ALD500PC [ALD]

PRECISION INTEGRATING ANALOG PROCESSOR; 精密积分模拟处理器
ALD500PC
型号: ALD500PC
厂家: ADVANCED LINEAR DEVICES    ADVANCED LINEAR DEVICES
描述:

PRECISION INTEGRATING ANALOG PROCESSOR
精密积分模拟处理器

光电二极管
文件: 总11页 (文件大小:92K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCED  
LINEAR  
DEVICES, INC.  
ALD500AU/ALD500A/ALD500  
PRECISION INTEGRATING ANALOG PROCESSOR  
BENEFITS  
APPLICATIONS  
• 4 1/2 digits to 5 1/2 digits plus sign measurements  
• Precision analog signal processor  
• Precision sensor interface  
• High accuracy DC measurement functions  
• Portable battery operated instruments  
• Computer peripheral  
• Wide dynamic signal range  
• Very high noise immunity  
• Low cost, simple functionality  
• Automatic compensation and cancellation of  
error sources  
• Easy to use to acquire true 18 bit,17 bit, or  
16 bit conversion and noise performance  
• Inherently linear and stable with temperature  
and component variations  
• PCMCIA  
GENERAL DESCRIPTION  
The ALD500AU/ALD500A/ALD500 are integrating dual slope analog  
processors, designed to operate on ±5V power supplies for building  
precision analog-to-digital converters. The ALD500AU/ALD500A/  
ALD500 feature specifications suitable for 18 bit/17 bit/16 bit resolution  
conversion, respectively. Together with three capacitors, one resistor,  
a precision voltage reference, and a digital controller, a precision  
Analog to Digital converter with auto zero can be implemented. The  
digital controller can be implemented by an external microcontroller,  
under either hardware (fixed logic) or software control. For ultra high  
resolutionapplications,upto23bitconversioncanbeimplementedwith  
an appropriate digital controller and software.  
FEATURES  
• Resolution up to 18 bits plus sign bit  
and over-range bit  
• Accuracy independent of input source  
impedances  
• High input impedance of 1012  
• Inherently filters and integrates any  
external noise spikes  
• Differential analog input  
• Wide bipolar analog input voltage  
range ±3.5V  
The ALD500 series of analog processors accept differential inputs and  
the external digital controller first counts the number of pulses at a fixed  
clock rate that a capacitor requires to integrate against an unknown  
analog input voltage, then counts the number of pulses required to  
deintegrate the capacitor against a known reference voltage. This  
unknown analog voltage can then be converted by the microcontroller  
to a digital word, which is translated into a high resolution number,  
representing an accurate reading. This reading, when ratioed against  
thereferencevoltage,yieldsanaccurate,absolutevoltagemeasurement  
reading.  
• Automatic zero offset compensation  
• Low linearity error - as low as 0.002%  
• Fast zero-crossing comparator - 1µs  
• Low power dissipation - 6mW typical  
• Automatic internal polarity detection  
• Low input current - 2pA typical  
• Microprocessor controlled conversion  
• Optional digital control from a microcon-  
troller, an ASIC, or a dedicated digital circuit  
• Flexible conversion speed versus resolution  
trade-off  
TheALD500analogprocessorsconsistofon-chipdigitalcontrolcircuitry  
to accept control inputs, integrating buffer amplifiers, analog switches,  
and voltage comparators. It functions in four operating modes, or  
phases, namely auto zero, integrate, deintegrate, and integrator zero  
phases. At the end of a conversion, the comparator output goes from  
high to low when the integrator crosses zero during deintegration.  
ALD500 analog processors also provide direct logic interface to CMOS  
logic families.  
PIN CONFIGURATION  
ALD500  
+
V
1
2
3
4
5
6
7
8
C
16  
15  
14  
13  
12  
11  
10  
9
INT  
-
DGND  
V
C
AZ  
UF  
C
OUT  
ORDERING INFORMATION  
Operating Temperature Range *  
B
B
A
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
AGND  
16-Pin  
Plastic Pin  
Package  
16-Pin  
Small Outline  
Package (SOIC)  
16-Pin Wide Body  
Small Outline  
Package (SOIC)  
-
C
+
V
REF  
IN  
+
-
V
C
REF  
REF  
IN  
-
+
V
V
REF  
ALD500PC (16 bit)  
ALD500APC (17 bit)  
ALD500AUPC (18 bit)  
ALD500SC (16 bit)  
ALD500ASC (17 bit)  
ALD500AUSC (18 bit) ALD500AUSWC (18 bit)  
ALD500SWC (16 bit)  
ALD500ASWC (17 bit)  
PC, SC, SWC PACKAGE  
* Contact factory for industrial temperature range  
Rev. 1.02 © 1999 Advanced Linear Devices, Inc., 415 Tasman Drive, Sunnyvale, California 94089-1706, Tel: (408) 747-1155, Fax: (408) 747-1286  
http://www.aldinc.com  
FIGURE 1. ALD 500 Functional Block Diagram  
R
INT  
C
INT  
C
REF  
C
AZ  
+
-
C
INT  
(1)  
+
V
V
-
C
C
REF  
REF  
(8)  
BUF  
(4)  
C
AZ  
(3)  
REF  
(7)  
REF  
(6)  
(9)  
SW  
SW  
SW  
R
R
-
SW  
IN  
Buffer  
+
Integrator  
-
+
V
IN  
(11)  
+
-
+
SW  
R
R
+
-
Comp1  
-
Level  
Shift  
Comp2  
+
C
OUT  
(14)  
SW  
AZ  
+
-
SW  
SW  
SW  
S
R
R
SW  
SW  
Az  
IN  
Polarity  
Detection  
DGND  
(15)  
AGND  
(5)  
SW  
G
-
V
Analog  
IN  
(10)  
Phase  
Decoding  
Logic  
Switch  
Control  
Signals  
V
SS  
(2)  
V
DD  
(16)  
A
B
(12) (13)  
Control Logic  
GENERAL THEORY OF OPERATION  
Dual-Slope Conversion Principles of Operation  
The basic principle of dual-slope integrating analog to digital  
c. Offset voltage values of the analog components, such  
as VX, are cancelled out and do not affect accuracy.  
d. Accuracyofthesystemdependsmainlyontheaccuracy  
converter is simple and straightforward. A capacitor, CINT, is and the stability of the voltage reference value.  
charged with the integrator from a starting voltage, VX, for a  
fixed period of time at a rate determined by the value of an  
unknown input voltage, which is the subject of measurement.  
Then the capacitor is discharged at a fixed rate, based on an  
e. Very high resolution, high accuracy measurements  
can be achieved simply and at very low cost.  
external reference voltage, back to VX where the discharge Aninherentbenefitofthedualslopeconvertersystemisnoise  
time, or deintegration time, is measured precisely. Both the immunity. The input noise spikes are integrated (averaged to  
integration time and deintegration time are measured by a  
digital counter controlled by a crystal oscillator. It can be  
near zero) during the integration periods. Integrating ADCs  
are immune to the large conversion errors that plague  
demonstrated that the unknown input voltage is determined successiveapproximationconvertersandotherhighresolution  
by the ratio of the deintegration time and integration time, and converters and perform very well in high-noise environments.  
isdirectlyproportionaltothemagnitudeoftheexternalreference  
voltage.  
Theslowconversionspeedoftheintegratingconverterprovides  
inherentnoiserejectionwithatleasta20dB/decadeattenuation  
rate. Interferencesignalswithfrequenciesatintegralmultiples  
The major advantages of a dual-slope converter are:  
a. Accuracy is not dependent on absolute values of oftheintegrationperiodare,theoretically,completelyremoved.  
integration time tINT and deintegration time tDINT, but is Integrating converters often establish the integration period to  
dependent on their relative ratios. Long-term clock frequency  
variations will not affect the accuracy. A standard crystal  
reject 50/60Hz line frequency interference signals.  
controlledclockrunningdigitalcountersisadequatetogenerate The relationship of the integrate and deintegrate (charge  
very high accuracies.  
and discharge) of the integrating capacitor values are  
shown below:  
b. Accuracy is not dependent on the absolute values of  
RINT and CINT. as long as the component values do not vary  
through a conversion cycle, which typically lasts less than 1  
second.  
. .  
VINT = VX - (VIN tINT / RINT CINT)  
2
Advanced Linear Devices  
ALD500AU/ALD500A/ALD500  
(integrate cycle)  
VX = VINT - (VREF  
(1)  
(2)  
(3)  
Phase, internal analog switches connect VIN to the buffer  
input where it is maintained for a fixed integration time period  
(tINT). This fixed integration period is generally determined by  
a digital counter controlled by a crystal oscillator. The  
application of VIN causes the integrator output to depart 0V at  
a rate determined by VIN and a direction determined by the  
polarity of VIN.  
.
.
tDINT / RINT CINT)  
(deintegrate cycle)  
Combining equations 1 and 2 results in:  
IN / VREF = -tDINT / tINT  
where:  
V
The Reference Voltage Deintegration Phase is initiated  
immediately after tINT, within 1 clock cycle. During Reference  
VoltageDeintegrationPhase,internalanalogswitchesconnect  
a reference voltage having a polarity opposite that of VIN to  
the integrator input. Simultaneously the same digital counter  
controlled by the same crystal oscillator used above is used to  
start counting clock pulses. The Reference Voltage  
DeintegrationPhaseismaintaineduntilthecomparatoroutput  
Vx = An offset voltage used as starting voltage  
VINT = Voltage change across CINT during tINT and  
during tDINT (equal in magnitude)  
VIN = Average, or an integrated, value of input voltage  
to be measured during tINT (Constant VIN)  
tINT = Fixed time period over which unknown voltage is insidethedualslopeanalogprocessorchangesstate,indicating  
integrated  
the integrator has returned to 0V. At that point the digital  
counter is stopped. The Deintegration time period (tDINT), as  
measured by the digital counter, is directly proportional to the  
magnitude of the applied input voltage.  
tDINT = Unknown time period over which a known  
reference voltage is integrated  
VREF = Reference Voltage  
CINT = Integrating Capacitor value  
RINT = Integrating Resistor value  
After the digital counter value has been read, the digital  
counter, the integrator, and the auto zero capacitor are all  
Actual data conversion is accomplished in two phases: Input reset to zero through an Integrator Zero Phase and an Auto  
SignalIntegrationPhaseandReferenceVoltageDeintegration Zero Phase so that the next conversion can begin again. In  
Phase.  
practice, this process is usually automated so that analog-to-  
digital conversion is continuously updated. The digital control  
The integrator output is initialized to 0V prior to the start of ishandledbyamicroprocessororadedicatedlogiccontroller.  
