A1330LLETR-T-C02 [ALLEGRO]

Programmable Angle Sensor IC with Analog and PWM Output;
A1330LLETR-T-C02
型号: A1330LLETR-T-C02
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Programmable Angle Sensor IC with Analog and PWM Output

文件: 总40页 (文件大小:3427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A1330  
Programmable Angle Sensor IC  
with Analog and PWM Output  
FEATURES AND BENEFITS  
DESCRIPTION  
• Contactless 0° to 360° angle sensor IC, for angular  
position, rotational speed, and direction measurement  
• Single and dual die options available in same package  
• Non-volatile memory (EEPROM) for use in application  
trimming/calibration  
TheA1330 is a 360° angle sensor IC that provides contactless  
high-resolutionangularpositioninformationbasedonmagnetic  
Circular Vertical Hall (CVH) technology. It has a system-on-  
chip (SoC) architecture that includes: a CVH front end, digital  
signal processing, and an analog output driver. It also includes  
on-chip EEPROM technology, capable of supporting up to  
100 read/write cycles, for flexible end-of-line programming  
of calibration parameters. Broken ground wire detection and  
user-selectable output voltage clamps make the A1330 ideal  
for high-reliability applications requiring high-speed 0° to  
360° angle measurements.  
• Circular Vertical Hall (CVH) technology provides a  
single-channel sensor system with air gap independence  
• Angle Refresh Rate (output rate) configurable between  
25 and 3200 µs through EEPROM programming  
• Customer-programmable output clamp levels provide  
short-circuit diagnostic capabilities  
• Open-circuit detection on ground pin (broken wire)  
• Undervoltage lockout for VCC below specification  
• Fine angle scaling for short-stroke applications  
• Missing Magnet Error flag for notifying controller of low  
magnetic field level  
The A1330 provides adjustable internal averaging, allowing  
response time to be traded for resolution. This is ideal for  
applicationsoperatingatlowrotationalvelocitiesrequiringhigh  
precision. For higher RPM applications, the A1330 provides  
industry-leading analog response time when no averaging is  
enabled.  
• EEPROM programmable angle reference (0°) position  
and rotation direction (CW or CCW)  
• AEC-Q100 automotive qualified  
With programmable angle scaling, the A1330 supports  
applications requiring short angular displacements, while  
maintaining full dynamic range on the output. Programmable  
minimum and maximum angle thresholds allow diagnosis of  
mechanical failures.  
PACKAGE: 8-pin TSSOP (LE package)  
The A1330 is available as either a single or dual die option,  
in an 8-pin TSSOP. The package is lead (Pb) free with 100%  
matte-tin leadframe plating.  
Not to scale  
SoC die 1  
Regulator  
To all internal circuits  
ANALOG FRONTEND  
VCC  
DIGITAL CONTROLLER  
Temperature  
Compensation  
Internal Calibration  
Multisegment  
CVH Element  
Zero Angle  
ADC  
EEPROM  
Short Stroke  
Interpolator  
Bandpass  
Filter  
Diagnostics  
ANALOG BACKEND  
DIGITAL BACKEND  
SD Mod  
Output  
LPF  
VOUT  
GND  
Buffer  
PWM MOD  
Output  
Controller  
SoC die 2 (optional)  
Functional Block Diagram  
A1330-DS, Rev. 2  
MCO-0000317  
August 3, 2018  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
SELECTION GUIDE  
Part Number  
Application  
Analog Output  
PWM Output  
Number of Die  
Single Die  
Single Die  
Dual Die  
Package  
Packing [1]  
A1330LLETR-T  
A1330LLETR-P-T  
A1330LLETR-DD-T  
A1330LLETR-P-DD-T  
A1330LLETR-T-C02  
Analog Output  
PWM Output  
8-pin TSSOP  
4000 pieces per 13-inch reel  
Dual Die  
Analog Output [2]  
Single Die  
[1] Contact Allegrofor additional packing options.  
[2] Increased Angle averaging and Analog hysteresis settings for reduced angle noise.  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Forward Supply Voltage  
Reverse Supply Voltage  
Forward Output Voltage  
Reverse Output Voltage  
Operating Ambient Temperature  
Maximum Junction Temperature  
Storage Temperature  
Symbol  
Notes  
Rating  
26.5  
Unit  
V
VCC  
Not sampling angles  
Not sampling angles  
VOUT < VCC + 2 V  
VRCC  
VOUT  
VROUT  
TA  
–18  
V
16  
V
0.5  
V
L range  
–40 to 150  
165  
°C  
°C  
°C  
TJ(max)  
Tstg  
–65 to 170  
THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information  
Characteristic  
Symbol  
Test Conditions*  
Value  
145  
Unit  
LE-8 single die package  
LE-8 dual die package  
°C/W  
°C/W  
Package Thermal Resistance  
RθJA  
277  
*Additional thermal information available on the Allegro website.  
2
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Table of Contents  
Serial Interface Message Structure ................................... 14  
Special Access Code Commands ..................................... 15  
EEPROM Locking........................................................... 16  
Safety Features .............................................................. 16  
Internal Detection Circuitry............................................... 16  
Detecting Broken Ground Wire ......................................... 16  
Angle Compensation....................................................... 18  
Angle Averaging ............................................................. 18  
Pre-Gain Offset............................................................... 19  
Polarity Adjust ................................................................ 19  
Short Stroke................................................................... 19  
Clamp and Roll-Over Logic .............................................. 21  
Additional Short Stroke Examples ..................................... 22  
Application Information ....................................................... 24  
Magnetic Target Requirements ......................................... 24  
Field Strength................................................................. 24  
Setting the Zero-Degree Position ...................................... 25  
Magnetic Misalignment.................................................... 25  
Application Circuit Description .......................................... 26  
ESD Performance........................................................... 26  
EEPROM Memory Map....................................................... 27  
Package Outline Drawings .................................................. 35  
APPENDIX A: Angle Error and Drift Definition.......................A-1  
APPENDIX B: CRC Documentation.....................................B-1  
Features and Benefits........................................................... 1  
Description.......................................................................... 1  
Packages............................................................................ 1  
Functional Block Diagram ..................................................... 1  
Selection Guide ................................................................... 2  
Absolute Maximum Ratings................................................... 2  
Thermal Characteristics ........................................................ 2  
Pinout Diagrams and Terminal Lists........................................ 4  
Operating Characteristics...................................................... 5  
Typical Performance Characteristics....................................... 7  
Functional Description .......................................................... 8  
Operational Modes............................................................ 8  
Angle Measurement .......................................................... 8  
Short Stroke..................................................................... 8  
Output Types.................................................................... 8  
Undervoltage and Overvoltage Lockout ............................. 10  
Hysteresis...................................................................... 10  
Programming Serial Interface ...............................................11  
Transaction Types............................................................11  
Writing the Access Code...................................................11  
Writing to Non-Volatile Memory..........................................11  
Writing to Volatile Registers.............................................. 12  
Reading from EEPROM................................................... 12  
Error Checking ............................................................... 12  
Serial Interface Reference................................................... 13  
3
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
PINOUT DIAGRAMS AND TERMINAL LIST TABLES  
Terminal List Table (Single Die)  
VCC  
VOUT  
NC  
8
7
6
5
NC  
NC  
NC  
NC  
1
2
3
4
Pin Name Pin Number  
Function  
Device power supply. Serves as Manchester communication input  
pin.  
VCC  
1
2
GND  
Angle output (analog or PWM). Manchester output during serial  
communication.  
VOUT  
LE-8 Package Pinout  
(single die)  
Input for EEPROM programming pulses.  
NC*  
3,5,6,7,8  
4
Not connected; connect to ground for optimal ESD performance  
Ground  
GND  
* NC pins must be tied to GND for optimum ESD performance.  
Terminal List Table (Dual Die)  
VCC_1  
VOUT_1  
NC  
8
7
6
5
NC  
1
2
3
4
Pin Name Pin Number  
Function  
GND_2  
VOUT_2  
VCC_2  
Device power supply. Serves as Manchester communication input  
pin. (die 1)  
VCC_1  
1
2
GND_1  
Angle output (analog or PWM). Manchester output during serial  
communication.  
VOUT_1  
Input for EEPROM programming pulses. (die 1)  
LE-8 Package Pinout  
(dual die)  
NC*  
3, 8  
4
Not connected; connect to ground for optimal ESD performance  
Ground (die 1)  
GND_1  
Device power supply. Serves as Manchester communication input  
pin. (die 2)  
VCC_2  
5
Angle output (analog or PWM). Manchester output during serial  
communication.  
Input for EEPROM programming pulses. (die 2)  
VOUT_2  
GND_2  
6
7
Ground (die 2)  
* NC pins must be tied to GND for optimum ESD performance.  
4
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
OPERATING CHARACTERISTICS: Valid over the full operating voltage and ambient temperature ranges, unless otherwise noted  
Characteristics  
ELECTRICAL CHARACTERISTICS  
Supply Voltage [2]  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit[1]  
VCC  
4.5  
5.5  
15  
V
TA ≥ 25°C  
12  
mA  
One die, analog output,  
unloaded output  
Supply Current  
ICC  
TA < 25°C  
12.6  
8.5  
16  
10  
mA  
mA  
One die, PWM output, unloaded output  
Maximum VCC , dV/dt = 1 V/ms, TA = 25°C,  
A1330 sampling enabled, rising VCC  
VUVLO(H)  
VUVLO(L)  
3.9  
4.65  
4.5  
V
V
Undervoltage Lockout Threshold  
Voltage[3]  
Maximum VCC , dV/dt = 1 V/ms, TA = 25°C,  
A1330 sampling disabled, falling VCC  
Undervoltage Lockout Threshold  
Hysteresis  
VUVLO(HYS)  
VOVLO(H)  
VOVLO(L)  
dV/dt = 1 V/ms, TA = 25°C  
180  
6.3  
5.9  
450  
mV  
V
Maximum VCC , dV/dt = –1 V/ms, TA = 25°C,  
A1330 sampling disabled  
Overvoltage Lockout Threshold  
Voltage  
Maximum VCC , dV/dt = 1 V/ms, TA = 25°C,  
A1330 sampling enabled  
5.5  
V
Overvoltage Lockout Threshold  
Hysteresis  
VOVLO(HYS)  
dV/dt = –1 V/ms, TA = 25°C  
mV  
Supply Zener Clamp Voltage  
Reverse-Battery Current  
VZSUP  
IRCC  
tPO  
ICC = ICC + 3 mA, TA = 25°C  
VRCC = 18 V, TA = 25°C  
26.5  
5
V
mA  
µs  
Power-On Time[4]  
300  
ANALOG OUTPUT CHARACTERISTIC  
DC Output Resistance [4]  
ROUT  
RL  
4.7  
4.7  
24  
1
kΩ  
VOUT to VCC  
Output Load Resistance[4]  
VOUT to GND  
kΩ  
Minimum output, shorted to 5 V  
Maximum output, shorted to GND  
29  
3
34  
mA  
mA  
nF  
Output Current Limit  
Output Load Capacitance[4]  
Broken Wire Voltage  
Output Slew Rate  
ILIMIT  
COUT  
VBRK(H)  
VBRK(L)  
SR  
10  
TA = 25°C, RL(PU) = 10 kΩ to VCC  
TA = 25°C, RL(PD) = 10 kΩ to GND  
10 kΩ pull-up  
VCC  
130  
100  
V
mV  
V/ms  
DAC output, excluding angle measurement  
noise, 30 kHz BW setting  
15  
10  
mVp-p  
mVp-p  
DAC Output Noise[4]  
ANOISE  
DAC output, excluding angle measurement  
noise, 15 kHz BW setting  
Across entire code range, theoretical noise-  
free input, 30 kHz BW  
Average DAC Resolution[4]  
Output Ratiometry Error [4]  
Res(avg)  
RatERROR  
12  
<±1  
10  
bits  
%
Absolute change in analog output from 25°C  
to 150°C  
30  
mV  
Analog Drift  
|VDRIFT|  
Absolute change in analog output from 25°C  
to –40°C  
10  
mV  
Continued on the next page…  
5
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
OPERATING CHARACTERISTICS (continued): Valid over the full operating voltage and ambient temperature ranges,  
unless otherwise noted  
Characteristics  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit[1]  
ANALOG OUTPUT CHARACTERISTIC (continued)  
Max input angle position; VCC = 5 V,  
HIGH_CLAMP = 0  
VOUT(MAX)  
Output Saturation Voltage  
4.65  
4.75  
0.25  
V
V
0° input angle position; VCC = 5 V,  
HIGH_CLAMP = 0  
VOUT(MIN)  
0.35  
OUTPUT CLAMP PROGRAMMING  
Valid for Analog or PWM output,  
EEPROM programmable  
Clamp High[4]  
Clamp Low[4]  
VCLAMP(H)  
VCLAMP(L)  
32  
5
95  
68  
% VCC or DC  
% VCC or DC  
Valid for Analog or PWM output,  
EEPROM programmable  
PWM INTERFACE SPECIFICATIONS  
PWM Carrier Frequency[4]  
Output Current Limit  
fPWM  
ILIMIT  
Programmable, 3 bit field  
156.25  
1250  
29  
20,000  
Hz  
mA  
kΩ  
%
Minimum output, shorted to 5 V  
24  
4.7  
34  
Pull-up Load [5]  
RL  
PWM Duty Cycle Minimum [4]  
PWM Duty Cycle Maximum [4]  
MAGNETIC CHARACTERISTICS  
Magnetic Field  
DPWM(MIN)  
DPWM(MAX)  
LOW_CLAMP = 0  
HIGH_CLAMP = 0  
5
95  
%
B
Range of input field  
1200  
G
ANGLE CHARACTERISTICS  
Output[5]  
RESANGLE  
tANG  
12  
25  
bit  
µs  
Angle Refresh Rate[6]  
ANG_AVE = 0  
ANG_AVE = 0  
120  
200  
0.5  
µs  
Response Time[4]  
Temperature Drift  
Angle Error  
tRESPONSE  
ANGLEDRIFT  
ERRANG  
ANG_AVE = 3  
µs  
Angle change from 25°C; TA = 150°C, B = 300 G  
Angle change from 25°C; TA = –40°C, B = 300 G  
TA = 25°C, ideal magnet alignment, B = 300 G  
TA = 150°C, ideal magnet alignment, B = 300 G  
–1.8  
1.8  
degrees  
degrees  
degrees  
degrees  
0.8  
–1.1  
–1.5  
±0.4  
±0.5  
1.1  
1.5  
TA = 25°C, B = 300 G, no internal filtering,  
target rpm = 0, 3 sigma, PWM output  
±0.6  
±0.75  
±0.5  
degrees  
degrees  
degrees  
Angle Noise  
NANG  
TA = 150°C, B = 300 G, no internal filtering,  
target rpm = 0, 3 sigma, PWM output  
B = 300 G, typical angle drift observed  
following AEC-Q100 qualification testing  
Angle Drift Over Lifetime [7]  
ANGLEDRIFT_LIFE  
[1] 1 G (gauss) = 0.1 mT (millitesla).  
Angular Position  
(%)  
[2] Operation guaranteed down to 4.5 V, once VCC has risen above 4.65 V.  
[3] At power-on, the sensor IC will not respond to commands until VCC rises above VUVLO(H). After that,  
the sensor IC will perform and respond normally until VCC drops below VUVLO(L)  
.
Transducer Output  
[4] Parameter is not guaranteed at final test. Values for this characteristic are determined by design.  
[5] RESANGLE represents the number of bits of internal angle information available.  
[6] The rate at which a new angle reading will be ready.  
50  
0
[7] Maximum of 1.0 degree increase in angle error observed following AEC-Q100 stress.  
Response Time, t  
RESPONSE  
t
Definition of Response Time  
6
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
TYPICAL PERFORMANCE CHARACTERISTICS  
1ꢐꢀ  
1
1ꢐꢀ  
1
ꢕꢄꢊꢅ  
ꢖꢗꢘ 3 ꢙꢃꢍꢁꢊ  
ꢔꢄꢊꢅ  
ꢕꢖꢗ 3 ꢘꢃꢍꢁꢊ  
0ꢐꢀ  
0
0ꢐꢀ  
0
0
ꢀ0  
100  
1ꢀ0  
0
ꢀ0  
100  
1ꢀ0  
Aꢁꢂꢃꢄꢅꢆ ꢇꢄꢁꢈꢄꢉꢊꢆꢋꢉꢄ ꢃꢅ ꢌꢄꢍꢉꢄꢄꢎ ꢏ  
Aꢁꢂꢃꢄꢅꢆ ꢇꢄꢁꢈꢄꢉꢊꢆꢋꢉꢄ ꢃꢅ ꢌꢄꢍꢉꢄꢄꢎ ꢏ  
Figure 1: Peak Angle Error over Temperature  
(300 G)  
Figure 2: Maximum Absolute Drift from 25°C Reading  
(300 G)  
15  
1ꢔꢄ  
1ꢔꢃ  
1ꢔꢁ  
1ꢔꢂ  
1
Analog Output  
PWM Output  
ꢘꢈꢎꢉ  
ꢙꢚꢀ 3 ꢛꢇꢑꢅꢎ  
+/-3 Sigma  
14  
13  
12  
11  
10  
9
0ꢔꢄ  
0ꢔꢃ  
0ꢔꢁ  
0ꢔꢂ  
0
8
ꢀꢁ0  
ꢀꢂ0  
0
ꢂ0  
ꢁ0  
ꢃ0  
ꢄ0  
100  
1ꢂ0  
1ꢁ0  
7
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Aꢅꢆꢇꢈꢉꢊ ꢋꢈꢅꢌꢈꢍꢎꢊꢏꢍꢈ ꢇꢉ ꢐꢈꢑꢍꢈꢈꢒ ꢓ  
Ambient Temperature in Degrees C  
Figure 3: Noise Performance over Temperature  
(3 Sigma, 300 G, no internal filtering,  
Figure 4: ICC over Temperature  
(VCC = 5.0 V)  
Analog Output, 1 nF output capacitance)  
7
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
FUNCTIONAL DESCRIPTION  
Operational Modes  
Short Stroke  
Short stroke (or fine angle scaling) allows for magnetic angle  
rotations smaller than 360 degrees to be represented by full-scale  
deflection. This feature is enabled in “Short Stroke” mode. In  
this mode, the raw angle reading is scaled via a programmable  
GAIN setting. Minimum and maximum angle thresholds may  
be programmed to detect hardware malfunctions. When a raw  
angle greater than the maximum angle threshold is detected, the  
sensor output will tri-state, alerting the host microprocessor of an  
unexpected condition. Programmable Clamp_High and Clamp_  
Low settings allow the maximum or minimum output level to be  
customizable.  
The A1330 is a rotary position Hall-effect-based sensor IC. The  
sensor IC measures the direction of the magnetic field vector  
through 360° in the x-y plane (parallel to the branded face of the  
device) and computes an angle measurement based on the actual  
physical reading, as well as any internal parameters that have  
been set by the user.  
The device is a programmable system-on-chip (SoC). The  
integrated circuit includes a Circular Vertical Hall (CVH) analog  
front end, a high-speed sampling A-to-D converter, digital filter-  
ing, digital signal processing, and a high-speed Digital-to-Analog  
converter.  
Output Types  
Internal averaging may be enabled to improve signal resolution.  
The A1330 is set at Allegro factory for either analog or PWM output.  
Advanced offset and gain adjustment options are available in the  
A1330. These options can be configured in the onboard EEPROM,  
providing a wide range of sensing solutions in the same device.  
Device performance can be optimized by enabling individual func-  
tions or disabling them in EEPROM to minimize latency.  
ANALOG OUTPUT  
The A1330LLETR-T and A1330LLETR-D-T feature an ana-  
log output, proportional to a 12-bit digital angle value. Angles  
0.0 through 359.9 degrees are mapped to voltages between the  
default VCLAMPL and default VCLAMPH. The output voltage will  
increase linearly, between the clamp settings when a linearly  
increasing magnetic angle is detected.  
Angle Measurement  
The A1330 can monitor the angular position of a rotating magnet  
at speeds ranging from 0 to more than 7,000 rpm.  
Voltage values beyond the upper or lower clamps represent  
diagnostic regions. Output voltages within these two regions will  
only occur if the device detects an abnormal operating condition  
or internal error.  
The raw angle data is received in a periodic stream, and several  
samples may be accumulated and averaged, based on a user-  
selected EEPROM field. This feature increases the effective resolu-  
tion of the system. The amount of averaging is determined by the  
user-programmable ANG_AVE field. The user can configure the  
quantity of averaged samples by powers of two to determine the  
refresh rate, the rate at which successive averaged angle values are  
fed into the post-processing stages. The available rates are set as  
follows:  
5
Upper Diagnostic Region  
Clamp High  
4.5  
4
3.5  
3
Linear Range  
2.5  
ANG_AVE [2:0] Quantity of Samples Averaged Refresh Rate (µs)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
25  
50  
2
1.5  
1
4
100  
200  
400  
800  
1600  
3200  
8
0.5  
16  
32  
64  
128  
Clamp Low  
Lower Diagnostic Region  
0
0
72  
144  
216  
288  
360  
432  
504  
576  
648  
720  
Angles (degrees)  
Figure 5: Output Value for a 0-720° Magnetic Input Signal  
8
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
BACKEND DAC BW  
The bandwidth of the backend analog filter is adjustable in  
EEPROM between two settings.  
PWM Period  
PWM Period  
ABW  
DAC Bandwidth  
30 kHz  
0
1
120  
Degrees  
15 kHz  
(0 Degrees)  
PWM Period  
The default setting of 30 kHz is recommended for most appli-  
cations, providing a good balance between low noise and fast  
response time. For applications especially sensitive to noise, it  
is recommend to choose the 15 kHz option and use the internal  
digital averaging to further reduce front end noise.  
PWM Period  
360 Degrees  
240 Degrees  
PWM OUTPUT  
The A1330LLETR-P-T and A1330LLETR-P-DD-T provide a  
pulse-width-modulated open-drain output, with the duty cycle  
(D) proportional to measured angle. The PWM duty cycle is  
clamped at 5% and 95% by default and may be adjusted further  
for diagnostic purposes.  
Figure 7: Pulse-Width Modulation (PWM) Examples  
PWM CARRIER FREQUENCY  
The PWM carrier frequency is controlled via a 3-bit EEPROM  
field.  
A 5% D corresponds to 0°; a 95% D corresponds to 360°.  
PWM_FREQ  
000  
PWM Frequency  
20 kHz  
D = 5%  
D = 50%  
D = 95%  
360  
HIGH_CLAMP  
001  
10 kHz  
010  
5 kHz  
011  
2.5 kHz  
LOW_CLAMP  
0
100  
1.25 kHz  
625 Hz  
D
D
D
2T  
D
3T  
D
4T  
D
D
D
D
8T  
D
D
10T  
0T  
1T  
5T  
6T  
7T  
9T  
101  
110  
312.5 Hz  
156.25 Hz  
D
(x)  
= t /T  
pulse(x) period  
111  
t
pulse(5)  
T
period  
Time  
0T  
1T  
2T  
3T  
4T  
5T  
6T  
7T  
8T  
9T  
10T 11T  
Figure 6: PWM Mode Outputs a Duty Cycle  
Proportional to Sensed Angle  
Angle is represented in 12-bit resolution and can never reach a  
full 360° (0° and 360° are the same physical position). The maxi-  
mum duty cycle high period with default clamp values is:  
DutyCycleMax (%) = (4095 / 4096) × 90 + 5.  
The derived angle (in degrees) from a given PWM duty cycle is:  
Angle = (D – 5) / 90 × 360.  
9
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
As an alternate approach, the HYST_0/360 bit may be set in  
EEPROM, to enable hysteresis only around the 0/360 degree  
crossing.  
Undervoltage and Overvoltage Lockout  
The Output pin state changes according to the VCC level. This is  
shown in Figure 8, with typical threshold values highlighted. By  
using a pull-up/pull-down resistor, one is able to know the sensor  
is in high-impedance, as the output will be beyond the clamp  
values.  
Note: Unlike the typical description of ‘Hysteresis”, the imple-  
mentation used in the A1330 is “two-sided”, meaning the hys-  
teresis gap is independent of rotation direction. This effectively  
increases the output step size and as a result may not be desired.  
To apply this filtering method to only angle ranges of importance  
(in which a 0/360 crossover could occur), the HYST_0/360 bit  
can be set.  
Hysteresis  
The periodic behavior intrinsic to angle sensing results in output  
voltage swings from minimum to maximum deflection during  
0/360 degree crossings. For some applications, this may be prob-  
lematic, especially if a high-noise environment results in values  
close to 0 degrees intermittently appearing as 359.9 degrees.  
Table 1: HYST Settings in EEPROM  
Code  
00  
Hysteresis (in LSB)  
Angle Equivalent  
0
4
0
To prevent oscillations between mininimum or maximum output,  
the A1330 features programmable hysteresis, specified by the  
2-bit HYST EEPROM field. When hysteresis is enabled, the  
output will not change for angle variations smaller than the hys-  
teresis setting.  
01  
0.352  
0.703  
1.406  
10  
8
11  
16  
V
(V)  
CC  
Overvoltage Lockout  
Threshold Voltage (High), VOVLO(H)  
7.0  
Overvoltage Lockout  
Threshold Voltage (Low), VOVLO(L)  
6.0  
5.5  
Undervoltage Lockout  
Threshold Voltage (Low), VUVLO(L)  
Undervoltage Lockout  
Threshold Voltage (High), VUVLO(H)  
4.65  
4.5  
4.0  
3.8  
DIGON  
1.5  
t
Output Pin State  
Valid  
Tri-State  
Valid  
Accuracy  
Reduced  
Tri-State  
Tri-State  
Output  
Output  
Accuracy  
Reduced  
Accuracy  
Reduced  
Accuracy  
Reduced  
Figure 8: Relationship of VCC and Output  
10  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
PROGRAMMING SERIAL INTERFACE  
The A1330 incorporates a serial interface that allows an external  
controller to read and write registers in the A1330 EEPROM and  
volatile memory. The A1330 uses a point-to-point communication  
protocol, based on Manchester encoding (a rising edge indicates a  
0 and a falling edge indicates a 1), with address and data trans-  
mitted MSB first.  
Writing the Access Code  
If the external controller will write to or read from the A1330 mem-  
ory during the current session, it must establish serial communica-  
tion with the A1330 by sending a Write Access Command within  
70 ms after powering up the A1330. If this deadline is missed, all  
write and read access is disabled until the next power-up.  
Transaction Types  
Writing to EEPROM  
Each transaction is initiated by a command from the controller; the  
A1330 does not initiate any transactions. Two commands are rec-  
ognized by the A1330: Write and Read. There also are three special  
function Write commands: Write Access Code, Manchester Enable,  
and Manchester Disable. One response frame type is generated by  
the A1330, Read Acknowledge.  
When writing to non-volatile EEPROM, following the write com-  
mand, the controller must also send two Programming pulses.  
These pulses are well-separated, long, high-voltage strobes  
transmitted on the VOUT pin. These strobes are detected internally,  
allowing the A1330 to boost the voltage on the EEPROM gates.  
The digital logic will automatically detect an impending EEPROM  
write and tri-state the output pin.  
If the command is a read, the A1330 responds by transmitting the  
requested data in a Read Acknowledge frame. If the command is  
a write, the A1330 does not acknowledge.  
The required sequence is shown in Figure 12. The voltage pulse  
profile necessary for EEPROM programming is shown in Figure  
10. Minimum and maximum times are described in Table 2.  
As shown in Figure 9, The A1330 receives all commands via the  
VCC pin. It responds to Read commands via the VOUT pin. This  
implementation of Manchester encoding requires the commu-  
>60 µs  
>60 µs  
>300 µs  
>300 µs  
10 ms  
10 ms  
2 µs  
nication pulses be within a high (VMAN(H)) and low (VMAN(L)  
)
18 V  
range of voltages for the VCC line and the VOUT line. The Write  
command pulses to EEPROM are supported by two high-voltage  
pulses on the VOUT line.  
ERASE  
PROGRAM  
Write/Read Command  
Manchester Code  
6 V  
Figure 10: Top-Level Programming Interface  
to logic high supply  
Controller  
VCC  
Table 2: EEPROM Pulse  
Parameter  
Comments  
Min.  
Typ.  
Max.  
Unit  
A1330  
VOUT  
Pulse High Time  
Time above minimum pulse  
voltage  
8
10  
11  
ms  
High Voltage pulses to  
activate EEPROM cells  
Rise Time  
Fall Time  
10% to 90% of minimum  
pulse level  
300  
60  
µs  
µs  
V
GND  
10% to 90% of minimum  
pulse level  
Read Acknowledge  
Manchester Code  
Pulse Voltage  
18  
19  
19.5  
Figure 9: Top-Level Programming Interface  
Separation time  
Time between first pulse  
dropping below 6 V and 2nd  
pulse rising above 6 V  
2 µs  
50 ms µs/ms  
11  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Writing to Volatile Registers  
Error Checking  
The three main volatile write commands (Write Access, Man-  
chester Enable and Manchester Disable) are all accomplished by  
writing to register 0x1F.  
The serial interface uses a cyclic redundancy check (CRC) for  
data-bit error checking (synchronization bits are ignored during  
the check).  
In addition to these three commands, the PWM output version  
requires a PWM Disable command be written prior to perform-  
ing a Manchester read and a PWM Enable command prior to  
The CRC algorithm is based on the polynomial  
g(x) = x3 + x + 1  
,
going back to Normal Mode. These two commands are written to and the calculation is represented graphically in Figure 11.  
register 0x22.  
The trailing 3 bits of a message frame comprise the CRC token.  
The CRC is initialized at 111.  
Reading from EEPROM  
Input Data  
C0  
C1  
C2  
To read from EEPROM, the Manchester mode must be entered.  
This is accomplished by sending the Manchester Enable code on  
VCC. For PWM parts, an additional PWM Disable command  
must also be sent.  
1x0  
1x1  
0x2  
1x3 = x3 + x + 1  
After the Read Acknowledge frame has been received from the  
A1330, the controller must send a Manchester Disable command  
to restore VOUT to normal operation. The required sequence is  
shown in Figure 12.  
Figure 11: CRC Calculation  
VCC  
Write Access  
Command  
EEPROM  
Write  
EEPROM  
Programming  
Pulses  
Write To  
EEPROM  
Normal Operation  
Normal Operation  
VOUT  
GND  
t
<70 ms from power-on  
ts(PULSE,E)  
td(WRITE,E)  
Write Access  
Command  
Manꢀhester  
Enable Command  
EEPROM  
Read  
Manchester  
Disable  
VCC  
Read From  
EEPROM  
<70 ms from power-on  
Normal Operation  
Read  
Acknowledge  
High  
Impedance  
High  
Impedance  
Normal Operation  
t
VOUT  
GND  
td(DIS_OUT)  
td(START_READ)  
td(START_READ)  
td(ENB_OUT)  
Figure 12: Programming Read and Write Timing Diagrams  
12  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
SERIAL INTERFACE REFERENCE  
Table 3: Serial Interface Protocol Characteristics[1]  
Characteristics  
Symbol  
Note  
Min.  
Typ.  
Max.  
Unit  
INPUT/OUTPUT SIGNAL TIMING  
Customer Access Code should be fully entered  
in less than tACC, measured from when VCC  
crosses VCC(UVH)  
Access Code Timeout  
tACC  
70  
ms  
Defined by the input message bit rate sent from  
the external controller  
Baud Rate  
fs  
5
40  
kbps  
%
Bit Time Error  
errTBIT  
Deviation in tBIT during one command frame  
–15  
+15  
Required delay from the trailing edge of a Read  
Acknowledge frame to the leading edge of a  
following command frame  
Read Acknowledge Delay  
Read Delay[2]  
td(READ)  
2 × tBIT  
µs  
µs  
Delay from the trailing edge of a Read  
command frame to the leading edge of the Read  
Acknowledge frame  
td(START  
2 × tBIT  
_
READ)  
Delay from the trailing edge of a Manchester  
Enable command frame to the device output  
going from normal operation to the high-  
impedance state  
1 –  
¼ × tBIT  
5 –  
¼ × tBIT  
15 –  
¼ × tBIT  
Enable Manchester Delay[2]  
td(DIS_OUT)  
µs  
µs  
Delay from the trailing edge of a Manchester  
Disable command frame to the device output  
going from the high-impedance state to normal  
operation  
1 –  
¼ × tBIT  
5 –  
¼ × tBIT  
15 –  
¼ × tBIT  
Disable Manchester Delay[2]  
td(ENB_OUT)  
EEPROM PROGRAMMING PULSE  
EEPROM Programming Pulse  
Setup Time  
Delay from last bit cell of write command to start  
of EEPROM programming pulse  
ts(PULSE,E)  
2 × tBIT  
μs  
Required delay from the trailing edge of the  
second EEPROM Programming pulse to the  
leading edge of a following command frame  
EEPROM Memory Write Delay  
td(WRITE,E)  
40  
µs  
INPUT SIGNAL VOLTAGE  
Manchester Code High Voltage  
Manchester Code Low Voltage  
VMAN(H)  
VMAN(L)  
Applied to VCC line  
Applied to VCC line  
7.3  
V
V
6.3  
OUTPUT SIGNAL VOLTAGE (APPLIED ON PWM LINE)  
Minimum Rpullup = 5 kΩ  
Maximum Rpullup = 50 kΩ  
5 kΩ ≤ Rpullup ≤ 50 kΩ  
0.9 × VS  
0.7 × VS  
V
V
V
Manchester Code High Voltage  
VMAN(H)  
VMAN(L)  
Manchester Code Low Voltage  
[1] Determined by design.  
0.35  
[2] In the case where a slower baud rate is used, the output responds before the transfer of the last bit in the command message is completed.  
13  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Serial Interface Message Structure  
Read/Write  
Synchronize  
The general format of a command message frame is shown in  
Figure 13. Note that, in the Manchester coding used, a bit value  
of 1 is indicated by a falling edge within the bit boundary, and  
a bit value of zero is indicated by a rising edge within the bit  
boundary.  
Memory Address  
Data  
CRC  
. . .  
0
0
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1  
MSB MSB  
0/1 0/1 C2 C1 C0  
Each command is composed of two zero synchonization bits  
(“00”) followed by a Read/Write bit, 6 bit address, 32 data bits  
(only for write commands) and 3 bits of CRC. All field are inter-  
preted MSB first.  
Manchester Code per G. E. Thomas  
Bit boundaries  
0 0 1 1 0  
The read acknowledged frame is composed of two zero synchro-  
nization bits, 32 bits of data, and a 3 bit CRC.  
Figure 13: General Format for Serial Interface Commands  
The bits are described in Table 4.  
tBIT  
A5 A4  
A0 D31 D30  
D0 C2 C1 C0  
Write Command  
t
0
0
0
Address  
Data  
CRC  
(Write)  
tBIT  
A5 A4  
A0 C2 C1 C0  
Read Command  
t
0
0
1
Address  
CRC  
(Read)  
tBIT  
D31 D30  
D0 C2 C1 C0  
Read Acknowledge  
t
0
0
Data  
CRC  
Figure 14: Manchester Format Example  
Table 4: Serial Interface Command General Format  
Quantity of Bits  
Name  
Values  
00  
Description  
2
Synchronization  
Used to identify the beginning of a serial interface command and communication bit time  
[As required] Write operation  
0
1
Read/Write  
1
[As required] Read operation  
6
variable  
3
Address  
Data  
0/1  
0/1  
0/1  
[Read/Write] Register address (volatile memory or EEPROM)  
[As required] 32 bits of data  
CRC  
Incorrect value indicates errors  
14  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Special Access Code Commands  
Write Access Code  
There are two Manchester code commands: a write access code,  
which initiates serial communication and must be sent within  
tACC of power up; and a Disable Output Command, which toggles  
between mission mode (normal sensor behavior) and Manchester  
mode, allowing the part to respond to read requests. Both com-  
mands are written to volatile register 0x1F.  
String  
ASCII Code (hex)  
“1330”  
31 33 33 30  
Manchester Enable Code  
1. Write Access Code:  
String  
ASCII Code (hex)  
52 45 41 44  
Unlocks the customer address space.  
“READ”  
2. Manchester Enable Command:  
Disables sensor output, allowing sensor to respond with a  
read acknowledge frame.  
Manchester Disable Code  
3. Manchester Disable Command:  
String  
ASCII Code (hex)  
Exits Manchester mode and returns the sensor normal output  
mode.  
“EXIT”  
45 58 49 54  
The PWM varient requires two additional commands.  
PWM Disable Code  
Address  
1. PWM Disable Code:  
Disables the PWM modulator, allowing Manchester logic to  
control the open drain output. Must be sent after the Man-  
chester Enable pulse, and prior to a read request.  
Hex Code  
0x22  
0x01E6C0D  
2. PWM Enable Code:  
Moves control of the output driver back to the PWM logic.  
Must be sent prior to Manchester Disable command.  
PWM Enable Code  
Address  
Hex Code  
0x22  
0x21E6C0D  
15  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
EEPROM Locking  
Detecting Broken Ground Wire  
The EEPROM contains an EELOCK bit. When set high, this bit  
prevents the writing of all EEPROM locations. This is a safety  
If the GND pin is disconnected, node A becoming broken (Figure  
15), the VOUT pin will go to a high-impedance state. Output  
feature guaranteeing EEPROM content integrity during operation voltage will go to VBRK(H) if a load resistor RL(PU) is connected to  
in the field.  
VCC or to VBRK(L) if a load resistor RL(PD) is connected to GND.  
The device will not respond to a magnetic field.  
Safety Features  
If the ground wire is reconnected, the A1330 will resume normal  
operation.  
Lockout and clamping features protect the A1330 internal circuitry  
and prevent spurious outputs when the supply voltage is out of  
specification. Open ground circuit detection is also provided.  
V
V
V
CC  
CC  
CC  
R
L(PU)  
Internal Detection Circuitry  
VCC  
VOUT  
VOUT  
VCC  
Internal diagnostic circuitry monitors EEPROM ECC to ensure  
valid system configurations. Magnetic field amplitude is com-  
pared against a low field threshold to identify possible hardware  
malfunctions.  
A1330  
A1330  
R
L(PD)  
GND  
GND  
A
A
During short stroke mode, minimum and maximum angle values  
may be specified to identify unexpected behavior and place the  
output in a safe state.  
Connecting VOUT to R  
L(PU)  
Connecting VOUT to R  
L(PD)  
Figure 15: Connection for Detecting Broken Ground Wire  
These diagnostic modes may be disabled with an EEPROM mask  
bit.  
Table 5: Safety Features  
Diagnostic/Protection  
Reverse VCC  
Output to VCC  
Output to Ground  
UVLO  
Description  
Output State  
Current limiting (VCCx pin)  
Current limiting (VOUT pin)  
Current limiting (VOUT pin)  
V
CC below expected range  
CC above expected range  
Tri-state  
Tri-state  
OVLO  
V
Uncorrectable EEPROM bit fault. Proper device configuration cannot be  
guaranteed  
EEPROM dual bit fault  
Missing Magnet  
Tri-state  
Tri-state  
Tri-state  
Monitors magnet field level in case of mechanical failure (default of 100 G)  
During short-stroke operation, measured raw angle exceeds maximum  
specified angular displacement  
Angle Out of Range  
Tri-state: output goes to VBRK(H) or  
VBRK(L)  
Broken Ground Wire  
Broken ground connection  
Internal monitor of the DAC interpolation block detects unexpected internal  
register changes and resets the interpolator  
Digital Interpolation Error  
Tri-state  
16  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
CVH  
Analog Front End  
Analog  
Condiꢀoning  
ADC  
Factory  
Configured Digital  
Angle  
Compensaꢀon  
Angle  
Averaging  
Pre-Gain Offset  
Polarity Adjust  
Short Stroke  
Mapper  
Programmable  
Digital  
Adjustment  
Back End  
DAC  
PWM Out  
Figure 16: Digital Signal Path Description  
17  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Angle Compensation  
Table 6: Refresh Rate based on Averaged Samples  
ANG_AVE [2:0]  
Quantity of Samples  
Averaged  
Refresh Rate (µs)  
The A1330 is capable of compensating for alterations in angle  
readings that result from changes in the device temperature or  
applied field strength. The device comes from the factory pre-  
programmed with coefficient settings to allow compensation of  
linear shifts of angle with temperature and applied field.  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
25  
50  
4
100  
200  
400  
800  
1600  
3200  
8
Angle Averaging  
16  
32  
64  
128  
The raw angle data is received in a periodic stream, and multiple  
samples may be accumulated and averaged, based on the user-  
programmable ANG_AVE EEPROM field. This feature increases  
the effective resolution of the system. The user can configure the  
quantity of averaged samples by powers of two to determine the  
refresh rate, the rate at which successive averaged angle values  
are fed into the post-processing stages. The available rates are set  
as follows:  
1
300 ꢇ  
ꢂ00 ꢇ  
900 ꢇ  
0.9  
0.ꢅ  
0.ꢃ  
0.ꢂ  
0.5  
0.ꢁ  
0.3  
0.ꢀ  
0.1  
0
0
1
3
5
Aꢄeraging Setting  
Figure 17: 3 Sigma Angle Noise Over  
Averaging Settings. PWM Output, 25°C, Multiple Field Levels.  
18  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Pre-Gain Offset  
Short Stroke  
Allows zeroing of the angle prior to applying gain. Set via the  
PREGAIN_OFFSET field in EEPROM.  
The A1330 features “short stroke” logic allowing a limited input  
signal to be gained up and use the full output range of the sensor.  
The short stroke logic consists of multiple steps. A high level  
block diagram is shown in Figure 18. Short stroke applies to both  
the PWM and analog output variants.  
Angle = Angle – PREGAIN_OFFSET  
Polarity Adjust  
Sets the polarity of the final angle output. When set to “1”, the  
angle is complemented.  
Angle = 360° – Angle  
Angle In  
Pre-Gain Offset  
Polarity Adjust  
Yes  
No  
Short Stroke  
Enabled?  
Min/Max Input  
Comparison  
Gain  
Post Gain  
Offset  
Clamp and Roll-  
Over Logic  
Figure 18: High Level Short Stroke Block Diagram  
19  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
to use the Angle Averaging feature to minimize the impact of noise.  
MIN/MAX INPUT ANGLE COMPARISON  
The IC compares the pre-gained angle value to the boundaries  
set via the MIN_INPUT and MAX_INPUT EEPROM fields. If  
the angle is outside of the established boundaries the output will  
tristate to indicate an unexpected angle location. This feature is  
useful for applications where clamping is enabled and will other-  
wise mask excessive angular travel.  
When applying a non-integer gain, an asymetric transfer function  
will result, causing the output to jump to the minimum allowed  
output value before reaching the maximum allowed output value.  
As an example, if a gain of 4× is applied, with Clamp Enable  
(CE) and Roll-Over Enable (ROE) set to 0, the output angle will  
slew from 0-360° four times for a single 0-360° target rotation  
(this is shown in Figure 19 for 2 rotations of the target). However,  
if a gain of 4.5× is applied, the output will slew from 0-360° four  
and a half times. This results in a jump from 180° output to 0°  
output, at the 360° input position (shown in Figure 20).  
GAIN  
Adjusts the output dynamic range of the device. Gain is applied  
digitally and capable of expanding an 11.25° input angle to a full  
scale output deflection.  
POST-GAIN OFFSET  
It should be noted that with application of high gain, the front end  
noise will also be amplified. In such cases it is highly recommend  
Provides a final, post-gain angle adjustment.  
Sensor Output (degrees)  
0/360 Roll-over  
350  
300  
250  
200  
150  
100  
50  
0
0
100  
200  
300  
400  
Target Rotation  
500  
600  
700  
Figure 19: A1330 Output (in degrees) with 4.0× Gain  
Sensor Output (degrees)  
0/360 Roll-over  
350  
300  
250  
200  
150  
100  
50  
0
0
100  
200  
300  
400  
500  
600  
700  
Target Rotation  
Figure 20: A1330 Output (in degrees) with 4.5× Gain  
20  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Clamp and Roll-Over Logic  
CE  
ROE  
Description  
0
0
Normal behavior.  
Roll-over at standard module 360.  
Output behavior following gain and offset application is defined  
by the Clamp Enable (CE) and Roll-Over Enable (ROE)  
EEPROM bits. Together these two field select between four dif-  
ferent output behavior types.  
0
1
1
1
0
1
Output rolls-over at the High and Low Clamp  
values.  
Output clamps at the first encountered High/  
Low Clamp value.  
Below are figures depicting the output behavior with different  
clamp and roll-over settings.  
Roll-over occurs at standard module 360.  
Output is clamped to High/Low Clamps value.  
ꢀꢁꢂꢃꢄꢅꢆꢇ ꢈꢆꢁꢉ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢈꢉ ꢁꢊ ꢋꢁꢃꢃꢁꢌꢍꢊ  
3ꢖ0  
3ꢓ0  
ꢖꢅꢇꢗꢘꢀꢁꢂꢃꢄ  
3ꢕ0  
ꢔ0  
ꢙꢚꢛꢘꢀꢁꢂꢃꢄ  
0
0
0
3ꢓ0  
0
3ꢖ0  
ꢊꢆꢄꢋꢌ Aꢆꢇꢁꢍ ꢎꢏꢍꢇꢐꢍꢍꢑꢒ  
ꢎꢈꢆꢏꢐ Aꢈꢉꢃꢍ ꢑꢒꢍꢉꢊꢍꢍꢓꢔ  
Figure 21: CE = 0, ROE = 0. Applied gain = 4×.  
Figure 23: CE = 0, ROE = 1. Applied gain = 4×.  
LOW_CLAMP = 10 (≈40°), HIGH_CLAMP = 10 (≈320°)  
Clamping + Rollover  
360  
ꢀꢁꢂꢂꢁꢃꢄꢅ ꢆꢇꢂꢈ  
3ꢒ0  
High_Clamp  
320  
ꢕꢖꢍꢗꢘꢙꢂꢚꢛꢊ  
3ꢔ0  
40  
ꢓ0  
Low_Clamp  
ꢜꢁꢝꢘꢙꢂꢚꢛꢊ  
0
0
0
360  
0
3ꢒ0  
Input Angle (degrees)  
ꢉꢇꢊꢋꢌ Aꢇꢍꢂꢄ ꢎꢏꢄꢍꢅꢄꢄꢐꢑ  
Figure 22: CE = 1, ROE = 0. Applied gain = 4×.  
LOW_CLAMP = 10 (≈40°), HIGH_CLAMP = 10 (≈320°)  
Figure 24: CE = 1, ROE = 1. Applied gain = 4×.  
LOW_CLAMP = 10 (≈40°), HIGH_CLAMP = 10 (≈320°)  
21  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Additional Short Stroke Examples  
To demonstrate short stroke, several possible scenarios are shown  
in the following figures.  
Range = 0 to 360  
Range = 0 to 360  
Gain = 1.00, Min Angle = 0, MAX_INPUT = 360  
Gain = 1.00, MIN_INPUT = 0, MAX_INPUT = 300  
5
5
4.5  
4
High Clamp = 4.75  
High Clamp = 4.75  
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1.5  
1
Clamps  
Clamps  
Output  
1
Output  
0.5  
0.5  
0
Low Clamp = 0.25  
0
Low Clamp = 0.25  
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200  
250  
300  
350  
Magnetic Angle  
Magnetic Angle  
Figure 25: Scenario A.  
Regular output for a 0-360 degree input angle.  
Gain = 1. Clamps set to 95% and 5%.  
Figure 26: Scenario B.  
Regular 0-360 degree input value. Gain = 1.  
MAX_INPUT = 300. Clamps set to 95% and 5%.  
Output goes into diagnostic region (in this case VCC) when  
input angle exceeds the MAX_INPUT set point.  
Range = 0 to 60  
Range = 0 to 60  
Gain = 1.00, MIN_INPUT = 0, MAX_INPUT = 360  
Gain = 3.00, MIN_INPUT = 0, MAX_INPUT = 360  
5
4.5  
4
5
4.5  
4
High Clamp = 4.75  
High Clamp = 4.75  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
Clamps  
Output  
Clamps  
Output  
0.5  
0.5  
Low Clamp = 0.25  
Low Clamp = 0.25  
0
0
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200  
250  
300  
350  
Magnetic Angle  
Magnetic Angle  
Figure 27: Scenario C.  
0-60 degree input. Gain = 1.  
Figure 28: Scenario D.  
0-60 degree input. Gain = 3.  
With no gain, a 60-degree input angle results in an output  
signal 1/6th of VCC  
With an increased Gain value of 3×, the same 60-degree input  
signal now results in 50% of VCC. The output signal is still free to  
swing from 5% to 95% of VCC  
.
.
22  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Range = 0 to 80  
Range = 0 to 100  
Gain = 3.00, MIN_INPUT = 0, MAX_INPUT = 360  
Gain = 3.00, MIN_INPUT = 0, MAX_INPUT = 90  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
High Clamp = 2.50  
High Clamp = 2.50  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
Clamps  
Output  
Clamps  
Output  
0.5  
0
0.5  
0
Low Clamp = 0.25  
Low Clamp = 0.25  
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200  
250  
300  
350  
Magnetic Angle  
Magnetic Angle  
Figure 29: Scenario E.  
Figure 30: Scenario F.  
0-80 degree input. Gain = 3.  
0-100 degree input. Gain = 3. Clamp_High reduced to 50% VCC. MAX_INPUT =  
90°. Similar to the above scenario, output voltage is clamped at 50% of VCC  
for any input angle greater than 60 degrees. However, when the input angle  
exceeds the MAX_INPUT threshold, output voltage goes to diagnostic state  
(VCC). In this example, if the expected input range is 60 degrees, a mechani-  
cal failure resulting in 100 degrees of rotation will be detected.  
High Clamp reduduced to 50% of VCC  
.
60-degree input results in 50% output signal. With the reduced up-  
per clamp value, maximum VOUT is 50% of VCC. Angle measure-  
ments greater than 60 degrees will be clamped to this 50% value.  
23  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
APPLICATION INFORMATION  
Magnetic Target Requirements  
Field Strength  
The A1330 is designed to operate with magnets constructed with  
a variety of magnetic materials, cylindrical geometries, and field  
strengths, as shown in Table 7. Contact Allegro for more detailed  
information on magnet selection and theoretical error.  
The A1330 actively measures and adapts to its magnetic envi-  
ronment. This allows operation throughout a large range of  
field strengths (recommended range is 300 to 1000 G, operation  
beyond this range is allowed with no long-term impact). Due to  
the greater signal-to-noise ratio provided at higher field strengths,  
performance inherently increases with increasing field strength.  
Typical angle performance over applied field strength and tem-  
perature are shown in Figure 32 and Figure 33.  
Table 7: Target Magnet Parameters  
Magnetic Material  
Diameter  
(mm)  
Thickness  
(mm)  
Neodymium (bonded)  
Neodymium (sintered)*  
Neodymium (sintered)  
Neodymium / SmCo  
15  
10  
8
4
2.5  
3
-ꢁ0ꢉC  
-10ꢉC  
ꢀ5ꢉC  
ꢄ5ꢉC  
1ꢀ5ꢉC  
150ꢉC  
1.ꢄ  
1.ꢂ  
1.ꢁ  
1.ꢀ  
1
6
2.5  
Recommended ꢊꢋerating Range  
ꢌ300 ꢆ and aꢍoꢎeꢏ  
S
N
Thickness  
0.ꢄ  
0.ꢂ  
0.ꢁ  
0.ꢀ  
0
Diameter  
*A sintered Neodymium magnet with 10 mm (or greater) diameter and 2.5 mm  
thickness is the recommended magnet for redundant applications.  
100  
ꢀ00  
300  
ꢁ00  
500  
ꢂ00  
ꢃ00  
ꢄ00  
900  
ꢅield Strength in ꢆaꢇss  
Figure 32: Typical Three Sigma Angle Noise  
Over Field Strength  
1600  
1400  
1200  
1000  
ꢀ.5  
-ꢁ0ꢊC  
-10ꢊC  
ꢀ5ꢊC  
ꢄ5ꢊC  
1ꢀ5ꢊC  
150ꢊC  
1.5  
1
800  
NdFe30  
600  
SmCo24  
400  
Recommended ꢋꢌerating Range  
ꢍ300 ꢆ and aꢎoꢏeꢐ  
Ceramic  
(Ferrite)  
200  
0
0.5  
2.5  
4.5  
6.5  
8.5  
0.5  
0
Figure 31: Magnetic Field versus Air Gap for a magnet  
6 mm in diameter and 2.5 mm thick. Allegro can provide  
similar curves for customer application magnets upon re-  
quest. Allegro recommends larger magnets for applications  
that require optimized accuracy performance.  
ꢀ00  
300  
ꢁ00  
500  
ꢂ00  
ꢃ00  
ꢄ00  
900  
100  
ꢅield Strength in ꢆaꢇss  
Figure 33: Typical Angle Error  
Over Field Strength  
24  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Setting the Zero-Degree Position  
arget ꢁoles aligned with  
A1330 elements  
When shipped from the factory, the default angle value when  
oriented as shown in Figure 34 is ≈162° for die 1 and ≈342° for  
die 2. In some cases, the end user may want to program and angle  
offset to compensate for variations in magnetic assemblies, or for  
applications where absolute system level readings are required.  
S
N
The A1330 features two different offset adjust field in EEPROM,  
which may be used to change the location of the 0/360°discon-  
tinuity point. Depending on application either the PREGAIN_  
OFFSET, the POSTGAIN_OFFSET or both may be used to such  
ends.  
ꢂ1  
ꢂꢃ  
Pin 1  
Figure 34: Orientation of Magnet Relative to  
Primary and Secondary Die  
ing a larger magnet diameter. Figure 35 shows the influence of  
magnet diameter of eccentricity error.  
Magnet Misalignment  
Magnetic misalignment with the A1330 package impacts the  
linearity of the observed magnetic signal and consequently the  
resulting accuracy. The influence of mechanical misalignment  
may be minimized by reducing the overall airgap and by choos-  
The dual die variant of the A1330 uses a stacked die approach,  
resulting in a common eccentricity value for both die. This  
eliminates the “native misalignment” present in “side-by-side”  
packaging options.  
2
1.8  
1.6  
1.4  
1.2  
1
6.00 mm Diameter  
8.00 mm Diameter  
10.00 mm Diameter  
0.8  
0.6  
0.4  
0.2  
0
0
0.5  
1
1.5  
Misalignment (mm)  
Figure 35: Simulated Error versus Eccentricity for different size magnet diameters, at 2.0 mm air gap  
Typical Systemic Error versus magnet to sensor eccentricity (daxial), Note: “Systemic Error” refers to application errors in alignment  
and system timing. It does not refer to sensor IC device errors. The data in this graph is simulated with ideal magnetization.  
25  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Application Circuit Description  
ESD Performance  
The analog output version of the A1330 may be operated with  
either a pull-up or pull-down resistor. Use of a load resistor is  
Under certain conditions, the ESD rating of the dual die IC may  
be less than 2 kV if ground pins are not tied to a common node.  
recommended, as this allows the output to float to a known “diag- Contact Allegro for questions regarding ESD optimization.  
nostic” state in the event of a sensor diagnostic.  
Table 8: HBM ESD Rating (per AEC-Q100 002)  
The PWM version, with its open-drain architecture, requires the  
output be connected to a voltage source, through a load resistor.  
Package  
ESD Rating  
6 kV  
TSSOP-08 (single die)  
TSSOP-08 (dual die)  
Figure 36 shows a typical A1330 application circuit, for either  
analog or PWM outputs. For EMC sensitive environments, an  
output load capacitor of 2 nF is recommended  
6 kV [1]  
[1] All GND pins shorted together.  
Regulated 5 V  
VS  
VCC  
10 kΩ  
A1330  
0.1 µF  
VOUT  
To ADC  
Optional  
2 nF Capacitor for EMC  
GND  
Figure 36: Typical A1330 application circuit  
26  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
EEPROM MEMORY MAP  
The EEPROM memory map is shown below.  
All EEPROM may be read once the IC is in “Manchester Output Mode”. Writing requires the EEPROM lock bit to be clear, and appli-  
cation of high voltage pulses on the output pin. See discussion on EEPROM programming for information on how to write EEPROM.  
Table 9: EEPROM Memory Map  
Bits  
Address  
31:26  
ECC  
ECC  
ECC  
25  
R
24  
R
23  
22  
21  
20  
19  
18  
PREGAIN_OFFSET  
Reserved  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
Reserved  
Reserved  
SS  
CE  
GAIN  
ROE  
PO  
MAX_INPUT  
POSTGAIN_OFFSET  
ANG_AVE  
MIN_INPUT  
ECC ABW  
HIGH_CLAMP  
LOW_CLAMP  
ECC EELO HYS_0  
ECC  
HYS  
PWM_FREQ  
MISS_MAG_THRSH  
Customer Word  
INTER TOR OVLO EED MAXA MINA MMF  
Address 0x3A  
Bit  
25  
R
24  
R
23  
0
22  
21  
20  
19  
0
18  
17  
16  
0
15  
0
14  
0
13  
0
12  
0
11  
10  
0
9
8
0
7
0
6
5
4
0
3
0
2
0
1
0
0
0
Name  
Default  
PREGAIN_OFFSET  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
PREGAIN_OFFSET [23:12]:  
Reserved [11:0]:  
Reserved EEPROM registers. Should be set to 0’s.  
Pregain offset (zero adjust), at 12-bit resolution. This value is subtracted  
from the measured angle value, independent of short stroke.  
Value  
Description  
0x0 to  
0xFFF  
0 to 359.91° subtracted from pre gain angle value.  
Address 0x3B  
Bit  
25  
SS  
0
24  
23  
0
22  
0
21  
0
20  
0
19  
18  
0
17  
0
16  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
0
4
0
3
0
2
0
1
0
0
0
Name  
Default  
Reserved  
GAIN  
0
0
0
SS[25]:  
Reserved[24:13]:  
Enables “short stroke” mode. Gain and Min/Max Input angle checking are  
enabled.  
Reserved EEPROM registers. Should be set to 0’s.  
GAIN[12:0]:  
Value  
Description  
Sets gain to apply full dynamic range of the output for a limited input range.  
Only applied if SS is set to ‘1’.  
Applied gain is 1 plus the total value set in the Gain EEPROM field.  
GAIN specified in 5.8, unsigned form.  
0
1
Short stroke not enabled  
Short stroke enabled  
Example:  
GAIN field = 0x055A equates to 5 + (90 / 256) = 5.3515625  
Applied gain = 1 + GAIN = 6.3515625  
27  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Address 0x3C  
Bit  
25  
CE  
0
24  
ROE  
0
23  
0
22  
0
21  
0
20  
0
19  
0
18  
17  
16  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
0
3
0
2
0
1
0
0
0
Name  
Default  
MAX_INPUT  
MIN_INPUT  
0
0
0
0
CE[25]:  
ROE[24]:  
Roll-over enable.  
Clamp enable.  
Value  
Description  
Value  
Description  
0
1
Disables roll-over  
Enables roll-over  
0
1
Disabled clamps  
Enables clamps  
Both CE and ROE interact to create four distinct  
operating modes. See table below.  
CE  
0
ROE  
0
Description  
Normal behavior.  
Roll-over at standard module 360.  
Output rolls-over at the High and Low  
Clamp values.  
0
1
1
0
Output clamps at the first encountered  
High/Low Clamp value.  
Roll-over occurs at standard module 360.  
Output is clamped to High/Low Clamps  
value.  
1
1
MAX_INPUT[23:12]:  
MIN_INPUT[11:0]:  
Sets the maximum input angle, after PREGAIN_OFFSET but before  
scaling by GAIN. Used for short-stroke limit test, in 12-bit resolution units.  
Setting this field to 0xFFF will effectively disable this feature. This allows  
Sets the minimum input angle (after PREGAIN_OFFSET), but before scaling  
by GAIN. Used for short-stroke limit test, in 12-bit resolution units. Setting  
this field to 0 will effectively disable this feature. This allows debugging and  
debugging and diagnostics of a possible broken sensor assembly. Used as diagnostics of a possible broken sensor assembly. Used as a diagnostic  
a diagnostic point if the angle exceeds the targeted dynamic range.  
SS must be set to ‘1’ to enable this function.  
point if the angle decreases below the targeted dynamic range.  
SS must be set to ‘1’ to enable this function.  
Value  
Description  
Value  
Description  
0x0 to  
0xFFF  
0x0 to  
0xFFF  
Sets maximum input angle to 0 to 359.91°  
Sets minimum input angle to 0 to 359.91°  
28  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Address 0x3D  
Bit  
25  
ABW  
0
24  
PO  
0
23  
0
22  
0
21  
0
20  
0
19  
0
18  
17  
16  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
0
6
0
5
0
4
0
3
2
1
0
0
0
Name  
Default  
POSTGAIN_OFFSET  
HIGH_CLAMP  
LOW_CLAMP  
0
0
0
0
0
0
ABW[25]:  
Analog back end BW. Sets the BW of the analog filter.  
POSTGAIN_OFFSET[23:12]:  
Sets the output angular offset to relocate the 0° reference point for the  
output angle. Applied after GAIN and Min/Max Input angle comparison.  
Represented in signed 2’s complement.  
Value  
Description  
0
1
30 kHz BW  
15 kHz BW  
Value  
Description  
0x0 to  
0x7FF  
0° to 179.91°  
PO[24]:  
0x800 to  
0xFFF  
–180° to –0.088°  
Polarity bit.  
Sets which magnetic rotation direction results in an increasing output value.  
If set to ‘0’, increasing angle is in the clockwise direction, when looking  
down on the top of the die, from the magnets perspective.  
This occurs prior to the PREGAIN_OFFSET.  
Value  
0
Description  
Output angle increases with a clockwise rotation (when  
viewed from above the magnet and device)  
Output angle increases with a counter-clockwise rotation  
(when viewed from above the magnet and device)  
1
29  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
HIGH_CLAMP[11:6]:  
Sets an output high angle clamp.  
Applied after GAIN and POSTGAIN_OFFSET.  
Decrements by ≈1% of VCC  
.
Code  
Voltage  
Approximate  
Angle  
Nominal  
Voltage  
Code  
Voltage  
Approximate  
Angle  
Nominal  
Voltage  
0
VOUT(MAX)  
359.9  
356.0  
351.9  
348.0  
343.9  
340.0  
335.9  
332.0  
327.9  
324.0  
319.9  
316.0  
311.9  
308.0  
303.9  
300.0  
295.9  
292.0  
287.9  
284.0  
279.9  
276.0  
271.9  
268.0  
263.9  
260.0  
255.9  
252.0  
247.9  
244.0  
240.0  
236.0  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
3.95  
3.90  
3.85  
3.80  
3.75  
3.70  
3.65  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
VOUT(MAX) –32% VCC  
VOUT(MAX) – 33% VCC  
VOUT(MAX) – 34% VCC  
VOUT(MAX) – 35% VCC  
VOUT(MAX) – 36% VCC  
VOUT(MAX) – 37% VCC  
VOUT(MAX) – 38% VCC  
VOUT(MAX) – 39% VCC  
VOUT(MAX) – 40% VCC  
VOUT(MAX) – 41% VCC  
VOUT(MAX) – 42% VCC  
VOUT(MAX) – 43% VCC  
VOUT(MAX) – 44% VCC  
VOUT(MAX) – 45% VCC  
VOUT(MAX) – 46% VCC  
VOUT(MAX) – 47% VCC  
VOUT(MAX) – 48% VCC  
VOUT(MAX) – 49% VCC  
VOUT(MAX) – 50% VCC  
VOUT(MAX) – 51% VCC  
VOUT(MAX) – 52% VCC  
VOUT(MAX) – 53% VCC  
VOUT(MAX) – 54% VCC  
VOUT(MAX) – 55% VCC  
VOUT(MAX) – 56% VCC  
VOUT(MAX) – 57% VCC  
VOUT(MAX) – 58% VCC  
VOUT(MAX) – 59% VCC  
VOUT(MAX) – 60% VCC  
VOUT(MAX) – 61% VCC  
VOUT(MAX) – 62% VCC  
VOUT(MAX) – 63% VCC  
232.0  
228.0  
224.0  
220.0  
216.0  
212.0  
208.0  
204.0  
200.0  
196.0  
192.0  
188.0  
184.0  
180.0  
176.0  
172.0  
168.0  
164.0  
160.0  
156.0  
152.1  
148.0  
144.1  
140.0  
136.1  
132.0  
128.1  
124.0  
120.1  
116.0  
112.1  
108.0  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1
V
V
V
V
V
V
V
V
V
OUT(MAX) – 1% VCC  
OUT(MAX) – 2% VCC  
OUT(MAX) – 3% VCC  
OUT(MAX) – 4% VCC  
OUT(MAX) – 5% VCC  
OUT(MAX) – 6% VCC  
OUT(MAX) – 7% VCC  
OUT(MAX) – 8% VCC  
OUT(MAX) – 9% VCC  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
V
OUT(MAX) – 10% VCC  
OUT(MAX) – 11% VCC  
V
V
V
V
V
V
V
OUT(MAX) – 12% VCC  
OUT(MAX) – 13% VCC  
OUT(MAX) – 14% VCC  
OUT(MAX) – 15% VCC  
OUT(MAX) – 16% VCC  
OUT(MAX) – 17% VCC  
VOUT(MAX) – 18% VCC  
V
V
V
V
V
V
V
V
V
V
V
V
V
OUT(MAX) – 19% VCC  
OUT(MAX) – 20% VCC  
OUT(MAX) – 21% VCC  
OUT(MAX) – 22% VCC  
OUT(MAX) – 23% VCC  
OUT(MAX) – 24% VCC  
OUT(MAX) – 25% VCC  
OUT(MAX) – 26% VCC  
OUT(MAX) – 27% VCC  
OUT(MAX) – 28% VCC  
OUT(MAX) – 29% VCC  
OUT(MAX) – 30% VCC  
OUT(MAX) – 31% VCC  
30  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
LOW_CLAMP [5:0]:  
Sets an output low clamp level.  
Applied after GAIN and POSTGAIN_OFFSET.  
Increments by ≈1% of VCC  
.
Code  
Voltage  
Approximate  
Angle  
Nominal  
Voltage  
Code  
Voltage  
Approximate  
Angle  
Nominal  
Voltage  
0
VOUT(MIN)  
0.0  
4.0  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
VOUT(MIN) + 32% VCC  
VOUT(MIN) + 33% VCC  
VOUT(MIN) + 34% VCC  
VOUT(MIN) + 35% VCC  
VOUT(MIN) + 36% VCC  
VOUT(MIN) + 37% VCC  
VOUT(MIN) + 38% VCC  
VOUT(MIN) + 39% VCC  
VOUT(MIN) + 40% VCC  
VOUT(MIN) + 41% VCC  
VOUT(MIN) + 42% VCC  
VOUT(MIN) + 43% VCC  
VOUT(MIN) + 44% VCC  
VOUT(MIN) + 45% VCC  
VOUT(MIN) + 46% VCC  
VOUT(MIN) + 47% VCC  
VOUT(MIN) + 48% VCC  
VOUT(MIN) + 49% VCC  
VOUT(MIN) + 50% VCC  
VOUT(MIN) + 51% VCC  
VOUT(MIN) + 52% VCC  
VOUT(MIN) + 53% VCC  
VOUT(MIN) + 54% VCC  
VOUT(MIN) + 55% VCC  
VOUT(MIN) + 56% VCC  
VOUT(MIN) + 57% VCC  
VOUT(MIN) + 58% VCC  
VOUT(MIN) + 59% VCC  
VOUT(MIN) + 60% VCC  
VOUT(MIN) + 61% VCC  
VOUT(MIN) + 62% VCC  
VOUT(MIN) + 63% VCC  
128.0  
131.9  
136.0  
139.9  
144.0  
147.9  
152.0  
155.9  
160.0  
163.9  
168.0  
171.9  
176.0  
179.9  
184.0  
187.9  
192.0  
195.9  
200.0  
203.9  
207.9  
211.9  
215.9  
219.9  
223.9  
227.9  
231.9  
235.9  
239.9  
243.9  
247.9  
251.9  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.850  
1.900  
1.950  
2.000  
2.050  
2.100  
2.150  
2.200  
2.250  
2.300  
2.350  
2.400  
2.450  
2.500  
2.550  
2.600  
2.650  
2.700  
2.750  
2.800  
2.850  
2.900  
2.950  
3.000  
3.050  
3.100  
3.150  
3.200  
3.250  
3.300  
3.350  
3.400  
1
VOUT(MIN) + 1% VCC  
VOUT(MIN) + 2% VCC  
VOUT(MIN) + 3% VCC  
VOUT(MIN) + 4% VCC  
VOUT(MIN) + 5% VCC  
VOUT(MIN) + 6% VCC  
VOUT(MIN) + 7% VCC  
VOUT(MIN) + 8% VCC  
VOUT(MIN) + 9% VCC  
VOUT(MIN) + 10% VCC  
VOUT(MIN) + 11% VCC  
VOUT(MIN) + 12% VCC  
VOUT(MIN) + 13% VCC  
VOUT(MIN) + 14% VCC  
VOUT(MIN) + 15% VCC  
VOUT(MIN) + 16% VCC  
VOUT(MIN) + 17% VCC  
VOUT(MIN) + 18% VCC  
VOUT(MIN) + 19% VCC  
VOUT(MIN) + 20% VCC  
VOUT(MIN) + 21% VCC  
VOUT(MIN) + 22% VCC  
VOUT(MIN) + 23% VCC  
VOUT(MIN) + 24% VCC  
VOUT(MIN) + 25% VCC  
VOUT(MIN) + 26% VCC  
VOUT(MIN) + 27% VCC  
VOUT(MIN) + 28% VCC  
VOUT(MIN) + 29% VCC  
VOUT(MIN) + 30% VCC  
VOUT(MIN) + 31% VCC  
2
8.0  
3
12.0  
16.0  
20.0  
24.0  
27.9  
32.0  
35.9  
40.0  
43.9  
48.0  
51.9  
56.0  
59.9  
64.0  
67.9  
72.0  
75.9  
80.0  
83.9  
88.0  
91.9  
96.0  
99.9  
104.0  
107.9  
112.0  
115.9  
120.0  
123.9  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
31  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Address 0x3E  
Bit  
25  
24  
23  
22  
21  
20  
PWM_FREQ  
0
19  
18  
17  
ANG_AVE  
0*  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MMF  
0
Name EELO HYS_0  
Default  
HYS  
MISS_MAG_THRSH  
INTER TOR OVLO EED MAXA MINA  
0
0*  
0*  
0
1
0
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
1*  
0*  
1*  
0
0
0
0
0
0
EELO[25]:  
PWM_FREQ[21:19]:  
EEPROM Lock Bit.  
Once set, EEPROM cannot be written.  
Sets the PWM carrier frequency.  
PWM_FREQ  
000  
PWM Frequency  
20 kHz  
Value  
Description  
EEPROM writes allowed  
EEPROM writing prevented  
0
1
001  
10 kHz  
010  
5 kHz  
011  
2.5 kHz  
HYS_0[24]:  
100  
1.25 kHz  
625 Hz  
Hysteresis is only applied within ±11.16° of the 0/360 crossover point.  
101  
110  
312.5 Hz  
156.25 Hz  
Value  
Description  
111  
0
1
Hysteresis is applied across the whole angle range  
Hysteresis is only applied near the 0/360° crossover point  
ANG_AVE[18:16]:  
Selects the number of internal angle samples to average. Reduces the  
update rate of the IC for improved angle resolution.  
HYS[23:22]:  
Hysteresis range selection.  
When applied the angle will not update unless a change larger than the  
hysteresis range is observed.  
Applied after PREGAIN_OFFSET. Prior to GAIN.  
* Default value of 0 for all catalog part numbers except  
A1330LLETR-T-C02, which is set to 0112.  
Quantity of Samples  
* Default value of 0 for all catalog part numbers except A1330LLETR-T-C02.  
Value  
Approx. Refresh Rate (µs)  
Averaged  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
25  
50  
Value  
00  
Description  
0°  
4
100  
200  
400  
800  
1600  
3200  
01  
0352°  
8
10  
0.703° (Default value for A1330LLETR-T-C02)  
1.406°  
16  
32  
64  
128  
11  
32  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
MIS_MAG_THRSH[15:7]:  
EED[3]:  
Threshold below which the missing magnet flag will assert. At Allegro  
factory.  
Dual bit EEPROM error.  
Prevents a dual bit EEPROM error from tristating the output.  
*This is programmed for a default of 100 G. The value of 01012 shown in  
the above table is typical; actual values may vary, depending on device  
behavior.  
Value  
Description  
0
1
Dual bit EEPROM error will tri-state the output  
Dual bit EEPROM error will not tri-state the output  
If a setting other than 100 G is desired, simply scale the existing value by  
d_field / 100 where “d_field” is the desired trip point in gauss.  
Example: If the desired trip point is 300 G, and the default factory EEPROM  
value is 0x5, then the final value is 300 / 100 × 5 = 15 = 0xF.  
MAXA[2]:  
Maximum Input Angle Mask.  
When set, the output will not tri-state when the input angle exceeds the  
MAX_INPUT value.  
INTER[6]:  
Interpolator Error mask.  
Prevents an interpolator error from setting the output to tri-state.  
Value  
Description  
0
1
Output tri-states if input angle exceeds MAX_INPUT  
Output doesn’t tri-states if input angle exceeds MAX_INPUT  
Value  
Description  
Interpolator error will tri-state output  
Interpolator error will not tri-state output  
0
1
MINA[1]:  
Minimum Input Angle Mask.  
When set, the output will not tri-state when the input angle is below the  
MIN_INPUT value.  
TOR[5]:  
Temperature Out Of Range Mask.  
Prevents a temperature out of range error from tri-stating the output.  
Value  
Description  
Value  
Description  
0
1
Output tri-states if input angle is below MIN_INPUT  
Output doesn’t tri-states if input angle is below MIN_INPUT  
0
1
Temperature out of range error will tri-state output  
Temperature out of rang error will not tri-state output  
MMF[0]:  
Missing Magnet Flag Mask.  
OVLO[4]:  
When set, output will not tri-state if the measured magnetic amplitude is  
below the MIS_MAG_THRSH.  
Overvoltage Error Mask.  
Prevents an overvoltage error from tristating the output.  
Value  
Description  
Value  
Description  
0
1
Missing magnet error tri-states output  
Missing magnet error does not tri-states output  
0
1
Overvoltage error will tri-state the output  
Overvoltage error will not tri-state the output  
33  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Address 0x3F  
Bit  
25  
24  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
15  
0
14  
0
13  
12  
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Name  
Default  
Customer Word  
0
0
0
0
Customer Word[25:0]:  
Customer EEPROM space.  
34  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
PACKAGE OUTLINE DRAWINGS  
For Reference Only – Not for Tooling Use  
(Reference MO-153AA)  
Dimensions in millimeters - NOT TO SCALE  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
3.00 0.ꢀ0  
8º  
0º  
D
ꢀ.50  
E
8
0.02  
0.09  
2.20  
D
6.40 BSC 4.40 0.ꢀ0  
A
D
ꢀ.00 REF  
+0.ꢀ5  
0.60  
-0.ꢀ0  
2
Branded Face  
ꢀ.ꢀ0 MAX  
0.25 BSC  
SEATING PLANE  
GAUGE PLANE  
C
8X  
0.ꢀ0 C  
SEATING  
PLANE  
0.ꢀ5  
0.05  
0.30  
0.ꢀ9  
0.65 BSC  
NNN  
YYWW  
8
1.70  
1
C Standard Branding Reference View  
N
= Last 3 digits of device part number  
= Supplier emblem  
Y
= Last two digits of year of manufacture  
W = Week of manufacture  
6.40 BSC  
A
B
Terminal #1 mark area  
Reference land pattern layout (reference IPC7351 SOP65P640X110-8M);  
all pads minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances; when  
mounting on a multilayer PCB, thermal vias can improve thermal dissipation  
(reference EIA/JEDEC Standard JESD51-5)  
C
D
E
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
1
2
Active Area Depth = 0.36 mm REF  
B PCB Layout Reference View  
Figure 37: Package LE, 8-Pin TSSOP (Single Die Version)  
35  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
For Reference Only – Not for Tooling Use  
(Reference MO-153AA)  
Dimensions in millimeters - NOT TO SCALE  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
3.00 0.ꢀ0  
Dꢀ  
D
8º  
0º  
ꢀ.60  
D2  
E
D
ꢀ.40  
8
0.02  
0.09  
Dꢀ  
D
D2  
D
2.ꢀ8  
2.27  
6.40 BSC 4.40 0.ꢀ0  
A
ꢀ.00 REF  
+0.ꢀ5  
0.60  
-0.ꢀ0  
2
Branded Face  
ꢀ.ꢀ0 MAX  
0.25 BSC  
SEATING PLANE  
GAUGE PLANE  
C
8×  
0.ꢀ0 C  
SEATING  
PLANE  
0.ꢀ5  
0.05  
0.30  
0.ꢀ9  
0.65 BSC  
NNN  
YYWW  
8
1.70  
1
C Standard Branding Reference View  
N
= Last 3 digits of device part number  
= Supplier emblem  
Y
= Last two digits of year of manufacture  
W = Week of manufacture  
6.40 BSC  
A
B
Terminal #1 mark area  
Reference land pattern layout (reference IPC7351 SOP65P640X110-8M);  
all pads minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances; when  
mounting on a multilayer PCB, thermal vias can improve thermal dissipation  
(reference EIA/JEDEC Standard JESD51-5)  
C
D
E
Branding scale and appearance at supplier discretion  
Hall element (D1, D2), not to scale  
1
2
Active Area Depth; 0.27 mm (die 1), 0.43 mm (die 2)  
B PCB Layout Reference View  
Figure 38: Package LE, 8-Pin TSSOP (Dual Die Version)  
36  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
APPENDIX A: ANGLE ERROR AND DRIFT DEFINITION  
Angle error is the difference between the actual position of the  
magnet and the position of the magnet as measured by the angle  
sensor IC (without noise). This measurement is done by reading  
the angle sensor IC output and comparing it with a high resolu-  
tion encoder (refer to Figure 39).  
Angle Drift  
Angle drift is the change in the observed angular position over  
temperature, relative to 25°C.  
During Allegro’s factory trim, drift is measured at 150°C. The  
value is calculated using the following formula:  
Angle Error  
E [º]  
AngleDrift = Angle25°C – Angle150°C  
where each Angle value is an array corresponding to 16 angular  
positions around a circle.  
Emax  
Reference Angle  
a
Real  
E = aSensor a  
Real  
Angle Drift of 150°C in Reference to 25°C  
Emax – Emin  
Error 25°C  
Error 150°C  
No Error  
Eminl  
Figure 39: Angle Error Definition  
Drift of data point 1  
Angle Error Definition  
Throughout this document, the term “angle error” is used exten-  
sively. Thus, it is necessary to introduce a single angle error  
definition for a full magnetic rotation. The term “angle error” is  
calculated according to the following formula:  
Ideal  
Drift of data point 2  
E max E min  
=
Angle Error  
2
In other words, it is the amplitude of the deviation from a perfect  
straight line between 0 and 360 degrees. For the purposes of a  
generic definition, the offset of the IC angle profile is removed  
prior to the error calculation (this can be seen in Figure 39). The  
offset itself will depend on the starting IC angle position relative  
to the encoder 0° and thus can differ anywhere from 0-360°.  
Reference Angle  
Figure 40: Angle Drift of 150°C in Reference to 25°C [1]  
[1] Note that the data above is simply a representation of angle  
drift and not real data.  
A-1  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Ratiometry Error Definition  
The analog version of the A1330 provides a ratiometric output.  
This means that the Voltage Output, VOUT, and the angular sensi-  
tivity are proportional to the supply voltage, VCC. In other words,  
when the supply voltage increases or decreases by a certain  
percentage, each characteristic also increases or decreases by the  
same percentage. Error is the difference between the measured  
change in the supply voltage relative to 5.0 V, and the measured  
change in each characteristic.  
The ratiometric error for a given magnetic position (θ),  
RatVOUT (%), for a given supply voltage, VCC, is defined as:  
VOUT(θ)(VCC) / V  
OUT(θ)(5.0V)  
1–  
RatVOUT(θ)  
=
100 (%)  
×
VCC / 5.0 (V)  
Output Voltage, VOUT (V)  
VSAT(High)  
VSAT(Low)  
180°  
Appied Magnetic Field Angle  
counter-clockwise  
clockwise  
Figure 41: Effect of Saturation  
A-2  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
APPENDIX B: CRC DOCUMENATION  
Manchester CRC Implementation  
The 3-bit Manchester CRC can be calculated using the following  
C code:  
// command: the manchester command, right justified, does  
not include the space for the CRC  
// numberOfBits: number of bits in the command not includ-  
ing the 2 zero sync bits at the start of the command and the  
three CRC bits  
// Returns: The three bit CRC  
// This code can be tested at http://codepad.org/yqTKnfmD  
uint16_t ManchesterCRC(uint64_t data, uint16_t numberOfBits)  
{
bool C0 = false;  
bool C1 = false;  
bool C2 = false;  
bool C0p = true;  
bool C1p = true;  
bool C2p = true;  
uint64_t bitMask = 1;  
bitMask <<= numberOfBits - 1;  
// Calculate the state machine  
for (; bitMask != 0; bitMask >>= 1)  
{
C2 = C1p;  
C0 = C2p ^ ((data & bitMask) != 0);  
C1 = C0 ^ C0p;  
C0p = C0;  
C1p = C1;  
C2p = C2;  
}
return (C2 ? 4U : 0U) + (C1 ? 2U : 0U) + (C0 ? 1U :  
0U);  
}
B-1  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable Angle Sensor IC  
with Analog and PWM Output  
A1330  
Revision History  
Revision  
Date  
Description  
September 25, 2017  
Initial release  
Updated Features and Benefits (page 1), Thermal Characteristics (page 2), Supply Current (page 5),  
Figure 3 and 4 (page 7), Figures 14 through 17 (page 19 and 21), Gain section (page 20), Clamp and  
Roll-Over Logic figure captions (page 21), Figures 32 and 33 (page 24), Figure 34 (page 25), and Dual  
Die LE-8 Package Drawing active area depth dimensions (page 36); added figure to Angle Averaging  
section (page 18).  
1
2
June 29, 2018  
August 3, 2018  
Updated Features and Benefits (page 1), Selection Guide (page 2), Response Time (page 6), Angle  
Noise (page 6), Figure 3 (page 7), Hysteresis (page 10), Address 0x3E (page 32-33).  
Copyright ©2018, Allegro MicroSystems, LLC  
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to  
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that  
the information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its  
use; nor for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
B-2  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY