TK77350AMEG0L [AKM]

Fixed Positive LDO Regulator, 5V, BIMOS, PDSO8, LEAD FREE, HSOP-8;
TK77350AMEG0L
型号: TK77350AMEG0L
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

Fixed Positive LDO Regulator, 5V, BIMOS, PDSO8, LEAD FREE, HSOP-8

光电二极管
文件: 总20页 (文件大小:549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APPLICATION MANUAL  
BiMOS LDO Regulator  
TK773xxAME  
CONTENTS  
1 . DESCRIPTION  
2 . FEATURES  
2
2
3 . PIN CONFIGURATION  
4 . PACKAGE OUTLINE  
5 . BLOCK DIAGRAM  
2
2
2
6 . ORDERING IMFORMATION  
7 . ABSOLUTE MAXIMUM RATINGS  
8 . ELECTRICAL CHARACTERISTICS  
9 . TEST CIRCUIT  
3
3
4
5
10 . TYPICAL CHARACTERISTICS  
11 . PIN DESCRIPTION  
12 . APPLICATIONS INFORMATION  
13 . NOTES  
6
16  
17  
20  
20  
14 . OFFICES  
GC3-R002  
Page 1  
TK773xxAME  
BiMOS LDO Regulator  
TK773xxAME  
1. DESCRIPTION  
4. PACKAGE OUTLINE  
The TK773xxAME is a BiMOS LDO regulator. The  
package is HSOP-8. The IC can supply 500mA output  
current. The control part is optimized by using the bipolar  
element. The IC does not oscillate if no external input and  
output capacitors are used. The soft start function that the  
output voltage gradually turn on by connecting a noise  
pass capacitor is built-in. The soft start function can  
adjust the inrush current to almost zero.  
■ HSOP-8  
2. FEATURES  
■ Soft start function (can adjust the inrush current to  
almost zero)  
■ Not oscillate without input, output and noise pass  
capacitor  
■ Output current 500mA  
■ Package is HSOP-8  
■ Wide operation voltage (VOP = 2.5V ~ 14.5V)  
■ On/Off control (High-On)  
3. PIN CONFIGURATION  
(Top View)  
1
2
3
4
8
7
6
5
NC  
VIn  
NC  
VOut  
NC  
Np  
5. BLOCK DIAGRAM  
NC  
VIn  
1
2
3
4
8
7
6
5
NC  
VOut  
NC  
Np  
GND  
VCont  
VRef  
On/Off  
Control  
GND  
VCont  
Thermal &  
Over Current  
Protection  
500kW  
GC3-R002  
Page 2  
TK773xxAME  
6. ORDERING IMFORMATION  
T K 7 7 3  
A M E G 0 L  
Voltage Code  
Tape / Reel Code  
(Refer to the following table)  
L : Left Type  
Version  
A
Environment Code  
G0 : Lead Free  
Package Code  
ME : HSOP-8  
Part Number  
TK77312AME  
TK77318AME  
TK77325AME  
TK77330AME  
TK77333AME  
TK77335AME  
TK77350AME  
Marking Code  
AB12  
Output Voltage  
Voltage Code  
1.2V  
1.8V  
2.5V  
3.0V  
3.3V  
3.5V  
5.0V  
12  
18  
25  
30  
33  
35  
50  
AB18  
AB25  
AB30  
AB33  
AB35  
AB50  
If you need a voltage other than the value listed in the above table, please contact ASAHI KASEI TOKO POWER  
DEVICES.  
7. ABSOLUTE MAXIMUM RATINGS  
Ta=25°C  
Parameter  
Absolute Maximum Ratings  
Input Voltage  
Symbol  
Rating  
Units  
Conditions  
VIn,MAX  
VOut,MAX  
VCont,MAX  
VNp,MAX  
Tstg  
-0.3 ~ 16.0  
-0.3 ~ VIn+0.3  
-0.3 ~ 16.0  
-0.3 ~ 2.0  
V
V
Output pin Voltage  
Control pin Voltage  
Np pin Voltage  
V
V
Storage Temperature Range  
-55 ~ 150  
°C  
Internal Limited Tj=140°C *,  
when mounted on a PCB  
Power Dissipation  
PD  
2000  
mW  
Operating Condition  
Operational Temperature  
Range  
TOP  
-40 ~ 85  
°C  
Operational Voltage Range  
Short Circuit Current  
VOP  
2.5 ~ 14.5  
800  
V
IShort  
mA  
Over Current Protection  
* PD must be decreased at the rate of 17.4mW/°C for operation above 25°C.  
The maximum ratings are the absolute limitation values with the possibility of the IC being damaged.  
If the operation exceeds this standard quality can not be guaranteed.  
GC3-R002  
Page 3  
TK773xxAME  
8. ELECTRICAL CHARACTERISTICS  
The parameters with min. or max. values will be guaranteed at Ta=Tj=25°C with test when manufacturing or SQC  
(Statistical Quality Control) methods. The operation between -40 ~ 85°C is guaranteed by design.  
VIn=VOut,TYP+1V(*1), VCont=1.8V, Ta=25°C  
Value  
Parameter  
Symbol  
IQ  
Units  
Conditions  
MIN  
-
TYP  
150  
MAX  
225  
Quiescent Current  
Output Voltage  
µA  
V
IOut=0mA  
VOut  
Refer to TABLE 1  
IOut=5mA  
Line Regulation  
Load Regulation  
Dropout Voltage *2  
GND Pin Current  
LinReg  
LoaReg  
VDrop  
-
0.8  
5
mV  
mV  
mV  
µA  
mA  
µA  
IOut=5mA, DVIn=5V  
IOut=5mA~500mA  
IOut=500mA  
Refer to TABLE 1  
-
-
500  
200  
800  
0.01  
750  
300  
-
IGND  
IOut=500mA  
Maximum Load Current *3 IOut,MAX  
500  
-
VOut=VOut,TYP×0.9  
VCont=0V  
Standby Current  
Control Terminal  
Control Current  
IStandby  
0.1  
ICont  
-
1.8  
-
4.0  
6.0  
-
µA  
V
VCont=1.8V, VOut On  
VOut On state  
-
-
Control Voltage  
Np Terminal  
Np pin Voltage  
VCont  
0.3  
V
VOut Off state  
-
-
0.40  
0.60  
-
-
V
V
VOut ≤ 3.9V  
4.0V ≤ VOut  
VNp  
*1: For VOut £ 1.5V , VIn=2.5V.  
*2: For VOut £ 2.2V , no regulations.  
*3: The maximum output current is limited by power dissipation.  
The maximum load current is the current where the output voltage decreases to 90% by increasing the output current at  
Tj=25°C, compared to the output voltage specified at VIn=VOut,TYP+1V  
TABLE 1. Preferred Product  
Load Regulation  
TYP  
Output Voltage  
TYP  
Part Number  
MIN  
V
MAX  
V
MAX  
mV  
63  
V
mV  
25  
30  
36  
40  
42  
43  
42  
TK77312AME  
TK77318AME  
TK77325AME  
TK77330AME  
TK77333AME  
TK77335AME  
TK77350AME  
1.170  
1.764  
2.450  
2.940  
3.234  
3.430  
4.900  
1.200  
1.800  
2.500  
3.000  
3.300  
3.500  
5.000  
1.230  
1.836  
2.550  
3.060  
3.366  
3.570  
5.100  
75  
90  
100  
105  
108  
105  
GC3-R002  
Page 4  
TK773xxAME  
9. TEST CIRCUIT  
1
2
3
4
8
7
6
5
NC  
VIn  
NC  
VOut  
NC  
VIn  
CIn  
COut  
IOut  
V VOut  
GND  
VCont  
Np  
VCont  
CNp  
V VNp  
Notice.  
The limit value of electrical characteristics is applied when CIn=1.0mF(Ceramic), COut=1.0mF(Ceramic),  
CNp=100pF(Ceramic).  
But CIn, COut, and CNp can be used both the ceramic and the tantalum capacitor.  
The Np terminal is high impedance. It is not connectable except a CNp.  
GC3-R002  
Page 5  
TK773xxAME  
10. TYPICAL CHARACTERISTICS  
10-1. DC CHARACTERISTICS  
Test Circuit  
VIn  
=VOut,TYP+1V  
VIn  
VOut  
CIn  
COut  
IOut  
1mF  
1mF  
5mA  
GND  
VCont  
Np  
VCont  
2.0V  
CNp  
100pF  
VOut vs VIn (TK77333AME)  
Line Regulation (TK77333AME)  
LINE REG  
50  
40  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
VVInin[(VV) ]  
VIn [ V ]  
Vin[V]  
IQ vs VIn (TK77333AME)  
Load Regulation (TK77333AME)  
10  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
-10  
-20  
-30  
-40  
-50  
-60  
0
0
2
4
6
8
10 12 14 16  
0
100 200 300 400 500 600  
Iout(mA)  
Vin(V)  
I
[ mA ]  
VIn [ V ]  
Out  
GC3-R002  
Page 6  
TK773xxAME  
IGND vs IOut (TK77333AME)  
VDrop vs IOut (TK77333AME)  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
100 200 300 400 500 600  
Vin(V)  
0
100 200 300 400 500 600  
Iout(mA)  
IOut [ mA ]  
IOut [ mA ]  
IOut,MAX (TK77333AME)  
VOut vs VCont (TK77333AME)  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0  
5.0  
4.0  
3.0  
2.0  
Vout-Off  
Vout-On  
1.0  
0.0  
0
200  
400  
600  
800  
1000  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Iout(mA)  
Vin(V)  
I
[ mA ]  
VCont [ V ]  
Out  
IStandby vs VIn (TK77333AME)  
DVOut vs Ta (TK77333AME)  
LINE REG  
100u  
10u  
1u  
50  
40  
30  
20  
100n  
10n  
1n  
10  
0
-10  
-20  
-30  
-40  
-50  
100p  
10p  
1p  
0
2
4
6
8
10 12 14 16  
-40 -20  
0
20 40 60 80 100  
Vin(V)  
Vrev(V)  
Ta [ °C ]  
VIn [ V ]  
GC3-R002  
Page 7  
TK773xxAME  
IQ vs Ta (TK77333AME)  
LoaReg vs Ta (TK77333AME)  
LINE REG  
LINE REG  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
10  
0
Iout=5~100mA  
Iout=5~300mA  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Iout=5~500mA  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
Vin(V)  
Vin(V)  
Ta [ °C ]  
Ta [ °C ]  
IGND vs Ta (TK77333AME)  
VDrop vs Ta (TK77333AME)  
LINE REG  
LINE REG  
250  
200  
150  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
Iout  
100mA  
300mA  
500mA  
Iout  
500mA  
300mA  
100mA  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
Vin(V)  
Vin(V)  
Ta [ °C ]  
Ta [ °C ]  
IOut,MAX vs Ta (TK77333AME)  
On/Off threshold voltage vs Ta (TK77333AME)  
LINE REG  
LINE REG  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.0  
1.8  
Vout-On  
1.6  
1.4  
1.2  
1.0  
Vout-Off  
0.8  
0.6  
0.4  
0.2  
0.0  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
Vin(V)  
Vin(V)  
Ta [ °C ]  
Ta [ °C ]  
GC3-R002  
Page 8  
TK773xxAME  
10-2. AC CHARACTERISTICS  
On/Off Transient  
Test circuit  
VIn  
=VOut,TYP+1V  
VIn  
VOut  
CIn  
1mF  
IOut  
5mA  
COut  
GND  
VCont  
Np  
VCont  
0-2V  
CNp  
0.1Hz  
CNp=none, COut=1mF (TK77333AME)  
CNp=1000pF, COut=1mF (TK77333AME)  
2V/div  
VCont  
2V/div  
VCont  
IIn  
0.2A/div  
IIn  
0.2A/div  
VOut  
2V/div  
VOut  
2V/div  
400µsec/div  
400µsec/div  
CNp=0.01mF, COut=1mF (TK77333AME)  
CNp=0.1mF, COut=1mF (TK77333AME)  
2V/div  
VCont  
2V/div  
VCont  
IIn  
0.2A/div  
IIn  
0.2A/div  
VOut  
2V/div  
VOut  
2V/div  
10msec/div  
1msec/div  
GC3-R002  
Page 9  
TK773xxAME  
Inrush vs CNp (TK77333AME)  
On-Time vs CNp (TK77333AME)  
1000  
1000  
(Cout)  
10 F  
m
(Cout)  
10 F  
m
100  
10  
100  
10  
1
1 F  
m
0.1 F  
m
1 F  
m
1
0.1  
0.01  
0.1 F  
m
100p  
1000p  
0.01u  
0.1u  
1u  
100p  
1000p  
0.01u  
0.1u  
1u  
CNp [ F ]  
CNp [ F ]  
Softstart Area (TK77333AME)  
10u  
~1mA  
1mA~30mA  
1u  
0.1u  
0.01u  
1000p  
100p  
mA~  
10u  
30  
0.01u  
0.1u  
1u  
100u  
COut [ F ]  
GC3-R002  
Page 10  
TK773xxAME  
Line Transient  
Test circuit  
VIn  
=VOut,TYP+1Vꢀ ꢀꢀV  
VIn  
VOut  
CIn  
COut  
IOut  
1mF  
1mF  
100mA  
GND  
VCont  
Np  
VCont  
2.0V  
CNp  
0.1mF  
IOut=0, 100m, 300m, 500mA (TK77333AME)  
CNp=none, 1000p, 0.01m, 0.1mF (TK77333AME)  
4.8V  
4.8V  
VIn  
VIn  
4.3V  
4.3V  
100mV/div  
DVOut  
100mV/div  
DVOut  
IOut:0→100m→300m→500mA  
100µsec/div  
CNp:none→1000p→0.01µ→0.1µF  
100µsec/div  
CNp=1m, 2.2m, 4.7m, 10mF (TK77333AME)  
4.8V  
VIn  
4.3V  
100mV/div  
DVOut  
COut:1µ→2.2µ→4.7µ→10µF  
100µsec/div  
GC3-R002  
Page 11  
TK773xxAME  
Load Transient  
Test circuit  
VIn  
=VOut,TYP+1V  
IOut  
VIn  
VOut  
CIn  
1mF  
COut  
1mF  
GND  
VCont  
Np  
VCont  
2V  
CNp  
0.1mF  
0mA®xxx mA (CIn=COut=CNp=none)  
0mA®xxx mA (CIn=COut=1µF, CNp=0.1µF)  
(TK77333AME)  
(TK77333AME)  
xxx mA  
xxx mA  
IOut  
IOut  
0mA  
0mA  
VOut  
1V/div  
VOut  
1V/div  
0→xxx mA  
0→xxx mA  
xxx:100m→300m→500mA  
xxx:100m→300m→500mA  
10µsec/div  
10µsec/div  
xxx mA®0mA (CIn=COut=CNp=none)  
xxx mA®0mA (CIn=COut=1µF, CNp=0.1µF)  
(TK77333AME)  
(TK77333AME)  
xxx mA  
xxx mA  
IOut  
IOut  
0mA  
0mA  
VOut  
1V/div  
VOut  
1V/div  
xxx→0mA  
xxx→0mA  
xxx:100m→300m→500mA  
xxx:100m→300m→500mA  
100µsec/div  
10msec/div  
GC3-R002  
Page 12  
TK773xxAME  
10mA®xxx mA (CIn=COut=1µF, CNp=0.1µF)  
0mA®500mA (CIn=1µF, CNp=0.1µF)  
(TK77333AME)  
(TK77333AME)  
xxx mA  
500mA  
IOut  
IOut  
10mA  
0mA  
COut:1µ→2.2µ→4.7µ→10µF  
1V/div  
1V/div  
DVOut  
DVOut  
10mA→xxx mA  
xxx:100m→300m→500mA  
10µsec/div  
40µsec/div  
GC3-R002  
Page 13  
TK773xxAME  
Ripple Rejection  
Test circuit  
VIn  
=VOut,TYP+1.5V  
IOut  
VIn  
VOut  
IOut  
10mA  
COut  
1mF  
500mVp-p  
GND  
VCont  
Np  
VCont  
2.0V  
CNp  
0.1mF  
R.R. vs Frequency (COut=CNp=none)  
R.R. vs Frequency (COut=1µF, CNp=0.1µF)  
(TK77333AME)  
(TK77333AME)  
0
-20  
0
-20  
-40  
-60  
-80  
-40  
-60  
-80  
-100  
-100  
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
Frequency [ Hz ]  
Frequency [ Hz ]  
R.R. vs Frequency (COut=0.1µ ~ 10µF)  
R.R. vs IOut (TK77333AME)  
(TK77333AME)  
Cout=0.1u, 1u, 2.2u, 4.7u, 10uF  
Cout=0.1uF  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
Cout=10uF  
-80  
-80  
-100  
-100  
10  
100  
1k  
10k  
100k  
1M  
0
100  
200  
300  
400  
500  
IOut [ mA ]  
Frequency [ Hz ]  
GC3-R002  
Page 14  
TK773xxAME  
Output Noise  
Test circuit  
VIn  
=VOut,TYP+1V  
VIn  
VOut  
CIn  
1mF  
COut  
1mF  
IOut  
10mA  
V
VNoise  
GND  
VCont  
Np  
VCont  
2V  
CNp  
0.1mF  
Output Noise vs IOut (TK77333AME)  
Output Noise vs CNp (TK77333AME)  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
Cap. Less  
Cin, Cout : none  
200  
150  
100  
50  
Cin=Cout=1 F  
m
Cin=Cout=1 F, Cnp=0.1 F  
m
m
0
0
0
100  
200  
300  
1p  
10p  
100p 1000p 0.01u  
0.1u  
Iout [ mA ]  
Cnp [ F ]  
GC3-R002  
Page 15  
TK773xxAME  
11. PIN DESCRIPTION  
Pin Number Symbol  
Internal Equivalent Circuit  
Description  
No Connection  
Input Terminal  
GND Terminal  
Output Terminal  
1
2
3
NC  
VIn  
GND  
VIn  
VOut  
Np  
4
VOut  
Noise Bypass Terminal  
VIn  
Np  
VOut  
Connect a bypass capacitor between GND.  
5
6
Np  
No Connection  
NC  
On/Off Control Terminal  
ESD  
protection  
VCont≥1.8V : VOut On state  
VCont≤0.3V : VOut Off state  
VCont  
7
8
VCont  
300kW  
500kW  
The pull-down resister (500kW) is built-in.  
No Connection  
NC  
GC3-R002  
Page 16  
TK773xxAME  
12. APPLICATIONS INFORMATION  
12-1. Stability  
12-3. On/Off Control  
It is recommended to turn the regulator Off when the  
circuit following the regulator is not operating. A design  
with little electric power loss can be implemented. We  
recommend the use of the On/Off control of the regulator  
without using a high side switch to provide an output  
from the regulator. A highly accurate output voltage with  
low voltage drop is obtained.  
General linear regulators require input capacitor and  
output capacitor in order to maintain the regulator’s loop  
stability. The TK773xxAME provides stable operation  
without input and output capacitors.  
AC characteristics depends on the sum of input capacitor  
and output capacitor (refer to page 915). Because a  
situation changes with each application, please confirm to  
operation in your design. The other electrical  
characteristics are equal to the electrical characteristics  
when using input and output capacitors.  
Because the control current is small, it is possible to  
control it directly by CMOS logic.  
Control Terminal Voltage ((VCont  
)
On/Off State  
VCont > 1.8V  
On  
VCont < 0.3V  
Off  
12-2. Soft-Start Function  
A big inrush current is generated, with usual regulator,  
when IC is turned on in order to charge the output  
capacitor with the maximum capacity of the regulator.  
This inrush current sometimes reaches double of the  
recommended current.  
In the circuit that multiple LDOs are connected, many  
unfavorable facts occurs, such as damage the battery with  
very big current at the start up, DC-DC converter operates  
abnormally by the momentarily unstableness when LDO  
is connected to it, etc.  
When capacitor (CNp) is connected to the Np pin of the  
TK773xxAME, together with the lower noise, voltage  
rise up becomes gradual, and no sudden charge current  
occurs. Suitable CNp value depends on the sum of the  
output capacitor.  
Parallel Connected On/Off Control  
VOut  
VIn  
5.0V  
TK77350A  
3.3V  
1.2V  
TK77333A  
R
TK77312A  
On/Off  
If small inrush current can be accepted, reduce the CNp  
value. Increasing the CNp value makes the inrush current  
small, reducing the CNp value makes it big.  
The above figure is multiple regulators being controlled  
by a single On/Off control signal. There is concern of  
overheating, because the power loss of the low voltage  
side IC (TK77312A) is large. The series resistor (R) is  
put in the input line of the low output voltage regulator in  
order to prevent over-dissipation. The voltage dropped  
across the resistor reduces the large input-to-output  
voltage across the regulator, reducing the power  
dissipation in the device. When the thermal sensor works,  
a decrease of the output voltage, oscillation, etc. may be  
observed.  
Also, the rise time can be adjusted by the CNp.  
GC3-R002  
Page 17  
TK773xxAME  
PD is easily calculated.  
12-3. Operating Region and Power Dissipation  
With the output terminal shorted-circuited to GND,  
gradually increase the input voltage and measure the  
input current.  
Power dissipation capability is limited by the junction  
temperature that triggers the built-in overheat protection  
circuit. Therefore, power dissipation capability is  
regarded as an internal limitation. The package itself does  
not offer high heat dissipation because of its small size.  
The package is, however, designed to release heat  
effectively when mounted on the PCB. Therefore, the  
heat-dissipation value will vary depending on the material,  
copper pattern, etc. of the PCB on which the package is  
mounted.  
Slowly increase the input voltage to about 10V. The  
initial input current value becomes the maximum  
instantaneous output current value, but gradually lowers  
as the chip temperature rises, and ultimately reaches a  
state of thermal equilibrium (through natural air cooling).  
PD is calculated using the input value for input current  
and the input voltage value in the equilibrium state.  
PD(mW) @ VIn (V) ´ IIn (mA)  
When the regulator loss is large (high ambient  
temperature, poor heat radiation), the overheat protection  
circuit is activated. When this occurs, output current  
cannot be obtained, and an output voltage drop is  
observed. When the junction temperature reaches the set  
value, the IC stops operating. However, after the IC has  
stopped operation and the junction temperature lowers  
sufficiently, the IC restarts operation immediately.  
2
1 PD  
5
DPD  
3
4
How to determine the thermal resistance when  
installed on a PCB  
0
25  
50  
75  
100  
140  
The chip junction temperature during operation is  
expressed by  
Tj = θ ja ´ PD + 25  
Procedure (conducted at the time of installation on PCB)  
The junction temperature of the TK736xxAME/U3 is  
limited to approximately 140°C by the overheat  
protection circuit. PD is the value observed when the  
overheat protection circuit is activated. The following  
example is based on an ambient temperature of 25°C.  
1: Obtain PD ( VIn ´ IIn when output is short-circuited).  
2: Plot PD on the 25°C line.  
3: Draw a straight line between PD and the 140°C line.  
4: Extend a straight-line perpendicular from the point of  
the designed maximum operating temperature (for  
example, 75°C).  
5: Extend a line to the left from the intersection of the  
derating curve and the line drawn in 4, and read the PD  
value (this value is DPD).  
140=qja×PD ()+25  
qja×PD =115  
qja =115/ PD (°C/W)  
6: DPD ¸ (VIn,MAX ´ VOut ) = IOut at 75°C  
Glass epoxy substrate with double-layer wiring  
(x=30mm, y=30mm, t=1.0mm,  
copper pattern thickness: 35mm)  
The maximum operating current at the maximum  
temperature is as follows:  
IOut @ {DPD ¸ (VIn,MAX - VOut )}  
PD is 2000mW. If the temperature exceeds 25°C, be sure  
to derate at -17.4mW/°C.  
Try to achieve maximum heat dissipation in your design  
in order to minimize the part’s temperature during  
operation. Generally speaking, lower part temperatures  
result in higher reliability in operation.  
GC3-R002  
Page 18  
TK773xxAME  
12-4.Definition of term  
Protections  
Characteristics  
¨ Over Current Sensor  
¨ Output Voltage (VOut  
)
The over current sensor protects the device when there is  
excessive output current. It also protects the device if the  
output is accidentally connected to ground.  
The output voltage is specified with VIn=(VOutTYP+1V)  
and IOut=5mA.  
¨ Maximum Output Current (IOut, MAX  
)
¨ Thermal Sensor  
The rated output current is specified under the condition  
where the output voltage drops to 90% of the value  
specified with IOut=5mA. The input voltage is set to  
VOutTYP+1V and the current is pulsed to minimize  
temperature effect.  
The thermal sensor protects the device in case the  
junction temperature exceeds the safe value (Tj=140°C).  
This temperature rise can be caused by external heat,  
excessive power dissipation caused by large input to  
output voltage drops, or excessive output current. The  
regulator will shut off when the temperature exceeds the  
safe value. As the junction temperatures decrease, the  
regulator will begin to operate again. Under sustained  
fault conditions, the regulator output will oscillate as the  
device turns off then resets. Damage may occur to the  
device under extreme fault.  
¨ Dropout Voltage (VDrop  
)
The dropout voltage is the difference between the input  
voltage and the output voltage at which point the  
regulator starts to fall out of regulation. Below this value,  
the output voltage will fall as the input voltage is reduced.  
It is dependent upon the output voltage, the load current,  
and the junction temperature.  
Please prevent the loss of the regulator when this  
protection operates, by reducing the input voltage or  
providing better heat efficiency.  
¨ Line Regulation (LinReg)  
Line regulation is the ability of the regulator to maintain a  
constant output voltage as the input voltage changes. The  
line regulation is specified as the input voltage is changed  
¨ ESD  
MM : 200pF 0W 200V or more  
HBM : 100pF 1.5kW 2000V or more  
from VIn=VOut,TYP+1V to VIn=6V. It is  
measurement to minimize temperature effect.  
a pulse  
¨ Load Regulation (LoaReg)  
Load regulation is the ability of the regulator to maintain  
a constant output voltage as the load current changes. It is  
a pulsed measurement to minimize temperature effects  
with the input voltage set to VIn=VOut,TYP+1V.  
¨ Ripple Rejection (RR)  
Ripple rejection is the ability of the regulator to attenuate  
the ripple content of the input voltage at the output. It is  
specified with 500mVP-P, 1kHz super-imposed on the  
input voltage, where VIn=VOut,TYP+1.5V. Ripple rejection  
is the ratio of the ripple content of the output vs. input and  
is expressed in dB.  
¨Standby Current (IStandby  
)
Standby current is the current which flows into the  
regulator when the output is turned off by the control  
function (VCont=0V).  
GC3-R002  
Page 19  
TK773xxAME  
13. NOTES  
14. OFFICES  
Please be sure that you carefully discuss your planned  
purchase with our office if you intend to use the products in  
this application manual under conditions where particularly  
extreme standards of reliability are required, or if you intend  
to use products for applications other than those listed in this  
application manual.  
Power drive products for automobile, ship or aircraft  
transport systems; steering and navigation systems,  
emergency signal communications systems, and any  
system other than those mentioned above which include  
electronic sensors, measuring, or display devices, and  
which could cause major damage to life, limb or property  
if misused or failure to function.  
If you need more information on this product and other  
ASAHI KASEI TOKO POWER DEVICES products, please  
contact us.  
ASAHI KASEI TOKO POWER DEVICES CORPORATION  
13-45, Senzui 3-chome, Asaka-shi, Saitama-ken  
351-0024, Japan  
TEL: +81-48-460-1870 (Marketing Department)  
FAX: +81-48-460-1600  
Medical devices for measuring blood pressure, pulse,  
etc., treatment units such as coronary pacemakers and heat  
treatment units, and devices such as artificial organs and  
artificial limb systems which augment physiological  
functions.  
Electrical instruments, equipment or systems used in  
disaster or crime prevention.  
Semiconductors, by nature, may fail or malfunction in  
spite of our devotion to improve product quality and  
reliability. We urge you to take every possible precaution  
against physical injuries, fire or other damages which may  
cause failure of our semiconductor products by taking  
appropriate measures, including a reasonable safety margin,  
malfunction preventive practices and fire-proofing when  
designing your products.  
This application manual is effective from Jan. 2011. Note  
that the contents are subject to change or discontinuation  
without notice. When placing orders, please confirm  
specifications and delivery condition in writing.  
ASAHI KASEI TOKO POWER DEVICES is not  
responsible for any problems nor for any infringement of  
third party patents or any other intellectual property rights  
that may arise from the use or method of use of the products  
listed in this application manual. Moreover, this application  
manual does not signify that ASAHI KASEI TOKO  
POWER DEVICES agrees implicitly or explicitly to license  
any patent rights or other intellectual property rights which it  
holds.  
None of the ozone depleting substances(ODS) under the  
Montreal Protocol are used in our manufacturing process.  
YOUR DISTRIBUTOR  
GC3-R002  
Page 20  

相关型号:

TK77406AMHGHL

Regulator,
TOKO

TK77510AM4GHL

Regulator,
TOKO

TK77532AM4GHL

Regulator,
TOKO

TK77550AM4GHL

Regulator,
TOKO

TK7A45DA

Switching Regulator Applications
TOSHIBA

TK7A50D

Switching Regulator Applications
TOSHIBA

TK7A55D

Switching Regulator Applications
TOSHIBA

TK7A60W

Switching Voltage Regulators
TOSHIBA

TK7A65D

Switching Regulator Applications
TOSHIBA

TK7J90E

TRANSISTOR POWER, FET, FET General Purpose Power
TOSHIBA

TK7P50D

Switching Regulator Applications
TOSHIBA

TK7P50D

Silicon N Channel MOS Type (π-MOSⅦ)
FREESCALE