A3988SJPTR-1-T [ALLEGRO]

Stepper Motor Controller,;
A3988SJPTR-1-T
型号: A3988SJPTR-1-T
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Stepper Motor Controller,

电动机控制
文件: 总14页 (文件大小:913K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
FEATURES AND BENEFITS  
DESCRIPTION  
• 36 V output rating  
• 4 full bridges  
• Dual stepper motor driver  
• High current outputs  
• 3.3 and 5 V compatible logic supply  
• Synchronous rectification  
• Internal undervoltage lockout (UVLO)  
• Thermal shutdown circuitry  
• Crossover-current protection  
• Low profile QFN package  
TheA3988isaquadDMOSfull-bridgedrivercapableofdriving  
up to two stepper motors or four DC motors. Each full-bridge  
output is rated up to 1.2 A and 36 V. The A3988 includes fixed  
off-time pulse width modulation (PWM) current regulators,  
alongwith2-bitnonlinearDACs(digital-to-analogconverters)  
that allow stepper motors to be controlled in full, half, and  
quarter steps, and DC motors in forward, reverse, and coast  
modes. The PWM current regulator uses theAllegropatented  
mixed decay mode for reduced audible motor noise, increased  
step accuracy, and reduced power dissipation.  
Internal synchronous rectification control circuitry is provided  
to improve power dissipation during PWM operation.  
PACKAGES  
Protection features include thermal shutdown with hysteresis,  
undervoltagelockout(UVLO)andcrossovercurrentprotection.  
Special power up sequencing is not required.  
TheA3988issuppliedintwopackages,EVandJP,withexposed  
power tabs for enhanced thermal performance. The EV is a  
6 mm × 6 mm, 36 pin QFN package with a nominal overall  
package height of 0.90 mm. The JP is a 7 mm × 7 mm 48 pin  
LQFP. Both packages are lead (Pb) free, with 100% matte tin  
leadframe plating.  
Package EV, 36 pin QFN  
0.90 mm nominal height  
with exposed thermal pad  
Approximate  
footprint  
Package JP, 48 pin LQFP  
with exposed thermal pad  
0.1 µF  
50 V  
0.1 µF  
50 V  
V
MOTOR 32 V  
0.22 µF  
50 V  
100 µF  
50 V  
PHASE1  
I01  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
I11  
PHASE2  
I02  
A3988  
Microprocessor  
Bipolar Stepper Motors  
I12  
OUT3A  
OUT3B  
OUT4A  
OUT4B  
PHASE3  
I03  
I13  
PHASE4  
I04  
SENSE2  
SENSE1  
SENSE3  
SENSE4  
I14  
RS2  
RS1  
RS3  
RS4  
VREF1  
VREF2  
VREF3  
VREF4  
VDD  
VREF  
VDD 3.3 V  
Typical Application Circuit  
A3988DS, Rev. 12  
MCO-0000747  
December 10, 2019  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
SPECIFICATIONS  
Selection Guide  
Part Number  
Package  
Packing  
Fixed off-time (µs)  
A3988SEV-T  
36 pin QFN with exposed thermal pad  
36 pin QFN with exposed thermal pad  
48 pin LQFP with exposed thermal pad  
36 pin QFN with exposed thermal pad  
48 pin LQFP with exposed thermal pad  
61 pieces per tube  
1500 pieces per reel  
1500 pieces per reel  
1500 pieces per reel  
1500 pieces per reel  
30  
30  
A3988SEVTR-T  
A3988SJPTR-T  
A3988SEVTR-1-T  
A3988SJPTR-1-T  
30  
8.1  
8.1  
Absolute Maximum Ratings  
Characteristic  
Symbol  
Notes  
Rating  
-0.5 to 36  
38  
Units  
Load Supply Voltage  
VBB  
V
V
V
A
Pulsed tw < 1 µs  
Logic Supply Voltage  
Output Current  
VDD  
IOUT  
–0.4 to 7  
1.2  
May be limited by duty cycle, ambient temperature, and heat sinking. Under  
any set of conditions, do not exceed the specified current rating or a Junction  
Temperature of 150°C.  
Pulsed tw < 1 µs  
2.8  
–0.3 to 7  
0.5  
A
V
Logic Input Voltage Range  
SENSEx Pin Voltage  
VIN  
VSENSEx  
V
Pulsed tw < 1 µs  
Range S  
2.5  
V
VREFx Pin Voltage  
VREFx  
TA  
2.5  
V
Operating Temperature Range  
Junction Temperature  
–20 to 85  
150  
°C  
°C  
°C  
TJ(max)  
Tstg  
Storage Temperature Range  
–40 to 125  
Thermal Characteristics (may require derating at maximum conditions)  
Characteristic  
Symbol  
Test Conditions  
Min. Units  
EV package, 4 layer PCB based on JEDEC standard  
27  
23  
°C/W  
°C/W  
Package Thermal Resistance  
RθJA  
JP package, 4 layer PCB based on JEDEC standard  
Power Dissipation versus Ambient Temperature  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
JP Package  
4-layer PCB  
(RθJA = 23 ºC/W)  
EV Package  
4-layer PCB  
(RθJA = 27 ºC/W)  
0
25  
50  
75  
100  
125  
150  
175  
Temperature (°C)  
2
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
0.1 µF  
50 V  
0.1 µF  
50 V  
100 µF  
50 V  
0.22 µF  
50 V  
VBB1  
VDD  
DMOS  
FULL-BRIDGE 1  
VCP  
OSC  
CHARGE PUMP  
OUT1A  
OUT1B  
PHASE1  
I01  
Control Logic  
Bridges 1 and 2  
I11  
PHASE2  
I02  
SENSE1  
VBB1  
GATE  
DRIVE  
DMOS  
I12  
FULL-BRIDGE 2  
Sense1  
PWM Latch  
BLANKING  
3
VREF1  
VREF2  
OUT2A  
OUT2B  
3
PWM Latch  
BLANKING  
Sense2  
PHASE3  
I03  
VCP  
Sense2  
SENSE2  
Control Logic  
I13  
Bridges 3 and 4  
VBB2  
OUT3A  
OUT3B  
PHASE4  
I04  
DMOS  
FULL-BRIDGE 3  
I14  
GATE  
DRIVE  
Sense3  
SENSE3  
Sense3  
3
VBB2  
PWM Latch  
BLANKING  
VREF3  
VREF4  
OUT4A  
OUT4B  
DMOS  
FULL-BRIDGE 4  
3
PWM Latch  
BLANKING  
Sense4  
Sense4  
SENSE4  
Functional Block Diagram  
3
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Pinout Diagrams and Terminal List Table  
I13  
I12  
I14  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
NC  
I11  
PHASE1  
PHASE2  
GND  
GND  
NC  
PHASE1  
PHASE2  
GND  
I12  
I11  
18  
17  
16  
15  
14  
13  
12  
11  
10  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VCP  
CP1  
CP2  
I01  
VREF4  
VREF3  
VREF2  
VREF1  
VDD  
PAD  
GND  
VCP  
CP1  
CP2  
I01  
VREF4  
VREF3  
VREF2  
VREF1  
VDD  
PAD  
I02  
I03  
PHASE3  
PHASE4  
I04  
I02  
PHASE3  
I03  
Packages are not to scale  
Package EV, 36-Pin QFN Pinout  
Package JP, 48-Pin LQFP Pinout  
Terminal List Table  
Number  
Pin Name  
Pin Description  
EV  
2
3
4
5
6
7
8
9
JP  
3
4
5
6
8
9
10  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
24  
27  
28  
29  
31  
32  
33  
34  
37  
38  
39  
40  
42  
43  
44  
OUT1A  
SENSE1  
OUT1B  
VBB11  
OUT2B  
SENSE2  
OUT2A  
PHASE4  
PHASE3  
VDD  
VREF1  
VREF2  
VREF3  
VREF4  
GND  
DMOS Full-Bridge 1 Output A  
Sense Resistor Terminal for Bridge 1  
DMOS Full-Bridge 1 Output B  
Load Supply Voltage  
DMOS Full-Bridge 2 Output B  
Sense Resistor Terminal for Bridge 2  
DMOS Full-Bridge 2 Output A  
Control Input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
1
Control Input  
Logic Supply Voltage  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Ground  
Control Input  
Control Input  
Control Input  
PHASE2  
PHASE1  
I14  
OUT4A  
SENSE4  
OUT4B  
VBB21  
OUT3B  
SENSE3  
OUT3A  
I13  
I12  
I11  
GND  
VCP  
CP1  
CP2  
I01  
I02  
I03  
I04  
DMOS Full-Bridge 4 Output A  
Sense Resistor Terminal for Bridge 4  
DMOS Full-Bridge 4 Output B  
Load Supply Voltage  
DMOS Full-Bridge 3 Output B  
Sense Resistor Terminal for Bridge 3  
DMOS Full-Bridge 3 Output A  
Control Input  
Control Input  
Control Input  
Ground  
Reservoir Capacitor Terminal  
Charge Pump Capacitor Terminal  
Charge Pump Capacitor Terminal  
Control Input  
45  
46  
47  
48  
Control Input  
Control Input  
Control Input  
1, 2, 7, 11,  
12, 23, 25,  
26, 30, 35,  
36, 41  
NC  
No Connect  
Exposed pad for enhanced thermal  
performance. Should be soldered to the  
PCB.  
PAD  
1VBB1 and VBB2 need to be connected together close to the A3988  
4
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
ELECTRICAL CHARACTERISTICS1: valid at TA = 25°C, VBB = 36 V, unless otherwise noted  
Characteristics  
Load Supply Voltage Range  
Logic Supply Voltage Range  
VDD Supply Current  
Symbol  
VBB  
Test Conditions  
Min.  
8.0  
3.0  
Typ.2  
Max.  
36  
Units  
V
Operating  
Operating  
VDD  
5.5  
10  
V
IDD  
7
mA  
mΩ  
mΩ  
V
Source driver, IOUT = –1.2 A, T = 25°C  
700  
700  
800  
800  
1.3  
20  
J
Output On Resistance  
RDS(on)  
Sink driver, IOUT = 1.2 A, T = 25°C  
J
Vf, Outputs  
IOUT = 1.2 A  
Output Leakage  
IDSS  
IBB  
Outputs, VOUT = 0 to VBB  
–20  
µA  
IOUT = 0 mA, outputs on, PWM = 50 kHz,  
DC = 50%  
VBB Supply Current  
8
mA  
Control Logic  
VIN(1)  
VIN(0)  
IIN  
0.7×VDD  
0.3×VDD  
20  
V
V
Logic Input Voltage  
Logic Input Current  
Input Hysteresis  
VIN = 0 to 5 V  
–20  
150  
350  
35  
<1.0  
300  
550  
µA  
mV  
ns  
ns  
ns  
ns  
ns  
µs  
V
Vhys  
500  
1000  
300  
1000  
250  
1000  
1.3  
PWM change to source on  
PWM change to source off  
PWM change to sink on  
PWM change to sink off  
Propagation Delay Times  
tpd  
350  
35  
550  
Crossover Delay  
tCOD  
tBLANK  
VREFx  
IREF  
300  
0.7  
0.0  
425  
1
Blank Time  
VREFx Pin Input Voltage Range  
VREFx Pin Reference Input Current  
Operating  
1.5  
VREF = 1.5  
±1  
μA  
%
VREF = 1.5, phase current = 100%  
–5  
5
Current Trip-Level Error3  
VERR  
V
V
REF = 1.5, phase current = 67%  
REF = 1.5, phase current = 33%  
–5  
5
%
–15  
15  
%
Protection Circuits  
VBB UVLO Threshold  
VBB Hysteresis  
VUV(VBB)  
VUV(VBB)hys  
VUV(VDD)  
VUV(VDD)hys  
TJTSD  
VBB rising  
VDD rising  
7.3  
400  
2.65  
75  
7.6  
500  
2.8  
105  
165  
15  
7.9  
600  
2.95  
125  
175  
V
mV  
V
VDD UVLO Threshold  
VDD Hysteresis  
mV  
°C  
°C  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
155  
TJTSDhys  
1For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.  
2Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual units, within the  
specified maximum and minimum limits.  
3VERR = [(VREF/3) – VSENSE] / (VREF/3).  
5
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
FUNCTIONAL DESCRIPTION  
Fixed Off-Time  
Device Operation  
The A3988 is designed to operate two stepper motors, four DC  
motors, or one stepper and two DC motors. The currents in each  
of the output full-bridges, all N-channel DMOS, are regulated  
with fixed off-time pulse width modulated (PWM) control  
circuitry. Each full-bridge peak current is set by the value of  
an external current sense resistor, RSx , and a reference voltage,  
The internal PWM current control circuitry uses a one shot  
circuit to control the time the drivers remain off. For the A3988  
variant, the off-time (toff) is 30 µs. For the A3988-1 variant, toff  
is 8.1 µs.  
Blanking  
VREFx  
.
This function blanks the output of the current sense compara-  
tor when the outputs are switched by the internal current control  
circuitry. The comparator output is blanked to prevent false  
detections of overcurrent conditions, due to reverse recovery  
currents of the clamp diodes, or to switching transients related to  
the capacitance of the load. The stepper blank time, tBLANK , is  
approximately 1 μs.  
If the logic inputs are pulled up to VDD, it is good practice to use  
a high value pull-up resistor in order to limit current to the logic  
inputs, should an overvoltage event occur. Logic inputs include:  
PHASEx, I0x, and I1x.  
Internal PWM Current Control  
Each full-bridge is controlled by a fixed off-time PWM current  
control circuit that limits the load current to a desired value,  
ITRIP. Initially, a diagonal pair of source and sink DMOS outputs  
are enabled and current flows through the motor winding and  
RSx. When the voltage across the current sense resistor equals the  
voltage on the VREFx pin, the current sense comparator resets  
the PWM latch, which turns off the source driver.  
Control Logic  
Communication is implemented via the industry standard I1,  
I0, and PHASE interface. This communication logic allows  
for full, half, and quarter step modes. Each bridge also has an  
independent VREF input so higher resolution step modes can be  
programmed by dynamically changing the voltage on the VREFx  
pins.  
The maximum value of current limiting is set by the selection of  
RS and the voltage at the VREF input with a transconductance  
function approximated by:  
Charge Pump (CP1 and CP2)  
The charge pump is used to generate a gate supply greater than  
the VBB in order to drive the source-side DMOS gates. A 0.1 μF  
ceramic capacitor should be connected between CP1 and CP2  
for pumping purposes. A 0.1 μF ceramic capacitor is required  
between VCP and VBBx to act as a reservoir to operate the high-  
side DMOS devices.  
I
TripMax = VREF / (3×RS)  
Each current step is a percentage of the maximum current,  
TripMax. The actual current at each step ITrip is approximated by:  
I
I
Trip = (% ITripMax / 100) ITripMax  
Shutdown  
where % ITripMax is given in the Step Sequencing table.  
In the event of a fault (excessive junction temperature, or low  
voltage on VCP), the outputs of the device are disabled until the  
fault condition is removed. At power-up, the undervoltage lock-  
out (UVLO) circuit disables the drivers.  
Note: It is critical to ensure that the maximum rating of ±500  
mV on each SENSEx pin is not exceeded.  
6
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Synchronous Rectification  
Mixed Decay Operation  
When a PWM-off cycle is triggered by an internal fixed off-time  
The bridges operate in mixed decay mode. Referring to Figure  
cycle, load current will recirculate. The A3988 synchronous recti- 1, as the trip point is reached, the device goes into fast decay  
fication feature will turn on the appropriate MOSFETs during the mode for 30.1% of the fixed off-time period. After this fast decay  
current decay, and effectively short out the body diodes with the  
low RDS(on) driver. This significantly lowers power dissipation.  
portion, tFD, the device switches to slow decay mode for the  
remainder of the off-time. During transitions from fast decay to  
When a zero current level is detected, synchronous rectification is slow decay, the drivers are forced off for approximately 600 ns.  
turned off to prevent reversal of the load current.  
This feature is added to prevent shoot-through in the bridge. As  
shown in Figure 1, during this “dead time” portion, synchronous  
rectification is not active, and the device operates in fast decay  
and slow decay only.  
VPHASE  
+
See Enlargement A  
IOUT  
0
Fixed Off-Time 30 µs  
Fixed Off-Time 8.1 µs  
9 µs  
21 µs  
2.4 µs  
5.7 µs  
ITrip  
ITrip  
IOUT  
IOUT  
SDSR  
SDSR  
FDSR  
FDSR  
FDDT  
SDDT  
FDDT  
SDDT  
SDDT  
SDDT  
A3988  
A3988-1  
Enlargement A  
Figure 1: Mixed Decay Mode Operation  
7
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
STEP SEQUENCING DIAGRAMS  
100.0  
66.7  
100.0  
66.7  
Phase 1  
(%)  
Phase 1  
(%)  
0
0
–66.7  
–66.7  
–100.0  
–100.0  
100.0  
66.7  
100.0  
66.7  
Phase 2  
(%)  
Phase 2  
(%)  
0
0
–66.7  
–66.7  
–100.0  
–100.0  
Half step 2 phase  
Full step 2 phase  
Modified half step 2 phase  
Modified full step 2 phase  
Figure 2: Step Sequencing for Full-Step  
Increments.  
Figure 3: Step Sequencing for Half-Step Increments.  
8
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
100.0  
66.7  
33.3  
Phase 1  
(%)  
0
–33.3  
–66.7  
–100.0  
100.0  
66.7  
33.3  
Phase 2  
(%)  
0
–33.3  
–66.7  
–100.0  
Figure 4: Step Sequence for Quarter-Step Increments  
Table 1: Step Sequencing Settings  
Phase 1  
Phase 2  
Full  
1/2  
1/4  
I0x  
I1x  
PHASE  
I0x  
I1x  
PHASE  
(%ITripMax  
)
(%ITripMax)  
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
0
33  
100/66*  
100  
100  
100  
100/66*  
33  
0
33  
100/66*  
100  
100  
100  
100/66*  
33  
H
L
L/H*  
L
L
L
L/H*  
L
H
L
L/H*  
L
H
H
L
L
L
L
L
H
H
H
L
X
1
1
1
1
1
1
1
X
0
0
0
0
0
0
0
100  
100  
100/66*  
33  
0
33  
100/66*  
100  
100  
100  
100/66*  
33  
L
L
L/H*  
L
H
L
L/H*  
L
L
L
L/H*  
L
L
L
L
H
H
H
L
L
L
L
L
0
0
0
0
X
1
1
1
1
1
1
1
X
0
0
0
1
2
3
4
5
6
7
8
2
3
4
L
L
L
L
H
H
H
L
L
L
L/H*  
L
0
33  
100/66*  
100  
H
L
L/H*  
L
H
L
*Denotes modified step mode  
9
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
APPLICATIONS INFORMATION  
package is an exposed pad, which provides a path for enhanced  
thermal dissipation. The thermal pad should be soldered directly  
to an exposed surface on the PCB. Thermal vias are used to trans-  
fer heat to other layers of the PCB.  
Motor Configurations  
For applications that require either a stepper/DC motor driver  
or dual DC motor driver, Allegro offers the A3989 and A3995.  
These devices are offered in the same 36 pin QFN package as the  
A3988. The DC motor drivers are capable of supplying 2.4 A at  
36 V. Commutation is done with a standard phase/enable logic  
interface. Please refer to the Allegro website for further informa-  
tion and datasheets about those devices.  
Grounding  
In order to minimize the effects of ground bounce and offset  
issues, it is important to have a low impedance single-point  
ground, known as a star ground, located very close to the device.  
By making the connection between the exposed thermal pad and  
the groundplane directly under the A3988, that area becomes an  
ideal location for a star ground point.  
DC Motor Control  
Each of the 4 full bridges has independent PWM current control  
circuitry that makes the A3988 capable of driving up to four  
DC motors at currents up to 1.2 A. Control of the DC motors  
is accomplished by tying the I0, I1 pins together creating an  
equivalent ENABLE function with maximum current defined by  
the voltage on the corresponding VREF pin. The DC motors can  
be driven via a PWM signal on this enable signal, or on the cor-  
responding PHASE pin. Motor control includes forward, reverse,  
and coast.  
A low impedance ground will prevent ground bounce during  
high current operation and ensure that the supply voltage remains  
stable at the input terminal. The recommended PCB layout shown  
in the diagram below, illustrates how to create a star ground  
under the device, to serve both as low impedance ground point  
and thermal path.  
Solder  
A3988  
Layout  
Trace (2 oz.)  
Signal (1 oz.)  
The printed circuit board should use a heavy groundplane. For  
optimum electrical and thermal performance, the A3988 must be  
soldered directly onto the board. On the underside of the A3988  
Ground (1 oz.)  
PCB  
Thermal (2 oz.)  
Thermal Vias  
VBB  
VBB  
CVCP  
GND  
CVCP  
CIN3  
CCP  
GND  
CCP  
CIN3  
RS1  
1
RS3  
I04  
I13  
OUT3A  
SENSE3  
OUT3B  
VBB2  
OUT3A  
OUT3B  
OUT1A  
OUT1B  
OUT1A  
SENSE1  
OUT1B  
VBB1  
U1  
A3988  
PAD  
RS1  
RS3  
CIN1  
CIN2  
OUT2B  
SENSE2  
OUT2A  
PHASE4  
OUT4B  
SENSE4  
OUT4A  
I14  
CIN1  
RS2  
CIN2  
RS4  
RS2  
RS4  
OUT2B  
OUT2A  
OUT4B  
OUT4A  
CVDD1  
CVDD2  
CVDD1  
CVDD2  
GND  
VDD  
EV package layout shown  
Figure 5: Printed circuit board layout with typical application circuit, shown at right.  
The copper area directly under the A3988 (U1) is soldered to the exposed thermal pad on the underside of the device. The thermal vias serve  
also as electrical vias, connecting it to the ground plane on the other side of the PCB , so the two copper areas together form the star ground.  
10  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
The two input capacitors should be placed in parallel, and as  
close to the device supply pins as possible. The ceramic capaci-  
tor should be closer to the pins than the bulk capacitor. This is  
necessary because the ceramic capacitor will be responsible for  
delivering the high frequency current components.  
sense comparators. Long ground traces will cause additional  
voltage drops, adversely affecting the ability of the comparators  
to accurately measure the current in the windings. As shown in  
the layout below, the SENSEx pins have very short traces to the  
RSx resistors and very thick, low impedance traces directly to the  
star ground underneath the device. If possible, there should be no  
other components on the sense circuits.  
Sense Pins  
The sense resistors, RSx, should have a very low impedance  
path to ground, because they must carry a large current while  
supporting very accurate voltage measurements by the current  
Note:  
When selecting a value for the sense resistors, be sure not to  
exceed the maximum voltage on the SENSEx pins of ±500 mV.  
11  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Package Outline Diagrams  
For Reference Only – Not for Tooling Use  
(Reference JEDEC MO-220VJJD-3, except pin count)  
Dimensions in millimeters – NOT TO SCALE  
Exact case and lead configuration at supplier discretion within limits shown  
0.50  
0.30  
6.00 0.ꢀ5  
36  
36  
ꢀ.ꢀ5  
2
2
A
4.ꢀ5  
5.80  
6.00 0.ꢀ5  
C
D
4.ꢀ5  
5.80  
37X  
0.90 0.ꢀ0  
0.08  
C
SEATING  
PLANE  
+0.05  
–0.07  
C PCB Layout Reference View  
0.25  
0.50  
0.55 0.20  
B
A
B
Terminal #ꢀ mark area  
4.ꢀ5  
Exposed thermal pad (reference only, terminal #ꢀ identifier appearance at supplier discretion)  
2
C
Reference land pattern layout (reference IPC735ꢀ QFN50P600X600Xꢀ00-37VꢀM); All pads a  
minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process  
requirements and PCB layout tolerances; when mounting on a multilayer PCB, thermal vias at  
the exposed thermal pad land can improve thermal dissipation (reference EIA/JEDEC Standard  
JESD5ꢀ-5)  
36  
4.ꢀ5  
D
Coplanarity includes exposed thermal pad and terminals  
Figure 6: EV Package, 36 Pin QFN with Exposed Thermal Pad  
12  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
For Reference Only – Not for Tooling Use  
(Reference JEDEC MS-026 BBCHD)  
Dimensions in millimeters – NOT TO SCALE  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
0.30  
0.50  
9.00 0.20  
7.00 0.20  
4°  
4
+0.05  
–0.06  
1.70  
0.15  
C
B
9.00 0.20  
7.00 0.20  
8.60  
5.00 0.04  
5.00  
48  
48  
A
(1.00)  
0.60 0.15  
1
2
1
2
0.25  
5.00 0.04  
5.00  
8.60  
SEATING PLANE  
GAGE PLANE  
C
PCB Layout Reference View  
48X  
C
1.40 0.05  
1.60 MAX  
A
Terminal #1 mark area  
0.08  
C
SEATING  
PLANE  
B
Exposed thermal pad (bottom surface)  
0.22 0.05  
0.50  
Reference land pattern layout (reference IPC7351 QFP50P900X900X160-48M);  
adjust as necessary to meet application process requirements and PCB layout  
tolerances; when mounting on a multilayer PCB, thermal vias at the exposed  
thermal pad land can improve thermal dissipation (reference EIA/JEDEC Standard  
JESD51-5)  
0.10 0.05  
Figure 7: JP Package, 48 Pin LQFP with Exposed Thermal Pad  
13  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Revision History  
Number  
Date  
Description  
Change in packing options  
9
June 14, 2011  
July 9, 2014  
10  
11  
12  
Revised Step Sequence Settings table and Functional Block Diagram  
Added -1 variant  
October 21, 2014  
December 10, 2019  
Minor editorial updates  
Copyright 2019, Allegro MicroSystems.  
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit  
improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor  
for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
14  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

A3988SJPTR-T

Stepper Motor Controller, 2.8A, NMOS, PQFP48, 7 X 7 MM, LEAD FREE, MS-026BBCHD, LQFP-48
ALLEGRO

A3988_11

The A3988 is a quad DMOS full-bridge driver capable of driving up to two stepper motors or four DC motors.
ALLEGRO

A3989

Bipolar Stepper and High Current DC Motor Driver
ALLEGRO

A3989SEV-T

Bipolar Stepper and High Current DC Motor Driver
ALLEGRO

A3989SEVTR-T

Bipolar Stepper and High Current DC Motor Driver
ALLEGRO

A3989_V

Bipolar Stepper and High Current DC Motor Driver
ALLEGRO

A398C

Rectifier Diode, 1 Element, 400A, 300V V(RRM)
POWEREX

A398E

Rectifier Diode, 1 Element, 400A, 500V V(RRM)
POWEREX

A398M

Rectifier Diode, 1 Element, 400A, 600V V(RRM)
POWEREX

A398PA

Rectifier Diode, 1 Element, 400A, 1100V V(RRM)
POWEREX

A398PB

Rectifier Diode, 1 Element, 400A, 1200V V(RRM)
POWEREX

A398PE

Rectifier Diode, 1 Element, 400A, 1500V V(RRM)
POWEREX