A19530LUCX-TN-FDMOCEJ-A [ALLEGRO]

High Feature Three-Wire Hall-Effect Transmission Speed and Direction Sensor IC;
A19530LUCX-TN-FDMOCEJ-A
型号: A19530LUCX-TN-FDMOCEJ-A
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

High Feature Three-Wire Hall-Effect Transmission Speed and Direction Sensor IC

文件: 总18页 (文件大小:807K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A19530  
2
High Feature Three-Wire Hall-Effect  
-
Transmission Speed and Direction Sensor IC  
FEATURES AND BENEFITS  
DESCRIPTION  
TheA19530 is an optimized Hall-effect integrated circuit (IC)  
thatprovidesauser-friendlysolutionfordirectiondetectionand  
truezero-speeddigitalmagneticwheelorgeartoothsensing.The  
smallpackagecanbeeasilyassembledandusedinconjunction  
with a wide variety of magnetic wheels or back-biased with a  
magnet for gear tooth sensing applications.  
• Integrated diagnostics and certified safety design process  
for ASIL B compliance  
• Three-wire output pulse-width protocol supporting speed,  
direction, and ASIL  
• Advanced algorithms supporting vibration detection and  
sudden air gap changes  
• Ring magnet and ferrous target sensing  
• Air gap independent switch points  
• True zero-speed operation  
• Integrated EMC capacitor in a single overmolded  
miniature package  
The IC employs patented algorithms for the special operational  
requirements of automotive transmission applications. The  
speed and direction of the target are communicated through a  
variablepulse-widthoutputprotocol.TheA19530highvibration  
immunityoptionpreventsdirectionpulsesfromoccurringunder  
angularvibrationwithoutsacrificingmaximumairgapcapability,  
whereasthenovibrationimmunityoptionallowsforcontinuous  
directionpulseemissionundervibration.Theadvancedvibration  
detection algorithm will systematically calibrate the sensor IC  
on the initial teeth of true target rotation and not on vibration,  
always providing an accurate signal in running mode.  
• Robust test coverage capability with Scan Path and  
IDDQ measurement  
PACKAGE:  
More classic output options such as speed only protocol,  
representing target profile or fast direction change recognition  
with reduced vibration immunity also complete the  
programming panel of the A19530.  
3-pin SIP (suffix UC)  
Advanced signal processing, innovative algorithms, short/  
open detection capability, andASIL B compliant design make  
the A19530 an ideal solution for a wide range of speed and  
direction sensing needs with diagnostic requirements.  
Not to scale  
This device is available in a lead (Pb) free 3-pin SIP package  
with tin-plated leadframe.  
VCC  
REGULATOR  
(Analog)  
REGULATOR  
(Digital)  
OFFSET  
ADJUST  
FILTER  
Hall Amp  
AGC  
ADC  
OUT  
OUTPUT  
CONTROL  
SYNCHRONOUS  
DIGITAL CONTROLLER  
OFFSET  
ADJUST  
FILTER  
Hall Amp  
AGC  
ADC  
GND  
Figure 1: Functional Block Diagram  
A19530-DS  
September 13, 2018  
MCO-0000493  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
SELECTION GUIDE*  
Part Number  
Packing  
A19530LUCCTN-FOOOOEJ-A  
A19530LUCCTN-FSIBCEJ-A  
Tape and reel, 13-in. reel, 4000 pieces per reel  
Tape and reel, 13-in. reel, 4000 pieces per reel  
* Not all combinations are available. Contact Allegro sales for availability and pricing of custom  
programming options  
Conꢍigꢌration oꢉtions  
A19530 L UCꢀ -ꢁN -  
Aꢀꢜꢤ ꢖꢏꢎꢅꢎꢓꢎꢘ  
-A ꢃ ASꢖL ꢉrotocol enaꢈled  
ꢜꢈlanꢏꢝ ꢃ ASꢖL ꢉrotocol disaꢈled  
ꢀꢁꢂꢃꢄꢅꢄꢆꢄꢅꢇ ꢈꢉ  
SmCo  
Ndꢅeꢆ  
ꢊꢋꢁꢂꢌꢀꢍꢎꢏꢅ ꢐꢄꢑꢒꢂꢎꢃꢅꢄꢓ ꢔꢎꢏ 5 ꢕ ꢖꢗꢘꢘꢙꢚꢋ ꢕꢎꢘꢅꢑꢒꢁ  
-
ꢇnaꢈles oꢉenꢊshort diagnostic caꢉaꢈility  
No oꢉenꢊshort detection  
ꢕꢄꢛꢏꢑꢅꢄꢎꢂ ꢜꢝꢝꢗꢂꢄꢅꢇ ꢌ ꢐꢄꢏꢁꢓꢅꢄꢎꢂ ꢉꢍꢑꢂꢒꢁ  
C
L
H
No ꢋiꢈration immꢌnity ꢍor continꢌoꢌs direction detection  
Lagged ꢋiꢈration ꢍlag ꢍor immediate direction change recognition  
High ꢋiꢈration immꢌnity with non-direction ꢉꢌlses  
Sꢉeed only oꢌtꢉꢌt withoꢌt ꢋiꢈration immꢌnity  
ꢉꢑꢘꢄꢛꢏꢑꢅꢄꢎꢂ ꢖꢗꢘꢃꢁꢃ  
P
ꢆlanꢏed, no oꢌtꢉꢌt dꢌring caliꢈration  
Non ꢐirection Pꢌlses dꢌring caliꢈration  
ꢎ ꢃ Sꢉeed only oꢌtꢉꢌt  
ꢞꢁꢆꢁꢏꢃꢁꢌꢟꢎꢂꢙꢐꢄꢏꢁꢓꢅꢄꢎꢂ ꢖꢗꢘꢃꢁ ꢠꢄꢡꢅꢍ  
N
M
Reꢋerse ꢑ 90 ꢒs, Non-ꢐirection ꢑ 1ꢓ0 ꢒs ꢔnarrowꢕ  
Reꢋerse ꢑ 135 ꢒs, Non-ꢐirection ꢑ 3ꢗ0 ꢒs ꢔintermediateꢕ  
Reꢋerse ꢑ 150 ꢒs, Non-ꢐirection ꢑ 3ꢗ0 ꢒs ꢔmediꢌmꢕ  
ꢘ ꢃ Reꢋerse ꢑ 1ꢓ0 ꢒs, Non-ꢐirection ꢑ 3ꢗ0 ꢒs ꢔwideꢕ  
Sꢉeed only oꢌtꢉꢌt  
ꢟꢗꢝꢛꢁꢏ ꢎꢔ ꢖꢗꢘꢃꢁꢃ  
S
Single, one ꢉꢌlse ꢉer tooth-ꢋalley ꢉair  
ꢐꢌal, one ꢉꢌlse ꢉer each tooth and ꢋalley  
Sꢉeed only oꢌtꢉꢌt  
ꢞꢎꢅꢑꢅꢄꢎꢂ ꢐꢄꢏꢁꢓꢅꢄꢎꢂ  
R
ꢅorward ꢉꢌlses emitted ꢍor ꢉin 1 to ꢉin 3 rotation  
Reꢋerse ꢉꢌlses emitted ꢍor ꢉin 1 to ꢉin 3 rotation  
ꢜꢂꢃꢅꢏꢗꢓꢅꢄꢎꢂꢃꢙ Pacꢏing tyꢉe  
ꢖꢑꢓꢢꢑꢒꢁ ꢐꢁꢃꢄꢒꢂꢑꢅꢄꢎꢂꢣ ꢉꢎꢝꢋꢎꢂꢁꢂꢅ ꢀꢁꢅ  
ꢊꢋꢁꢏꢑꢅꢄꢂꢒ ꢈꢁꢝꢋꢁꢏꢑꢅꢗꢏꢁ ꢞꢑꢂꢒꢁ  
Aꢘꢘꢁꢒꢏꢎ ꢜꢡꢁꢂꢅꢄꢔꢄꢁꢏ ꢑꢂꢡ ꢐꢁꢆꢄꢓꢁ ꢈꢇꢋꢁ  
ꢅor eꢀamꢉleꢙ A19530LUCCꢁN-RSNPHꢇꢄ-A  
ꢘhere a conꢍigꢌration character is ꢌnsꢉeciꢍied, ꢚꢀꢛ will ꢈe ꢌsed. ꢅor eꢀamꢉle, -ꢀSNPLꢇꢄ aꢉꢉlies to ꢈoth Rotation ꢐirection  
conꢍigꢌration ꢋariants.  
2
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
VCC  
Notes  
Refer to power Derating Section  
Rating  
27  
Unit  
V
Supply Voltage  
Reverse Supply Voltage  
Reverse Supply Current  
Reverse Output Voltage  
Output Sink Current  
VRCC  
IRCC  
VROUT  
IOUT  
–18  
V
50  
mA  
V
–0.5  
Open/Short detection disabled  
25  
mA  
°C  
°C  
°C  
Operating Ambient Temperature  
Maximum Junction Temperature  
Storage Temperature  
TA  
–40 to 150  
165  
TJ(MAX)  
Tstg  
–65 to 170  
VS  
VPU  
Pinout Diagram  
RS *  
50 Ω  
RPU  
Ejector pin  
A19530  
mark on  
far side  
C1  
C2  
ROUT  
*
1
VCC  
3
OUT  
Sensor  
Output  
50 Ω  
C1  
C2  
1
2
3
2 GND  
*For EMC enhancement  
Figure 2: Typical Application Circuit  
Note: For -xxxxxEx- option (Open/Short detection Enabled),  
pull-up resistor value as noted in Operational Characteristics  
Table.  
Terminal List  
Number  
Name  
Function  
INTERNAL DISCRETE COMPONENT RATINGS  
1
VCC  
Supply voltage  
Ground  
Symbol  
Characteristic  
Nominal Capacitance  
Nominal Capacitance  
Rating  
220  
Unit  
nF  
2
3
GND  
OUT  
C1 (CSUPPLY  
)
Open drain output  
C2 (COUT  
)
4.7  
nF  
3
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
OPERATING CHARACTERISTICS: Valid through full operating and temperature ranges, unless otherwise noted  
Characteristics  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
ELECTRICAL CHARACTERISTICS  
Supply Voltage [2]  
VCC  
VCC(UV)  
IRCC  
Operating; TJ < TJ(max), RSUPPLY = 0 Ω  
VCC 0 → 5 V or 5 → 0 V, RSUPPLY = 0 Ω  
VCC = VRCC(MAX)  
4
8
24  
3.95  
0
V
V
Undervoltage Lockout  
Reverse Supply Current  
Supply Zener Clamp Voltage  
Supply Zener Current  
Supply Current  
–10  
27  
mA  
V
VZsupply  
IZ  
ICC = ICC(MAX) + 3 mA, TA = 25°C, RSUPPLY = 0 Ω  
TJ < TJ(max), VCC = 27 V  
13  
10  
mA  
mA  
ICC  
OUTPUT STAGE  
Power-On State  
POS  
Connected as in Figure 2  
High  
875  
-xxxxxEx- variant,  
ROUT = 0 Ω  
4.75 V < VPU < 5.25 V,  
Output = Low,  
1.45 kΩ ≤ RPU ≤ 3.4 kΩ  
at sensor output in Figure 2  
435  
500  
1115  
1250  
50  
mV  
Low Output Voltage  
Vdiag-Low  
ZSat-Low  
Vdiag-High  
IOFF  
-xxxxxEx- variant,  
875  
mV  
Ω
R
OUT = 50 Ω  
ISINK = 10 mA, Output  
transistor ON, ROUT = 0 Ω  
Low Output Voltage Impedance  
High Output Voltage  
Open/short disabled  
-xxxxxEx- variant,  
ROUT = 0 Ω  
4.75 V < VPU < 5.25 V,  
Output = High,  
1.45 kΩ ≤ RPU ≤ 3.4 kΩ  
at sensor output in Figure 2  
3735  
3750  
4125  
4125  
4475  
4500  
10  
mV  
mV  
µA  
-xxxxxEx- variant,  
R
OUT = 50 Ω  
Output transistor OFF,  
VOUT = 24 V  
Output Leakage Current  
Open/Short disabled  
Output Zener Clamp Voltage  
Output Current Limit  
VZOUT  
ILIM  
IOUT = 3 mA, TA = 25°C  
VOUT = 12 V, TJ < TJ(max)  
27  
25  
V
45  
70  
mA  
RPU = 1.5 kΩ, VPU = 5 V, from  
10% to 90%, ROUT = 0 Ω  
-xxxxxEx- variant  
-xxxxxEx- variant  
15  
35  
µs  
µs  
Output Rise Time  
Output Fall Time  
tr(out-diag-ON)  
RPU = 3.3 kΩ, VPU = 5 V, from  
10% to 90%, ROUT = 0 Ω  
-xxxxxEx- variant  
Open/short disabled  
-xxxxxEx- variant  
Open/short disabled  
1.5  
0.5  
4.5  
2.5  
µs  
µs  
µs  
µs  
RPU = 1.5 kΩ, VPU = 5 V, from  
90% to 10%, ROUT = 0 Ω  
tf  
2.5  
1.5  
RPU = 3.3 kΩ, VPU = 5 V, from  
90% to 10%, ROUT = 0 Ω  
OUTPUT PULSE CHARACTERISTICS [3]  
Pulse Width, Forward Rotation  
tw(FWD)  
38  
76  
45  
90  
52  
µs  
µs  
µs  
µs  
µs  
µs  
-xxNxxxx- variant  
-xxIxxxx- variant  
-xxMxxxx- variant  
-xxWxxxx- variant  
-xxNPxxx- variant  
104  
156  
173  
207  
207  
Timing from start of falling  
output transition to start of  
rising output transition.  
Pulse Width, Reverse Rotation  
tw(REV)  
114  
127  
153  
153  
135  
150  
180  
180  
Measured pulse width  
depends on circuit  
configuration and  
thresholds.  
Pulse Width, Non-Direction  
tw(ND)  
-xxIPxxx- variant,  
-xxMPxxx- variant,  
-xxWPxxx- variant  
306  
360  
414  
µs  
[1] Typical values are at TA = 25°C and VCC = 12 V. Performance may vary for individual units, within the specified maximum and minimum limits.  
[2] Maximum voltage must be adjusted for power dissipation and junction temperature; see Power Derating section.  
[3] Only applicable to direction detection options, S (Single) and D (Dual).  
4
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
OPERATING CHARACTERISTICS (continued): Valid through full operating and temperature ranges, unless otherwise noted  
Characteristics  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
PERFORMANCE CHARACTERISTICS  
Operate Point  
Release Point  
BOP  
BRP  
% peak to peak  
% peak to peak  
69  
31  
%
%
Minimum separation between channels as a  
Switch Point Separation  
BDIFF(SP-SEP) percentage of signal amplitude at each switching  
point; refer to Figure 5  
20  
%
-xSxxxxx- and -xOxxxxx- variant  
0
0
0
0
0
0
0
0
12  
6
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
Differential Input Signal  
fFWD  
Frequency, Forward Rotation [4]  
-xDxxxxx- variant  
-xSNxxxx- variant  
7
-xDNxxxx- variant  
fREV  
3.5  
4
Differential Input Signal  
Frequency, Reverse Rotation [4]  
-xSWxxxx- variant  
-xDWxxxx- variant  
2
-xSxPHxx- and -xSxPLxx- variant  
fND  
2.2  
1.1  
Differential Input Signal  
Frequency, Non-Direction [4]  
-xDxPHxx- and -xDxPLxx- variant  
TEMPERATURE COEFFICIENT  
-xxxxxxG- variant  
0.04  
0.13  
%/°C  
%/°C  
Sensitivity Temperature  
Coefficient (TC)  
TC  
-xxxxxxJ- variant  
POWER-ON AND CALIBRATION  
Power-On Time  
tPO  
fOP < 100 Hz  
2
ms  
-xxxxCxx- variant  
1.5  
< 2.5  
TCYCLE  
-xxxxLxx- variant,  
-xxxxHxx- variant;  
BDIFF(pk-pk) > 60 G,  
BDIFF(pk-pk) ≤ 1500 G  
Amount of target rotation  
(constant direction)  
following power-on until  
first electrical output pulse  
2
< 3.1  
TCYCLE  
First Direction Output Pulse [6]  
-xxxxLxx- variant,  
-xxxxHxx- variant;  
of either tw(FWD) or tw(REV)  
Refer to Figure 3  
;
2.5  
1
< 4  
TCYCLE  
30 G ≤ BDIFF(pk-pk)  
,
BDIFF(pk-pk) ≤ 60 G  
Amount of target rotation  
(constant direction)  
following event until first  
electrical output pulse of  
-xxxxCxx- variant,  
-xxxxLxx- variant  
< 1.5  
TCYCLE  
First Direction Pulse Output  
Following Direction Change  
NCD  
either tw(FWD) or tw(REV)  
refer to Figure 3  
;
-xxxxHxx- variant  
-xxxxCxx- variant  
1
2
1
< 3  
TCYCLE  
Amount of target rotation  
(constant direction)  
< 2.5  
TCYCLE  
First Direction Pulse Output  
Following Running Mode  
Vibration  
following event until first  
electrical output pulse of  
-xxxxLxx- variant,  
-xxxxHxx- variant  
either tw(FWD) or tw(REV)  
refer to Figure 3  
;
1
2
< 3.5  
TCYCLE  
[4] Maximum operating frequency specified for output rise time tr < 17 µs. Parameter determined by satisfactory separation of output pulses tw. If end-  
user can resolve smaller time between pulses with faster rise time, maximum frequency may be increased up to 12 kHz.  
[5] Power-On Time includes the time required to complete the internal automatic offset adjust. Part is then ready for peak acquisition.  
[6] Power-on frequency <200 Hz. Higher power-on frequencies may require more input magnetic cycles until directional output pulses are achieved.  
5
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
OPERATING CHARACTERISTICS (continued): Valid through full operating and temperature ranges, unless otherwise noted  
Characteristics  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
MAGNETIC CHARACTERISTICS  
Differential Input Signal Range [7]  
BDIFF(pk-pk) Differential magnetic signal  
30  
1500  
200  
300  
G
G
G
-xxxxCxx- variant,  
-xxxxLxx- variant,  
-xxxxHxx- variant  
Magnitude valid on  
differential magnetic  
channels  
–200  
–300  
0.6  
Allowable User-Induced Offset  
-xOOOOxx- variant  
Single cycle-to-cycle variation, BSEQ(n+1)/BSEQ(n)  
;
Allowable Differential Sequential  
Signal Variation  
no missed pulses (pulse variant), nor missed  
edges (-xOOOOxx- variant); refer to Figure 4  
BSEQ(n+1)  
BSEQ(n)  
/
Single cycle-to-cycle variation, BSEQ(n+1)/BSEQ(n)  
;
Allowable Differential Sequential  
Signal Variation  
pulses count error but device can recover (pulse  
variant) and possible missed edges but no flatline  
(-xOOOOxx- variant); refer to Figure 4  
0.35  
VIBRATION IMMUNITY  
-xxxxCxx- variant  
0.5  
1
1.0  
TCYCLE  
TCYCLE  
TCYCLE  
TCYCLE  
Vibration immunity (Calibration)  
ErrVib(SU)  
-xxxxLxx- and -xxxxHxx variant  
-xxxxCxx- variant  
none  
Vibration Immunity  
(Running Mode)  
ErrVib(RM)  
-xxxxLxx- and -xxxxHxx variant  
1
ASIL OUTPUT  
Internal failure detected for  
4.75 V < VPU < 5.25 V,  
ASIL Output Safe State  
VASIL_safe_low ROUT = 0 Ω,  
1.45 kΩ ≤ RPU ≤ 3.4 kΩ,  
-xxxxxEx- variant  
-xxxxxEx- variant  
5
180  
mV  
ms  
at sensor output in Figure 2  
Time In Safe State Before  
Self-Reset  
tw(ASIL_safe) Connected as in Figure 2  
[7] Differential magnetic field is measured for Channel A (F1-F2) and Channel B (F2-F3) for pulse width variant and for Channel A' (F1-F3) for speed  
only variant (-xOOOOxx- variant). Magnetic field is measured orthogonally to the front of the package. Refer to Figure 7 and package drawing.  
6
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
Target  
S
N
S
N
TCYCLE  
BDIFF  
BDIFF = Differential Input Signal; the differential magnetic  
flux sensed by the sensor  
T
CYCLE = Target Cycle; the amount of rotation that  
moves one tooth (or north pole) and one valley  
(or south pole) across the sensor  
Figure 3: Definition of TCYCLE  
BSEQ(n)  
BSEQ(n + 1)  
BSEQ(n+i) , i ≥ 2  
Figure 4: Differential Signal Variation  
S
N
S
N
S
N
TCYCLE  
BDIFF(SP)  
BDIFF(BOP)  
(BOP  
)
Channel B  
BDIFF(pk-pk)  
(BRP  
)
BDIFF(BRP)  
BDIFF(SP)  
Channel A  
BDIFF(SP)  
BDIFF(pk-pk)  
BDIFF(SP-SEP)  
=
Figure 5: Definition of Switch Point Separation  
7
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
FUNCTIONAL DESCRIPTION  
Forward Rotation (see top panel in Figure 6): When the target  
is rotating such that a tooth near the sensor IC (of -Fxxxxxx  
variant) passes from pin 1 to pin 3, this is referred to as forward  
rotation. This direction is opposite for the -Rxxxxxx variant.  
Forward rotation is indicated by output pulse widths of tw(FWD)  
(45 μs typical).  
Sensing Technology  
The sensor IC contains a single-chip Hall-effect circuit that  
supports a trio of Hall elements. These are used in differential  
pairs to provide electrical signals containing information regard-  
ing edge position and direction of target rotation. The A19530 is  
intended for use with magnetic trigger wheels or ferromagnetic  
targets if back-biased with a magnet.  
Reverse Rotation (see bottom Figure 6): When the target is  
rotating such that a tooth passes from pin 3 to pin 1, it is referred  
to as reverse rotation for the -Fxxxxxx variant. Reverse rotation  
is indicated by output pulse widths of tw(REV) (90 μs typical for  
-xxNxxxx variant, or 180 μs typical for -xxWxxxx variant).  
After proper power is applied to the sensor IC, it is capable of  
providing digital information that is representative of the mag-  
netic features of a rotating target. The waveform diagrams in  
Figure 7 present the automatic translation of the target profiles,  
through their induced magnetic profiles, to the digital output  
signal of the sensor IC.  
Speed Only Protocol: When the A19530 is configured with  
the -xOOOOxx- variant, the device directly outputs the digital  
representation of the target from the master differential Channel  
(Channel A' in Figure 7).  
Direction Detection  
The sensor IC compares the relative phase of its two differential  
channels to determine which direction the target is moving. The  
relative switching order is used to determine the direction, which  
is communicated through the output protocol.  
ꢀꢁꢂꢃꢄꢂꢅ ꢆꢁꢇꢄꢇꢈꢁꢉ  
ꢄranded ꢅace  
oꢁ UC Pacꢆage  
N
S
S
N
N
S
S
N
Rotating arget  
ꢀRing magnet or  
ꢁerromagneticꢂ  
Pin 1  
Data Protocol Description  
Pin 3  
When a target passes in front of the device (opposite the branded  
face of the package case), the A19530 generates an output pulse  
for each pole pair of the target (-xSxxxxx variant). Speed infor-  
mation is provided by the output pulse rate, while direction of  
target rotation is provided by the duration of the output pulses.  
The sensor IC can sense target movement in both the forward and  
reverse directions.  
ꢆꢊꢋꢊꢂꢌꢊ ꢆꢁꢇꢄꢇꢈꢁꢉ  
ꢄranded ꢅace  
oꢁ UC Pacꢆage  
N
S
S
N
N
S
S
N
Rotating arget  
ꢀRing magnet or  
ꢁerromagneticꢂ  
Pin 1  
Pin 3  
Figure 6: Target Rotation for –Fxxxxxx variant;  
Rxxxxxx variant inverts detected direction of rotation  
8
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
arget  
S
N
N
Pacꢃage Case  
ꢂranded ꢄace  
Device Orientation to Target  
Pacꢇage Case ꢀranded ꢃace  
Device Orientation to Target  
ꢀPin 1  
Sideꢁ  
oꢇ ꢈiew oꢉ  
Pacꢃage Caseꢁ  
ꢀPin 3  
Sideꢁ  
ꢄ3  
ꢄꢋ ꢊC  
ꢄ1  
ꢀꢁ  
ꢂC  
ꢂacꢃꢅiasing  
Magnet  
ꢅPin 3 Sideꢆ  
ꢃ3  
ꢃꢄ  
ꢃ1  
ꢅPin 1 Sideꢆ  
Soꢍth Pole  
Channel ꢂ  
Channel A  
oꢋ ꢌiew oꢍ Channel ꢀ  
Channel A  
Pacꢇage Caseꢆ ꢎlement Pitch  
ꢎlement Pitch  
North Pole  
Mechanical Position (Target moves past device pin 1 to pin 3)  
Mechanical Position (Target moves past device pin 1 to pin 3)  
arget  
ꢊhis ꢋole  
ꢊhis ꢋole  
ꢆhis tooth  
ꢆhis tooth  
ꢅRadial Ring Magnetꢆ  
sensed later  
sensed earlier  
sensed earlier  
sensed later  
Target Magnetic Profile  
ꢌꢂ  
Channel  
ꢐlement Pitch  
Target Magnetic Profile  
Channel  
ꢎlement Pitch  
ꢈꢀ  
ꢉꢀ  
IC Internal Differential Analog Signals, VPROC  
IC Internal Differential Analog Signals, VPROC  
ꢁP  
ꢎP  
ꢎP  
ꢁP  
Channel A  
Channel A  
RP  
ꢎP  
RP  
ꢁP  
Channel ꢂ  
Channel ꢀ  
RP  
RP  
Device Output Signal (pulse variant)  
ꢎUꢆꢀhighꢁ  
Device Output Signal (pulse variant)  
ꢁUꢊꢅhighꢆ  
ꢎUꢆꢀlowꢁ  
ꢁUꢊꢅlowꢆ  
ꢎP  
ꢎP  
Channel Aꢏ  
ꢁP  
ꢁP  
Channel Aꢏ  
RP  
RP  
Device Output Signal (-FOOOOxx- variant)  
ꢎUꢆꢀhighꢁ  
Device Output Signal (-FOOOOxx- variant)  
ꢁUꢊꢅhighꢆ  
ꢎUꢆꢀlowꢁ  
ꢁUꢊꢅlowꢆ  
Figure 7: The magnetic profile reflects the features of the target,  
allowing the sensor IC to present an accurate digital output  
9
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
Timing  
ꢀorward Rotation  
Reꢁerse Rotation  
In speed only mode with forward direction (-FOOOOxx option),  
the rising electrical edge occurs slightly before the sensed mag-  
netic edge traverses the package branded face (Figure 8).  
ꢂꢃtꢄꢃt  
t
t
ꢅꢀorward Rotationꢆ  
In pulse output protocol with forward direction (-FSxxLxx and  
-FSxxHxx variants), the pulse appears at the output slightly  
before the sensed magnetic edge traverses the package branded  
face. This is true in both forward and reverse target rotation direc-  
tion, but it must be noticed that the magnetic edge is opposite in  
reverse direction (Figure 9).  
ꢂꢃtꢄꢃt  
ꢅReꢁerse Rotationꢆ  
Figure 8: Output Protocol  
(-FOOOxx- variant)  
With the -xxxxCxx variant, the sensed mechanical edge that  
stimulates output pulses is kept the same for both forward and  
reverse rotation, resulting in having the pulse on same pole in  
forward and reverse rotation (Figure 10). It must also be noticed  
that in this mode, the pulse location may be different depending  
on the power-up cycle conditions.  
ꢀorward Rotation  
Reꢁerse Rotation  
∆fwd  
t
wꢅꢀꢇꢈꢆ ꢉ5 ꢊs  
Direction Validation  
t
ꢂꢃtꢄꢃt  
ꢅꢀorward Rotationꢆ  
For the -xxxxLxx and -xxxxCxx variants, following a direction  
change in running mode, direction changes are immediately  
transmitted to the output (Figure 11 and Figure 12).  
∆rev  
twꢅRꢋꢌꢆ  
ꢂꢃtꢄꢃt  
t
For the -xxxxHxx variant, following a direction change in run-  
ning mode, output pulses have a width of tw(ND) until direction  
information is validated (Figure 13).  
ꢅReꢁerse Rotationꢆ  
Figure 9: Output Protocol  
(-FSxxLxx & -FSxxHxx variants)  
For the -xOOOOxx option, output transitions are emitted directly  
after direction change event.  
ꢀorward Rotation  
Reꢁerse Rotation  
∆fwd  
wꢅꢀꢇꢈꢆ ꢉ5 ꢊs  
t
t
ꢂꢃtꢄꢃt  
ꢅꢀorward Rotationꢆ  
twꢅRꢋꢌꢆ  
ꢂꢃtꢄꢃt  
t
ꢅReꢁerse Rotationꢆ  
Figure 10: Output Protocol (-FSxxCxx variant)  
10  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
Target Rotation Forward  
Target Rotation Reverse  
N
S
N
S
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
VOUT  
tw(REV)  
Figure 11: Example of running mode direction change (-FSxxLxx variant)  
tw(REV)  
tw(FWD)  
tw(FWD)  
t
Target Rotation Forward  
Target Rotation Reverse  
N
S
N
S
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
VOUT  
tw(REV)  
tw(REV)  
t
tw(FWD)  
tw(FWD)  
Figure 12: Example of running mode direction change  
(-FSxxCxx variant)  
Target Rotation Forward  
Target Rotation Reverse  
N
S
N
S
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
VOUT  
tw(ND)  
tw(REV)  
tw(FWD)  
tw(FWD)  
t
Figure 13: Example of running mode direction change  
(-FSxxHxx variant)  
11  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
circuitry works with the AGC during calibration to adjust signal  
to the A-to-D input range and allow for acquisition of signal  
peaks. AOA and AGC function separately on the two differential  
signal channels.  
Start-Up Detection / Calibration  
When power is applied to the A19530, the sensor IC internally  
detects the profile of the target. The gain and offset of the detected  
signals are adjusted during the calibration period, normalizing the  
internal signal amplitude for the air gap range of the device.  
Direction information is available after calibration is complete.  
For the -xxxBxxx- variant, the output becomes active at the end  
of calibration. For the -xxxPxxx- variant, output pulses of tw(ND)  
are supplied during calibration.  
The Automatic Gain Control (AGC) feature ensures that opera-  
tional characteristics are isolated from the effects of installation  
air gap variation.  
Figure 14 through Figure 16 show where the first output edge  
may occur for various starting target phases.  
Automatic Offset Adjustment (AOA) is circuitry that compen-  
sates for the effects of chip, magnet, and installation offsets. This  
ꢂarget Rotation  
N
S
N
S
N
S
N
S
N
ꢂarget  
ꢃiꢄꢄerential  
Magnetic  
Proꢄile  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁꢅꢅosite  
north ꢅole  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁꢅꢅosite  
NS ꢆoꢇndary  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁUꢂ  
ꢁꢅꢅosite  
soꢇth ꢅole  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁꢅꢅosite  
t
SN ꢆoꢇndary  
ꢃeꢈice Location at Power-ꢁn  
Figure 14: Start-up position effect on first device output switching (-xxxBHxx or -xxxBLxx variants)  
ꢂarget Rotation  
N
S
N
S
N
S
N
S
N
ꢂarget  
ꢃiꢄꢄerential  
Magnetic  
Proꢄile  
tꢊNꢃꢌ  
t
t
t
ꢊNꢃꢌ  
ꢊNꢃꢌ  
ꢊNꢃꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁꢅꢅosite  
north ꢅole  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊNꢃꢌ  
tꢊNꢃꢌ  
ꢁꢅꢅosite  
NS ꢆoꢇndary  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁUꢂ  
ꢁꢅꢅosite  
soꢇth ꢅole  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊNꢃꢌ  
tꢊNꢃꢌ  
ꢁꢅꢅosite  
t
SN ꢆoꢇndary  
ꢃeꢈice Location at Power-ꢁn  
Figure 15: Start-up position effect on first device output switching (-xxxPHxx or -xxxPLxx variants)  
12  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
ꢂarget Rotation  
N
S
N
S
N
S
N
S
N
ꢂarget  
ꢃiꢄꢄerential  
Magnetic  
Proꢄile  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁꢅꢅosite  
north ꢅole  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁꢅꢅosite  
NS ꢆoꢇndary  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁUꢂ  
ꢁꢅꢅosite  
soꢇth ꢅole  
tꢊꢋꢉꢃꢌ or  
tꢊRꢍꢀꢌ  
ꢁꢅꢅosite  
t
SN ꢆoꢇndary  
ꢃeꢈice Location at Power-ꢁn  
Figure 16: Start-up position effect on first device output switching (-xxxBCxx variant)  
13  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
vibration occurs, the output is blanked and no output pulses are  
emitted for vibrations less than the specified vibration immunity.  
Output pulses containing the proper direction information will  
resume when direction information is validated on constant target  
rotation.  
Vibration Detection  
Algorithms embedded in the IC’s digital controller detect the  
presence of target vibration through analysis of the two magnetic  
input channels.  
For the -xxxxCxx variant, vibration detection algorithms are  
activated in calibration only. Once the device exits calibration,  
vibration detection algorithms are deactivated and any direction  
change or vibration events are transmitted through the output  
with continuous direction information.  
For the -xxxxHxx variant, in the presence of vibration, output  
pulses of tw(ND) may occur or no pulses may occur, depending  
on the amplitude and phase of the vibration. Output pulses have  
a width of tw(ND) until direction information is validated on con-  
stant target rotation.  
For the -xxxxLxx variant, any direction change post calibration  
is immediately transmitted to the output, and if any subsequent  
For the –xOOOOxx variant, in the presence of vibration, output  
transitions representing target vibration profile may occur.  
Normal ꢀarget Rotation  
ꢃiꢄration  
Normal ꢀarget Rotation  
N
S
N
S
S
N
S
N
ꢀarget  
ꢁiꢂꢂerential  
Magnetic  
Proꢂile  
tꢆꢇꢅꢁꢈ  
t
ꢆꢇꢅꢁꢈ  
tꢆꢇꢅꢁꢈ  
tꢆꢇꢅꢁꢈ  
ꢉ or tꢆRꢊꢃꢈ ꢋ  
tꢆꢇꢅꢁꢈ  
ꢉ or tꢆRꢊꢃꢈ ꢋ  
ꢉ or tꢆRꢊꢃꢈ ꢋ  
ꢉ or tꢆRꢊꢃꢈ ꢋ  
ꢉ or tꢆRꢊꢃꢈ ꢋ  
Figure 17: Output Functionality in the presence of Running Mode Target Vibration (-xxxBCxx variant)  
Normal Target Rotation  
Vibration  
Normal Target Rotation  
N
S
N
S
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
t
W(FWD)  
tW(FWD)  
tW(FWD)  
[ or tW(REV) ]  
tW(FWD)  
[ or tW(REV) ]  
t
W(REV)  
[ or tW(REV) ]  
[ or tW(REV) ]  
[ or tW(FWD) ]  
Figure 18: Output Functionality in the presence of Running Mode Target Vibration (-xxxBLxx variant)  
14  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
Normal Target Rotation  
Vibration  
Normal Target Rotation  
N
S
N
S
S
N
S
N
Target  
Differential  
Magnetic  
Profile  
tW(FWD)  
tW(FWD)  
tW(FWD)  
[ or tW(REV) ]  
tW(ND)  
tW(ND)  
tW(ND)  
[ or tW(REV) ]  
[ or tW(REV) ]  
...  
...  
...  
tW(FWD)  
t
W(FWD)  
tW(FWD)  
tW(ND)  
tW(ND)  
[ or tW(REV) ]  
t
[ or tW(REV) ]  
[ or tW(REV) ]  
Figure 19: Output Functionality in the presence of Running Mode Target Vibration (-xxxPHxx variant)  
Diagnostic Capability  
When diagnostic functionality is activated, the device continuously  
Table 1: Output Open Short Diagnostic  
External Event Type  
monitors itself, from the signal chain to output levels and reports a  
fault by driving the output to the safe state (low level) for a period  
of time defined by tw(ASIL_safe). After this period of time, the device  
will attempt to recover by self-reset. In case of permanent detectable  
failure, the sequence is repeated indefinitely (see Figure 20).  
Output Level  
VPU  
Hard short between VCC and GND  
Hard short between VCC and OUT  
Hard short between OUT and GND  
Open VCC  
VCC  
GND  
VPU  
Diagnostic option of A19530 allows for system failure detec-  
tion such as short circuit or open wire. In such case, output goes  
above or below normal operating voltage range (Vdiag-Low or  
Vdiag-High) depending on the failure mode.  
Open OUT  
VPU  
Open GND  
VPU  
Table 1 summarizes the possible output states corresponding to  
each of short or open wire events.  
sat-High ꢁꢀPUꢂ  
diag-High  
tꢈꢉASꢃLꢊsaꢄeꢋ  
tPꢇ  
tꢈꢉASꢃLꢊsaꢄeꢋ  
diag-Low  
ASꢃL-Saꢄe-Low ꢁꢅNꢆꢂ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢂꢄꢉꢊꢁꢋꢌ  
ꢍꢈꢂꢃꢄꢋꢈꢋꢉ ꢎꢄꢊꢅꢏꢂꢈ  
Figure 20: ASIL Output behavior (-xxxxxEx- variant)  
15  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
POWER DERATING  
The device must be operated below the maximum junction tem-  
perature of the device, TJ(max). Under certain combinations of  
peak conditions, reliable operation may require derating supplied  
power or improving the heat dissipation properties of the appli-  
cation. This section presents a procedure for correlating factors  
affecting operating TJ. (Thermal data is also available on the  
Allegro MicroSystems website.)  
A worst-case estimate, PD(max), represents the maximum allow-  
able power level (VCC(max), ICC(max)), without exceeding  
TJ(max), at a selected RθJA and TA.  
Example:  
Reliability for VCC at TA=150°C, estimated values based on pac-  
kage UC, using single layer PCB.  
The Package Thermal Resistance, RθJA, is a figure of merit sum-  
marizing the ability of the application and the device to dissipate  
heat from the junction (die), through all paths to the ambient air.  
Its primary component is the Effective Thermal Conductivity,  
K, of the printed circuit board, including adjacent devices and  
traces. Radiation from the die through the device case, RθJC, is  
a relatively small component of RθJA. Ambient air temperature,  
TA, and air motion are significant external factors, damped by  
overmolding.  
Observe the worst-case ratings for the device, specifically:  
RθJA=270°C/W, TJ(max) =165°C, VCC(max) = 24 V, and ICC  
10 mA.  
=
Calculate the maximum allowable power level, PD(max). First,  
invert equation 3:  
ΔT(max) = TJ(max) – TA = 165°C – 150°C = 15°C  
This provides the allowable increase to TJ resulting from internal  
power dissipation. Then, invert equation 2:  
The effect of varying power levels (Power Dissipation, PD), can  
be estimated. The following formulas represent the fundamental  
relationships used to estimate TJ, at PD.  
PD(max) = ΔT(max) ÷RθJA =1C÷270°C/W=55.5mW  
Finally, invert equation 1 with respect to voltage:  
PD = VIN  
I
(1)  
×
IN  
VCC(est) = PD(max) ÷ ICC = 55.5mW÷10mA=5.55 V  
ΔT = PD  
R
θJA  
(2) The result indicates that, at TA, the application and device can  
×
dissipate adequate amounts of heat at voltages ≤VCC(est)  
.
TJ = TA + ΔT  
(3)  
Compare VCC(est) to VCC(max). If VCC(est) ≤ VCC(max), then reli-  
able operation between VCC(est) and VCC(max) requires enhanced  
RθJA. If VCC(est) ≥ VCC(max), then operation between VCC(est) and  
VCC(max) is reliable under these conditions.  
For example, given common conditions such as: TA= 25°C, VCC  
= 12 V, ICC = 8 mA, and RθJA = 270°C/W, then:  
PD = VCC  
I
= 12 V 8 mA = 96 mW  
CC  
×
×
ΔT = PD  
R
= 96 mW 270°C/W = 25.9°C  
θJA  
×
×
TJ = TA + ΔT = 25°C + 25.9°C = 50.9°C  
THERMAL CHARACTERISTICS: May require derating at maximum conditions  
Characteristic  
Symbol  
Test Conditions*  
Value  
Unit  
Package Thermal Resistance  
RθJA  
1-layer PCB with copper limited to solder pads  
270  
°C/W  
*Additional thermal information available on the Allegro website.  
16  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
PACKAGE OUTLINE DRAWING  
For Reference Only – Not for Tooling Use  
(Reference DWG-0000409, Rev. 2)  
Dimensions in millimeters – NOT TO SCALE  
Dimensions exclusive of mold flash, gate burs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
B
4×10°  
+0.06  
–0.05  
4.00  
1.ꢀ0 0.0ꢀ  
0.58  
F
1.42  
1.42  
C
R 0.20 All Corners  
F1  
F
F
1.80  
F
Mold Ejector  
Pin Indent  
F2  
+0.06  
–0.07  
4.00  
F3  
F
Branded  
Face  
4ꢀ°  
A
0.2ꢀ REF  
0.30 REF  
0.8ꢀ 0.0ꢀ  
0.42 0.0ꢀ  
1.27 REF  
XXXXX  
Date Code  
Lot Number  
1
2
3
18.00 0.10  
D
Standard Branding Reference View  
12.20 0.10  
+0.07  
0.2ꢀ  
Lines 1, 2, 3: max. 5 characters per line  
–0.03  
Line 1: 5-digit Part Number  
Line 2: 4-digit Date Code  
Line 3: Characters 5, 6, 7, 8 of  
Assembly Lot Number  
0.38 REF  
0.25 REF  
A
Dambar removal protrusion (12×)  
0.8ꢀ 0.0ꢀ  
B
C
D
E
F
Gate and tie burr area  
Active Area Depth, 0.38 0.0ꢀ mm  
+0.06  
–0.07  
1.80  
Branding scale and appearance at supplier discretion  
Molded Lead Bar for alignment during shipment  
Hall elements (F1, F2, and F3); not to scale  
E
R 0.30 All Corners  
+0.06  
–0.05  
4.00  
1.ꢀ0 0.0ꢀ  
Figure 21: Package UC, 3-pin SIP  
17  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High Feature Three-Wire Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19530  
Revision History  
Number  
Date  
Description  
September 13, 2018 Initial release  
Copyright ©2018, Allegro MicroSystems, LLC  
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to  
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that  
the information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its  
use; nor for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
18  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY