A1699LUBTN-FSNBL-T [ALLEGRO]

Two-Wire, Differential, Vibration-Resistant Sensor IC with Speed and Direction Output;
A1699LUBTN-FSNBL-T
型号: A1699LUBTN-FSNBL-T
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Two-Wire, Differential, Vibration-Resistant Sensor IC with Speed and Direction Output

文件: 总18页 (文件大小:1026K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A1699  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
FEATURES AND BENEFITS  
DESCRIPTION  
• Integrated IC and capacitor, single overmolded package  
to reduce external EMI-protection requirements  
• Two-wire, pulse-width output protocol  
• Highly configurable output protocol options  
• Digital output representing target profile  
• Speed and direction information of target  
• Vibration tolerance  
The A1699 is an optimized Hall-effect integrated circuit (IC)  
that provides a user-friendly solution for direction detection  
and true zero-speed, digital ring-magnet sensing. The small  
package can be easily assembled and used in conjunction with  
a wide variety of target sensing applications.  
TheICemployspatentedalgorithmsforthespecialoperational  
requirements of automotive transmission applications. The  
speed and direction of the target are communicated through a  
variablepulse-widthoutputprotocol.TheA1699isparticularly  
adept at handling vibration without sacrificing maximum air  
gapcapabilityorcreatinganyerroneousdirectioninformation.  
Theadvancedvibrationdetectionalgorithmwillsystematically  
calibrate the sensor IC on the initial magnetic poles of true  
target rotation and not on vibration, always guaranteeing an  
accurate signal in running mode.  
Small-signal lockout for small amplitude vibration  
Proprietary vibration detection algorithms for large  
amplitude vibration  
• Air-gap-independent switchpoints  
• Large operating air gap capability  
• Undervoltage lockout  
• True zero-speed operation  
• Wide operating voltage range  
• AEC-Q100 automotive qualified  
• Robust test-coverage capability with Scan Path and  
IDDQ measurement  
Advanced signal processing and innovative algorithms make  
the A1699 an ideal solution for a wide range of speed- and  
direction-sensing needs.  
Package: 2-Pin SIP (Suffix UB)  
The A1699 is provided in a 2-pin miniature SIP package  
(suffix UB) that is lead (Pb) free, with tin leadframe plating.  
The UB package includes an IC and capacitor integrated into a  
single overmolded package to reduce external EMI protection  
requirements.  
Not to scale  
VCC  
Regulator  
(Analog)  
Regulator  
(Digital)  
Offset  
Adjust  
Hall Amp  
AGC  
Filter  
ADC  
Synchronous  
Digital Controller  
Output  
Control  
Offset  
Adjust  
Hall Amp  
AGC  
Filter  
ADC  
GND  
Functional Block Diagram  
April 3, 2019  
A1699-DS, Rev. 8  
MCO-0000636  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
Configuration  
Complete Part  
Number Format  
L UB TN -X X X X X -T  
A1699  
Allegro Identifier and Device Type  
Operating Temperature Range  
Package Designation  
Instructions (Packing)  
Leadframe Plating  
Allegro Identifier and Device Type  
[A1699]  
[L]  
Operating Temperature Range  
Package Designation  
Instructions (Packing)  
[UB] 2-pin plastic SIP  
[TN] Tape and reel  
[-F] pin 1-to-2 forward or  
[-R] pin 2-to-1 forward  
Rotation Direction  
[S] single, one pulse per magnetic pole pair or  
[D] dual, one pulse for each north and south pole  
Number of Pulses  
[N] 90 µs (narrow) or  
[W] 180 µs (wide)  
Reverse Pulse  
Width  
Configuration  
[B] Blanked, no output during Calibration or  
[P] Pulses during Calibration  
Calibration Pulses  
[L] Low vibration immunity with immediate  
direction change detection or  
[H] High vibration immunity with non-direction  
pulses  
Vibration Immunity  
/ Direction Change  
[T] Lead (Pb) free  
Leadframe Plating  
For example: A1699LUBTN-RSNPL-T  
Where a configuration character is unspecified, “x” will be used. For example, -xSNPL applies to both  
Rotation Direction configuration variants.  
2
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
SELECTION GUIDE  
Part Number  
Packing*  
4000 pieces per 13-in. reel  
A1699LUBTN–xxxxx–T  
*Contact Allegro™ for additional packing options.  
ABSOLUTE MAXIMUM RATINGS*  
Characteristic  
Symbol  
Notes  
Refer to Power Derating Section  
Rating  
28  
Unit  
V
Supply Voltage  
VCC  
Reverse Supply Voltage  
VRCC  
TA  
–18  
V
Operating Ambient Temperature  
Maximum Junction Temperature  
Storage Temperature  
L temperature range  
–40 to 150  
165  
ºC  
ºC  
ºC  
TJ(max)  
Tstg  
–65 to 170  
INTERNAL DISCRETE CAPACITOR RATINGS  
Characteristic  
Symbol  
Test Conditions  
Value (Typ.)  
Unit  
Nominal Capacitance  
CSUPPLY  
Connected between VCC and GND  
10000  
pF  
Terminal List Table  
Name  
Number  
Function  
VCC  
1
Supply Voltage  
Ground  
GND  
2
1
2
Package UB, 2-Pin SIP Pinout Diagram  
3
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
OPERATING CHARACTERISTICS: Valid throughout full operating and temperature ranges, unless otherwise specified  
Characteristic  
ELECTRICAL CHARACTERISTICS  
Supply Voltage2  
Symbol  
Test Conditions  
Min.  
Typ.1  
Max.  
Unit  
VCC  
VCC(UV)  
IRCC  
Operating, TJ < TJ(max)  
4
3.6  
24  
3.95  
–10  
V
V
Undervoltage Lockout  
VCC transitioning from 0 → 5 V or 5 → 0 V  
Reverse Supply Current3  
Supply Zener Clamp Voltage  
VCC = VRCC(max)  
mA3  
V
VZSUPPLY ICC = ICC(max) + 3 mA, TA = 25ºC  
ICC(LOW) Low-current state (running mode)  
ICC(HIGH) High-current state (running mode)  
28  
5
8
mA  
mA  
12  
16  
Supply Current  
ICC(SU)  
(LOW)  
Low-current level (calibration) and Power-on  
mode  
5
8.5  
mA  
ICC(HIGH)  
ICC(LOW) current  
/
Measured as a ratio of high current to low  
Supply Current Ratio  
OUTPUT  
1.9  
ΔI/Δt from 10% to 90% ICC level; Corresponds to  
measured output slew rate with CSUPPLY  
Output Rise Time  
tr  
tf  
2
2
4
4
μs  
μs  
ΔI/Δt from 90% to 10% ICC; Corresponds to  
measured output slew rate with CSUPPLY  
Output Fall Time  
OUTPUT PULSE CHARACTERISTICS4  
Pulse Width, Forward Rotation  
tw(FWD)  
38  
76  
45  
90  
52  
μs  
μs  
μs  
μs  
μs  
-xxNxx variant  
104  
207  
207  
414  
Pulse Width, Reverse Rotation  
tw(REV)  
-xxWxx variant  
153  
153  
306  
180  
180  
360  
-xxNPx and -xxNxH variants  
-xxWPx and -xxWxH variants  
Pulse Width, Non-Direction  
tw(ND)  
Continued on the next page…  
VS  
1
VCC  
CSUPPLY  
2
GND  
RL  
A1699  
VOUT  
CL  
Figure 1: Typical Application Circuit  
4
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
OPERATING CHARACTERISTICS (continued): Valid throughout full operating and temperature ranges, unless otherwise  
specified  
Characteristic  
OPERATING CHARACTERISTICS  
Operate Point  
Symbol  
Test Conditions  
Min.  
Typ.1  
Max.  
Unit  
BOP  
BRP  
% of peak-to-peak IC-processed magnetic signal  
% of peak-to-peak IC-processed magnetic signal  
-xSxxx variant  
0
0
0
0
0
0
0
0
0
0
69  
31  
%
Release Point  
%
12  
6
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
Operating Frequency, Forward  
Rotation  
fFWD  
-xDxxx variant  
-xSNxx variant  
7
-xDNxx variant  
3.5  
4
Operating Frequency, Reverse  
Rotation5  
fREV  
-xSWxx variant  
-xDWxx variant  
2
-xSNxx variant  
4
-xDNxx variant  
2
Operating Frquency, Non-Direction  
Pulses5  
fND  
-xSWxx variant  
2.2  
1.1  
-xDWxx variant  
DAC CHARACTERISTICS  
Magnitude valid for both differential magnetic  
channels  
Allowable User-Induced Offset  
PERFORMANCE CHARACTERISTICS  
Operational Magnetic Range  
–300  
300  
G
Peak to peak differential signal; valid for each  
magnetic channel.  
BIN  
30  
1200  
G
-xxxxL variant  
See Figure 2  
TTARGET  
TTARGET  
deg.  
deg.  
Vibration Immunity (Startup)  
ErrVIB(SU)  
-xxxxH variant  
0.12 ×  
TTARGET  
-xxxxL variant  
See Figure 2  
deg.  
Vibration Immunity (Running Mode)  
Magnetic Temperature Coefficient  
ErrVIB  
-xxxxH variant  
TTARGET  
deg.  
TCMAG  
Optimized value, for ring magnet  
–0.2  
%/°C  
1 Typical values are at TA = 25°C and VCC = 12 V. Performance may vary for individual units, within the specified maximum and minimum limits.  
2 Maximum voltage must be adjusted for power dissipation and junction temperature; see representative discussions in Power Derating section.  
3 Negative current is defined as conventional current coming out of (sourced from) the specified device terminal.  
4 Load circuit is RL = 100 Ω and CL = 10 pF. Pulse duration measured at threshold of ( (ICC(HIGH) + ICC(LOW)) /2).  
5 Maximum Operating Frequency is determined by satisfactory separation of output pulses: ICC(LOW) of tw(FWD)(MIN). If the customer can resolve shorter low-state durations,  
maximum fREV and fND may be increased.  
360º (degrees prime)  
S
N
S
N
Target  
VSP  
VPROC(BOP)  
TTARGET  
TVPROC  
(BOP  
)
VPROC  
VPROC(pk-pk)  
(BRP  
)
VPROC(BRP)  
VPROC = the processed analog signal of the sinusoidal magnetic input (per channel)  
VSP  
VSP  
VPROC(pk-pk)  
TTARGET = the period between successive sensed target magnetic edges of the same  
polarity (either both north-to-south or both south-to-north)  
VSP(sep)  
=
Figure 2: Definition of TTARGET  
5
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
OPERATING CHARACTERISTICS (continued): Valid throughout full operating and temperature ranges, unless otherwise  
specified  
Characteristic  
INPUT MAGNETIC CHARACTERISTICS  
BSEQ(n+1)  
Symbol  
Test Conditions  
Min.  
Typ.1  
Max.  
Unit  
/
Signal cycle-to-cycle variation (see Figure 3)  
Overall signal variation (see Figure 3)  
0.6  
0.4  
BSEQ(n)  
Allowable Differential Sequential  
Signal Variation  
BSEQ(n+i)  
BSEQ(n)  
/
CALIBRATION  
Amount of target rotation  
(constant direction) following  
power-on until first electrical  
output pulse of either tw(FWD)  
or tw(REV). See Figure 2  
BIN > 60 GPP  
BIN ≤ 1200 GPP  
2 ×  
TTARGET  
<3 ×  
TTARGET  
degrees  
degrees  
First Direction Output Pulse6  
30 GPP ≤ BIN  
BIN ≤ 60 GPP  
2.5 ×  
TTARGET  
<4 ×  
TTARGET  
Amount of target rotation  
(constant direction) following  
event until first electrical  
output pulse of either tw(FWD)  
or tw(REV). VSP(sep) ≥ 35.  
See Figure 2  
switch-  
point  
-xxxxL variant  
-xxxxH variant  
1
First Direction Pulse Output Following  
Direction Change  
NCD  
1 ×  
TTARGET  
2 ×  
TTARGET  
3 ×  
TTARGET  
degrees  
1.25 ×  
TTARGET  
Amount of target rotation  
(constant direction) following  
event until first electrical  
output pulse of either tw(FWD)  
or tw(REV). See Figure 2  
-xxxxL variant  
-xxxxH variant  
degrees  
degrees  
First Direction Pulse Output Following  
Running Mode Vibration  
1 ×  
TTARGET  
2 ×  
TTARGET  
3 ×  
TTARGET  
Minimum separation between channels as a  
percentage of signal amplitude at each switching  
point. See Figure 2  
%
pk-pk  
Switch Point Separation  
VSP(sep)  
20  
6 Power-up frequencies ≤ 200 Hz. Higher power-on frequencies may require more input magnetic cycles until output edges are achieved.  
BSEQ(n)  
BSEQ(n + 1)  
BSEQ(n+1), i ≥ 2  
Figure 3: Differential Signal Variation  
6
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
THERMAL CHARACTERISTICS  
Characteristic  
Package Thermal  
Resistance  
Symbol  
Test Conditions*  
Value  
Unit  
RθJA  
Single-layer PCB with copper limited to solder pads  
213  
ºC/W  
*Additional thermal information is available on the Allegro website.  
Power Derating Curve  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
VCC(max)  
RθJA = 213 °C/W  
6
VCC(min)  
4
2
0
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature, TA (ºC)  
Power Dissipation versus Ambient Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
RθJA = 213 °C/W  
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature, TA (ºC)  
7
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
CHARACTERISTIC PERFORMANCE  
Supply Current  
18  
16  
14  
12  
18  
VCC = 4 V  
TA = +25ºC  
16  
14  
12  
ICC HIGH  
ICC HIGH  
10  
8
10  
8
6
4
6
4
ICC LOW  
ICC LOW  
0
50  
0
10  
SUPPLY VOLTAGE (V)  
25  
100  
150  
5
20  
-50  
-25  
125  
25  
75  
15  
AMBIENT TEMPERATURE (ºC)  
18  
16  
14  
12  
18  
16  
14  
12  
VCC = 24 V  
TA = +150ºC  
ICC HIGH  
ICC HIGH  
10  
8
10  
8
ICC LOW  
6
4
6
4
ICC LOW  
0
50  
AMBIENT TEMPERATURE (ºC)  
0
10  
25  
100  
150  
5
20  
-50  
-25  
125  
25  
75  
15  
SUPPLY VOLTAGE (V)  
8
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
Supply Current Ratio  
5
4.5  
4
5
Vcc= 4 V  
TA = +25°C  
4.5  
4
3.5  
3
3.5  
3
ICCRATIO  
2.5  
2
2.5  
2
ICCRATIO  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
AMBIENT TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
5
4.5  
4
5
4.5  
4
Vcc = 24 V  
TA = +150°C  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
ICCRATIO  
ICCRATIO  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
5
10  
15  
20  
25  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
9
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
Pulse Width  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = +25°C  
Vcc = 4 V  
NON DIRECTION (-xxWPx and -xxWxH variants)  
450  
NON DIRECTION (-xxWPx and -xxWxH variants)  
400  
350  
300  
250  
REVERSE ( -xxWxx variant )  
200  
REVERSE ( -xxWxx variant )  
150  
REVERSE ( -xxNxx variant )  
100  
REVERSE ( -xxNxx variant )  
FORWARD  
FORWARD  
50  
0
0
0
5
10  
15  
20  
25  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = +150°C  
Vcc = 24 V  
NON DIRECTION (-xxWPx and -xxWxH variants)  
NON DIRECTION (-xxWPx and -xxWxH variants)  
REVERSE ( -xxWxx variant )  
REVERSE ( -xxWxx variant )  
REVERSE ( -xxNxx variant )  
FORWARD  
REVERSE ( -xxNxx variant )  
FORWARD  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
AMBIENT TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
10  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
FUNCTIONAL DESCRIPTION  
Sensing Technology  
Direction Detection  
The sensor IC contains a single-chip Hall-effect circuit that  
supports a trio of Hall elements. These elements are used in  
The sensor IC compares the relative phase of its two differential  
channels to determine which direction the target is moving. The  
differential pairs to provide electrical signals containing informa- relative switching order is used to determine the direction, which  
tion regarding edge position and direction of target rotation. The  
A1699 is intended for use with ring magnet and gear targets.  
is communicated through the output protocol.  
Data Protocol Description  
After proper power is applied to the sensor IC, it is capable of  
providing digital information that is representative of the mag-  
netic features of a rotating target. The waveform diagrams in  
Figure 4 present the automatic translation of the target profiles to  
the digital output signal of the sensor IC  
When a target passes in front of the device (opposite the branded  
face of the package case), the A1699 generates an output pulse(s)  
for each pair of magnetic poles of the target. Speed information is  
provided by the output pulse rate, while direction of target rota-  
tion is provided by the duration of the output pulses. The sensor  
IC can sense target movement in both the forward and reverse  
directions.  
Target  
Package Case Branded Face  
Device Orientation to Target  
Package Case  
Branded Face  
Device Orientation to Target  
IC  
E3  
E2  
E1  
(Pin 2 Side)  
(Top View of  
(Pin 1 Side)  
(Pin 1  
Side)  
(Top View of  
Package Case)  
(Pin 2  
Side)  
IC  
Channel B  
Element Pitch  
Channel A  
Element Pitch  
E3  
E1  
E2  
Pole Piece  
Package Case)  
(Concentrator)  
Back-Biasing  
Rare-Earth Pellet  
B Channel  
South Pole  
A Channel  
Mechanical Position (Target moves past device pin 1 to pin 2)  
North Pole  
Target  
(Radial Ring Magnet)  
This pole  
sensed later  
This pole  
sensed earlier  
Mechanical Position (Target moves past device pin 1 to pin 2)  
N
S
N
This tooth  
sensed later  
This tooth  
sensed earlier  
Target Magnetic Profile  
Channel  
Element Pitch  
+B  
Target Magnetic Profile  
+B  
Channel  
Element Pitch  
–B  
IC Internal Differential Analog Signals, VPROC  
BOP BOP  
IC Internal Differential Analog Signals, VPROC  
BOP  
A Channel  
A Channel  
BRP  
BOP  
BRP  
BOP  
B Channel  
B Channel  
BRP  
BRP  
Detected Channel Switching  
Detected Channel Switching  
A Channel  
A Channel  
B Channel  
B Channel  
Device Output Signal  
Device Output Signal  
CC(High)  
I
CC(High)  
I
I
I
CC(Low)  
CC(Low)  
Figure 4: The magnetic profile reflects the features of the target, allowing the sensor IC to present an accurate  
digital output (-xSxxx variant shown).  
11  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
face. For targets rotating from pin 2 to 1, this shift (Δfwd with R  
variants, with south pole of backbiasing pellet toward IC) results  
Forward Rotation (see Figure 5)  
When the target is rotating such that a magnetic pole near the  
sensor IC (of -Fxxxx variant) passes from pin 1 to pin 2, this is  
referred to as forward rotation. This direction is opposite for the  
-Rxxxx variant. Forward rotation is indicated by output pulse  
widths of tw(FWD) (45 μs typical).  
in the pulse corresponding to the valley with the sensed mechani-  
cal edge; for targets rotating from pin 1 to 2, the shift (Δrev)  
results in the pulse corresponding to the tooth with the sensed  
edge. Figure 7 shows pulse timing for F variants. The sensed  
mechanical edge that stimulates output pulses is kept the same for  
both forward and reverse rotation by using only one channel to  
control output switching.  
Reverse Rotation (see Figure 5)  
When the target is rotating such that a magnetic pole passes from  
pin 2 to pin 1, it is referred to as reverse rotation for the -Fxxxx  
variant. This direction is opposite for the -Rxxxx variant. Reverse  
rotation is indicated by output pulse widths of tw(REV) (90 μs typi-  
cal for -xxNxx variant, or 180 μs typical for -xxWxx variant).  
Direction Validation  
For the -xxxxL variant, following a direction change in run-  
ning mode, direction changes are immediately transmitted to the  
output.  
Timing  
For the -xxxxH variant, following a direction change in running  
mode, output pulses have a width of tw(ND) until direction infor-  
mation is validated.  
As shown in Figure 6, the pulse appears at the output slightly  
before the sensed magnetic edge traverses the package branded  
Pin 2 to 1 Rotation  
Pin 1 to 2 Rotation  
Valley  
Tooth  
Δfwd  
tw(FWD)  
Branded Face  
of Sensor  
Rotating Target  
Output Pulse  
(Pin 2 to 1 Rotation)  
N
S
S
N
N
S
S
N
t
S
N
Δrev  
tw(REV)  
Pin 1  
Pin 2  
(A) Forward Rotation  
Output Pulse  
(Pin 1 to 2 Rotation)  
Figure 6: Output Protocol (-RSxxx variant)  
Branded Face  
of Sensor  
Rotating Target  
Δrev  
N
S
tw(REV)  
S
N
N
S
S
N
S
N
Pin 1  
Pin 2  
Output Pulse  
(Pin 2 to 1 Rotation)  
(B) Reverse Rotation  
t
Δfwd  
tw(FWD)  
Figure 5: Target Rotation for -Fxxxx Variant.  
-Rxxxx variant inverts detected direction of rotation.  
Output Pulse  
(Pin 1 to 2 Rotation)  
Figure 7: Output Protocol (-FDxxx variant)  
12  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
Target Rotation Forward  
Target Rotation Reverse  
N
S
N
S
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
tw(REV)  
tw(REV)  
tw(FWD)  
tw(FWD)  
IOUT  
t
Figure 8: Example Running Mode Direction Change (-FSxxL variant)  
Target Rotation Forward  
Target Rotation Reverse  
N
S
N
S
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
tw(ND)  
tw(REV)  
tw(FWD)  
tw(FWD)  
IOUT  
t
Figure 9: Example Running Mode Direction Change (-FSxxH variant)  
13  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
Startup Detection/Calibration  
VPROC in the internal A-to-D range to allow for acquisition of  
signal peaks. AOA and AGC function separately on the two dif-  
ferential signal channels.  
When power is applied to the A1699, the sensor IC internally  
detects the profile of the target. The gain and offset of the  
detected signals are adjusted during the calibration period, nor-  
malizing the internal signal amplitude for the air gap range of the  
device.  
Direction information is available after calibration is complete.  
For the -xxxBx variant, the output becomes active at the end of  
calibration. Figure 10 shows where the first output edges may  
occur for various starting target phases.  
The Automatic Gain Control (AGC) feature ensures that opera-  
tional characteristics are isolated from the effects of installation  
air gap variation.  
For the -xxxPx variant, output pulses of tw(ND) are supplied dur-  
ing calibration. Figure 11 shows where the first output edges may  
occur for various starting target phases.  
Automatic Offset Adjustment (AOA) is circuitry that compen-  
sates for the effects of chip, magnet, and installation offsets.  
This circuitry works with the AGC during calibration to adjust  
Target Rotation  
N
S
N
S
N
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
Opposite  
north pole  
Opposite  
N→S boundary  
I
CC  
Opposite  
south pole  
Opposite  
t
S→N boundary  
Device Location at Power-On  
Figure 10: Startup Position Effect on First Device Output Switching (-xxxBx variant)  
Target Rotation  
N
S
N
S
N
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(FWD) or  
tW(REV)  
tW(ND)  
tW(ND)  
tW(ND)  
tW(ND)  
Opposite  
north pole  
tW(ND)  
tW(ND)  
Opposite  
N→S boundary  
I
CC  
Opposite  
south pole  
tW(ND)  
tW(ND)  
Opposite  
t
S→N boundary  
Device Location at Power-On  
Figure 11: Startup Position Effect on First Device Output Switching (-xxxPx variant)  
14  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
Vibration Detection  
ing the proper direction information will resume when direction  
information is validated on constant target rotation.  
Algorithms embedded in the IC’s digital controller detect the  
presence of target vibration through analysis of the two magnetic  
input channels.  
For the -xxxxH variant, in the presence of vibration, output pulses  
of tw(ND) may occur or no pulses may occur, depending on the  
amplitude and phase of the vibration. Output pulses have a width  
of tw(ND) until direction information is validated on constant  
target rotation.  
For the -xxxxL variant, the first direction change is immediately  
transmitted to the output. During any subsequent vibration, the  
output is blanked and no output pulses will occur for vibrations  
less than the specified vibration immunity. Output pulses contain-  
Normal Target Rotation  
Normal Target Rotation  
Vibration  
S
N
S
N
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
tW(FWD)  
[or tW(REV)]  
tW(FWD)  
[or tW(REV)]  
tW(REV)  
[or tW(FWD)]  
tW(FWD)  
[or tW(REV)]  
tW(FWD)  
[or tW(REV)]  
t
Figure 12: Output Functionality in the Presence of Running Mode Target Vibration (-xxxxL variant)  
Normal Target Rotation  
Normal Target Rotation  
Vibration  
S
N
S
N
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
tW(FWD)  
tW(FWD)  
tW(FWD)  
tW(ND)  
tW(ND)  
[or tW(REV)]  
[or tW(REV)]  
[or tW(REV)]  
tW(ND)  
tW(ND)  
tW(ND)  
tW(FWD)  
tW(FWD)  
tW(FWD)  
[or tW(REV)]  
[or tW(REV)]  
[or tW(REV)]  
t
Figure 13: Output Functionality in the Presence of Running Mode Target Vibration (-xxxxH variant)  
15  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
POWER DERATING  
The device must be operated below the maximum junction  
temperature of the device, TJ(max). Under certain combinations of  
peak conditions, reliable operation may require derating supplied  
power or improving the heat dissipation properties of the appli-  
cation. This section presents a procedure for correlating factors  
affecting operating TJ. (Thermal data is also available on the  
Allegro MicroSystems website.)  
A worst-case estimate, PD(max), represents the maximum allow-  
able power level (VCC(max), ICC(max)), without exceeding TJ(max)  
at a selected RθJA and TA.  
,
Example: Reliability for VCC at TA = 150°C.  
Observe the worst-case ratings for the device, specifically:  
RθJA = 213°C/W, TJ(max) = 165°C, VCC(max) = 24 V, and ICC(mean)  
= 14.8 mA. (Note: For variant -xxWPx, at maximum target  
frequency, ICC(LOW) = 8 mA, ICC(HIGH) = 16 mA, and maximum  
pulse widths, the result is a duty cycle of 84% and thus a worst-  
case mean ICC of 14.8 mA.)  
The Package Thermal Resistance, RθJA, is a figure of merit sum-  
marizing the ability of the application and the device to dissipate  
heat from the junction (die), through all paths to the ambient air.  
Its primary component is the Effective Thermal Conductivity,  
UB, of the printed circuit board, including adjacent devices and  
traces. Radiation from the die through the device case, RθJC, is  
relatively small component of RθJA. Ambient air temperature,  
TA, and air motion are significant external factors, damped by  
overmolding.  
Calculate the maximum allowable power level, PD(max). First,  
invert equation 3:  
∆Tmaxꢀ=ꢀTJ(max)ꢀ–ꢀTA = 165 °C – 150 °C = 15 °C  
This provides the allowable increase to TJ resulting from internal  
power dissipation. Then, invert equation 2:  
The effect of varying power levels (Power Dissipation, PD), can  
be estimated. The following formulas represent the fundamental  
relationships used to estimate TJ, at PD.  
PD(max)ꢀ=ꢀ∆Tmax ÷ RθJAꢀ=ꢀ15°Cꢀ÷ꢀ213ꢀ°C/Wꢀ(estimated)ꢀ=ꢀ70.4ꢀ  
mW  
PD = VIN × IIN  
∆Tꢀ=ꢀPD × RθJA  
TJꢀ=ꢀTAꢀ+ꢀ∆Tꢀꢀ  
(1)  
(2)  
(3)  
Finally, invert equation 1 with respect to voltage:  
V
CC(est) = PD(max) ÷ ICC(max)ꢀ=ꢀ70.4ꢀmWꢀ÷ꢀ14.8ꢀmAꢀ=ꢀ4.7ꢀV  
The result indicates at TA, the application and device can dissi-  
pate adequate amounts of heat at voltages ≤ VCC(est)  
For example, given common conditions such as: TA= 25°C,  
VCC = 12 V, RθJAꢀ=ꢀ213ꢀ°C/W, and Iccꢀ=ꢀ6.5ꢀmA, then:  
.
Compare VCC(est) to VCC(max). If VCC(est) ≤ VCC(max), then reli-  
able operation between VCC(est) and VCC(max) requires enhanced  
RθJA. If VCC(est) ≥ VCC(max), then operation between VCC(est) and  
VCC(max) is reliable under these conditions.  
PD = VCC × ICCꢀ=ꢀ12ꢀVꢀ×ꢀ6.5ꢀmAꢀ=ꢀ78ꢀmW  
∆Tꢀ=ꢀPD × RθJAꢀ=ꢀ78ꢀmWꢀ×ꢀ213ꢀ°C/Wꢀ=ꢀ16.6°C  
TJꢀ=ꢀTAꢀ+ꢀ∆Tꢀ=ꢀ25°Cꢀ+ꢀ16.6°Cꢀ=ꢀ41.6°C  
16  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
PACKAGE OUTLINE DRAWING  
For Reference Only – Not for Tooling Use  
(Reference DWG-0000408, Rev. 1)  
Dimensions in millimeters – NOT TO SCALE  
Dimensions exclusive of mold flash, gate burs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.06  
–0.05  
4.00  
B
4×10°  
E 1.45  
1.50 0.05  
1.45 E  
C
0.55 E  
1.41 E  
Mold Ejector  
Pin Indent  
+0.06  
4.00  
–0.07  
E
E1  
E3  
E2  
E
E
45°  
Branded  
Face  
NNN  
A
YYWW  
0.85 0.07  
LLLL  
0.42 0.10  
4 × 2.50 0.10  
0.25 REF  
0.30 REF  
2.54 REF  
D
Standard Branding Reference View  
= Supplier emblem  
N
Y
W
L
= Last three digits of device part number  
= Last 2 digits of year of manufacture  
= Week of manufacture  
1
2
18.00 0.10  
12.20 0.10  
= Lot number  
1.00 0.10  
+0.07  
0.25  
4 × 7.37 REF  
1.80 0.10  
–0.03  
A
B
C
D
E
F
Dambar removal protrusion (8×)  
Gate and tie burr area  
Active Area Depth, 0.38 mm 0.03  
0.38 REF  
0.25 REF  
Branding scale and appearance at supplier discretion  
Hall elements (E1, E2, and E3); not to scale  
Molded Lead Bar for preventing damage to leads during shipment  
4 × 0.85 REF  
0.85 0.07  
+0.06  
1.80  
–0.07  
F
+0.06  
4.00  
1.50 0.05  
–0.05  
Figure 14: Package UB, 2-Pin SIP  
17  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Two-Wire, Differential, Vibration-Resistant  
Sensor IC with Speed and Direction Output  
A1699  
Revision History  
Number  
Date  
Description  
1
2
3
March 1, 2014  
October 7, 2014  
December 12, 2014  
March 24, 2015  
Initial release.  
Updated Package Outline Drawing and reformatted document.  
Revised CSUPPLY, tr, and tf.  
Updated branding on Package Outline Drawing.  
Updated Hall element number and positions in top outline of Package Outline Drawing; updated  
4
5
September 23, 2015 Figures 6 and 7 and associated text on page 12; updated Pulse Width Characteristic Performance  
plots on page 10; removed bulk offering on page 2-3; additional editorial changes.  
Updated Package Outline Drawing molded lead bar footnote and Internal Discrete Capacitor  
March 1, 2016  
Ratings table.  
6
7
8
April 7, 2016  
September 23, 2016 Updated Package Outline Drawing.  
April 3, 2019 Minor editorial updates  
Corrected Figure 6 and 7 captions.  
Copyright 2019, Allegro MicroSystems.  
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit  
improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor  
for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
18  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY