)  
SDTIA(i)  
Don't Care  
15 16 17 18 31 0 1  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
BICKA  
(64fs2)  
15 14  
15 14  
2
2
1
1
0
0
SDTOA(o)  
SDTIA(i)  
Don't Care  
Don't Care  
15:MSB, 0:LSB  
Figure 100. Timing of I2S  
MS0963-E-00  
2008/05  
- 131 -  
 
[AK4675]  
Phone Path  
MIC-Amp  
& ALC  
HPF  
A/D  
MIC  
HPF  
LPF  
Stereo  
Separation  
5-band  
Notch  
ALC  
MIX  
SDTO Lch  
SDTO Rch  
Audio  
I/F  
SVOLA  
CPU  
SDTI Lch  
SDTI Rch  
M
I
X
S
E
L
DATT 5-band  
SMUTE  
EQ  
D/A  
Receiver  
Headphone  
Speaker  
TX  
RX  
SRC-A  
SDTOA  
SDTIA  
SVOLB  
DATT-C  
PCM  
I/F A  
Baseband  
SRC-B  
DATT-B  
BIVOL  
SDTOB  
SDTIB  
PCM  
I/F B  
B/T  
Phone Call TX  
Phone Call TX Recording  
Phone Call Side Tone  
Phone Call RX  
Phone Call RX Recording  
Figure 101. Internal MIC/SPK or External MIC/HP Call & Recording  
MS0963-E-00  
2008/05  
- 132 -  
[AK4675]  
MIC-Amp  
& ALC  
HPF  
A/D  
MIC  
HPF  
LPF  
Stereo  
Separation  
5-band  
Notch  
ALC  
MIX  
SDTO Lch  
SDTO Rch  
Audio  
I/F  
SVOLA  
CPU  
SDTI Lch  
SDTI Rch  
M
I
X
S
E
L
DATT 5-band  
SMUTE  
EQ  
D/A  
Receiver  
Headphone  
Speaker  
TX  
RX  
SRC-A  
SDTOA  
SDTIA  
SVOLB  
DATT-C  
PCM  
I/F A  
Baseband  
SRC-B  
DATT-B  
BIVOL  
SDTOB  
SDTIB  
PCM  
I/F B  
B/T  
Phone Call TX  
Phone Call TX Recording  
Phone Call Side Tone  
Phone Call RX  
Phone Call RX Recording  
Figure 102. B/T Headset Phone Call & Recording  
MS0963-E-00  
2008/05  
- 133 -  
[AK4675]  
General Purpose Output  
The AK4675 has General Purpose Output Pin (GPO) to control the external component.  
In case of GPOM1 bit = “0”, the GPO1 pin goes to “H” at GPOE1 bit = “1”.  
GPOE1 bit  
GPO1 pin  
0
1
L
H
(default)  
Table 109. General Purpose Output 1 Pin Control (GPOM1 bit = “0”)  
In the case of GPOM1 bit = “1”, the GPO1 pin goes to “H” if the input level of the channel selected by A0 bit (SAIN1 or  
SAIN2 pin) is higher than the reference voltage that is input the SAIN3 pin. In the case of GPOM1 bit = “1”, the reference  
voltage input to the SAIN3 pin should be lower than 0.5 x AVDD.  
SAIN1/2 pin  
< SAIN3 pin  
SAIN3 pin  
GPO1 pin  
L
H
(default)  
Table 110. General Purpose Output 1 Pin Control (GPOM1 bit = “1”)  
In the case of GPOM2 bit = “0”, the GPO2 pin goes to “H” at GPOE2 bit = “0”.  
GPOE2 bit  
GPO2 pin  
0
1
L
H
(default)  
Table 111. General Purpose Output 2 Pin Control (GPOM2 bit = “0”)  
In the case of GPOM2 bit = “1”, the GPO2 pin outputs the mic detection result. (Table 21.)  
Input Level of MDT pin  
GPO2 pin  
DTMIC bit  
External microphone  
Mic (Headset)  
No Mic (Headphone)  
H
L
1
0
0.075 x AVDD  
< 0.050 x AVDD  
Table 21. Microphone Detection Result  
MS0963-E-00  
2008/05  
- 134 -  
 
[AK4675]  
SAR 10bit ADC  
The AK4675 incorporates a 10-bit successive approximation resistor A/D converter for DC measurement.  
The A/D converter output is a straight binary format as shown in Table 112:  
Input Voltage  
Output Code  
3FFH  
3FEH  
:
~
~
AVDD  
(AVDD1.5LSB)  
(AVDD1.5LSB)  
(AVDD2.5LSB)  
:
0.5LSB  
0
~
~
1.5LSB  
0.5LSB  
001H  
000H  
Table 112. Output Code  
When PMSAD bit is set to “1”, 10bit ADC is powered-up. When the control register is read, A/D conversion is executed  
and data is output.  
10bit ADC supports 3 kinds of analog input. A1-0 bits select the measurement modes.  
Mode  
A1  
0
0
1
1
A0  
0
1
0
1
Input Channel  
SAIN1  
0
1
2
3
(default)  
SAIN2  
SAIN3  
N/A  
Table 113. SAR ADC Measurement Mode  
<SAR ADC Execute Sequence (in case that the interrupt function is enabled.)>  
(1) Select the measurement mode by A1-0 bits and set PMSAD bit = “1” to power-up SAR ADC.  
(2) Read Addr=5BH so that A/D conversion is executed and MSB 8bit data is output.  
(3) Additionally read Addr=5CH then LSB 2bit data is output.  
<SAR ADC Execute Sequence (in case that the interrupt function is disabled.)>  
(1) GPOM1 bit should be set to “1”. The GPO1 pin can be used as the interrupt output pin.  
(2) Select the measurement mode by A0 bit.  
(3) The GPO1 pin goes to “H” when the input DC voltage of the SAIN1 or SAIN2 pin (selected by A0 bit) is higher than  
the input voltage of the SAIN3 pin.  
(4) After CPU detects the GPO1 pin = “H”, set GPOM1 bit = “0” and PMSAD bit = “1” to power-up SAR ADC.  
(5) Read Addr=5BH so that A/D conversion is executed and MSB 8bit data is output.  
(6) Additionally read Addr=5CH then LSB 2bit data is output.  
MS0963-E-00  
2008/05  
- 135 -  
 
[AK4675]  
ATT Circuit for Battery Monitor  
When BATCPU bit = “1”, the input voltage for the VBATIN pin is divided by the internal resistors R1 (7.5k) and R2  
(2.5k). The VBATO pin outputs the internally divided voltage. When BATCPU bit = “0”, the VBATO pin goes to Hi-Z.  
This block can operate even if PMVCMA=PMOSC bits = “0”.  
AK4675  
VBATIN pin  
VBATO pin  
R1=7.5K  
R2=2.5K  
BATCPU bit  
Figure 103. ATT circuit for Battery Monitor  
Serial Control Interface  
(1) I2C Bus Control Mode  
The AK4675 supports the fast-mode I2C-bus (max: 400kHz). Pull-up resistors at SDA and SCL pins should be connected  
to (DVDD+0.3)V or less voltage.  
(1)-1. WRITE Operations  
Figure 104 shows the data transfer sequence for I2C-bus mode. All commands are preceded by START condition. HIGH  
to LOW transition on the SDA line while SCL is HIGH indicates START condition (Figure 111). After the START  
condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W).  
Addresses for CODEC and HP/SPK-Amp are fixed (Figure 105). If the slave address matches that of the AK4675, the  
AK4675 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related  
clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 112). R/W bit value of “1”  
indicates that the read operation is to be executed. “0” indicates that the write operation is to be executed.  
The second byte consists of the control register address of the AK4675. The format is MSB first, and the most significant  
1-bit is fixed to “0” (Figure 106). The data after the second byte contains control data. The format is MSB first, 8bits  
(Figure 107). The AK4675 generates an acknowledge after each byte has been received. Data transfer is always  
terminated by a STOP condition generated by the master. LOW to HIGH transition on the SDA line while SCL is HIGH  
defines a STOP condition (Figure 111).  
MS0963-E-00  
2008/05  
- 136 -  
[AK4675]  
The AK4675 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4675  
generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the  
write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is  
incremented by one, and the next data is automatically taken into the next address. In case of CODEC & SRC blocks, if  
the address exceeds 5AH prior to generating stop condition, the address counter will “roll over” to 00H and the previous  
data will be overwritten. In case of HP/SPK-Amp blocks, if the address exceeds 12H prior to generating stop condition,  
the address counter will “roll over” to 00H and the previous data will be overwritten.  
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data  
line can only change when the clock signal on the SCL line is LOW (Figure 113) except for the START and STOP  
conditions.  
S
S
T
O
P
T
A
R
T
R/W="0"  
Slave  
Address  
Sub  
Address(n)  
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 104. Data Transfer Sequence at the I2C-Bus Mode  
CODEC  
AMP  
0
0
0
0
1
1
0
0
0
0
1
1
0
1
R/W  
R/W  
Figure 105. The First Byte  
0
A6  
D6  
A5  
A4  
A3  
A2  
D2  
A1  
A0  
D0  
Figure 106. The Second Byte  
D7  
D5  
D4  
D3  
D1  
Figure 107. Byte Structure after The Second Byte  
MS0963-E-00  
2008/05  
- 137 -  
 
[AK4675]  
(2)-2. READ Operations  
Set the R/W bit = “1” for the READ operation of the AK4675. After transmission of data, the master can read the next  
address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word.  
After receiving each data packet the internal 7-bit address counter is incremented by one, and the next data is  
automatically taken into the next address. In case of CODEC & SRC blocks, if the address exceeds 5AH prior to  
generating stop condition, the address counter will “roll over” to 00H and the data of 00H will be read out. In case of  
HP/SPK-Amp blocks, if the address exceeds 12H prior to generating stop condition, the address counter will “roll over”  
to 00H and the data of 00H will be read out.  
The AK4675 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ.  
(2)-2-1. CURRENT ADDRESS READ (except for 10bit SAR ADC Data)  
The AK4675 contains an internal address counter that maintains the address of the last word accessed, incremented by  
one. Therefore, if the last access (either a read or write) were to address “n”, the next CURRENT READ operation would  
access data from the address “n+1”. After receipt of the slave address with R/W bit set to “1”, the AK4675 generates an  
acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal  
address counter by 1. If the master does not generate an acknowledge to the data but instead generates stop condition, the  
AK4675 ceases transmission.  
S
S
T
O
P
T
A
R
T
R/W="1"  
Slave  
Address  
S
Data(n)  
Data(n+1)  
Data(n+2)  
Data(n+x)  
P
SDA  
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
A
C
K
Figure 108. CURRENT ADDRESS READ  
(2)-2-2. RANDOM ADDRESS READ  
The random read operation allows the master to access any memory location at random. Prior to issuing the slave address  
with the R/W bit set to “1”, the master must first perform “dummy” write operation. The master issues start request, a  
slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master  
immediately reissues the start request and the slave address with the R/W bit set to “1”. The AK4675 then generates an  
acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an  
acknowledge to the data but instead generates a stop condition, the AK4675 ceases transmission.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
R/W="0"  
R/W="1"  
Slave  
Address  
Sub  
Address(n)  
Slave  
Address  
S
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
A
C
K
Figure 109. RANDOM ADDRESS READ  
When SAR ADC data is read, register data of Addr=5BH should be read by RANDOM ADDRESS READ, then stop  
condition should be input.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
R/W="0"  
R/W="1"  
Slave  
Address  
Sub  
Address(5BH)  
Slave  
Address  
S
S
Data(D9-2)  
Data(D1-0)  
P
SDA  
A
C
K
A
C
K
A
C
K
M A  
M N  
A
S
T
A
S
T
C
K
A
C
K
E
R
E
R
Figure 110. RANDOM ADDRESS READ of SAR ADC Data  
MS0963-E-00  
2008/05  
- 138 -  
 
[AK4675]  
SDA  
SCL  
S
P
start condition  
stop condition  
Figure 111. START and STOP Conditions  
DATA  
OUTPUT BY  
TRANSMITTER  
not acknowledge  
DATA  
OUTPUT BY  
RECEIVER  
acknowledge  
SCL FROM  
MASTER  
2
1
8
9
S
clock pulse for  
acknowledgement  
START  
CONDITION  
Figure 112. Acknowledge on the I2C-Bus  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
Figure 113. Bit Transfer on the I2C-Bus  
MS0963-E-00  
2008/05  
- 139 -  
 
[AK4675]  
Register Map (CODEC & SRC Blocks)  
Addr Register Name  
00H AD/DA Power Management PMDAR PMDAL PMADR PMADL  
01H PLL Mode Select 0  
02H PLL Mode Select 1  
03H Format Select  
04H MIC Signal Select  
05H MIC Amp Gain  
D7  
D6  
D5  
D4  
D3  
PMMICR  
PLL3  
PS0  
MSBS  
INR1  
D2  
PMMICL  
D1  
PMMP  
PLL1  
M/S  
DIF1  
D0  
PMVCM  
PLL0  
FS3  
BTCLK  
0
MDIF4  
MGNR3  
0
FS2  
LP  
0
MDIF3  
MGNR2  
0
FS1  
BCKO  
0
MDIF2  
MGNR1  
0
FS0  
PS1  
SDOD  
MDIF1  
MGNR0  
0
PLL2  
PMPLL  
MCKO  
BCKP  
INR0  
DIF0  
INL0  
INL1  
MGNL3  
MGNL2  
DTMIC  
PMAINL2  
L1VL2  
LINL2  
RINR2  
LINH2  
RINH2  
LINS2  
RINS2  
LOPS1  
0
MGNL1  
PMLOOPR  
PMAINR1  
L1VL1  
LINL1  
RINR1  
LINH1  
RINH1  
LINS1  
RINS1  
PMRO1  
0
MGNL0  
PMLOOPL  
PMAINL1  
L1VL0  
DACL  
DACR  
DACHL  
DACHR  
DACSL  
DACSR  
PMLO1  
0
Mixing Power Management 0  
06H  
07H  
0
PMAINR4  
PMAINL4  
PMAINR3  
PMAINL3  
PMAINR2  
0
Mixing Power Management 1  
08H Output Volume Control  
09H LOUT1 Signal Select  
0AH ROUT1 Signal Select  
0BH LOUT2S Signal Select  
0CH ROUT2S Signal Select  
0DH LOUT3 Signal Select  
0EH ROUT3 Signal Select  
0FH LOUT1 Power Management  
1
0
1
1
L1G1  
L2G1  
L3G1  
L4G1  
LPG1  
0
L1G0  
L2G0  
L3G0  
L4G0  
LPG0  
0
LOOPL  
LOOPR  
LOOPHL  
LOOPHR  
LOOPSL  
LOOPSR  
RCV  
PMLO2S  
LODIF  
IVL5  
LINL4  
RINR4  
LINH4  
RINH4  
LINS4  
RINS4  
LOOPM  
LOOPM2  
LOOPM3  
IVL4  
LINL3  
RINR3  
LINH3  
RINH3  
LINS3  
RINS3  
LOM  
LOM2  
LOM3  
IVL3  
0
0
0
LOUT2S Power Management  
PMRO2S  
L3VL0  
IVL6  
IVR6  
REF6  
SRMXR0  
RFST1  
ZELMN  
MIXD  
SRA0  
OVL6  
OVR6  
0
GN0  
F3A6  
0
F3B6  
0
E0A6  
E0A14  
E0B6  
0
E0C6  
E0C14  
F1A6  
0
10H  
11H LOUT3 Power Management  
12H Lch Input Volume Control  
13H Rch Input Volume Control  
14H ALC Reference Select  
15H Digital Mixing Control  
16H ALC Timer Select  
17H ALC Mode Control  
18H Mode Control 1  
L3VL1  
IVL7  
IVR7  
REF7  
SRMXR1  
0
LOPS3  
IVL2  
IVR2  
REF2  
PFMXR0  
PMRO3  
IVL1  
IVR1  
REF1  
PFMXL1  
PMLO3  
IVL0  
IVR0  
IVR5  
REF5  
IVR4  
REF4  
SRMXL0  
IVR3  
REF3  
PFMXR1  
WTM1  
REF0  
SRMXL1  
RFST0  
LMAT1  
SDIM1  
BIV2  
OVL5  
OVR5  
SVAR2  
LPF  
F3A5  
F3A13  
F3B5  
F3B13  
E0A5  
E0A13  
E0B5  
E0B13  
E0C5  
E0C13  
F1A5  
F1A13  
F1B5  
F1B13  
F2A5  
PFMXL0  
ZTM0  
LMTH0  
ALC  
OVOLC  
OVL0  
OVR0  
SVAL0  
PFSEL  
F3A0  
F3A8  
F3B0  
F3B8  
E0A0  
E0A8  
E0B0  
E0B8  
E0C0  
E0C8  
F1A0  
F1A8  
F1B0  
F1B8  
F2A0  
F2A8  
F2B0  
WTM2  
WTM0  
ZTM1  
0
LMAT0 RGAIN1 RGAIN0 LMTH1  
SDIM0  
BIV1  
OVL4  
OVR4  
SVAR1  
HPF  
F3A4  
F3A12  
F3B4  
F3B12  
E0A4  
E0A12  
E0B4  
E0B12  
E0C4  
E0C12  
F1A4  
F1A12  
F1B4  
F1B12  
F2A4  
F2A12  
F2B4  
DAM  
SRA1  
OVL7  
OVR7  
0
GN1  
F3A7  
F3AS  
F3B7  
0
E0A7  
E0A15  
E0B7  
0
E0C7  
E0C15  
F1A7  
0
EQ  
BIV0  
ADM  
SMUTE  
OVL2  
OVR2  
SVAL2  
FIL3  
F3A2  
F3A10  
F3B2  
F3B10  
E0A2  
E0A10  
E0B2  
E0B10  
E0C2  
E0C10  
F1A2  
F1A10  
F1B2  
F1B10  
F2A2  
F2A10  
F2B2  
F2B10  
IVOLC  
OVTM  
OVL1  
OVR1  
SVAL1  
HPFAD  
F3A1  
F3A9  
F3B1  
F3B9  
E0A1  
E0A9  
E0B1  
E0B9  
E0C1  
E0C9  
F1A1  
F1A9  
F1B1  
F1B9  
F2A1  
F2A9  
F2B1  
F2B9  
19H Mode Control 2  
1AH Lch Output Volume Control  
1BH Rch Output Volume Control  
1CH Side Tone A Control  
1DH Digital Filter Select  
1EH FIL3 Co-efficient 0  
1FH FIL3 Co-efficient 1  
20H FIL3 Co-efficient 2  
21H FIL3 Co-efficient 3  
22H EQ Co-efficient 0  
23H EQ Co-efficient 1  
24H EQ Co-efficient 2  
25H EQ Co-efficient 3  
26H EQ Co-efficient 4  
OVL3  
OVR3  
SVAR0  
EQ0  
F3A3  
F3A11  
F3B3  
F3B11  
E0A3  
E0A11  
E0B3  
E0B11  
E0C3  
E0C11  
F1A3  
F1A11  
F1B3  
27H EQ Co-efficient 5  
28H FIL1 Co-efficient 0  
29H FIL1 Co-efficient 1  
2AH FIL1 Co-efficient 2  
2BH FIL1 Co-efficient 3  
2CH LPF Co-efficient 0  
2DH LPF Co-efficient 1  
2EH LPF Co-efficient 2  
2FH LPF Co-efficient 3  
F1B7  
0
F2A7  
0
F2B7  
0
F1B6  
0
F2A6  
0
F2B6  
0
F1B11  
F2A3  
F2A11  
F2B3  
F2A13  
F2B5  
F2B13  
F2B12  
F2B11  
F2B8  
MS0963-E-00  
2008/05  
- 140 -  
[AK4675]  
D0  
Addr Register Name  
30H Digital Filter Select 2  
31H Reserved  
D7  
0
0
D6  
0
0
D5  
0
0
D4  
EQ5  
0
D3  
EQ4  
0
D2  
EQ3  
0
D1  
EQ2  
0
EQ1  
0
32H E1 Co-efficient 0  
33H E1 Co-efficient 1  
34H E1 Co-efficient 2  
35H E1 Co-efficient 3  
36H E1 Co-efficient 4  
37H E1 Co-efficient 5  
38H E2 Co-efficient 0  
39H E2 Co-efficient 1  
3AH E2 Co-efficient 2  
3BH E2 Co-efficient 3  
3CH E2 Co-efficient 4  
3DH E2 Co-efficient 5  
3EH E3 Co-efficient 0  
3FH E3 Co-efficient 1  
40H E3 Co-efficient 2  
41H E3 Co-efficient 3  
42H E3 Co-efficient 4  
43H E3 Co-efficient 5  
44H E4 Co-efficient 0  
45H E4 Co-efficient 1  
46H E4 Co-efficient 2  
47H E4 Co-efficient 3  
48H E4 Co-efficient 4  
49H E4 Co-efficient 5  
4AH E5 Co-efficient 0  
4BH E5 Co-efficient 1  
4CH E5 Co-efficient 2  
4DH E5 Co-efficient 3  
4EH E5 Co-efficient 4  
4FH E5 Co-efficient 5  
50H EQ Control 250Hz/100Hz  
51H EQ Control 3.5kHz/1kHz  
52H EQ Control 10kHz  
53H PCM I/F Control 0  
54H PCM I/F Control 1  
55H PCM I/F Control 2  
56H Digital Volume B Control  
57H Digital Volume C Control  
58H Side Tone Volume Control  
59H Digital Mixing Control  
5AH SAR ADC Control  
E1A7  
E1A15  
E1B7  
E1B15  
E1C7  
E1C15  
E2A7  
E2A15  
E2B7  
E2B15  
E2C7  
E2C15  
E3A7  
E3A15  
E3B7  
E3B15  
E3C7  
E3C15  
E4A7  
E4A15  
E4B7  
E4B15  
E4C7  
E4C15  
E5A7  
E5A15  
E5B7  
E5B15  
E5C7  
E5C15  
EQB3  
EQD3  
0
E1A6  
E1A14  
E1B6  
E1B14  
E1C6  
E1C14  
E2A6  
E2A14  
E2B6  
E2B14  
E2C6  
E2C14  
E3A6  
E3A14  
E3B6  
E3B14  
E3C6  
E3C14  
E4A6  
E4A14  
E4B6  
E4B14  
E4C6  
E4C14  
E5A6  
E5A14  
E5B6  
E5B14  
E5C6  
E5C14  
EQB2  
EQD2  
0
E1A5  
E1A13  
E1B5  
E1B13  
E1C5  
E1C13  
E2A5  
E2A13  
E2B5  
E2B13  
E2C5  
E2C13  
E3A5  
E3A13  
E3B5  
E3B13  
E3C5  
E3C13  
E4A5  
E4A13  
E4B5  
E4B13  
E4C5  
E4C13  
E5A5  
E5A13  
E5B5  
E5B13  
E5C5  
E5C13  
EQB1  
EQD1  
0
E1A4  
E1A12  
E1B4  
E1B12  
E1C4  
E1C12  
E2A4  
E2A12  
E2B4  
E2B12  
E2C4  
E2C12  
E3A4  
E3A12  
E3B4  
E3B12  
E3C4  
E3C12  
E4A4  
E4A12  
E4B4  
E4B12  
E4C4  
E4C12  
E5A4  
E5A12  
E5B4  
E5B12  
E5C4  
E5C12  
EQB0  
EQD0  
0
E1A3  
E1A11  
E1B3  
E1B11  
E1C3  
E1C11  
E2A3  
E2A11  
E2B3  
E2B11  
E2C3  
E2C11  
E3A3  
E3A11  
E3B3  
E3B11  
E3C3  
E3C11  
E4A3  
E4A11  
E4B3  
E4B11  
E4C3  
E4C11  
E5A3  
E5A11  
E5B3  
E5B11  
E5C3  
E5C11  
EQA3  
EQC3  
EQE3  
E1A2  
E1A10  
E1B2  
E1B10  
E1C2  
E1C10  
E2A2  
E2A10  
E2B2  
E2B10  
E2C2  
E2C10  
E3A2  
E3A10  
E3B2  
E3B10  
E3C2  
E3C10  
E4A2  
E4A10  
E4B2  
E4B10  
E4C2  
E4C10  
E5A2  
E5A10  
E5B2  
E5B10  
E5C2  
E5C10  
EQA2  
EQC2  
EQE2  
E1A1  
E1A9  
E1B1  
E1B9  
E1C1  
E1C9  
E2A1  
E2A9  
E2B1  
E2B9  
E2C1  
E2C9  
E3A1  
E3A9  
E3B1  
E3B9  
E3C1  
E3C9  
E4A1  
E4A9  
E4B1  
E4B9  
E4C1  
E4C9  
E5A1  
E5A9  
E5B1  
E5B9  
E5C1  
E5C9  
EQA1  
EQC1  
EQE1  
E1A0  
E1A8  
E1B0  
E1B8  
E1C0  
E1C8  
E2A0  
E2A8  
E2B0  
E2B8  
E2C0  
E2C8  
E3A0  
E3A8  
E3B0  
E3B8  
E3C0  
E3C8  
E4A0  
E4A8  
E4B0  
E4B8  
E4C0  
E4C8  
E5A0  
E5A8  
E5B0  
E5B8  
E5C0  
E5C8  
EQA0  
EQC0  
EQE0  
PMSRA  
FMTA0  
FMTB0  
BVL0  
CVL0  
SVB0  
SBMX0  
PMSAD  
GPOM2  
SDOAD  
SDOBD PLLBT3 MSBSB  
BVL7  
CVL7  
0
SDOR1  
0
GPOE2  
BCKO2  
PLLBT2 PLLBT1 PLLBT0 PMPCM PMSRB  
MSBSA  
BCKPA  
BCKPB  
BVL4  
CVL4  
0
LAWA1 LAWA0  
LAWB1 LAWB0  
BVL3  
CVL3  
SDOA  
FMTA1  
FMTB1  
BVL1  
CVL1  
SVB1  
SBMX1  
A0  
BVL6  
CVL6  
0
SDOR0  
0
BVL5  
CVL5  
0
SDOL1  
0
BVL2  
CVL2  
SVB2  
SDOL0  
GPOM1  
BVMX1 BVMX0  
GPOE1 A1  
Note 85. PDN pin = “L” resets the registers of CODEC & SRC blocks to their default values.  
Note 86. The bits defined as 0 must contain a “0” value.  
Note 87. Addresses 1EH to 2FH and 32H to 4FH cannot be read.  
MS0963-E-00  
2008/05  
- 141 -  
[AK4675]  
Register Definitions (CODEC & SRC Blocks)  
Addr Register Name  
00H AD/DA Power Management  
D7  
PMDAR  
R/W  
D6  
PMDAL  
R/W  
0
D5  
D4  
D3  
PMMICR  
D2  
PMMICL  
D1  
D0  
PMVCM  
PMADR PMADL  
R/W  
0
PMMP  
R/W  
0
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
PMVCM: VCOM Power Management  
0: Power down (default)  
1: Power up  
When any blocks are powered-up, the PMVCM bit must be set to “1”. PMVCM bit can be set to “0” only  
when all power management bits are “0”.  
PMMP: MPWR pin Power Management  
0: Power down: Hi-Z (default)  
1: Power up  
PMMICL: MIC-Amp Lch Power Management  
0: Power down (default)  
1: Power up  
PMMICR: MIC-Amp Rch Power Management  
0: Power down (default)  
1: Power up  
PMADL: ADC Lch Power Management  
0: Power down (default)  
1: Power up  
When the PMADL or PMADR bit is changed from “0” to “1”, the initialization cycle (1059/fs=24ms  
@44.1kHz) starts. After initializing, digital data of the ADC is output.  
PMADR: ADC Rch Power Management  
0: Power down (default)  
1: Power up  
PMDAL: DAC Lch Power Management  
0: Power down (default)  
1: Power up  
PMDAR: DAC Rch Power Management  
0: Power down (default)  
1: Power up  
Each block can be powered-down respectively by writing “0” in each bit of this address. When the PDN pin is “L”, all  
blocks of CODEC & SRC are powered-down regardless of setting of this address. In this case, register of CODEC &  
SRC is initialized to the default value.  
When all power management bits are “0”, all blocks of CODEC & SRC are powered-down. The register values of  
CODEC & SRC remain unchanged. Power supply current is 20μA(typ) in this case. For fully shut down (typ. 1μA),  
PDN pin should be “L”.  
When neither ADC nor DAC are used, external clocks may not be present. When ADC or DAC is used, external clocks  
must always be present.  
MS0963-E-00  
2008/05  
- 142 -  
[AK4675]  
Addr  
01H  
Register Name  
PLL Mode Select 0  
R/W  
D7  
FS3  
R/W  
1
D6  
FS2  
R/W  
1
D5  
FS1  
R/W  
1
D4  
FS0  
R/W  
1
D3  
PLL3  
R/W  
0
D2  
PLL2  
R/W  
1
D1  
PLL1  
R/W  
1
D0  
PLL0  
R/W  
0
Default  
PLL3-0: PLL Reference Clock Select (Table 4)  
Default: “0110”(MCKI pin, 12MHz)  
FS3-0: Sampling Frequency Select (See Table 5 and Table 6) and MCKI Frequency Select (Table 11)  
FS3-0 bits select sampling frequency at PLL mode and MCKI frequency at EXT mode.  
Addr Register Name  
D7  
BTCLK  
R/W  
0
D6  
LP  
R/W  
0
D5  
BCKO  
R/W  
0
D4  
PS1  
R/W  
0
D3  
PS0  
R/W  
0
D2  
MCKO  
R/W  
0
D1  
M/S  
R/W  
0
D0  
PMPLL  
02H  
PLL Mode Select 1  
R/W  
R/W  
0
Default  
PMPLL: PLL Power Management  
0: EXT Mode and Power Down (default)  
1: PLL Mode and Power up  
M/S: Master / Slave Mode Select  
0: Slave Mode (default)  
1: Master Mode  
MCKO: Master Clock Output Enable  
0: Disable: MCKO pin = “L” (default)  
1: Enable: Output frequency is selected by PS1-0 bits.  
PS1-0: MCKO Output Frequency Select (Table 9)  
Default: “00”(256fs)  
BCKO: BICK Output Frequency Select at Master Mode (Table 10)  
LP: Low Power Mode  
0: Normal Mode (default)  
1: Low Power Mode: available at fs=22.05kHz or less.  
BTCLK: Clock Mode of Audio CODEC  
0: Synchronized to Audio I/F (default)  
1: Synchronized to PCM I/F  
BTCLK bit is enabled at only PMPLL bit = “0”. When BTCLK bit is “1”, Audio CODEC and the digital block  
(Figure 56) operate by the clock generated by PLLBT.  
MS0963-E-00  
2008/05  
- 143 -  
[AK4675]  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
SDOD  
R/W  
0
D3  
MSBS  
R/W  
0
D2  
BCKP  
R/W  
0
D1  
DIF1  
R/W  
1
D0  
DIF0  
R/W  
0
03H  
Format Select  
R/W  
Default  
DIF1-0: Audio Interface Format (Table 16)  
Default: “10” (Left jutified)  
BCKP: BICK Polarity at DSP Mode (Table 17)  
“0”: SDTO is output by the rising edge (“”) of BICK and SDTI is latched by the falling edge (“”). (default)  
“1”: SDTO is output by the falling edge (“”) of BICK and SDTI is latched by the rising edge (“”).  
MSBS: LRCK Phase at DSP Mode (Table 17)  
“0”: The rising edge (“”) of LRCK is half clock of BICK before the channel change. (default)  
“1”: The rising edge (“”) of LRCK is one clock of BICK before the channel change.  
SDOD: SDTO Disable (Table 47)  
“0”: Enable (default)  
“1”: Disable (“L”)  
Addr Register Name  
D7  
MDIF4  
R/W  
0
D6  
MDIF3  
R/W  
0
D5  
MDIF2  
R/W  
0
D4  
MDIF1  
R/W  
0
D3  
INR1  
R/W  
0
D2  
INR0  
R/W  
0
D1  
INL1  
R/W  
0
D0  
INL0  
R/W  
0
04H  
MIC Signal Select  
R/W  
Default  
INL1-0: MIC-Amp Lch Input Source Select (Table 18)  
Default: “00” (LIN1)  
INR1-0: MIC-Amp Rch Input Source Select (Table 18)  
Default: “00” (RIN1)  
MDIF1: Line1 Input Type Select  
0: Single-ended input (LIN1/RIN1 pins: default)  
1: Full-differential input (IN1+/IN1pins)  
MDIF2: Line2 Input Type Select  
0: Single-ended input (LIN2/RIN2 pins: default)  
1: Full-differential input (IN2+/IN2pins)  
MDIF3: Line3 Input Type Select  
0: Single-ended input (LIN3/RIN3 pins: default)  
1: Full-differential input (IN3+/IN3pins)  
MDIF4: Line4 Input Type Select  
0: Single-ended input (LIN4/RIN4 pins: default)  
1: Full-differential input (IN4+/IN4pins)  
MS0963-E-00  
2008/05  
- 144 -  
[AK4675]  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MGNR3  
MGNR2  
MGNR1  
MGNR0  
MGNL3  
MGNL2  
MGNL1  
MGNL0  
05H  
MIC Amp Gain  
R/W  
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
1
Default  
MGNL3-0: MIC-Amp Lch Gain Control (Table 19)  
Default: “0101” (0dB)  
MGNR3-0: MIC-Amp Rch Gain Control (Table 19)  
Default: “0101” (0dB)  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
0
RD  
0
D2  
DTMIC  
RD  
D1  
PMLOOPR  
D0  
PMLOOPL  
Mixing Power Management 0  
06H  
R/W  
Default  
R/W  
0
R/W  
0
0
PMLOOPL: MIC-Amp Lch Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMLOOPR: MIC-Amp Rch Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
DTMIC: Microphone Detection Result (Read Only: Table 21)  
0: Microphone is not detected. (default)  
1: Microphone is detected.  
MS0963-E-00  
2008/05  
- 145 -  
[AK4675]  
D0  
Addr Register Name  
07H Mixing Power Management 1  
D7  
PMAINR4  
D6  
PMAINL4  
D5  
PMAINR3  
D4  
PMAINL3  
D3  
PMAINR2  
D2  
PMAINL2  
D1  
PMAINR1  
PMAINL1  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
PMAINL1: LIN1 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINR1: RIN1 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINL2: LIN2 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINR2: RIN2 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINL3: LIN3 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINR3: RIN3 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINL4: LIN4 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINR4: RIN4 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
Addr Register Name  
08H Output Volume Control  
D7  
1
RD  
1
D6  
0
RD  
0
D5  
1
RD  
1
D4  
1
RD  
1
D3  
0
RD  
0
D2  
L1VL2  
R/W  
1
D1  
L1VL1  
R/W  
0
D0  
L1VL0  
R/W  
1
R/W  
Default  
L1VL3-0: LOUT1/ROUT1 Output Volume Control (Table 67)  
Default: “5H” (0dB)  
MS0963-E-00  
2008/05  
- 146 -  
[AK4675]  
Addr Register Name  
09H LOUT1 Signal Select  
D7  
L1G1  
R/W  
0
D6  
L1G0  
R/W  
0
D5  
LOOPL  
R/W  
0
D4  
LINL4  
R/W  
0
D3  
LINL3  
R/W  
0
D2  
LINL2  
R/W  
0
D1  
LINL1  
R/W  
0
D0  
DACL  
R/W  
0
R/W  
Default  
DACL: Switch Control from DAC Lch to LOUT1  
0: OFF (default)  
1: ON  
When PMLO1 bit is “1”, DACL bit is enabled. When PMLO1 bit is “0”, the LOUT1 pin goes to VSS1.  
LINL1: Switch Control from LIN1 to LOUT1  
0: OFF (default)  
1: ON  
LINL2: Switch Control from LIN2 to LOUT1  
0: OFF (default)  
1: ON  
LINL3: Switch Control from LIN3 to LOUT1  
0: OFF (default)  
1: ON  
LINL4: Switch Control from LIN4 to LOUT1  
0: OFF (default)  
1: ON  
LOOPL: Switch Control from MIC-Amp Lch to LOUT1  
0: OFF (default)  
1: ON  
L1G1-0: LIN1/RIN1 Mixing Gain Control (Table 60)  
Default: “00” (0dB)  
MS0963-E-00  
2008/05  
- 147 -  
[AK4675]  
Addr Register Name  
0AH ROUT1 Signal Select  
R/W  
D7  
L2G1  
R/W  
0
D6  
L2G0  
R/W  
0
D5  
LOOPR  
R/W  
0
D4  
RINR4  
R/W  
0
D3  
RINR3  
R/W  
0
D2  
RINR2  
R/W  
0
D1  
RINR1  
R/W  
0
D0  
DACR  
R/W  
0
Default  
DACR: Switch Control from DAC Rch to ROUT1  
0: OFF (default)  
1: ON  
When PMRO1 bit is “1”, DACR bit is enabled. When PMRO1 bit is “0”, the ROUT1 pin goes to VSS1.  
RINR1: Switch Control from RIN1 to ROUT1  
0: OFF (default)  
1: ON  
RINR2: Switch Control from RIN2 to ROUT1  
0: OFF (default)  
1: ON  
RINR3: Switch Control from RIN3 to ROUT1  
0: OFF (default)  
1: ON  
RINR4: Switch Control from RIN4 to ROUT1  
0: OFF (default)  
1: ON  
LOOPR: Switch Control from MIC-Amp Rch to ROUT1  
0: OFF (default)  
1: ON  
L2G1-0: LIN2/RIN2 Mixing Gain Control (Table 61)  
Default: “00” (0dB)  
MS0963-E-00  
2008/05  
- 148 -  
[AK4675]  
D0  
Addr Register Name  
0BH LOUT2S Signal Select  
D7  
L3G1  
R/W  
0
D6  
L3G0  
R/W  
0
D5  
LOOPHL  
D4  
LINH4  
R/W  
0
D3  
LINH3  
R/W  
0
D2  
LINH2  
R/W  
0
D1  
LINH1 DACHL  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
DACHL: Switch Control from DAC Lch to LOUT2S  
0: OFF (default)  
1: ON  
LINH1: Switch Control from LIN1 to LOUT2S  
0: OFF (default)  
1: ON  
LINH2: Switch Control from LIN2 to LOUT2S  
0: OFF (default)  
1: ON  
LINH3: Switch Control from LIN3 to LOUT2S  
0: OFF (default)  
1: ON  
LINH4: Switch Control from LIN4 to LOUT2S  
0: OFF (default)  
1: ON  
LOOPHL: Switch Control from MIC-Amp Lch to LOUT2S  
0: OFF (default)  
1: ON  
L3G1-0: LIN3/RIN3 Mixing Gain Control (Table 62)  
Default: “00” (0dB)  
MS0963-E-00  
2008/05  
- 149 -  
[AK4675]  
Addr Register Name  
0CH ROUT2S Signal Select  
D7  
L4G1  
R/W  
0
D6  
L4G0  
R/W  
0
D5  
LOOPHR  
D4  
RINH4  
R/W  
0
D3  
RINH3  
R/W  
0
D2  
RINH2  
R/W  
0
D1  
RINH1  
R/W  
0
D0  
DACHR  
R/W  
0
R/W  
Default  
R/W  
0
DACHR: Switch Control from DAC Rch to ROUT2S  
0: OFF (default)  
1: ON  
RINH1: Switch Control from RIN1 to ROUT2S  
0: OFF (default)  
1: ON  
RINH2: Switch Control from RIN2 to ROUT2S  
0: OFF (default)  
1: ON  
RINH3: Switch Control from RIN3 to ROUT2S  
0: OFF (default)  
1: ON  
RINH4: Switch Control from RIN4 to ROUT2S  
0: OFF (default)  
1: ON  
LOOPHR: Switch Control from MIC-Amp Rch to ROUT2S  
0: OFF (default)  
1: ON  
L4G1-0: LIN4/RIN4 Mixing Gain Control (Table 63)  
Default: “00” (0dB)  
MS0963-E-00  
2008/05  
- 150 -  
[AK4675]  
Addr Register Name  
0DH LOUT3 Signal Select  
R/W  
D7  
LPG1  
R/W  
0
D6  
LPG0  
R/W  
0
D5  
LOOPSL  
D4  
LINS4  
R/W  
0
D3  
LINS3  
R/W  
0
D2  
LINS2  
R/W  
0
D1  
LINS1  
R/W  
0
D0  
DACSL  
R/W  
0
R/W  
0
Default  
DACSL: Switch Control from DAC Lch to LOUT3  
0: OFF (default)  
1: ON  
When PMLO3 bit is “1”, DACSL bit is enabled. When PMLO3 bit is “0”, the LOUT3 pin goes to VSS1.  
LINS1: Switch Control from LIN1 to LOUT3  
0: OFF (default)  
1: ON  
LINS2: Switch Control from LIN2 to LOUT3  
0: OFF (default)  
1: ON  
LINS3: Switch Control from LIN3 to LOUT3  
0: OFF (default)  
1: ON  
LINS4: Switch Control from LIN4 to LOUT3  
0: OFF (default)  
1: ON  
LOOPSL: Switch Control from MIC-Amp Lch to LOUT3  
0: OFF (default)  
1: ON  
LPG1-0: MIC-Amp Mixing Gain Control (Table 64)  
Default: “00” (0dB)  
MS0963-E-00  
2008/05  
- 151 -  
[AK4675]  
Addr Register Name  
0EH ROUT3 Signal Select  
R/W  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
LOOPSR  
D4  
RINS4  
R/W  
0
D3  
RINS3  
R/W  
0
D2  
RINS2  
R/W  
0
D1  
RINS1  
R/W  
0
D0  
DACSR  
R/W  
0
R/W  
0
Default  
DACSR: Switch Control from DAC Rch to ROUT3  
0: OFF (default)  
1: ON  
When PMRO3 bit is “1”, DACR bit is enabled. When PMRO3 bit is “0”, the ROUT3 pin goes to VSS1.  
RINS1: Switch Control from RIN1 to ROUT3  
0: OFF (default)  
1: ON  
RINS2: Switch Control from RIN2 to ROUT3  
0: OFF (default)  
1: ON  
RINS3: Switch Control from RIN3 to ROUT3  
0: OFF (default)  
1: ON  
RINS4: Switch Control from RIN4 to ROUT3  
0: OFF (default)  
1: ON  
LOOPSR: Switch Control from MIC-Amp Rch to ROUT3  
0: OFF (default)  
1: ON  
MS0963-E-00  
2008/05  
- 152 -  
[AK4675]  
D0  
Addr Register Name  
0FH LOUT1 Power Management  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
RCV  
R/W  
0
D4  
LOOPM  
R/W  
0
D3  
LOM  
R/W  
0
D2  
LOPS1  
R/W  
0
D1  
PMRO1 PMLO1  
R/W  
Default  
R/W  
0
R/W  
0
PMLO1: LOUT1 Power Management  
0: Power down (default)  
1: Power up  
PMRO1: ROUT1 Power Management  
0: Power down (default)  
1: Power up  
LOPS1: LOUT1/ROUT1 Power Save Mode  
0: Normal Operation (default)  
1: Power Save Mode  
LOM: Mono Mixing from DAC to LOUT1/ROUT1  
0: Stereo Mixing (default)  
1: Mono Mixing  
LOOPM: Mono Mixing from MIC-Amp to LOUT1/ROUT1  
0: Stereo Mixing (default)  
1: Mono Mixing  
RCV: Receiver Select  
0: Stereo Line Output (LOUT1/ROUT1 pins) (default)  
1: Mono Receiver Output (RCP/RCN pins)  
MS0963-E-00  
2008/05  
- 153 -  
[AK4675]  
Addr Register Name  
10H LOUT2S Power Management  
D7  
0
RD  
0
D6  
PMRO2S  
D5  
D4  
D3  
LOM2  
R/W  
0
D2  
0
RD  
0
D1  
0
RD  
0
D0  
0
RD  
0
PMLO2S LOOPM2  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
LOM2: Mono Mixing from DAC to LOUT2S/ROUT2S  
0: Stereo Mixing (default)  
1: Mono Mixing  
LOOPM2: Mono Mixing from MIC-Amp to LOUT2S/ROUT2S  
0: Stereo Mixing (default)  
1: Mono Mixing  
PMLO2S: LOUT2S MIX-Amp Power Management  
0: Power down (default)  
1: Power up  
PMRO2S: ROUT2S MIX-Amp Power Management  
0: Power down (default)  
1: Power up  
MS0963-E-00  
2008/05  
- 154 -  
[AK4675]  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
11H LOUT3 Power Management L3VL1  
PMLO3  
R/W  
0
R/W  
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
PMLO3: LOUT3 Power Management  
0: Power down (default)  
1: Power up  
PMRO3: ROUT3 Power Management  
0: Power down (default)  
1: Power up  
LOPS3: LOUT3/ROUT3 Power Save Mode  
0: Normal Operation (default)  
1: Power Save Mode  
LOM3: Mono Mixing from DAC to LOUT3/ROUT3  
0: Stereo Mixing (default)  
1: Mono Mixing  
LOOPM3: Mono Mixing from MIC-Amp to LOUT3/ROUT3  
0: Stereo Mixing (default)  
1: Mono Mixing  
LODIF: Lineout Select  
0: Single-ended Stereo Line Output (LOUT3/ROUT3 pins) (default)  
1: Full-differential Mono Line Output (LOP/LON pins)  
L3VL1-0: LOUT3/ROUT3 Output Gain Control (Table 72)  
Default: “10” (0dB)  
MS0963-E-00  
2008/05  
- 155 -  
[AK4675]  
Addr Register Name  
12H Lch Input Volume Control  
13H Rch Input Volume Control  
R/W  
D7  
IVL7  
IVR7  
R/W  
1
D6  
IVL6  
IVR6  
R/W  
0
D5  
IVL5  
IVR5  
R/W  
0
D4  
IVL4  
IVR4  
R/W  
1
D3  
IVL3  
IVR3  
R/W  
0
D2  
IVL2  
IVR2  
R/W  
0
D1  
IVL1  
IVR1  
R/W  
0
D0  
IVL0  
IVR0  
R/W  
1
Default  
IVL7-0, IVR7-0: Input Digital Volume; 0.375dB step, 242 Level (Table 33)  
Default: “91H” (0dB)  
Addr Register Name  
14H ALC Reference Select  
R/W  
D7  
REF7  
R/W  
1
D6  
REF6  
R/W  
1
D5  
REF5  
R/W  
1
D4  
REF4  
R/W  
0
D3  
REF3  
R/W  
0
D2  
REF2  
R/W  
0
D1  
REF1  
R/W  
0
D0  
REF0  
R/W  
1
Default  
REF7-0: Reference Value at ALC Recovery Operation; 0.375dB step, 242 Level (Table 29)  
Default: “E1H” (+30.0dB)  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SRMXR1 SRMXR0 SRMXL1  
SRMXL0  
PFMXR1 PFMXR0 PFMXL1  
PFMXL0  
15H Digital Mixing Control  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
PFMXL1-0: 5-band EQ Lch Input Mixing 1 (Table 49.)  
Default: “00” (SDTI)  
PFMXR 1-0: 5-band EQ Rch Input Mixing 1 (Table 50.)  
Default: “00” (SDTI)  
SRMXL1-0: 5-band EQ Lch Input Mixing 2 (Table 51.)  
Default: “00” (SDTI)  
SRMXR 1-0: 5-band EQ Rch Input Mixing 2 (Table 52.)  
Default: “00” (SDTI)  
Addr Register Name  
16H ALC Timer Select  
R/W  
D7  
0
RD  
0
D6  
RFST1  
R/W  
0
D5  
RFST0  
R/W  
0
D4  
WTM2  
R/W  
0
D3  
WTM1  
R/W  
0
D2  
WTM0  
R/W  
0
D1  
ZTM1  
R/W  
0
D0  
ZTM0  
R/W  
0
Default  
ZTM1-0: ALC Limiter/Recovery Operation Zero Crossing Timeout Period (Table 26)  
Gain is changed by micro computer writing or ALC limiter operation at the zero crossing point or at the zero  
crossing timeout. Default value is “00” (128/fs)  
WTM2-0: ALC Recovery Waiting Period (Table 27)  
A period of recovery operation when any limiter operation does not occur during the ALC1 operation; Default  
is “000” (128/fs).  
RFST1-0: ALC First recovery Speed (Table 30)  
Default: “00”(4times)  
MS0963-E-00  
2008/05  
- 156 -  
[AK4675]  
D0  
Addr Register Name  
17H ALC Mode Control  
R/W  
D7  
0
RD  
0
D6  
D5  
D4  
D3  
D2  
D1  
ZELMN LMAT1 LMAT0 RGAIN1 RGAIN0 LMTH1 LMTH0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
LMTH1-0: ALC Limiter Detection Level / Recovery Counter Reset Level (Table 24)  
Default: “00”  
RGAIN1-0: ALC Recovery GAIN Step (Table 28)  
Default: “00”  
LMAT1-0: ALC Limiter ATT Step (Table 25)  
Default: “00”  
ZELMN: Zero Crossing Detection Enable at ALC Limiter Operation  
0: Enable (default)  
1: Disable  
Addr Register Name  
18H Mode Control 1  
R/W  
D7  
DAM  
R/W  
0
D6  
MIXD  
R/W  
0
D5  
SDIM1  
R/W  
0
D4  
SDIM0  
R/W  
0
D3  
EQ  
R/W  
0
D2  
ADM  
R/W  
0
D1  
IVOLC  
R/W  
1
D0  
ALC  
R/W  
0
Default  
ALC: ALC Enable  
0: ALC Disable (default)  
1: ALC Enable  
IVOLC: Input Digital Volume Control Mode Select  
0: Independent  
1: Dependent (default)  
When IVOLC bit = “1”, IVL7-0 bits control both Lch and Rch volume level, while register values of IVL7-0  
bits are not written to IVR7-0 bits. When IVOLC bit = “0”, IVL7-0 bits control Lch level and IVR7-0 bits  
control Rch level, respectively.  
ADM: Mono Recording (Table 44)  
0: Stereo (default)  
1: Mono: (L+R)/2  
EQ: Select 5-Band Equalizer  
0: OFF (default)  
1: ON  
SDIM1-0: SDTI Input Signal Select (Table 48)  
Default: “00” (L=Lch, R=Rch)  
MIXD: DAC and SRC-A Mono Mixing (Table 53 and Table 54.)  
0: L+R (default)  
1: (L+R)/2  
DAM: DAC Mono Mixing (Table 53)  
0: Stereo (default)  
1: Mono: (L+R) or (L+R)/2 is selected by MIXD bit.  
MS0963-E-00  
2008/05  
- 157 -  
[AK4675]  
Addr Register Name  
19H Mode Control 2  
R/W  
D7  
SRA1  
R/W  
0
D6  
SRA0  
R/W  
0
D5  
BIV2  
R/W  
0
D4  
BIV1  
R/W  
0
D3  
BIV0  
R/W  
0
D2  
SMUTE  
R/W  
0
D1  
OVTM  
R/W  
0
D0  
OVOLC  
R/W  
1
Default  
OVOLC: Output Digital Volume Control Mode Select  
0: Independent  
1: Dependent (default)  
When OVOLC bit = “1”, OVL7-0 bits control both Lch and Rch volume level, while register values of  
OVL7-0 bits are not written to OVR7-0 bits. When OVOLC bit = “0”, OVL7-0 bits control Lch level and  
OVR7-0 bits control Rch level, respectively.  
OVTM: Digital Volume Transition Time Setting  
0: 1061/fs (default)  
1: 256/fs  
This is the transition time between OVL/R7-0 bits = 00H and FFH.  
SMUTE: Soft Mute Control  
0: Normal Operation (default)  
1: DAC outputs soft-muted  
BIV2-0: SDTIB Input Volume Control (Table 41)  
Default: “0H” (0dB)  
SRA1-0: SRC-A Input Signal Select (Table 54)  
Default: “00” (Lch)  
Addr Register Name  
1AH Lch Output Volume Control  
1BH Rch Output Volume Control  
R/W  
D7  
OVL7  
OVR7  
R/W  
0
D6  
OVL6  
OVR6  
R/W  
0
D5  
OVL5  
OVR5  
R/W  
0
D4  
OVL4  
OVR4  
R/W  
1
D3  
OVL3  
OVR3  
R/W  
1
D2  
OVL2  
OVR2  
R/W  
0
D1  
OVL1  
OVR1  
R/W  
0
D0  
OVL0  
OVR0  
R/W  
0
Default  
OVL7-0, OVR7-0: Output Digital Volume (Table 36)  
Default: “18H” (0dB)  
Addr Register Name  
1CH Side Tone A Control  
R/W  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
SVAR2  
R/W  
0
D4  
SVAR1  
R/W  
0
D3  
SVAR0  
R/W  
0
D2  
SVAL2  
R/W  
0
D1  
SVAL1  
R/W  
0
D0  
SVAL0  
R/W  
0
Default  
SVAL2-0, SVAR2-0: Side Tone Volume A (SVOLA) (Table 34)  
Default: “000” (0dB))  
MS0963-E-00  
2008/05  
- 158 -  
[AK4675]  
Addr Register Name  
1DH Digital Filter Select  
R/W  
D7  
GN1  
R/W  
0
D6  
GN0  
R/W  
0
D5  
LPF  
R/W  
0
D4  
HPF  
R/W  
0
D3  
EQ0  
R/W  
0
D2  
FIL3  
R/W  
0
D1  
HPFAD  
R/W  
1
D0  
PFSEL  
R/W  
0
Default  
PFSEL: Signal Select of Programmable Filter Block (Table 43.)  
0: ADC Output Data (default)  
1: SDTI Input Data  
HPFAD: HPF Control of ADC  
0: OFF  
1: ON (default)  
When HPFAD bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPFAD bit is “0”,  
HPFAD block is through (0dB).  
GN1-0: Gain Select at GAIN block (Table 23)  
Default: “00” (0dB)  
FIL3: FIL3 (Stereo Separation Emphasis Filter) Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When FIL3 bit is “1”, the settings of F3A13-0 and F3B13-0 bits are enabled. When FIL3 bit is “0”, FIL3 block  
is OFF (MUTE).  
EQ0: EQ0 (Gain Compensation Filter) Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ0 bit is “1”, the settings of E0A15-0, E0B13-0 and E0C15-0 bits are enabled. When EQ0 bit is “0”,  
EQ0 block is through (0dB).  
HPF: HPF Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When HPF bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPF bit is “0”, HPF block  
is through (0dB).  
LPF: LPF Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When LPF bit is “1”, the settings of F2A13-0 and F2B13-0 bits are enabled. When LPF bit is “0”, LPF block  
is through (0dB).  
MS0963-E-00  
2008/05  
- 159 -  
[AK4675]  
Addr Register Name  
1EH FIL3 Co-efficient 0  
1FH FIL3 Co-efficient 1  
20H FIL3 Co-efficient 2  
21H FIL3 Co-efficient 3  
22H EQ Co-efficient 0  
23H EQ Co-efficient 1  
24H EQ Co-efficient 2  
25H EQ Co-efficient 3  
26H EQ Co-efficient 4  
27H EQ Co-efficient 5  
R/W  
D7  
F3A7  
F3AS  
F3B7  
0
E0A7  
E0A15  
E0B7  
0
D6  
F3A6  
0
F3B6  
0
E0A6  
E0A14  
E0B6  
0
E0C6  
E0C14  
W
D5  
F3A5  
F3A13  
F3B5  
F3B13  
E0A5  
E0A13  
E0B5  
E0B13  
E0C5  
E0C13  
W
D4  
F3A4  
F3A12  
F3B4  
F3B12  
E0A4  
E0A12  
E0B4  
E0B12  
E0C4  
E0C12  
W
D3  
F3A3  
F3A11  
F3B3  
F3B11  
E0A3  
E0A11  
E0B3  
E0B11  
E0C3  
E0C11  
W
D2  
F3A2  
F3A10  
F3B2  
F3B10  
E0A2  
E0A10  
E0B2  
E0B10  
E0C2  
E0C10  
W
D1  
D0  
F3A1  
F3A9  
F3B1  
F3B9  
E0A1  
E0A9  
E0B1  
E0B9  
E0C1  
E0C9  
W
F3A0  
F3A8  
F3B0  
F3B8  
E0A0  
E0A8  
E0B0  
E0B8  
E0C0  
E0C8  
W
E0C7  
E0C15  
W
Default  
0
0
0
0
0
0
0
0
F3A13-0, F3B13-0: FIL3 (Stereo Separation Emphasis Filter) Coefficient (14bit x 2)  
Default: “0000H”  
F3AS: FIL3 (Stereo Separation Emphasis Filter) Select  
0: HPF (Default)  
1: LPF  
E0A15-0, E0B13-0, E0C15-C0: EQ0 (Gain Compensation Filter) Coefficient (14bit x 2 + 16bit x 1)  
Default: “0000H”  
Addr Register Name  
28H FIL1 Co-efficient 0  
29H FIL1 Co-efficient 1  
2AH FIL1 Co-efficient 2  
2BH FIL1 Co-efficient 3  
R/W  
D7  
F1A7  
0
F1B7  
0
D6  
F1A6  
0
F1B6  
0
D5  
F1A5  
F1A13  
F1B5  
F1B13  
W
D4  
F1A4  
F1A12  
F1B4  
F1B12  
W
D3  
F1A3  
F1A11  
F1B3  
F1B11  
W
D2  
F1A2  
F1A10  
F1B2  
F1B10  
W
D1  
D0  
F1A1  
F1A9  
F1B1  
F1B9  
W
F1A0  
F1A8  
F1B0  
F1B8  
W
W
W
Default  
F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH”  
F1A13-0, F1B13-B0: FIL1 (Wind-noise Reduction Filter) Coefficient (14bit x 2)  
Default: F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH” (fc=150Hz@fs=44.1kHz)  
Addr Register Name  
2CH FIL2 Co-efficient 0  
2DH FIL2 Co-efficient 1  
2EH FIL2 Co-efficient 2  
2FH FIL2 Co-efficient 3  
R/W  
D7  
F2A7  
0
F2B7  
0
D6  
F2A6  
0
F2B6  
0
D5  
F2A5  
F2A13  
F2B5  
F2B13  
W
D4  
F2A4  
F2A12  
F2B4  
F2B12  
W
D3  
F2A3  
F2A11  
F2B3  
F2B11  
W
D2  
F2A2  
F2A10  
F2B2  
F2B10  
W
D1  
F2A1  
F2A9  
F2B1  
F2B9  
W
D0  
F2A0  
F2A8  
F2B0  
F2B8  
W
W
W
Default  
0
0
0
0
0
0
0
0
F2A13-0, F2B13-B0: FIL2 (LPF) Coefficient (14bit x 2)  
Default: “0000H”  
MS0963-E-00  
2008/05  
- 160 -  
[AK4675]  
Addr Register Name  
30H Digital Filter Select 2  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
EQ5  
R/W  
0
D3  
EQ4  
R/W  
0
D2  
EQ3  
R/W  
0
D1  
EQ2  
R/W  
0
D0  
EQ1  
R/W  
0
R/W  
Default  
EQ1: Equalizer 1 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ1 bit is “1”, the settings of E1A15-0, E1B15-0 and E1C15-0 bits are enabled. When EQ1 bit is “0”,  
EQ1 block is through (0dB).  
EQ2: Equalizer 2 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ2 bit is “1”, the settings of E2A15-0, E2B15-0 and E2C15-0 bits are enabled. When EQ2 bit is “0”,  
EQ2 block is through (0dB).  
EQ3: Equalizer 3 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ3 bit is “1”, the settings of E3A15-0, E3B15-0 and E3C15-0 bits are enabled. When EQ3 bit is “0”,  
EQ3 block is through (0dB).  
EQ4: Equalizer 4 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ4 bit is “1”, the settings of E4A15-0, E4B15-0 and E4C15-0 bits are enabled. When EQ4 bit is “0”,  
EQ4 block is through (0dB).  
EQ5: Equalizer 5 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ5 bit is “1”, the settings of E5A15-0, E5B15-0 and E5C15-0 bits are enabled. When EQ5 bit is “0”,  
EQ5 block is through (0dB).  
MS0963-E-00  
2008/05  
- 161 -  
[AK4675]  
Addr Register Name  
32H E1 Co-efficient 0  
33H E1 Co-efficient 1  
34H E1 Co-efficient 2  
35H E1 Co-efficient 3  
36H E1 Co-efficient 4  
37H E1 Co-efficient 5  
38H E2 Co-efficient 0  
39H E2 Co-efficient 1  
3AH E2 Co-efficient 2  
3BH E2 Co-efficient 3  
3CH E2 Co-efficient 4  
3DH E2 Co-efficient 5  
3EH E3 Co-efficient 0  
3FH E3 Co-efficient 1  
40H E3 Co-efficient 2  
41H E3 Co-efficient 3  
42H E3 Co-efficient 4  
43H E3 Co-efficient 5  
44H E4 Co-efficient 0  
45H E4 Co-efficient 1  
46H E4 Co-efficient 2  
47H E4 Co-efficient 3  
48H E4 Co-efficient 4  
49H E4 Co-efficient 5  
4AH E5 Co-efficient 0  
4BH E5 Co-efficient 1  
4CH E5 Co-efficient 2  
4DH E5 Co-efficient 3  
4EH E5 Co-efficient 4  
4FH E5 Co-efficient 5  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
E1A7  
E1A15  
E1B7  
E1B15  
E1C7  
E1C15  
E2A7  
E2A15  
E2B7  
E2B15  
E2C7  
E2C15  
E3A7  
E3A15  
E3B7  
E3B15  
E3C7  
E3C15  
E4A7  
E4A15  
E4B7  
E4B15  
E4C7  
E4C15  
E5A7  
E5A15  
E5B7  
E5B15  
E5C7  
E5C15  
W
E1A6  
E1A14  
E1B6  
E1B14  
E1C6  
E1C14  
E2A6  
E2A14  
E2B6  
E2B14  
E2C6  
E2C14  
E3A6  
E3A14  
E3B6  
E3B14  
E3C6  
E3C14  
E4A6  
E4A14  
E4B6  
E4B14  
E4C6  
E4C14  
E5A6  
E5A14  
E5B6  
E5B14  
E5C6  
E5C14  
W
E1A5  
E1A13  
E1B5  
E1B13  
E1C5  
E1C13  
E2A5  
E2A13  
E2B5  
E2B13  
E2C5  
E2C13  
E3A5  
E3A13  
E3B5  
E3B13  
E3C5  
E3C13  
E4A5  
E4A13  
E4B5  
E4B13  
E4C5  
E4C13  
E5A5  
E5A13  
E5B5  
E5B13  
E5C5  
E5C13  
W
E1A4  
E1A12  
E1B4  
E1B12  
E1C4  
E1C12  
E2A4  
E2A12  
E2B4  
E2B12  
E2C4  
E2C12  
E3A4  
E3A12  
E3B4  
E3B12  
E3C4  
E3C12  
E4A4  
E4A12  
E4B4  
E4B12  
E4C4  
E4C12  
E5A4  
E5A12  
E5B4  
E5B12  
E5C4  
E5C12  
W
E1A3  
E1A11  
E1B3  
E1B11  
E1C3  
E1C11  
E2A3  
E2A11  
E2B3  
E2B11  
E2C3  
E2C11  
E3A3  
E3A11  
E3B3  
E3B11  
E3C3  
E3C11  
E4A3  
E4A11  
E4B3  
E4B11  
E4C3  
E4C11  
E5A3  
E5A11  
E5B3  
E5B11  
E5C3  
E5C11  
W
E1A2  
E1A10  
E1B2  
E1B10  
E1C2  
E1C10  
E2A2  
E2A10  
E2B2  
E2B10  
E2C2  
E2C10  
E3A2  
E3A10  
E3B2  
E3B10  
E3C2  
E3C10  
E4A2  
E4A10  
E4B2  
E4B10  
E4C2  
E4C10  
E5A2  
E5A10  
E5B2  
E5B10  
E5C2  
E5C10  
W
E1A1  
E1A9  
E1B1  
E1B9  
E1C1  
E1C9  
E2A1  
E2A9  
E2B1  
E2B9  
E2C1  
E2C9  
E3A1  
E3A9  
E3B1  
E3B9  
E3C1  
E3C9  
E4A1  
E4A9  
E4B1  
E4B9  
E4C1  
E4C9  
E5A1  
E5A9  
E5B1  
E5B9  
E5C1  
E5C9  
W
E1A0  
E1A8  
E1B0  
E1B8  
E1C0  
E1C8  
E2A0  
E2A8  
E2B0  
E2B8  
E2C0  
E2C8  
E3A0  
E3A8  
E3B0  
E3B8  
E3C0  
E3C8  
E4A0  
E4A8  
E4B0  
E4B8  
E4C0  
E4C8  
E5A0  
E5A8  
E5B0  
E5B8  
E5C0  
E5C8  
W
Default  
0
0
0
0
0
0
0
0
E1A15-0, E1B15-0, E1C15-0: Equalizer 1 Coefficient (16bit x3)  
Default: 0000H”  
E2A15-0, E2B15-0, E2C15-0: Equalizer 2 Coefficient (16bit x3)  
Default: 0000H”  
E3A15-0, E3B15-0, E3C15-0: Equalizer 3 Coefficient (16bit x3)  
Default: 0000H”  
E4A15-0, E4B15-0, E4C15-0: Equalizer 4 Coefficient (16bit x3)  
Default: 0000H”  
E5A15-0, E5B15-0, E5C15-0: Equalizer 5 Coefficient (16bit x3)  
Default: 0000H”  
MS0963-E-00  
2008/05  
- 162 -  
[AK4675]  
Addr Register Name  
D7  
EQB3  
EQD3  
R/W  
1
D6  
EQB2  
EQD2  
R/W  
0
D5  
EQB1  
EQD1  
R/W  
0
D4  
EQB0  
EQD0  
R/W  
0
D3  
EQA3  
EQC3  
R/W  
1
D2  
EQA2  
EQC2  
R/W  
0
D1  
EQA1  
EQC1  
R/W  
0
D0  
EQA0  
EQC0  
R/W  
0
50H  
51H  
EQ Control 250Hz/100Hz  
EQ Control 3.5kHz/1kHz  
R/W  
Default  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
EQE3  
R/W  
1
D2  
EQE2  
R/W  
0
D1  
EQE1  
R/W  
0
D0  
EQE0  
R/W  
0
52H  
EQ Control 10kHz  
R/W  
Default  
EQA3-0: Select the boost level of 100Hz  
EQB3-0: Select the boost level of 250Hz  
EQC3-0: Select the boost level of 1kHz  
EQD3-0: Select the boost level of 3.5kHz  
EQE3-0: Select the boost level of 10kHz  
See Table 35.  
MS0963-E-00  
2008/05  
- 163 -  
[AK4675]  
Addr Register Name  
D7  
GPOM2  
R/W  
0
D6  
GPOE2  
R/W  
0
D5  
D4  
D3  
D2  
D1  
D0  
PMSRA  
R/W  
0
53H  
PCM I/F Control 0  
R/W  
PLLBT2 PLLBT1 PLLBT0 PMPCM PMSRB  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
PMSRA: SRC-A Power Management  
0: Power down (default)  
1: Power up  
PMSRB: SRC-B Power Management  
0: Power down (default)  
1: Power up  
PMPCM: PCM I/F Power Management  
0: Power down (default)  
1: Power up  
PLLBT2-0: PLLBT Reference Clock Select  
PLLBT3 bit is D6 of Addr=55H.  
Default: “0000”: SYNCA  
GPOE2: General Purpose Output 2 Enable at GPOM2 bit = “1”  
“0”: GPO2 pin = “L” (default)  
“1”: GPO2 pin = “H”  
GPOM2: General Purpose Output 2 Operation Mode (Table 111.)  
“0”: Controlled by GPOE2 bit (default)  
“1”: MIC Detection Interrupt  
MS0963-E-00  
2008/05  
- 164 -  
[AK4675]  
D0  
Addr Register Name  
D7  
SDOAD  
R/W  
0
D6  
BCKO2  
R/W  
0
D5  
MSBSA  
R/W  
0
D4  
BCKPA  
R/W  
0
D3  
D2  
D1  
54H  
PCM I/F Control 2  
R/W  
LAWA1 LAWA0 FMTA1 FMTA0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
FMTA1-0: PCM I/F A Format (Table 103)  
Default: “00” (Mode 0)  
LAWA1-0: PCM I/F A Mode (Table 101)  
Default: “00” (Mode 0)  
BCKPA: BICKA Polarity of PCM I/F A (Table 105)  
“0”: SDTOA is output by the rising edge (“”) of BICKA and SDTIA is latched by the falling edge (“”). (default)  
“1”: SDTOA is output by the falling edge (“”) of BICKA and SDTIA is latched by the rising edge (“”).  
MSBSA: SYNCA Phase of PCM I/F A (Table 105)  
“0”: The rising edge (“”) of SYNCA is half clock of BICKA before the channel change. (default)  
“1”: The rising edge (“”) of SYNCA is one clock of BICKA before the channel change.  
BCKO2: BICKA/B Output Frequency Select at Master Mode (Table 96)  
0: 16fs2 (default)  
1: 32fs2  
SDOAD: SDTOA Disable (Table 56.)  
“0”: Enable (default)  
“1”: Disable (“L”)  
Addr Register Name  
D7  
SDOBD  
R/W  
0
D6  
PLLBT3  
R/W  
D5  
MSBSB  
R/W  
0
D4  
BCKPB  
R/W  
0
D3  
D2  
D1  
D0  
55H  
PCM I/F Control 3  
R/W  
LAWB1 LAWB0 FMTB1 FMTB0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
0
FMTB1-0: PCM I/F B Format (Table 104)  
Default: “00” (Mode 0)  
LAWB1-0: PCM I/F B Mode (Table 102)  
Default: “00” (Mode 0)  
BCKPB: BICKB Polarity of PCM I/F B (Table 106)  
“0”: SDTOB is output by the rising edge (“”) of BICKB and SDTIB is latched by the falling edge (“”). (default)  
“1”: SDTOB is output by the falling edge (“”) of BICKB and SDTIB is latched by the rising edge (“”).  
MSBSB: SYNCB Phase of PCM I/F B (Table 106)  
“0”: The rising edge (“”) of SYNCB is half clock of BICKB before the channel change. (default)  
“1”: The rising edge (“”) of SYNCB is one clock of BICKB before the channel change.  
PLLBT3: PLLBT Reference Clock Select  
PLLBT2-0 bits is D5-3 of Addr=53H.  
Default: “0000”: SYNCA  
SDOBD: SDTOB Disable (Table 58)  
“0”: Enable (default)  
“1”: Disable (“L”)  
MS0963-E-00  
2008/05  
- 165 -  
[AK4675]  
Addr Register Name  
56H Digital Volume B Control  
D7  
BVL7  
R/W  
0
D6  
BVL6  
R/W  
0
D5  
BVL5  
R/W  
0
D4  
BVL4  
R/W  
1
D3  
BVL3  
R/W  
1
D2  
BVL2  
R/W  
0
D1  
BVL1  
R/W  
0
D0  
BVL0  
R/W  
0
R/W  
Default  
BVL7-0: Digital Volume B (Table 38)  
Default: “18H” (0dB)  
Addr Register Name  
57H Digital Volume C Control  
D7  
CVL7  
R/W  
0
D6  
CVL6  
R/W  
0
D5  
CVL5  
R/W  
0
D4  
CVL4  
R/W  
1
D3  
CVL3  
R/W  
1
D2  
CVL2  
R/W  
0
D1  
CVL1  
R/W  
0
D0  
CVL0  
R/W  
0
R/W  
Default  
CVL7-0: Digital Volume B (Table 39)  
Default: “18H” (0dB)  
Addr Register Name  
58H Side Tone Volume Control  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
SDOA  
R/W  
0
D2  
SVB2  
R/W  
0
D1  
SVB1  
R/W  
0
D0  
SVB0  
R/W  
0
R/W  
Default  
SVB2-0: Side Tone Volume (Table 40)  
Default: “5H” (12dB)  
SDOA: SDTOA Output Signal Select (Table 55.)  
“0”: SRC-A (default)  
“1”: SDTI-B  
Addr Register Name  
59H Digital Mixing Control  
D7  
SDOR1  
R/W  
0
D6  
SDOR0  
R/W  
0
D5  
SDOL1  
R/W  
0
D4  
SDOL0  
R/W  
0
D3  
D2  
D1  
D0  
BVMX1 BVMX0 SBMX1 SBMX0  
R/W  
0
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
SBMX1-0: SDTOB Output Signal Select (Table 57.)  
Default: “00” (SDTIA)  
BVMX1-0: SRC-B Input Signal Select (Table 59.)  
Default: “00” (SDTIA)  
SDOL1-0: SDTO Lch Output Mixing (Table 45.)  
Default: “00” (Lch Signal Selected by Table 44)  
SDOR1-0: SDTO Rch Output Mixing (Table 46.)  
Default: “00” (Rch Signal Selected by Table 44)  
MS0963-E-00  
2008/05  
- 166 -  
[AK4675]  
Addr Register Name  
5AH SAR ADC Control  
R/W  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
GPOM1  
R/W  
0
D3  
GPOE1  
R/W  
0
D2  
A1  
R/W  
0
D1  
A0  
R/W  
0
D0  
PMSAD  
R/W  
0
Default  
PMSAD: 10bit ADC Power Management  
“0”: Power down (default)  
“1”: Power up  
A1-0: SAR ADC Measurement Mode (Table 113)  
Default: “00” (SAIN1)  
GPOE1: General Purpose Output 1 Enable at GPOM1 bit = “1”  
“0”: GPO pin = “L” (default)  
“1”: GPO pin = “H”  
GPOM1: General Purpose Output 1 Operation Mode  
“0”: Controlled by GPOE1 bit (default)  
“1”: Controlled by A0 bit  
MS0963-E-00  
2008/05  
- 167 -  
[AK4675]  
Register Map (HP/SPK-Amp Blocks)  
Addr Register Name  
D7  
D0  
PMVCMA  
00H Power Management 0  
01H Power Management 1  
02H Power Management 2  
03H Mode Control 0  
04H Lch Headphone Mixer  
05H Rch Headphone Mixer  
06H Reserved  
0
GDDLY  
PMSPK  
0
PMV1  
THDET  
0
0
0
0
HPLL1  
HPRL1  
0
07H Reserved  
0
0
08H Input Volume #1  
09H Reserved  
0AH Reserved  
R1V3  
L1V0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0BH Reserved  
0CH Mode Control 1  
0DH Headphone PGA Control  
0EH Speaker PGA Control  
0FH ALCA Mode Control 1  
10H ALCA Mode Control 2  
11H ALCA Mode Control 3  
12H Mode Control 2  
HPGA0  
SPGA0  
REFA0  
BATCPU  
WTMA0  
LMTHA  
OSCN  
0
0
0
0
MSEL  
All registers writing are inhibited at PDNA pin = “L”.  
The PDNA pin = “L” resets the HP/SPK-Amp’s registers to their default value.  
Note 88: The bits defined as 0 must contain a “0” value.  
Note 89: Only write to address 00H to 12H.  
MS0963-E-00  
2008/05  
- 168 -  
[AK4675]  
Register Definitions (HP/SPK-Amp Blocks)  
Addr Register Name  
00H Power Management 0  
R/W  
D7  
0
0
0
0
0
D0  
PMVCMA  
RD  
0
0
0
R/W  
0
Default  
PMVCMA: Power Management for VCOM and Regulator which used for Headphone-Amp  
0: Power OFF (default)  
1: Power ON  
PMOSC: I Power Management for Internal Oscillator  
0: Power OFF (default)  
1: Power ON  
PMCP: Power Management for Charge Pump Circuit  
0: Power OFF (default)  
1: Power ON  
PMHPL: Power Management for Lch Headphone-Amp  
0: Power OFF (default)  
1: Power ON  
PMHPR: Power Management for Rch Headphone-Amp  
0: Power OFF (default)  
1: Power ON  
PMMHL: Power Management for Mixing & Selector Circuit of Lch Headphone-Amp  
0: Power OFF (default)  
1: Power ON  
PMMHR: Power Management for Mixing & Selector Circuit of Rch Headphone-Amp  
0: Power OFF (default)  
1: Power ON  
MS0963-E-00  
2008/05  
- 169 -  
[AK4675]  
Addr Register Name  
01H Power Management 1  
R/W  
D7  
GDDLY  
R/W  
0
0
0
0
0
D0  
PMSPK  
R/W  
0
0
0
Default  
PMSPK: Power Management for Speaker-Amp  
0: Power OFF (default)  
1: Power ON  
When PMSP bit is “0”, the SPP pin and SPN pin become Hi-Z.  
GDDLY: Gate driver delay setting for dulling output wave of Class-D  
0: 15ns (default)  
1: 60ns  
Delay increase, EMI improve, Efficiency down when “0” Æ “1”  
Addr Register Name  
02H Power Management 2  
R/W  
D7  
0
RD  
0
0
0
0
0
0
0
D0  
PMV1  
R/W  
0
Default  
PMV1: Power Management for Input Volume #1  
0: Power OFF (default)  
1: Power ON  
All blocks of HP/SPK-Amp blocks can be powered-down by setting the PDNA pin to “L” regardless of register  
values setup. In this case, all control register values of HP/SPK-Amp blocks are initilized.  
When all registers in address 00H, 01H and 02H are set to “0”, all blocks of HP/SPK-Amp blocks are  
powered-down. The register values of HP/SPK-Amp blocks remain unchanged. Power supply current is 18μA(typ).  
For fully shut down, set the PDNA pin to “L”.  
MS0963-E-00  
2008/05  
- 170 -  
[AK4675]  
Addr Register Name  
03H Mode Control 0  
R/W  
D7  
THDET  
RD  
0
0
0
0
0
0
D0  
0
RD  
0
Default  
0
THDET: Thermal Shutdown Detection  
0: Normal Operation (default)  
1: Thermal Shutdown  
Addr Register Name  
04H Lch Headphone Mixer  
05H Rch Headphone Mixer  
R/W  
D7  
0
0
RD  
0
0
0
0
0
0
D0  
HPLL1  
HPRL1  
0
R/W  
0
Default  
Input Mixers: (Figure 80)  
0: OFF (default)  
1: ON  
Addr Register Name  
08H Input Volume #1  
R/W  
D7  
R1V3  
R/W  
1
0
1
0
1
0
1
D0  
L1V0  
R/W  
0
Default  
Input Volumes: Default: 0dB (Table 76)  
MS0963-E-00  
2008/05  
- 171 -  
[AK4675]  
Addr Register Name  
0CH Mode Control 1  
R/W  
D7  
0
RD  
0
0
0
0
0
0
0
D0  
0
RD  
0
Default  
PTS1-0: Headphone-Amp Mute ON/OFF Transition Time  
Default: “00”; typ. 16.4ms (Table 81)  
MOFF: Soft transition for changing HPMTN bit  
0: Enable (default)  
1: Disable  
Addr Register Name  
0DH Headphone PGA Control  
D7  
0
RD  
0
0
0
D0  
HPGA0  
1
R/W  
Default  
1
0
0
R/W  
1
HPGA4-0: Headphone-Amp Volume Setting  
Default: 19H; 0dB (Table 77)  
HPMTN: Headphone-Amp Mute  
0: Mute (default)  
1: Normal Output  
HPZ: Headphone-Amp Pull-down Control  
0: Ground Mode (default)  
HPL/HPR pins are shorted to VSS3.  
1: Hi-Z Mode  
HPL/HPR pins are pulled-down by 25kΩ(typ) to VSS3.  
Addr Register Name  
0EH Speaker PGA Control  
R/W  
D7  
0
RD  
0
0
D0  
SPGA0  
0
1
1
0
0
R/W  
0
Default  
SPGA5-0: Speaker-Amp Volume Setting  
Default: 18H; 0dB (Table 89)  
When PMSPK bit is set to “0”, reading and writing of SPGA5-0 bits are inhibited. When changing from  
PMSPK bit = “0” to PMSPK bit = “1”, SPGA volume becomes default value (0dB) regardless of the setting  
of SPGA5-0 bits.  
Addr Register Name  
0FH ALCA Mode Control 1  
D7  
0
D0  
REFA0  
R/W  
Default  
RD  
0
0
1
1
1
1
0
R/W  
0
REFA5-0: Reference value at ALC Recovery Operation  
Default: 3CH; +18dB (Table 87)  
MS0963-E-00  
2008/05  
- 172 -  
[AK4675]  
Addr Register Name  
10H ALCA Mode Control 2  
D7  
0
D0  
WTMA0  
R/W  
Default  
RD  
0
0
0
0
1
1
0
R/W  
1
WTMA2-0: ALCA Recovery Waiting Period  
Default: “101”, typ. 524.8ms (@OSCN bit = “0”) (Table 85)  
ZTMA1-0: ALCA Zero Crossing Timeout Period  
Default: “01”, typ. 32.8ms (@ OSCN bit = “0”) (Table 84)  
Addr Register Name  
11H ALCA Mode Control 3  
D7  
0
RD  
0
0
D0  
LMTHA  
R/W  
0
R/W  
Default  
0
0
0
0
0
LMTHA: ALC Limiter Detection Level / Recovery Waiting Counter Reset Level  
Default: “0” (Table 82)  
RGAINA1-0: ALCA Recovery GAIN Step  
Default: “00”; 1 step (Table 86)  
LMATA1-0: ALCA Limiter ATT Step  
Default: “00”; 1 step (Table 83)  
ZELMNA: Zero Crossing Detection Enable at ALCA Limiter Operation  
0: Enable (default)  
1: Disable  
ALCA: ALCA Enable  
0: ALCA Disable (default)  
1: ALCA Enable  
When ALC bit is set to “1”, the ALCA operation is enabled. The initial value is “0” (Disable).  
Addr Register Name  
12H Mode Control 2  
R/W  
D7  
0
0
0
0
0
D0  
OSCN  
R/W  
0
RD  
0
0
Default  
0
OSCN: Internal Oscillator / External Clock Select  
0: Internal Oscillator (default)  
1: External Clock (MCKIA pin)  
MSEL: MCKIA Input Frequency Select  
0: 2.048MHz (default)  
1: 2.8224MHz or 3.072MHz  
BATCPU: Battery Monitor Circuit Enable  
0: Disable (default)  
1: Enable  
MS0963-E-00  
2008/05  
- 173 -  
[AK4675]  
SYSTEM DESIGN  
Figure 114 shows the system connection diagram for the AK4675. An evaluation board [AKD4675] is available which  
demonstrates the optimum layout, power supply arrangements and measurement results.  
Condition: Internal Full-differential Mic, External pseudo differential Mic, Receiver Output, I²C mode; Battery Monitor  
is used; the PDNA pin of HP/SPK-Amp blocks is controlled by the GPO1 pin.  
Analog  
Ground  
Digital  
Ground  
Headphone  
10u  
Analog  
Digital  
(Base Band)  
1.6 3.6V  
2.6 3.6V  
Base Band  
2.2u  
Battery  
TEST  
AVDD  
VSS1  
HPR  
VCOM  
VCOC  
HPL  
PVDDA VSS3A  
CP  
SDTIA  
PDNA  
VSS4  
DVDD  
NC  
GPO2  
BICKA  
MCKIA  
SDA  
Receiver  
0.1u  
0.1u  
RCN  
VBATO VCOCBT PVEE SDTOA SYNCA  
CN  
0.1u  
Digital  
(μP & CPU)  
1.6 3.6V  
ROUT3 VCOMA  
RIN4  
PVDD  
VSS2  
TVDD2 TVDDA  
TEST6  
Line In  
VBATIN LOUT3  
LIN3  
μP  
0.22u  
RCP  
RIN3  
IN2+  
IN1+  
LIN1A  
LIN4  
RIN1A  
SAIN2  
SAIN1  
MCKO  
SCL  
DC  
AK4675EG  
Top View  
Measurement  
MCKI  
TEST5  
PDN  
BICK  
IN2−  
External MIC  
Internal MIC  
SAIN3  
LRCK  
VSS1A  
CPU  
0.1u  
SAVDD SDTOB SDTO  
BICKB  
NC  
TEST3 AVDDA  
IN1−  
0.22u  
MPWR ROUT2S  
NC  
VSS3  
SPN  
SYNCB SDTIB TEST4  
SPIN  
MDT LOUT2S  
NC  
SVDDA VSS2A TVDD3  
SPP  
TEST2  
SDTI  
GPO1  
0.1u  
0.1u  
Bluetooth  
Module  
Battery or  
AC Adaptor  
3.0 5.5V  
10u  
Digital  
(Bluetooth)  
1.6 3.6V  
Speaker  
MS0963-E-00  
2008/05  
- 174 -  
[AK4675]  
Notes:  
- VSS1, VSS2, VSS3, VSS4, VSS1A, VSS2A and VSS3A of the AK4675 must be distributed separately from  
the ground of external controllers.  
- All digital input pins msut not be left floating.  
- When the AK4675 is EXT mode (PMPLL bit = “0”), a resistor and capacitor of the VCOC pin is not needed.  
- When the AK4675 is PLL mode (PMPLL bit = “1”), a resistor and capacitor of the VCOC pin is shown in Table  
4.  
- When the AK4675 is in master mode, the LRCK and BICK pins are floating before M/S bit is changed to “1”.  
Therefore, 100kΩ around pull-up resistor msut be connected to the LRCK and BICK pins of the AK4675.  
- A resistor and capacitor of the VCOCBT pin is shown in Table 95.  
- When PCM I/F is used at master mode, SYNCA, BICKA, SYNCB and BICKB pins are floating before  
PMPCM bit is changed to “1”. Therefore, 100kΩ around pull-up or pull-down resistor msut be connected to the  
SYNCA, BICKA, SYNCB and SYNCB pins of the AK4675.  
- These capacitors at the CP/CN pins and VSS3A/PVEE pins require low ESR (Equivalent Series Resistance)  
over all temperature range. When these capacitors are polarized, the positive side must be connected to the CP  
and VSS3A pins, respectively.  
- A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached to the VCOM pin eliminates  
the effects of high frequency noise. No load current may be drawn from the VCOM pin.  
- A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached to the VCOMA pin eliminates  
the effects of high frequency noise. No load current may be drawn from the VCOMA pin.  
- AC coupling capacitors of 0.22μF or smaller value msut be connected at the LIN1A/RIN1A pins respectively to  
reduce pop noise at Headphone-Amp power-up.  
- AC coupling capacitors of 0.1μF or smaller value must be connected at the SPIN pins respectively to reduce  
pop noise at power-up of ALCA block for Speaker.  
Figure 114. Typical Connection Diagram  
MS0963-E-00  
2008/05  
- 175 -  
 
[AK4675]  
1. Grounding and Power Supply Decoupling  
The AK4675 requires careful attention to power supply and grounding arrangements. AVDD, PVDD, SAVDD, DVDD,  
TVDD2, TVDD3, AVDDA, PVDDA, SVDDA and TVDDA are usually supplied from the system’s analog supply.  
TVDDA must be connected to DVDD. If AVDD, PVDD, SAVDD, DVDD, TVDD2, AVDDA, PVDDA and SVDDA  
are supplied separately, the power-up sequence is not critical. VSS1, VSS2, VSS3, VSS4, VSS1A, VSS2A and VSS3A of  
the AK4675 must be connected to the analog ground plane. System analog ground and digital ground should be  
connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be  
as near to the AK4675 as possible, with the small value ceramic capacitor being the nearest.  
2. Voltage Reference  
VCOM is a signal ground of CODEC block. VCOMA is a signal ground of HP/SPK-Amp blocks. A 2.2μF electrolytic  
capacitor in parallel with a 0.1μF ceramic capacitor attached to the VCOM pin eliminates the effects of high frequency  
noise. A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached to the VCOMA pin eliminates the  
effects of high frequency noise. No load current may be drawn from the VCOM/VCOMA pins. All signals, especially  
clocks, should be kept away from the VCOM and VCOMA pins in order to avoid unwanted coupling into the AK4675.  
3. Analog Inputs  
The Mic, Line and MIN inputs of CODEC block are single-ended. The input signal range scales with nominally at 0.6 x  
AVDD Vpp (typ) at MGNL=MGNR=0dB and single-ended input, centered at the internal common voltage of CODEC  
block (0.5 x AVDD). The inputs of HP/SPK-Amp blocks are single-ended. The input signal range is 2.0Vpp (typ) for  
LIN1A/RIN1A pins and 1.6Vpp (typ) for SPLIN/SPRIN pins respectively, centered at the internal common voltage of  
HP/SPK-Amp blocks (VCOMA=1.2V (typ)). The input signal should be AC coupled using a capacitor. The cut-off  
frequency is fc = 1/ (2πRC). The AK4675 can accept input voltages from VSS1 to AVDD for CODEC block and from  
VSS1A to AVDDA for HP/SPK-Amp blocks, respectively.  
4. Analog Outputs  
The input data format for the DAC is 2’s complement. The output voltage is a positive full scale for 7FFFH(@16bit) and  
a negative full scale for 8000H(@16bit). The ideal output for 0000H(@16bit) is VCOM voltage for CODEC block and  
VCOMA voltage for HP/SPK-Amp blocks, respectively. VCOM voltage is 0.5 x AVDD (typ) and VCOMA voltage is  
1.2Vpp (typ), respectively. The output of LOUT1/RCP, ROUT1/RCN, LOUT2S, ROUT2S, LOUT3/LOP, ROUT3/LON  
pins must be AC coupled using a capacitor. The output of HPL and HPR pins must be directly connected to the headphone  
without AC coupling.  
MS0963-E-00  
2008/05  
- 176 -  
[AK4675]  
PACKAGE  
5.5 ± 0.1  
83 - φ 0.3 ± 0.05  
φ 0.05  
M S AB  
8 7 6  
5 4 3 2 1  
10 9  
A
B
C
B
D
E
F
G
H
J
K
0.5  
0.5  
S
0.08  
S
„ Material & Lead finish  
Package molding compound:  
Epoxy  
Interposer material:  
Solder ball material:  
BT resin  
SnAgCu  
MS0963-E-00  
2008/05  
- 177 -  
[AK4675]  
MARKING  
4675  
XXXXX  
1
XXXXX: Date code identifier (5digits)  
Pin #1 indication  
REVISION HISTORY  
Date (YY/MM/DD) Revision Reason  
08/05/23 00 First Edition  
Page  
Contents  
IMPORTANT NOTICE  
z These products and their specifications are subject to change without notice.  
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei  
EMD Corporation (AKEMD) or authorized distributors as to current status of the products.  
z AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or  
use of any information contained herein.  
z Any export of these products, or devices or systems containing them, may require an export license or other official  
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,  
or strategic materials.  
z AKEMD products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or  
other hazard related device or systemNote2), and AKEMD assumes no responsibility for such use, except for the use  
approved with the express written consent by Representative Director of AKEMD. As used here:  
Note1) A critical component is one whose failure to function or perform may reasonably be expected to result,  
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and  
which must therefore meet very high standards of performance and reliability.  
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or  
for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform  
may reasonably be expected to result in loss of life or in significant injury or damage to person or property.  
z It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise  
places the product with a third party, to notify such third party in advance of the above content and conditions, and the  
buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any  
and all claims arising from the use of said product in the absence of such notification.  
MS0963-E-00  
2008/05  
- 178 -  

相关型号:

AKD4682

Multi-channel CODEC with 2Vrms Stereo Selector
AKM

AKD4682-A

24bit CODEC that has two channels of ADC and four channels of DAC
AKM

AKD4683

Asynchronous Multi-Channel Audio CODEC with DIR/T
AKM

AKD4683-A

AK4683 Evaluation Board Rev.1
AKM

AKD4683-B

24bit CODEC that has two channels of ADC and four channels of DAC with internal DIR, DIT
AKM

AKD4685

Multi-channel CODEC with Differential Analog I/O
AKM

AKD4686

Multi-channel CODEC with Capless Stereo Selector
AKM

AKD4686-B

AK4686 Evaluation Board Rev.0
AKM

AKD4687

Asynchronous Stereo CODEC with Capless Stereo Selector
AKM

AKD4687-A

Evaluation board Rev.2 for AK4687
AKM

AKD4691

4ch ADC + 2ch DAC with MIC/HP/SPK-AMP
AKM

AKD4691-A

Evaluation board Rev.0 for AK4691
AKM