InputSignalIntegrationPhase. DuringInputSignalIntegration The output, in the form of a binary serial word, is read by a  
microprocessor or a display adapter when desired.  
C
INT  
INTEGRATOR  
-
R
INT  
ANALOG  
INPUT  
V
INT  
COMPARATOR  
+
-
C
OUT  
(V  
)
IN  
+
S1  
POLARITY  
DETECTION  
PHASE  
CONTROL  
VOLTAGE  
REFERENCE  
SWITCH DRIVER  
REF  
SWITCHES  
CONTROL  
LOGIC  
POLARITY CONTROL  
A
B
V
INT  
= 4.1V MAX  
V
V
IN FULL SCALE  
V
V
IN 1/2 FULL SCALE  
MICROCONTROLLER  
(CONTROL LOGIC  
+ COUNTER)  
V
X 0  
t
DINT  
t
t
INT  
DINT  
Figure 2. Basic Dual-Slope Converter  
Figure 2. Basic Dual-Slope Converter  
ALD500AU/ALD500A/ALD500  
Advanced Linear Devices  
3
ABSOLUTE MAXIMUM RATINGS  
+
Supply voltage, V  
13.2V  
-0.3V to V +0.3V  
600 mW  
+
Differential input voltage range  
Power dissipation  
Operating temperature range PC, SC, SWC package  
Storage temperature range  
Lead temperature, 10 seconds  
0°C to +70°C  
-65°C to +150°C  
+260°C  
OPERATING ELECTRICAL CHARACTERISTICS  
+
-
T
= 25°C V = +5.0V V = -5.0V (V  
= ±5.0 V) unless otherwise specified; C = C  
AZ  
= 0.47µf  
REF  
A
SUPPLY  
500AU  
500A  
Typ  
500  
Typ  
Parameter  
Symbol  
Min  
15  
Typ  
Max  
Min  
30  
Max  
Min  
60  
Max  
Unit  
Test Conditions  
Resolution  
30  
60  
µV  
Note 1  
Zero-Scale  
Error  
Z
0.0025  
0.003  
0.003  
0.005  
0.005  
0.008  
%
%
SE  
0°C to 70°C  
End Point  
Linearity  
E
0.005  
0.007  
0.005 0.010  
0.015  
0.005  
0.003  
0.015  
0.020  
%
%
Notes 1, 2  
0°C to +70°C  
NL  
Best Case  
Straight Line  
Linearity  
N
0.0025  
0.004  
0.6  
0.003 0.005  
0.008  
0.008  
0.015  
0.7  
Notes 1, 2  
0°C to +70°C  
0°C to +70°C  
Note 1  
L
Zero-Scale  
Temperature  
Coefficient  
TC  
ZS  
0.3  
0.15  
0.3  
0.15  
0.7  
0.3  
0.15  
0.01  
0.012  
1.3  
µV/°C  
ppm/°C  
%
0.3  
0.35  
0.35  
Full-Scale  
Symmetry Error  
(Rollover Error)  
S
YE  
0.005  
0.008  
1.3  
0.008  
0.010  
1.3  
%
0°C to 70°C  
Full-Scale  
TC  
FS  
ppm/°C  
0°C to +70°C  
Temperature  
Coefficient  
Input  
Current  
I
2
2
2
pA  
V
V
IN  
= 0V  
IN  
-
+
-
+
-
+
Common-Mode CMVR V +1.5  
Voltage Range  
V -1.5 V +1.5  
V -1.5 V +1.5  
V -1.5  
-
+
-
+
-
+
Integrator  
VINT  
V +0.9  
V -0.9 V +0.9  
V -0.9 V +0.9  
V -0.9  
V
Output Swing  
-
+
-
+
-
+
Analog Input  
Signal Range  
VIN  
V +1.5  
V -1.5 V +1.5  
V -1.5 V +1.5  
V -1.5  
V
AGND = 0V  
-
+
-
+
-
+
Voltage  
Reference  
Range  
VREF  
V +1  
V -1  
V +1  
V -1  
V +1  
V -1  
V
4
Advanced Linear Devices  
ALD500AU/ALD500A/ALD500  
DC ELECTRICAL CHARACTERISTICS  
+
-
T
= 25°C V = +5.0V V = -5.0V (V  
= ±5.0 V) unless otherwise specified; C = C  
= 0.47µf  
REF  
A
SUPPLY  
AZ  
500AU  
Typ  
500A  
Typ  
500  
Typ  
Parameter  
Symbol Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
+
Supply Current  
I
0.6  
1.0  
0.6  
1.0  
0.6  
1.0  
mA  
V
V
= 5V , A =1,B=1  
S
Power Dissipation  
P
10  
10  
10  
mW  
V
= ±5V  
D
SUPPLY  
Positive Supply Range  
V
4.5  
-4.5  
4
5.5  
4.5  
-4.5  
4
5.5  
4.5  
5.5  
Note 4  
Note 4  
+S  
Negative Supply Range  
V
-5.5  
0.4  
1
-5.5  
0.4  
1
-4.5  
4
-5.5  
0.4  
1
V
V
V
V
V
-S  
Comparator Logic 1,  
Output High  
V
I
I
= 400µA  
SOURCE  
OH  
Comparator Logic 0,  
Output Low  
V
= 1.1mA  
SINK  
OL  
Logic 1, Input High  
Voltage  
V
3.5  
3.5  
3.5  
IH  
Logic 0, Input Low  
Voltage  
V
IL  
Logic Input Current  
Comparator Delay  
I
t
0.01  
1
0.01  
1
0.01  
1
µA  
L
µsec  
Note 5  
D
NOTES:  
~
1. Integrate time 66 msec., Auto Zero time 66 msec., V  
INT  
= 4V, V = 2.0V Full Scale  
IN  
Resolution = V  
INT  
/integrate time/clock period  
2. End point linearity at ±1/4, ±1/2, ±3/4 Full Scale after Full Scale adjustment.  
3. Rollover Error also depends on C , C , C characteristics.  
INT REF AZ  
4. Contact factory for other power supply operating voltage ranges, including Vsupply = ±3V or Vsupply = ±2.5V.  
5. Recommended selection of clock periods of one of the following:  
t clk = 0.27µsec, 0.54µsec, or 1.09µsec  
which corresponds to clock frequencies of 3.6864 MHz, 1.8432 MHz, 0.9216 MHz respectively.  
Figure 3. ALD500 TIMING DIAGRAM  
1 Conversion Cycle  
123,093  
123,093  
0.5416 µs  
Clock Pulses  
Clock Pulses  
~
~
1.8432 MHz Clock  
A INPUT  
66.667 msec.  
66.667 msec.  
B INPUT  
COUT  
NOT VALID  
NOT VALID  
Positive Input Signal  
COUT  
Negative Input Signal  
Auto Zero  
Phase  
Input Signal  
Integration  
Phase  
Reference  
Voltage  
Deintegration  
Phase  
Integrator Zero  
Phase  
Auto Zero  
Phase  
Clock data in  
or clock data out  
of counters within the  
the microcontroller  
or fixed logic controller,  
as needed.  
Fixed period of  
approx.1 msec.  
Variable  
number of  
clock pulses.  
Fixed number  
of clock pulses  
by design.  
At VIN MAX,  
max. number of  
clock pulses  
Stop counter upon  
detection of comparator  
output going from high  
to low state.  
START  
REPEAT  
CONVERSION  
CYCLE  
CONVERSION  
CYCLE  
~
= 246,185  
START INTEGRATION CYCLE  
START DEINTEGRATION CYCLE  
START INTEGRATOR ZERO CYCLE  
ALD500AU/ALD500A/ALD500  
Advanced Linear Devices  
5
PIN DESCRIPTION  
Pin No.  
Symbol  
Description  
1
C
Integrator capacitor connection.  
INT  
-
2
V
C
Negative power supply.  
3
The Auto-zero capacitor connection.  
The Integrator resistor buffer connection.  
This pin is analog ground.  
AZ  
4
BUF  
5
AGND  
-
6
C
C
V
Negative reference capacitor connection.  
Positive reference capacitor connection.  
External voltage reference (-) connection.  
External voltage reference (+) connection.  
Negative analog input.  
REF  
+
7
REF  
-
8
REF  
REF  
IN  
+
9
V
V
V
A
B
-
10  
11  
12  
13  
14  
+
Positive analog input.  
IN  
Converter phase control MSB Input.  
Converter phase control LSB Input.  
C
Comparator output. C  
OUT  
is LOW when a negative input voltage is being integrated. A HIGH-to-LOW transition on C  
that the Deintegrate phase is completed. C  
time the Integrator Zero phase.  
is HIGH during the Integration phase when a positive input voltage is being integrated and  
signals the processor  
is undefined during the Auto-Zero phase. It should be monitored to  
OUT  
OUT  
OUT  
15  
16  
DGND  
Digital ground.  
+
V
Positive power supply.  
Table 1. Conversion Phase and Control Logic Internal Analog Switch Functions  
Switch Functions  
Input  
Connect  
Reference Input Auto Zero  
Polarity  
Reference  
Sample  
V
=AGND  
System  
Offset  
IN  
Conversion Control  
Phase  
Logic  
+
-
SW  
R
SW  
SW  
SW  
AZ  
SW  
SW  
SW  
S
IN  
R or  
R
G
Auto Zero  
A = 0, B = 1  
A = 1, B = 0  
Open  
Open  
Open  
Closed  
Open  
Closed  
Open  
Closed  
Open  
Open  
Open  
Input Signal  
Integration  
Closed  
Reference Voltage A = 1, B = 1  
Deintegration  
Open  
Open  
Closed*  
Open  
Open  
Open  
Open  
Closed  
Closed  
Open  
Integrator  
A = 0, B = 0  
Closed  
Closed  
Output Zero  
+
-
R
*SW would be closed for a positive input signal. SW would be closed for a negative input signal.  
R
6
Advanced Linear Devices  
ALD500AU/ALD500A/ALD500  
ALD500AU/ALD500A/ALD500 CONVERSION CYCLE  
value selections. The total number of clock pulses or clock  
counts, during integration phase determine the resolution of  
The ALD500AU/ALD500A/ALD500 conversion cycle takes the conversion. For high resolution applications, this total  
place in four distinct phases, the Auto Zero Phase, the Input number of clock pulses should be maximized. The basic unit  
SignalIntegrationPhase,theReferenceVoltageDeintegration of resolution is in µV/count. Before the end of this phase,  
Phase,andtheIntegratorZeroPhase.Atypicalmeasurement  
comparator output is sampled by the microcontroller. This  
cycle uses all four phases in an order sequence as mentioned phaseisterminatedbychanginglogicinputsABfrom10to11.  
above. The internal analog switch status for each of these  
phases is summarized in Table 1.  
Reference Voltage Deintegration Phase ( DINT Phase)  
The following is a detailed description of each one of the four  
phases of the conversion cycle.  
At the end of the Input Signal Integration Phase, Reference  
Voltage Deintegration Phase begins. The previously charged  
reference capacitor is connected with the proper polarity to  
ramp the integrator output back to zero. The ALD500AU/  
ALD500A/ALD500 analog processors automatically selects  
the proper logic state to cause the integrator to ramp back  
Auto Zero Phase (AZ Phase)  
The analog-to-digital conversion cycle begins with the Auto  
Zero Phase, when the digital controller applies low logic level toward zero at a rate proportional to the reference voltage  
to input A and high logic level to input B of the analog stored on the reference capacitor. The time required to return  
processor. During this phase, the reference voltage is stored to zero is measured by the counter in the digital processor  
on reference capacitor CREF, comparator offset voltage and using the same crystal oscillator. The phase is terminated by  
the sum of the buffer and integrator offset voltages are stored  
the comparator output after the comparator senses when the  
on auto zero capacitor CAZ. During the Auto Zero Phase, the integrator output crosses zero. The counter contents are then  
comparator output is characterized by an indeterminate transferred to the register. The resulting time measurement  
waveform.  
is proportional to the magnitude of the applied input voltage.  
During the Auto Zero Phase, the external input signal is  
The duration of this phase is precisely measured from the  
disconnected from the internal circuitry of the ALD500AU/ transition of AB from 10 to 11 to the falling edge of the  
ALD500A/ALD500 by opening the two SWIN analog switches comparator output, usually with a crystal controlled digital  
and connecting the internal input nodes internally to analog counter chain. The comparator delay contributes some error  
ground. A feedback loop, closed around the integrator and in this phase. The typical comparator delay is 1µ . The  
sec  
comparator, charges the CAZ capacitor with a voltage to  
comparator delay and overshoot will result in error timing,  
compensate for buffer amplifier, integrator and comparator which translates into error voltages. This error can be zeroed  
offset voltages.  
and minimized during Integrator Output Zero Phase and  
corrected in software, to within ±1 count of the crystal clock  
This is the system initialization phase, when a conversion is (which is equivalent to within ± 1 LSB, when 1 clock pulse = 1  
ready to be initiated at system turn-on. In practice the  
converter can be operated in continuous conversion mode,  
LSB).  
whereAZphasemustbelongenoughforthecircuitconditions Integrator Zero Phase ( INTZ Phase)  
to settle out any system errors. Typically this phase is set to  
be equal to tINT  
.
This phase guarantees the integrator output is at 0V when the  
Auto Zero phase is entered, and that only system offset  
voltages are compensated. This phase is used at the end of  
thereferencevoltagedeintegrationandisusedforapplications  
Input Signal Integration Phase (INT Phase)  
DuringtheInputSignalIntegrationPhase(INT),theALD500AU/ with high resolutions. If this phase is not used, the value of the  
ALD500A/ALD500 integrates the differential voltage across Auto-Zero capacitor (CAZ) must be much greater than the  
+
-
the (V IN) and (V IN) inputs. The differential voltage must be  
value of the integration capacitor (CINT) to reduce the effects  
within the device's common-mode voltage range CMVR. The of charge-sharing. The Integrator Zero phase should be  
integrator charges CINT for a fixed period of time, or counts a programmed to operate until the Output of the Comparator  
fixed number of clock pulses, at a rate determined by the returns "HIGH". A typical Integrator Zero Phase lasts 1msec.  
magnitude of the input voltage. During this phase, the analog  
inputs see only the high impedance of the noninverting  
The comparator delay and the controller's response latency  
operationalamplifierinputofthebuffer. Theintegratorresponds may result in Overshoot causing charge buildup on the  
only to the voltage difference between the analog input integrator at the end of a conversion. This charge must be  
terminals, thus providing true differential analog inputs.  
removed or performance will degrade. The Integrator Output  
Zero phase should be activated (AB = 00) until COUT goes  
high. Atthispoint,theintegratoroutputisnearzero. AutoZero  
The input signal polarity is determined by software control at  
the end of this phase: COUT = 1 for positive input polarity; Phase should be entered (AB = 01) and the ALD500AU/  
OUT = 0 for negative input polarity. The value is, in effect, the ALD500A/ALD500isheldinthisstateuntilthenextconversion  
C
sign bit for the overall conversion result.  
cycle.  
The duration of this phase is selected by design to be a fixed  
time and depends on system parameters and component  
ALD500AU/ALD500A/ALD500  
Advanced Linear Devices  
7
+
-
Differential Inputs (V IN,V IN)  
(+) or (-) input voltages will cause a roll-over error. This error  
can be minimized by using a large reference capacitor in  
The ALD500AU/ALD500A/ALD500 operates with differential comparison to the stray capacitance.  
voltages within the input amplifier common-mode voltage  
range. Theamplifiercommon-moderangeextendsfrom1.5V Phase Control Inputs (A, B)  
below positive supply to 1.5V above negative supply. Within  
thiscommon-modevoltagerange, common-moderejectionis The A and B logic inputs select the ALD500AU/ALD500A/  
typically 95dB.  
ALD500 operating phase. The A and B inputs are normally  
driven by a microprocessor I/O port or external logic, using  
The integrator output also follows the common-mode voltage. CMOS logic levels. For logic control functions of A and B logic  
When large common-mode voltages with near full-scale inputs, see Table 1.  
differential input voltages are applied, the input signal drives  
the integrator output to near the supply rails where the Comparator Output (COUT  
)
integrator output is near saturation. Under such conditions,  
linearity of the converter may be adversely affected as the By monitoring the comparator output during the Input Signal  
integrator swing can be reduced. The integrator output must Integration Phase, which is a fixed signal integrate time  
notbeallowedtosaturate. Typically, theintegratoroutputcan period, the input signal polarity can be determined by the  
swing to within 0.9V of either supply rails without loss of microcontroller controlling the conversion. The comparator  
linearity.  
output is HIGH for positive signals and LOW for negative  
signals during the Input Signal Integration Phase. The state of  
the comparator should be checked by the microcontroller at  
the end of the Input Signal Integration Phase, just before  
Analog Ground  
AnalogGroundisV-IN duringAutoZeroPhaseandReference transition to the Reference Voltage Deintegration Phase. For  
Voltage Deintegration Phase. If V- is different from analog very low level input signals noise may cause the comparator  
ground, a common-mode voltage exists at the inputs. This output state to toggle between positive and negative states.  
common mode signal is rejected by the high common mode For the ALD500AU/ALD500A/ALD500, this noise has been  
rejection ratio of the converter. In most applications, V  
set at a fixed known voltage (i.e., power supply ground). All  
other ground connections should be connected to digital At the start of the Reference Voltage Deintegration Phase,  
IN  
-
is minimized to typically within one count.  
IN  
ground in order to minimize noise at the inputs.  
comparator output is set to HIGH state. During the Reference  
VoltageDeintegrationPhase,themicrocontrollermustmonitor  
the comparator output to make a HIGH-to-LOW transition as  
the integrator output ramp crosses zero relative to analog  
+
-
Differential Reference (V REF, V REF  
)
The reference voltage can be anywhere from 1V of the power ground. This transition indicates that the conversion is  
supply voltage rails of the converter. Roll-over error is caused complete. The microcontroller then stops and records the  
by the reference capacitor losing or gaining charge due to the pulsecount. Theinternalcomparatordelayis1µsec,typically.  
straycapacitanceonitsnodes. Thedifferenceinreferencefor The comparator output is undefined during the Auto Zero  
Phase.  
Positive Input Signal (VIN  
)
0V  
Negative Input Signal (VIN  
)
ANALOG INPUT  
REFERENCE  
DEINTEGRATE  
INTEGRATE  
ANALOG INPUT  
INTEGRATE  
REFERENCE  
DEINTEGRATE  
INTEGRATOR  
OUTPUT  
INTEGRATOR  
OUTPUT  
(V  
)
INT  
ZERO  
CROSSING  
ZERO  
CROSSING  
(V  
)
INT  
EXTERNAL INPUT  
EXTERNAL INPUT  
POLARITY DETECTION  
POLARITY DETECTION  
COMPARATOR  
OUTPUT  
COMPARATOR  
OUTPUT  
(C  
)
(C  
)
OUT  
OUT  
Figure 4. Comparator Output  
8
Advanced Linear Devices  
ALD500AU/ALD500A/ALD500  
APPLICATIONS AND DESIGN NOTES  
where:  
V
IN MAX = Maximum input voltage desired  
Determination and Selection of System Variables  
(full count voltage)  
RINT  
= Integrating Resistor value  
Theprocedureoutlinedbelowallowstheusertodeterminethe  
valuesforthefollowingALD500AU/ALD500A/ALD500system  
design variables:  
For minimum noise and maximum linearity, RINT should be in  
the range of between 50kto 150k.  
(1) Determine Input Voltage Range  
(2) Clock Frequency and Resolution Selection  
(3) Input Integration Phase Timing  
(4) Integrator Timing Components (RINT, CINT  
(5) Auto Zero and Reference Capacitors  
(6) Voltage Reference  
Integrating Capacitor (CINT  
)
)
The integrating capacitor should be selected to maximize  
integrator output voltage swing VINT, for a given integration  
time, without output level saturation. For +/-5V supplies,  
recommended VINT range is between +/- 3 Volt to +/-4 Volt.  
Using the 20µA buffer maximum output current, the value of  
the integrating capacitor is calculated as follows:  
System Timing  
Figure 3 and Figure 4 show the overall timing for a typical  
system in which ALD500AU/ALD500A/ALD500 is interfaced  
toamicrocontroller. ThemicrocontrollerdrivestheA, Binputs  
-6  
.
C
INT = (tINT) (20 x 10 ) / VINT  
with I/O lines and monitors the comparator output, COUT  
,
where: tINT  
VINT  
=
=
Input Integration Phase Period  
Maximum integrator output  
voltage swing  
using an I/O line or dedicated timer-capture control pin. It may  
be necessary to monitor the state of the comparator output in  
additiontohavingitcontrolatimerdirectlyduringtheReference  
Deintegration Phase.  
It is critical that the integrating capacitor must have a very low  
dielectricabsorption, aschargelossorgainduringconversion  
directlyconvertsintoanerrorvoltage. Polypropylenecapacitors  
are recommended while Polyester and Polybicarbonate  
capacitors may also be used in less critical applications.  
There are four critical timing events: sampling the input  
polarity;capturingthedeintegrationtime;minimizingovershoot  
and properly executing the Integrator Output Zero Phase.  
Selecting Input Integration Time  
Reference (CREF) and Auto Zero (CAZ) Capacitors  
For maximum 50/60 cycle noise rejection, Input Integration  
Time must be picked as a multiple of the period of line  
frequency. For example, tINT times of 33msec, 66msec and  
100 msec maximize 60Hz line rejection, and 20msec, 40  
msec, 80msec, and 100 msec maximize 50Hz line rejection.  
Note that tINT of 100 msec maximizes both 60 Hz and 50Hz  
line rejection.  
CREF and CAZ must be low leakage capacitors (e.g.  
polypropylene types). The slower the conversion rate, the  
larger the value CREF must be. Recommended capacitor  
values for CREF and CAZ are equal to CINT. Larger values for  
CAZ and CREF may also be used to limit roll-over errors.  
Calculate VREF  
INT and DINT Phase Timing  
The reference deintegration voltage is calculated using:  
. .  
REF = (VINT) (CINT) (RINT) / 2(tINT)  
V
The duration of the Reference Deintegrate Phase (DINT) is a  
function of the amount of voltage charge stored on the  
integrator capacitor during INT phase, and the value of VREF  
.
Converter Noise  
The DINT phase must be initiated immediately following INT  
phaseandterminatedwhenanintegratoroutputzero-crossing  
is detected. In general, the maximum number of counts  
chosenforDINT phaseistwicetothreetimesthatofINTphase  
with VREF chosen as a maximum voltage relative to VIN. For  
example, VREF = VIN(max)/2 would be a good reference  
voltage.  
The converter noise is the total algebraic sum of the integrator  
noise and the comparator noise. This value is typically 14 µV  
peak to peak. The higher the value of the reference voltage,  
the lower the converter noise. Such sources of noise errors  
canbereducedbyincreasedintegrationtimes,whicheffectively  
filter out any such noise. If the integration time periods are  
selected as multiples of 50/60Hz frequencies, then 50/60Hz  
noise is also rejected, or averaged out. The signal-to-noise  
ratio is related to the integration time (tINT) and the integration  
time constant (RINT) (CINT) as follows:  
Integrating Resistor (RINT  
)
The desired full-scale input voltage and amplifier output  
current capability determine the value of RINT. The buffer and  
integrator amplifiers each have a full-scale current of 20µA.  
-6  
.
.
S/N (dB) = 20 Log ((VINT / 14 x 10 ) tINT /(RINT CINT))  
The value of RINT is therefore directly calculated as follows:  
This converter noise can also be reduced by using multiple  
samples and mathematically averaged. For example, taking  
16samplesandaveragingthereadingsresultinamathematical  
(by software) filtering of noise to less than 4µV.  
RINT  
= VIN MAX / 20 µA  
ALD500AU/ALD500A/ALD500  
Advanced Linear Devices  
9
DESIGN EXAMPLES  
We now apply these equations in the following  
design examples.  
EQUATIONS AND DERIVATIONS  
Dual Slope Analog Processor equations and derivations  
are as follows:  
t
INT  
.
.
1
V
t
(1)  
REF DINT  
V
IN  
(t)dt =  
Design Example 1:  
.
R
C
INT  
0
INT  
R
C
INT  
INT  
For V (t) = V (constant):  
IN  
IN  
1. Pick resolution = 16 bit.  
1
2. Pick t  
= 4x  
= 4 x 16.6667 msec.  
= 66.6667ms  
INT  
.
V
t
1
.
REF DINT  
60Hz  
(2)  
.
t
V
=
IN  
INT  
.
C
INT  
R
.
C
INT  
R
INT  
INT  
= 0.0666667 sec.  
t
t
DINT  
(2a)  
(3)  
.
. .  
V
IN  
= V  
REF  
3. Pick clock period = 1.08507 µs and number of counts  
INT  
0.0666667  
= 61440  
over t  
INT  
=
.
t
I
INT  
B
-6  
C
=
1.08507x10  
INT  
V
INT  
4. Pick V MAX value, e.g., V MAX = 2.0 V  
IN  
I MAX = 20µA  
IN  
At V MAX, the current I is also at a maximum level,  
IN  
B
2.0  
for a given R  
value:  
INT  
R
INT  
=
= 100 kΩ  
B
-6  
20x10  
V
IN  
I
B
V
MAX  
IN  
(4)  
R
=
=
INT  
5. Applying equation (3) to calculate C  
-6  
INT:  
I MAX  
B
C
INT  
= (0.0666667)(20x10 )/4 where V  
= 4.0V  
INT  
From equation (2a),  
~
0.33 µF  
=
.
V
t
IN INT  
(5a)  
(5b)  
~
~
0.33 µF  
V
=
6. Pick C  
and C C : C  
C
AZ  
=
REF  
REF  
AZ  
INT  
REF  
=
t
DINT  
OR  
7. Pick t  
= 2 x t  
INT  
= 133.3334 msec  
DINT  
.
t
V
MAX  
IN  
INT  
MAX  
V
=
REF  
.
.
R
INT  
V
INT  
MAX  
C
INT  
t
DINT  
=
8. Calculate V  
V
REF  
t
MAX  
DINT  
Rearranging equations (3) and (4):  
.
-6  
3
C
V
INT  
4 x 0.33 x 10 x 100 x 10  
INT  
t
=
(6)  
(7)  
INT  
=
V
-3  
I
133.3334 x 10  
B
and  
V
MAX  
IN  
= 0.99V  
~
I MAX =  
B
R
INT  
1.00V  
=
At V  
V
MAX, equation (6) becomes:  
INT = INT  
.
Design Example 2:  
C
=
V
MAX  
INT  
INT  
t
INT  
(6a)  
I MAX  
B
1. Select resolution of 17 bit. Total number of  
counts during t  
is131,072.  
INT  
Combining (6a) and (7):  
.
.
R
INT  
.
C
V
MAX  
INT  
INT  
MAX  
. .  
(8)  
t
=
2. We can pick t  
of 16.6667 msec. x 5 = 83.3333 msec.  
INT  
INT  
V
IN  
In equation (5b), substituting equation (8) for t  
or alternately, pick t  
equal  
INT  
16.6667 msec. x 6 = 100.00 msec.  
(for 60 Hz rejection)  
:
INT  
.
.
R
INT  
C
INT  
V
INT  
MAX  
which is t  
= 20.00 msec. x 5  
INT  
.
V
MAX  
V
IN  
MAX  
IN  
(9)  
= 100.00 msec. (for 50 Hz rejection)  
V
=
=
REF  
t
MAX  
DINT  
MAX  
.
.
Therefore, using t  
= 100 msec. would achieve  
C
V
R
INT  
INT  
INT  
INT  
both 50 Hz and 60 Hz cycle noise rejection. For this  
example, the following calculations would assume  
t
MAX  
DINT  
t
of 100 msec. Now select period equal to  
For t  
MAX = 2 x t  
,
INT  
0.5425 µsec. (clock frequency of 1.8432 MHz)  
DINT  
INT  
equation (9) becomes:  
.
.
R
INT  
C
INT  
V
MAX  
INT  
2t  
(10)  
V
=
REF  
INT  
10  
Advanced Linear Devices  
ALD500AU/ALD500A/ALD500  
3. Pick V MAX = ±2V  
IN  
Design Example 4:  
Objective: 5 1/2 digit + sign +over-range measurement.  
For I MAX = 20µA, applying equation (4),  
B
1. Pick t  
= 133.333 msec. for 60Hz noise rejection.  
INT  
2
R
=
= 100 KΩ  
INT  
(16.6667 msec. x 8 cycles)  
Frequency = 1.8432 MHz  
clock period = 0.5425 µsec.  
-6  
20x10  
4. Calculate, using equation (3) for C  
-6  
:
INT  
C
= (0.1) x (20 x 10 /4)  
~
INT  
During Input Integrate Phase,  
(assume V MAX = 4V)  
= 0.5 µF  
INT  
-3  
133.333 x 10  
total count =  
-6  
0.5425 x 10  
Use C  
INT  
0.47µF as the closest practical value.  
= 245776  
5. Pick C  
and C = 0.47 µF  
AZ  
REF  
For V  
= 4.0V, the basic resolution is  
INT  
6. Pick t  
= 2 x t  
= 200 msec.  
INT  
DINT  
4
or 16.276 µV/count  
245776  
7. Calculate the value for V  
, from equation (10):  
REF  
For V MAX = 2.00V, the input resolution is  
IN  
.
.
V
REF  
=
C
V
MAX  
R
INT  
V
MAX  
INT  
INT  
IN  
16.276  
x
= 8.138 µV/count  
V MAX  
INT  
t
MAX  
DINT  
-6  
3
0.5 x 10 x 4 x 100 x 10  
2. Pick V range = ± 2V  
IN  
=
-3  
200 x 10  
2
= 100 KΩ  
For I = 20 µA, R  
INT  
=
B
= 1.00V  
-6  
20 x 10  
~
-6  
= (0.133333) x (20 x 10 )/4 = 0.67 µF  
3. Calculate C  
INT  
Design Example 3:  
4. Pick C  
REF  
= C = 0.67 µF  
AZ  
1. Pick resolution of 18 bit. Total number of counts during  
t
is 262,144.  
5. Select t  
DINT  
= 2 x t  
= 266.667 msec.  
INT  
INT  
2. Pick t  
= 16.66667 msec. x 10 cycles  
= 0.1666667 sec.  
6. Calculate V  
as shown in Design Example 1,  
INT  
REF  
substituting the appropriate values:  
.
.
R
INT  
C
V
MAX  
INT  
INT  
MAX  
V
=
This t  
allows clock period of 0.5425 µsec.  
REF  
INT  
and still achieve 18 bits resolution.  
t
DINT  
~
= 1.005V  
3. Again, as shown from previous example, pick V MAX = ±2V  
IN  
2
For I MAX = 20 µA,  
R
=
INT  
= 100 KΩ  
B
-6  
20x10  
4. Next, we calculate C  
INT:  
-6  
C
INT  
= (0.1666667) x (20 x 10 )/4  
~
(V MAX = 4.0V)  
INT  
= 0.83 µF  
In this case, use CINT = 1.0 µF to keep  
V
INT  
< 4.0V  
5. Pick C  
and C = 1.0 µF  
AZ  
REF  
6. Select t  
DINT  
= 2 x t  
= 333.333 msec.  
INT  
7. Calculate V  
as shown in the previous examples  
REF  
= 1.00V  
and V  
REF  
ALD500AU/ALD500A/ALD500  
Advanced Linear Devices  
11  

相关型号:

ALD500R

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500R-50PE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500R-50QE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500R-50SE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-10PE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-10QE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-10SE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20PE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20PEI

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20QE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20QEI

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD