ACS72981KLRATR-150B3 [ALLEGRO]

Current Sensor IC with 200 μΩ Current Conductor;
ACS72981KLRATR-150B3
型号: ACS72981KLRATR-150B3
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Current Sensor IC with 200 μΩ Current Conductor

文件: 总54页 (文件大小:3584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACS72981xLR  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
FEATURES AND BENEFITS  
DESCRIPTION  
• AEC-Q100 automotive qualification  
• High-bandwidth 250 kHz analog output  
Less than 2 μs output response time  
• 3.3 V and 5 V supply operation  
Ultralow power loss: 200 μΩ internal conductor  
resistance  
• Industry-leading noise performance and increased  
bandwidth through proprietary amplifier and filter design  
techniques  
• Greatly improved total output error through digitally  
programmed and compensated gain and offset over the  
full operating temperature range  
• Small package size, with easy mounting capability  
• Monolithic Hall IC for high reliability  
• Output voltage proportional to AC or DC currents  
• Factory-trimmed for accuracy  
• Extremely stable zero amp output offset voltage over  
temperature and lifetime  
TheAllegro™ACS72981familyofcurrentsensorICsprovides  
economicalandprecisesolutionsforACorDCcurrentsensing.  
A 250 kHz bandwidth makes it ideal for motor control, load  
detection and management, power supply and DC-to-DC  
converter control, and inverter control. The <2 µs response  
time enables overcurrent fault detection in safety-critical  
applications.  
The device consists of a precision, low-offset linear Hall  
circuit with a copper conduction path located near the die.  
Applied current flowing through this copper conduction path  
generates a magnetic field which the Hall IC converts into a  
proportionalvoltage.Deviceaccuracyisoptimizedthroughthe  
close proximity of the magnetic signal to the Hall transducer.  
A precise, proportional output voltage is provided by the  
low-offset, chopper-stabilized BiCMOS Hall IC, which is  
programmed for accuracy at the factory. Proprietary digital  
temperature compensation technology greatly improves the  
zero output voltage and output sensitivity accuracy over  
temperature and lifetime.  
The output of the device increases when an increasing current  
flows through the primary copper conduction path (from  
terminal 5 to terminal 6), which is the path used for current  
sampling. The internal resistance of this conductive path is  
200μΩtypical,providinglowpowerlossandincreasingpower  
density in the application.  
PACKAGE:  
7-pin PSOF package (suffix LR)  
Thesensoremploysdifferentialsensingtechniquesthatvirtually  
eliminate output disturbance due to common-mode interfering  
magnetic field.  
Not to scale  
Continued on the next page…  
ACS72981xLR  
3
2
5
6
VIOUT  
GND  
IP+  
VOUT  
CL  
IP  
Supply  
CBYP  
0.1 µF  
IP–  
1
VCC  
Typical Application  
The ACS72981xLR outputs an analog signal, VOUT, that varies linearly with the  
bidirectional AC or DC primary sampled current, IP, within the range specified.  
ACS72981xLR-DS, Rev. 9  
MCO-0000374  
September 24, 2020  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
DESCRIPTION (CONTINUED)  
The thickness of the copper conductor allows survival of the device The device is fully calibrated prior to shipment from the factory.  
at high overcurrent conditions. The terminals of the conductive path The ACS72981 family is lead (Pb) free. All leads are plated with  
are electrically isolated from the signal leads (pins 1 through 3).  
100% matte tin, and there is no Pb inside the package. The heavy  
gauge leadframe is made of oxygen-free copper.  
SELECTION GUIDE  
Sensitivity  
Sens (Typ.)  
(mV/A)[1]  
Primary Sampled Current,  
Nominal Supply  
Voltage (V)  
TA  
(°C)  
Part Number  
Packing[2]  
IP (A)  
ACS72981LLRATR-050B3  
ACS72981LLRATR-050B5  
ACS72981LLRATR-050U3  
ACS72981LLRATR-050U5  
ACS72981LLRATR-100B3  
ACS72981LLRATR-100B5  
ACS72981LLRATR-100U3  
ACS72981LLRATR-100U5  
ACS72981KLRATR-150B3  
ACS72981KLRATR-150B5  
ACS72981KLRATR-150U3  
ACS72981KLRATR-150U5  
ACS72981ELRATR-200B3  
ACS72981ELRATR-200B5  
ACS72981ELRATR-200U3  
ACS72981ELRATR-200U5  
±50  
±50  
50  
26.4  
40  
3.3  
5
52.8  
80  
3.3  
5
50  
–40 to 150  
±100  
±100  
100  
100  
±150  
±150  
150  
150  
±200  
±200  
200  
200  
13.2  
20  
3.3  
5
26.4  
40  
3.3  
5
3000 pieces per 13-inch reel  
8.8  
3.3  
5
13.33  
17.6  
26.66  
6.6  
–40 to 125  
–40 to 85  
3.3  
5
3.3  
5
10  
13.2  
20  
3.3  
5
[1] Measured at nominal supply voltage.  
[2] Contact Allegro for additional packing options.  
AꢀS ꢁꢂ9ꢃ1  
ꢄRA ꢒR  
-
050  
5
Sꢆꢇꢇly ꢈoltageꢉ  
5 ꢊ ꢈꢀꢀ ꢋ 5 ꢈ  
3 ꢊ ꢈꢀꢀ ꢋ 3.3 ꢈ  
ꢌꢆtꢇꢆt ꢍirectionalityꢉ  
ꢅ ꢊ ꢅidirectional ꢎꢇositiꢏe and negatiꢏe cꢆrrentꢐ  
U ꢊ Unidirectional ꢎonly ꢇositiꢏe cꢆrrentꢐ  
ꢀꢆrrent Sensing Range ꢎAꢐ  
Pacꢑing ꢍesignator  
Pacꢑage ꢍesignator  
ꢌꢇerating emꢇeratꢆre Range  
5 ꢍigit Part Nꢆmꢓer  
Allegro ꢀꢆrrent Sensor  
2
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Forward Supply Voltage  
Reverse Supply Voltage  
Output Voltage  
Symbol  
Notes  
Rating  
6.5  
Unit  
V
VCC  
VRCC  
–0.5  
V
VIOUT  
6.5  
V
Reverse Output Voltage  
Output Current  
VRIOUT  
IOUT  
VWORKING  
ICMAX  
–0.5  
V
Maximum survivable sink or source current through the output  
10  
mA  
V
Working Voltage  
Voltage applied between pins 5-6 and all other pins  
±100  
Maximum Continuous Current  
TA = 25°C  
Range E  
Range K  
Range L  
120  
A
–40 to 85  
–40 to 125  
–40 to 150  
165  
°C  
°C  
°C  
°C  
°C  
Nominal Operating Ambient  
Temperature  
TA  
Maximum Junction Temperature  
Storage Temperature  
TJ(max)  
Tstg  
–65 to 165  
ESD RATINGS  
Characteristic  
Symbol  
VHBM  
Test Conditions  
Per AEC-Q100  
Value  
±12  
±1  
Unit  
Human Body Model  
Charged Device Model  
kV  
kV  
VCDM  
Per AEC-Q100  
TYPICAL OVERCURRENT CAPABILITIES[1][2]  
Characteristic  
Symbol  
Notes  
Rating  
285  
Unit  
A
TA = 25°C, 1 second on time, 60 seconds off time  
TA = 85°C, 1 second on time, 35 seconds off time  
TA = 125°C, 1 second on time, 30 seconds off time  
TA = 150°C, 1 second on time, 10 seconds off time  
225  
A
Overcurrent  
IPOC  
170  
A
95  
A
[1] Test was done with Allegro evaluation board. The maximum allowed current is limited by TJ(max) only.  
[2] For more overcurrent profiles, see application note “Secrets of Measuring Currents Above 50 Amps”, https://www.allegromicro.com/en/Design-Cen-  
ter/Technical-Documents/Hall-Effect-Sensor-IC-Publications/AN296141-Secrets-of-Measuring-Currents-Above-50-Amps.aspx, on the Allegro website,  
www.allegromicro.com.  
THERMAL CHARACTERISTICS: May require derating at maximum conditions  
Characteristic  
Symbol  
Test Conditions [1]  
Value  
Unit  
Mounted on the Allegro evaluation board ASEK72981  
with FR4 substrate and 8 layers of 2 oz. copper (with an  
area of 1530 mm2 per layer) connected to the primary  
leadframe and with thermal vias connecting the copper  
layers. Performance is based on current flowing through  
the primary leadframe and includes the power consumed  
by the PCB.  
Package Thermal Resistance  
RθJA  
18  
°C/W  
[1] Additional thermal information available on the Allegro website  
3
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
Functional Block Diagram  
IP+  
ACS72981xLR  
VCC  
To all subcircuits  
CBYPASS  
Undervoltage  
Detection [1]  
Programming Control  
Hall Current  
Drive  
Temperature Sensor  
EEPROM and Control Logic  
Offset  
Control  
Output  
Clamps  
Active Temperature  
Compensation  
Sensitivity Control  
VIOUT  
Signal Recovery  
CL  
IP–  
GND  
[1] Undervoltage Detection in disabled when the supply voltage is configured to 3.3 V.  
NC  
Terminal List Table  
4
Number  
Name  
Description  
VIOUT  
GND  
3
2
1
IP+  
IP–  
5
6
1
2
3
VCC  
Device power supply terminal  
Device ground terminal  
Analog output signal  
GND  
VIOUT  
VCC  
No connection; connect to GND for optimal  
ESD performance  
7
NC  
4
NC  
5
6
IP+  
IP–  
Positive terminal for current being sampled  
Negative terminal for current being sampled  
Pinout Diagram  
No connection; connect to GND for optimal  
ESD performance  
7
NC  
4
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
COMMON OPERATING CHARACTERISTICS [1]: Valid through full range of TA and at nominal supply voltage, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [2]  
Max.  
Unit  
ELECTRICAL CHARACTERISTICS  
5 V nominal supply voltage variant  
3.3 V nominal supply voltage variant  
VCC(min) ≤ VCC ≤ VCC(max), no load on output  
TA = 25°C  
4.5  
5
3.3  
14  
70  
3.8  
3.7  
74  
7
5.5  
V
V
Supply Voltage  
VCC  
3
3.6  
Supply Current  
ICC  
tPO  
mA  
µs  
V
Power-On Delay [3]  
VUVLOD  
VUVLOE  
tUVLOE  
tUVLOD  
VPORH  
VPORL  
VHys(POR)  
BWi  
VCC rising; UVLO is disabled, enabling the device output  
VCC falling; UVLO is enabled, disabling the device output  
Time measured from falling VCC < VUVLOE to UVLO enabled  
Time measured from rising VCC > VUVLOD to UVLO disabled  
VCC rising  
4.2  
Undervoltage Lockout (UVLO)  
Threshold[4]  
V
µs  
µs  
V
UVLO Enable/Disable  
Delay Time  
2.8  
2.5  
250  
250  
1.5  
1
Power-On Reset Voltage  
VCC falling  
V
Power-On Reset Hysteresis  
Internal Bandwidth  
mV  
kHz  
µs  
µs  
µs  
V/µs  
Ω
Small signal –3 dB, CL = 1 nF  
Rise Time[3]  
tr  
TA = 25°C, CL = 1 nF, 1 V step on output  
TA = 25°C, CL = 1 nF, 1 V step on output  
TA = 25°C, CL = 1 nF, 1 V step on output  
TA = 25°C, CL = 1 nF, 1 V step on output  
Propagation Delay Time [3]  
Response Time [3]  
tpd  
tRESPONSE  
SR  
1.8  
0.53  
< 1  
Output Slew Rate  
DC Output Impedance  
Output Load Resistance  
Output Load Capacitance  
Primary Conductor Resistance  
ROUT  
RLOAD(MIN) VIOUT to GND  
CLOAD(MAX) VIOUT to GND  
4.7  
kΩ  
nF  
µΩ  
V
1
10  
RPRIMARY  
VCLP(HIGH)  
VCLP(LOW)  
tCLP  
TA = 25°C  
200  
TA = 25°C, RL(PULLDWN) = 10 kΩ to GND  
TA = 25°C, RL(PULLUP) = 10 kΩ to VCC  
TA = 25°C; CL = 1nF; Step on IP from 0.75 IPR to 1.5 IPR  
TA = 25°C, RL(PULLDWN) = 10 kΩ to GND  
TA = 25°C, RL(PULLUP) = 10 kΩ to VCC  
0.9 × VCC  
Output Voltage Clamp  
Delay to Clamp  
0.1 × VCC  
V
VCC – 0.2  
5
µs  
V
VSAT(HIGH)  
VSAT(LOW)  
Output Saturation Voltage  
200  
mV  
ERROR COMPONENTS  
QVO Ratiometry Error [5]  
Sens Ratiometry Error [5]  
Clamp Ratiometry Error [5]  
VRatERRQVO VCC = ±5% variation of nominal supply voltage  
RatERRSens VCC = ±5% variation of nominal supply voltage  
RatERRCLP VCC = ±5% variation of nominal supply voltage  
±3.5  
±0.6  
±1.0  
mV  
%
%
mARMS  
/(Hz)  
Noise [5]  
VN  
TA = 25°C, CL = 1 nF  
0.4  
Nonlinearity [5]  
Symmetry [5]  
ELIN  
Up to full-scale IP; IP applied for 5 ms  
Over half-scale IP  
–0.8  
±0.45  
±0.25  
0.8  
%
%
ESYM  
Common Mode Field Offset  
Error Ratio  
CMFROFF  
Measured at 100 G  
2
mA/G  
[1] Device may be operated at higher primary current levels, IP, ambient, TA, and internal leadframe temperatures, TA, provided that the Maximum Junction Temperature,  
TJ(max), is not exceeded.  
[2] All typical values are ±3 sigma.  
[3] See Definitions of Dynamic Response Characteristics section of this datasheet.  
[4] UVLO feature is only available on part numbers programmed with a 5 V nominal supply voltage.  
[5] See Definitions of Accuracy Characteristics section of this datasheet.  
5
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X050B3 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
–50  
50  
A
mV/A  
V
26.4 ×  
VCC / 3.3  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Bidirectional, IP = 0 A  
VCC/2  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
42  
7
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 150°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 150°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 150°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 150°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
6
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X050B5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
–50  
50  
A
mV/A  
V
40×  
VCC /5  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Bidirectional, IP = 0 A  
VCC/2  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
60  
10  
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 150°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 150°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 150°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 150°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
7
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X050U3 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
0
50  
A
mV/A  
V
52.8 ×  
VCC / 3.3  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Unidirectional, IP = 0 A  
VCC/10  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
78  
13  
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 150°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 150°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 150°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 150°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
8
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X050U5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
0
50  
A
mV/A  
V
80 ×  
VCC / 5  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Unidirectional, IP = 0 A  
VCC/10  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
120  
20  
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 150°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 150°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 150°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 150°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
9
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X100B3 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
–100  
100  
A
mV/A  
V
13.2 ×  
VCC / 3.3  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Bidirectional, IP = 0 A  
VCC/2  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
18  
3
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 150°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 150°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 150°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 150°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
10  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X100B5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
–100  
100  
A
mV/A  
V
20×  
VCC /5  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Bidirectional, IP = 0 A  
VCC/2  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
30  
5
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 150°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 150°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 150°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 150°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
11  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X100U3 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
0
100  
A
mV/A  
V
26.4 ×  
VCC / 3.3  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Unidirectional, IP = 0 A  
VCC/10  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
42  
7
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 150°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 150°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 150°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 150°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
12  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X100U5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
0
100  
A
mV/A  
V
40 ×  
VCC / 5  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Unidirectional, IP = 0 A  
VCC/10  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
60  
10  
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 150°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 150°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 150°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 150°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 150°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
13  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X150B3 PERFORMANCE CHARACTERISTICS: TA = –40°C to 125°C, VCC= 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
–150  
150  
A
mV/A  
V
8.8×  
VCC / 3.3  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Bidirectional, IP = 0 A  
VCC/2  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 125°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
13.2  
2.2  
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 125°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 125°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 125°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 125°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 125°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
14  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X150B5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 125°C, VCC= 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
–150  
150  
A
mV/A  
V
13.33×  
VCC / 5  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Bidirectional, IP = 0 A  
VCC/2  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 125°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
20.4  
3.4  
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 125°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 125°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 125°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 125°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 125°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
15  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X150U3 PERFORMANCE CHARACTERISTICS: TA = –40°C to 125°C, VCC= 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
0
150  
A
mV/A  
V
17.6 ×  
VCC / 3.3  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Unidirectional, IP = 0 A  
VCC/10  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 125°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
24  
4
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 125°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 125°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 125°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 125°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 125°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
16  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X150U5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 125°C, VCC= 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
0
150  
A
mV/A  
V
26.66 ×  
VCC / 5  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Unidirectional, IP = 0 A  
VCC/10  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 125°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
42  
7
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 125°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 125°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 125°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 125°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 125°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
17  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X200U3 PERFORMANCE CHARACTERISTICS: TA = –40°C to 85°C, VCC= 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
0
200  
A
mV/A  
V
13.2 ×  
VCC / 3.3  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Unidirectional, IP = 0 A  
VCC/10  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 85°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
18  
3
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 85°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 85°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 85°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 85°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 85°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
18  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X200U5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 85°C, VCC= 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
0
200  
A
mV/A  
V
20 ×  
VCC / 5  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Unidirectional, IP = 0 A  
VCC/10  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 85°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
30  
5
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 85°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 85°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 85°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 85°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 85°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
19  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X200B3 PERFORMANCE CHARACTERISTICS: TA = –40°C to 85°C, VCC= 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
–200  
200  
A
mV/A  
V
6.6 ×  
VCC / 3.3  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Bidirectional, IP = 0 A  
VCC/2  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 85°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
12  
2
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 85°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 85°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 85°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 85°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 85°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
20  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
X200B5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 85°C, VCC= 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
NOMINAL PERFORMANCE  
Current Sensing Range  
IPR  
–200  
200  
A
mV/A  
V
10 ×  
VCC / 5  
Sensitivity [2]  
Sens  
VCC(min) ≤ VCC ≤ VCC(max), IPR(min) < IP < IPR(max)  
Zero-Current Output Voltage  
VIOUT(Q)  
Bidirectional, IP = 0 A  
VCC/2  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
TA = 25°C, CL = 1 nF, BW = 250 kHz  
IP = 37.5 A applied for 5 ms, TA = 25°C  
IP = 37.5 A applied for 5 ms, TOP = 25°C to 85°C  
IP = 37.5 A applied for 5 ms, TOP = –40°C to 25°C  
IP = 0 A, TA = 25°C  
18  
3
mVp-p  
mVRMS  
%
Noise [2]  
VN  
–3.25  
–3.25  
–3.75  
–5  
±2.25  
±2.25  
±3.5  
±3.3  
±3.3  
±8  
3.25  
3.25  
3.75  
5
Sensitivity Error [2]  
ESens  
%
%
mV  
mV  
mV  
%
Electrical Offset Error [2]  
Total Output Error [2]  
VOE  
IP = 0 A, TOP = 25°C to 85°C  
–5  
5
IP = 0 A, TOP = –40°C to 25°C  
–10  
10  
IP = 37.5 A, IP applied for 5 ms, TOP = 25°C to 85°C  
IP = 37.5 A, IP applied for 5 ms, TOP = –40°C to 25°C  
–3.25  
–3.75  
±2.25  
±3.5  
3.25  
3.75  
ETOT  
%
LIFETIME ACCURACY CHARACTERISTICS [3]  
ESens(LIFE)(HT) TOP = 25°C to 85°C  
–3.7  
–4.1  
–3.7  
–4.1  
–7.0  
–12.0  
±2.7  
±3.7  
±2.7  
±3.7  
±4.7  
±5.5  
3.7  
4.1  
3.7  
4.1  
7.0  
12.0  
%
%
Sensitivity Error Including  
Lifetime  
ESens(LIFE)(LT) TOP = –40°C to 25°C  
ETOT(LIFE)(HT) TOP = 25°C to 85°C  
ETOT(LIFE)(LT) TOP = –40°C to 25°C  
EOFF(LIFE)(HT) TOP = 25°C to 85°C  
EOFF(LIFE)(LT) TOP = –40°C to 25°C  
%
Total Output Including  
Lifetime  
%
mV  
mV  
Electric Offset Error Including  
Lifetime  
[1] All typical values are ±3 sigma.  
[2] See Definitions of Accuracy Characteristics section of this datasheet.  
[3] Lifetime Accuracy Characteristics are based off of qualification testing to AEC-Q100 Grade 0 level.  
21  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
Response Time (tRESPONSE  
)
25 A excitation signal with 10%-90% rise time = 1 μs  
Sensitivity = 40 mV/A, CBYPASS = 0.1 μF, CL = 1 nF  
Propagation Delay (tpd)  
25 A excitation signal with 10%-90% rise time = 1 μs  
Sensitivity = 40 mV/A, CBYPASS = 0.1 μF, CL = 1 nF  
22  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
Rise Time (tr)  
25 A excitation signal with 10%-90% rise time = 1 μs  
Sensitivity = 40 mV/A, CBYPASS = 0.1 μF, CL = 1 nF  
23  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
UVLO Enable Time (tUVLOE  
)
VCC 5 V to 3 V fall time = 1.5 μs  
Sensitivity = 40 mV/A, CBYPASS = 0.1 μF, CL = 1 nF  
UVLO Disable Time (tUVLOD  
)
VCC 3 V to 5 V recovery time = 1.5 μs  
Sensitivity = 40 mV/A, CBYPASS = 0.1 μF, CL = 1 nF  
24  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
Power-On Example Curve  
Sensitivity = 40 mV/A, CBYPASS = 0.1 μF, CL = 1 nF, RL(PULLUP) = 4.7 kΩ, IP = 50 A  
Power-On Time (tPO  
)
Sensitivity = 40 mV/A, CBYPASS = 0.1 μF, CL = 1 nF, IP = 50 A  
25  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981LLRATR-050B3  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
20  
15  
10  
5
1670  
1665  
1660  
1655  
1650  
1645  
1640  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
0
-50  
0
50  
100  
150  
-5  
-50  
0
50  
100  
150  
-10  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
-0.500  
-1.000  
-1.500  
-2.000  
27  
27  
27  
27  
26  
26  
26  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.4  
0.3  
4.0  
3.0  
2.0  
1.0  
0.0  
0.2  
0.1  
0.0  
Me an  
Me an  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-1.0  
-2.0  
Temperature (°C)  
Temperature (°C)  
26  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981LLRATR-050B5  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
8
6
2508  
2506  
2504  
2502  
2500  
2498  
2496  
2494  
2492  
2490  
4
2
0
Me an  
Me an  
-50  
0
50  
100  
150  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-2  
-4  
-6  
-8  
-10  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
-0.500  
-1.000  
-1.500  
-2.000  
41  
41  
41  
40  
40  
40  
40  
40  
39  
39  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.3  
0.2  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.1  
0.0  
-50  
0
50  
100  
150  
Me an  
Me an  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.5  
-1.0  
-1.5  
-2.0  
Temperature (°C)  
Temperature (°C)  
27  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981LLRATR-050U3  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
20  
15  
10  
5
350  
345  
340  
335  
330  
325  
320  
315  
310  
Me an  
Me an  
0
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-5  
-10  
-15  
-20  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
4.000  
3.000  
2.000  
1.000  
0.000  
-1.000  
-2.000  
-3.000  
55  
55  
54  
54  
53  
53  
52  
52  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.4  
0.3  
4.0  
3.0  
2.0  
1.0  
0.0  
0.2  
0.1  
0.0  
Me an  
Me an  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-1.0  
-2.0  
-3.0  
Temperature (°C)  
Temperature (°C)  
28  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981LLRATR-050U5  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
15  
10  
5
515  
510  
505  
500  
495  
490  
485  
480  
0
Me an  
Me an  
-50  
0
50  
100  
150  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-5  
-10  
-15  
-20  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
5.000  
4.000  
3.000  
2.000  
1.000  
0.000  
-1.000  
-2.000  
-3.000  
-4.000  
84  
83  
82  
81  
80  
79  
78  
77  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.8  
0.6  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0.4  
0.2  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
-1.0  
-2.0  
-3.0  
-4.0  
-0.2  
-0.4  
-0.6  
Temperature (°C)  
Temperature (°C)  
29  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981LLRATR-100B3  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
10  
8
1660  
1658  
1656  
1654  
1652  
1650  
1648  
1646  
1644  
1642  
6
4
2
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
0
-50  
0
50  
100  
150  
-2  
-4  
-6  
-8  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
4.000  
3.000  
2.000  
1.000  
0.000  
-1.000  
-2.000  
-3.000  
14  
14  
14  
13  
13  
13  
13  
13  
13  
13  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.4  
0.3  
4.0  
3.0  
2.0  
1.0  
0.0  
0.2  
0.1  
0.0  
Me an  
Me an  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-1.0  
-2.0  
-3.0  
-4.0  
Temperature (°C)  
Temperature (°C)  
30  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981LLRATR-100B5  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
4
3
2504  
2503  
2502  
2501  
2500  
2499  
2498  
2497  
2496  
2495  
2
1
0
Me an  
Me an  
-50  
0
50  
100  
150  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-1  
-2  
-3  
-4  
-5  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
2.000  
1.500  
1.000  
0.500  
0.000  
20  
20  
20  
20  
20  
20  
20  
20  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.500  
-1.000  
-1.500  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.3  
0.2  
2.0  
1.5  
1.0  
0.5  
0.0  
0.1  
0.0  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.5  
-1.0  
-1.5  
Temperature (°C)  
Temperature (°C)  
31  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981LLRATR-100U3  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
10  
8
340  
338  
336  
334  
332  
330  
328  
326  
324  
322  
320  
6
4
2
Me an  
Me an  
0
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-2  
-4  
-6  
-8  
-10  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
3.500  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
-0.500  
-1.000  
-1.500  
-2.000  
27  
27  
27  
27  
27  
26  
26  
26  
26  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.4  
0.3  
4.0  
3.0  
2.0  
1.0  
0.0  
0.2  
0.1  
0.0  
Me an  
Me an  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-1.0  
-2.0  
Temperature (°C)  
Temperature (°C)  
32  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981LLRATR-100U5  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
6
4
506  
504  
502  
500  
498  
496  
494  
492  
2
0
Me an  
Me an  
-50  
0
50  
100  
150  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-2  
-4  
-6  
-8  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
4.000  
3.000  
2.000  
1.000  
0.000  
42  
41  
41  
40  
40  
39  
39  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-1.000  
-2.000  
-3.000  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.4  
0.3  
4.0  
3.0  
2.0  
1.0  
0.0  
0.2  
0.1  
0.0  
Me an  
Me an  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-1.0  
-2.0  
-3.0  
Temperature (°C)  
Temperature (°C)  
33  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981KLRATR-150B3  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
5
4
1655  
1654  
1653  
1652  
1651  
1650  
1649  
1648  
1647  
1646  
3
2
1
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
0
-50  
0
50  
100  
150  
-1  
-2  
-3  
-4  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
3.500  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
9
9
9
9
9
9
9
9
9
9
9
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.500  
-1.000  
-1.500  
-2.000  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.2  
4.0  
3.0  
2.0  
1.0  
0.0  
0.1  
0.0  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-1.0  
-2.0  
-3.0  
Temperature (°C)  
Temperature (°C)  
34  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981KLRATR-150B5  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
4
3
2504  
2503  
2502  
2501  
2500  
2499  
2498  
2497  
2496  
2495  
2
1
0
Me an  
Me an  
-50  
0
50  
100  
150  
+3 Sigma  
-3 Sigma  
-1  
-2  
-3  
-4  
-5  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
1.000  
0.500  
0.000  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
-50  
0
50  
100  
150  
-0.500  
-1.000  
-1.500  
-2.000  
-2.500  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.3  
0.2  
1.0  
0.5  
0.0  
0.1  
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
Temperature (°C)  
Temperature (°C)  
35  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981KLRATR-150U3  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
8
6
338  
336  
334  
332  
330  
328  
326  
324  
322  
4
2
Me an  
Me an  
0
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-2  
-4  
-6  
-8  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
18  
18  
18  
18  
18  
18  
17  
17  
17  
17  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.500  
-1.000  
-1.500  
-2.000  
-2.500  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.4  
0.3  
3.0  
2.0  
1.0  
0.0  
0.2  
0.1  
0.0  
Me an  
Me an  
-50  
0
50  
100  
150  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-50  
0
50  
100  
150  
-1.0  
-2.0  
-3.0  
Temperature (°C)  
Temperature (°C)  
36  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981KLRATR-150U5  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
4
3
504  
503  
502  
501  
500  
499  
498  
497  
496  
495  
494  
2
1
0
Me an  
Me an  
-50  
0
50  
100  
150  
-1  
-2  
-3  
-4  
-5  
-6  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
28  
27  
27  
27  
27  
27  
26  
26  
26  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.500  
-1.000  
-1.500  
-2.000  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.4  
0.3  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.2  
0.1  
0.0  
Me an  
Me an  
-50  
0
50  
100  
150  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-50  
0
50  
100  
150  
-0.5  
-1.0  
-1.5  
-2.0  
Temperature (°C)  
Temperature (°C)  
37  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981ELRATR-200U3  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
6
4
336  
334  
332  
330  
328  
326  
324  
2
Me an  
Me an  
0
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-2  
-4  
-6  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
1.500  
1.000  
0.500  
0.000  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
-50  
0
50  
100  
150  
Me an  
Me an  
-0.500  
-1.000  
-1.500  
-2.000  
-2.500  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.5  
0.4  
2.0  
1.5  
1.0  
0.5  
0.0  
0.3  
0.2  
0.1  
Me an  
Me an  
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
Temperature (°C)  
Temperature (°C)  
38  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981ELRATR-200U5  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
3
2
503  
502  
501  
500  
499  
498  
497  
496  
495  
1
0
-50  
0
50  
100  
150  
Me an  
Me an  
-1  
-2  
-3  
-4  
-5  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
3.500  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
21  
21  
21  
20  
20  
20  
20  
20  
20  
20  
20  
20  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.500  
-1.000  
-1.500  
-2.000  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.3  
0.2  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.1  
0.0  
-50  
0
50  
100  
150  
Me an  
Me an  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.5  
-1.0  
-1.5  
Temperature (°C)  
Temperature (°C)  
39  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981ELRATR-200B3  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
2
1
1652  
1651  
1650  
1649  
1648  
1647  
1646  
1645  
1644  
1643  
1642  
1641  
0
-50  
0
50  
100  
150  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
7
7
7
7
7
7
7
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.500  
-1.000  
-1.500  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.1  
3.0  
2.0  
1.0  
0.0  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-50  
0
50  
100  
150  
Me an  
Me an  
-50  
0
50  
100  
150  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-1.0  
-2.0  
-3.0  
-4.0  
Temperature (°C)  
Temperature (°C)  
40  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE DATA  
ACS72981ELRATR-200B5  
Electrical Offset Error vs. Temperature  
Zero Current Output Voltage vs. Temperature  
4
3
2504  
2503  
2502  
2501  
2500  
2499  
2498  
2497  
2496  
2
1
Me an  
Me an  
0
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-1  
-2  
-3  
-4  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
Me an  
Me an  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-50  
0
50  
100  
150  
-0.500  
-1.000  
-1.500  
-2.000  
-2.500  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Output Error vs. Temperature  
0.4  
0.3  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.2  
0.1  
0.0  
Me an  
Me an  
-50  
0
50  
100  
150  
+3 Sigma  
-3 Sigma  
+3 Sigma  
-3 Sigma  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-50  
0
50  
100  
150  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
Temperature (°C)  
Temperature (°C)  
41  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC PERFORMANCE  
TYPICAL FREQUENCY RESPONSE  
ACS72981 ꢀreꢁꢂencꢃ Resꢄonse  
-ꢀ  
-1ꢀ  
1
1ꢀ  
2
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
ꢀreꢁꢂencꢃ ꢄHꢅꢆ  
ꢀꢁ  
-ꢀꢁ  
-1ꢀꢀ  
-1ꢀꢁ  
1
1ꢀ  
2
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
ꢀreꢁꢂencꢃ ꢄHꢅꢆ  
For information regarding bandwidth characterization methods used for the ACS72981, see the “Characterizing System Bandwidth”  
application note (https://allegromicro.com/en/insights-and-innovations/technical-documents/hall-effect-sensor-ic-publications/  
an296169-acs720-bandwidth-testing) on the Allegro website.  
42  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHARACTERISTIC DEFINITIONS  
Definitions of Accuracy Characteristics  
SENSITIVITY (Sens)  
RATIOMETRY  
The change in sensor IC output in response to a 1 A change  
The device features a ratiometric output. This means that the  
through the primary conductor. The sensitivity is the product of  
the magnetic circuit sensitivity (G/A) (1 G = 0.1 mT) and the  
linear IC amplifier gain (mV/G). The linear IC amplifier gain is  
programmed at the factory to optimize the sensitivity (mV/A) for  
the full-scale current of the device.  
quiescent voltage output, VIOUT(Q), and the magnetic sensitivity,  
Sens, are proportional to the supply voltage, VCC.The ratiometric  
change in the quiescent voltage output is defined as:  
CC  
RatERRQVO  
=
IOUTQ(5V)  
×
ꢁ ꢀIOUTQ(VCC) × 1000 (mV)  
(
)
5 V  
SENSITIVITY ERROR (ESens  
)
The sensitivity error is the percent difference between the mea-  
sured sensitivity and the ideal sensitivity. For example, in the case  
of VCC = 5 V:  
and the ratiometric change (%) in sensitivity is defined as:  
Sens(VCC)  
Sens(5V)  
VCC  
SensMeas(5V) SensIdeal(5V)  
ESens  
× 100 (%)  
=
(
)
SensIDEAL(5V)  
RatERRSens  
=
1 –  
× 100 (%)  
NOISE (VN)  
(
)
5 V  
The noise floor is derived from the thermal and shot noise  
observed in Hall elements. Dividing the noise (mV) by the sensi-  
tivity (mV/A) provides the smallest current that the device is able  
to resolve.  
and the ratiometric change (%) in clamp voltage is defined as:  
VCLP(VCC)  
VCLP(5V)  
VCC  
NONLINEARITY (ELIN  
)
(
)
RatERRCLP  
=
1 –  
× 100 (%)  
The nonlinearity is a measure of how linear the output of the  
sensor IC is over the full current measurement range. The  
nonlinearity is calculated as:  
(
)
5 V  
SensIPR(MAX)  
SensIPR(HALF)  
× 100 (%)  
1–  
E
LIN  
=
{
[
[ {  
where SensIPR(MAX) is the output of the sensor IC with the maxi-  
mum measurement current flowing through it and SensIPR(HALF)  
is the output of the sensor IC with half of the maximum measure-  
ment current flowing through it.  
SYMMETRY (ESYM  
)
The degree to which the absolute voltage output from the IC  
varies in proportion to either a positive or negative half-scale  
primary current. The following equation is used to derive  
symmetry:  
SensIPR(HALF)  
× 100 (%)  
ESYM  
=
1–  
{
[
[ {  
SensIPR(–HALF)  
43  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
ZERO CURRENT OUTPUT VOLTAGE (V  
)
IOUT(Q)  
accuracy across  
temperature  
The output of the sensor when the primary current is zero. For a  
unipolar supply voltage, it nominally remains at 0.5 × VCC for a  
bidirectional device and 0.1 × VCC for a unidirectional device.  
increasing  
VIOUT (V)  
accuracy at  
25°C only  
For example, in the case of a bidirectional output device, VCC  
=
ideal  
VIOUT  
accuracy across  
temperature  
5 V translates into VIOUT(Q) = 2.5 V. Variation in VIOUT(Q) can be  
attributed to the resolution of the Allegro linear IC quiescent volt-  
age trim and thermal drift.  
accuracy at  
25°C only  
ELECTRICAL OFFSET ERROR (VOE  
)
IPR(min)  
–IP(A)  
VIOUT(Q)  
The deviation of the device output from its ideal quiescent value  
of 0.5 × VCC due to nonmagnetic causes. To convert this voltage  
to amperes, divide by the device sensitivity, Sens.  
+IP(A)  
full scale IP  
IPR(max)  
TOTAL OUTPUT ERROR (ETOT  
)
0 A  
The difference between the current measurement from the sensor  
IC and the actual current (IP), relative to the actual current. This  
is equivalent to the difference between the ideal output voltage  
and the actual output voltage, divided by the ideal sensitivity,  
relative to the current flowing through the primary conduction  
path:  
accuracy at  
25°C only  
decreasing  
VIOUT (V)  
accuracy across  
temperature  
Figure 1: Output Voltage versus Sensed Current  
V
(I ) V  
(I )  
IOUT P  
IOUTideal  
P
E
(I )  
=
P
× 100 (%)  
TOT  
Sens  
(I ) × I  
P P  
IDEAL  
The Total Output Error incorporates all sources of error and is a  
function of IP.  
+ETOT  
At relatively high currents, ETOT will be mostly due to sensitiv-  
ity error, and at relatively low currents, ETOT will be mostly due  
to Offset Voltage (VOE). In fact, as IP approaches zero, ETOT  
approaches infinity due to the offset voltage. This is illustrated  
in Figure 1 and Figure 2. Figure 1 shows a distribution of output  
voltages versus IP at 25°C and across temperature. Figure 2  
shows the corresponding ETOT versus IP.  
Across Temperature  
25°C Only  
–IP  
+IP  
–ETOT  
Figure 2: Total Output Error versus Sensed Current  
44  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
Definitions of Dynamic Response Characteristics  
POWER-ON TIME (tPO  
)
When the supply is ramped to its operating voltage, the device  
requires a finite time to power its internal components before  
responding to an input magnetic field.  
Power-On Time, tPO, is defined as the time it takes for the output  
voltage to settle within ±10% of its steady-state value under an  
applied magnetic field, after the power supply has reached its  
minimum specified operating voltage, VCC(min), as shown in the  
chart at right.  
Figure 3: Power-On Time (tPO  
)
Primary Current  
(%)  
90  
RISE TIME (tr)  
The time interval between a) when the sensor reaches 10% of  
its full-scale value, and b) when it reaches 90% of its full-scale  
value.  
V
IOUT  
Rise Time, t  
r
PROPAGATION DELAY (tpd)  
20  
10  
0
The time interval between a) when the sensed current reaches  
20% of its full-scale value, and b) when the sensor output reaches  
20% of its full-scale value.  
t
Propagation Delay, t  
pd  
Figure 4: Propagation Delay (tPD) and Rise Time (tr)  
RESPONSE TIME (tRESPONSE  
)
Primary Current  
(%)  
90  
The time interval between a) when the sensed current reaches  
90% of its final value, and b) when the sensor output reaches 90%  
of its full-scale value.  
V
IOUT  
Response Time, t  
RESPONSE  
0
t
Figure 5: Response Time (tRESPONSE  
)
45  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
FUNCTIONAL DESCRIPTION  
If VCC does not exceed VUVLOD [2], the output will stay in the  
high-impedance state until VCC reaches VUVLOD [3] and then  
will go to VCC / 2 after tUVLOD [4].  
Power-On Reset (POR) and Undervoltage  
Lock-Out (UVLO) Operation –  
Nominal Supply Voltage = 5 V  
The descriptions in this section assume: temperature = 25°C, no  
output load (RL, CL), and no significant magnetic field is present.  
VCC drops below VCC(min)= 4.5 V. If VCC drops below  
VUVLOE [4’, 5], the UVLO Enable Counter starts counting. If  
VCC is still below VUVLOE when counter reaches tUVLOE , the  
UVLO function will be enabled and the ouput will be pulled  
near GND [6]. If VCC exceeds VUVLOE before the UVLO  
Enable Counter reaches tUVLOE [5’], the output will continue  
to be VCC/2.  
Power-Up. At power-up, as VCC ramps up, the output is in a  
high-impedance state. When VCC crosses VPORH (location [1]  
in Figure 6 and [1’] in Figure 7), the POR Release counter  
starts counting for tPORR. At this point, if VCC exceeds VUVLOD  
[2’], the output will go to VCC / 2 after tUVLOD [3’].  
ꢎꢎ  
11  
10  
9
1
3
5
5.0  
Uꢀꢁꢂꢄ  
Uꢀꢁꢂꢃ  
PꢂRH  
PꢂRꢁ  
tUꢀꢁꢂꢃ  
t
Uꢀꢁꢂꢃ  
ꢐNꢄ  
ꢑime  
ꢑime  
Sloꢌe ꢍ  
ꢏꢇ  
ꢂUꢑ  
ꢇ.5  
ꢎꢎ  
t
PꢂRR  
t
t
Uꢀꢁꢂꢄ  
Uꢀꢁꢂꢄ  
ꢐNꢄ  
High ꢋmꢌedance  
High ꢋmꢌedance  
Figure 6: POR and UVLO Operation – Slow Rise Time Case  
ꢎꢎ  
1ꢆ ꢇꢆ  
ꢈꢆ 5ꢆ  
ꢊꢆ  
ꢉꢆ  
3ꢆ  
5.0  
Uꢀꢁꢂꢄ  
Uꢀꢁꢂꢃ  
PꢂRH  
PꢂRꢁ  
ꢅ t  
Uꢀꢁꢂꢃ  
ꢐNꢄ  
ꢑime  
ꢑime  
t
PꢂRR  
ꢂUꢑ  
Sloꢌe ꢍ  
ꢏꢇ  
ꢅt  
Sloꢌe ꢍ  
ꢏꢇ  
Uꢀꢁꢂꢃ  
ꢎꢎ  
ꢎꢎ  
ꢇ.5  
t
Uꢀꢁꢂꢄ  
ꢐNꢄ  
High ꢋmꢌedance  
High ꢋmꢌedance  
Figure 7: POR and UVLO Operation – Fast Rise Time Case  
46  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
Coming out of UVLO. While UVLO is enabled [6], if VCC  
exceeds VUVLOD [7], UVLO will be disabled after tUVLOD  
and the output will be VCC / 2 [8].  
,
Power-Down. As VCC ramps down below VUVLOE [6’, 9], the  
UVLO Enable Counter will start counting. If VCC is higher  
than VPORL when the counter reaches tUVLOE, the UVLO  
function will be enabled and the ouput will be pulled near  
GND [10]. The output will enter a high-impedance state as  
VCC goes below VPORL [11]. If VCC falls below VPORL before  
the UVLO Enable Couner reaches tUVLOE , the output will  
transition directly into a high-impedance state [7’].  
47  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
VCC drops below VCC(min) = 3 V  
Power-On Reset (POR) Only –  
Nominal Supply Voltage = 3.3V  
If VCC drops below VPORH [3′] but remains higher than VPORL  
[4′], the output will continue to be VCC/2.  
The descriptions in this section assume: temperature = 25°C, no  
output load (RL, CL), and IP = 0 A.  
Power-Down  
As VCC ramps down below VPORL [3, 5’], the output will enter a  
high-impedance state.  
Power-Up  
At power-up, as VCC ramps up, the output is in a high-impedance  
state. When VCC crosses VPORH (location [1] in Figure 8 and  
[1′] in Figure 9), the POR Release counter starts counting for  
tPO [2, 2′]. At this point, the output will go to VCC/2.  
ꢊꢊ  
3.3  
1
3
PꢀRH  
PꢀRꢅ  
ꢌNꢍ  
ꢎime  
ꢀUꢎ  
tPꢀ  
1.ꢆ5  
Sloꢈe ꢉ  
ꢊꢊ ꢂ  
ꢌNꢍ  
ꢎime  
High ꢇmꢈedance  
High ꢇmꢈedance  
Figure 8: POR and UVLO Operation – Slow Rise Time Case  
1ꢁ  
ꢂꢁ  
ꢊꢊ  
3.3  
ꢃꢁ  
5ꢁ  
3ꢁ  
PꢀRH  
PꢀRꢅ  
ꢌNꢍ  
ꢎime  
ꢎime  
ꢀUꢎ  
tPꢀ  
Sloꢈe ꢉ  
ꢊꢊ ꢂ  
Sloꢈe ꢉ  
ꢊꢊ ꢂ  
1.ꢆ5  
High ꢇmꢈedance  
ꢌNꢍ  
High ꢇmꢈedance  
Figure 9: POR and UVLO Operation – Fast Rise Time Case  
48  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
CHOPPER STABILIZATION TECHNIQUE  
When using Hall-effect technology, a limiting factor for  
sourced signal then can pass through a low-pass filter, while the  
switchpoint accuracy is the small signal voltage developed across modulated DC offset is suppressed.  
the Hall element. This voltage is disproportionally small relative  
In addition to the removal of the thermal and stress-related offset,  
to the offset that can be produced at the output of the Hall sensor  
IC. This makes it difficult to process the signal while maintaining  
an accurate, reliable output over the specified operating tempera-  
ture and voltage ranges.  
this novel technique also reduces the amount of thermal noise  
in the Hall sensor IC while completely removing the modulated  
residue resulting from the chopper operation. The chopper sta-  
bilization technique uses a high-frequency sampling clock. For  
demodulation process, a sample-and-hold technique is used. This  
high-frequency operation allows a greater sampling rate, which  
results in higher accuracy and faster signal-processing capability.  
This approach desensitizes the chip to the effects of thermal and  
mechanical stresses, and produces devices that have extremely  
Chopper stabilization is a unique approach used to minimize  
Hall offset on the chip. Allegro employs a technique to remove  
key sources of the output drift induced by thermal and mechani-  
cal stresses. This offset reduction technique is based on a signal  
modulation-demodulation process. The undesired offset signal is  
separated from the magnetic field-induced signal in the frequency stable quiescent Hall output voltages and precise recoverabil-  
domain, through modulation. The subsequent demodulation acts ity after temperature cycling. This technique is made possible  
as a modulation process for the offset, causing the magnetic-field- through the use of a BiCMOS process, which allows the use of  
induced signal to recover its original spectrum at baseband, while low-offset, low-noise amplifiers in combination with high-density  
the DC offset becomes a high-frequency signal. The magnetic-  
logic integration and sample-and-hold circuits.  
Regulator  
Clock/Logic  
Hall Element  
Amp  
Anti-Aliasing  
LP Filter  
Tuned  
Filter  
Figure 10: Concept of Chopper Stabilization Technique  
49  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
APPLICATION INFORMATION  
Field from Nearby Current Path  
2 × I  
1
1
To best use the CMR capabilities of these devices, the circuit  
board containing the ICs should be designed to make the external  
magnetic fields on both Hall plates equal. This helps to minimize  
error due to external fields generated by the current-carrying  
PCB traces themselves. There are three main parameters for each  
current-carrying trace that determine the error that it will induce  
on an IC: distance from the IC, width of the current-carrying  
conductor, and the angle between it and the IC. Figure 11 shows  
an example of a current-carrying conductor routed near an IC.  
The distance between the device and the conductor, d, is the  
distance from the device center to the center of the conductor.  
The width of the current path is w. The angle between the device  
and the current path, θ, is defined as the angle between a straight  
line connecting the two Hall plates and a line perpendicular to the  
current path.  
Error =  
×
Cf  
Hspace  
Hspace  
d –  
× cosθ d +  
× cosθ  
2
2
where Hspace is the distance between the two Hall plates and Cf is  
the coupling factor of the IC. This coupling factor varies between  
the different ICs. The ACS72981 has a coupling factor of 5 to 5.5  
G/A, whereas other Allegro ICs can range from 10 to 15 G/A. The  
ACS72981 Hspace is 1.9 mm.  
Other Layout Practices to Consider  
When laying out a board that contains an Allegro current sensor  
IC with CMR, the direction and proximity of all current-carrying  
paths are important, but they are not the only factors to consider  
when optimizing IC performance. Other sources of stray fields  
that can contribute to system error include traces that connect to  
the IC’s integrated current conductor, as well as the position of  
nearby permanent magnets.  
The way that the circuit board connects to a current sensor IC  
must be planned with care. Common mistakes that can impact  
performance are:  
I
• The angle of approach of the current path to the IP pins  
• Extending the current trace too far beneath the IC  
H2  
d
θ
H1  
THE ANGLE OF APPROACH  
One common mistake when using an Allegro current sensor IC  
is to bring the current in from an undesirable angle. Figure 12  
shows an example of the approach of the current traces to the IC  
(in this case, the ACS72981). In this figure, traces are shown for  
IP+ and IP–. The light green region is the desired area of approach  
for the current trace going to IP+. This region is from 0° to 85°.  
This rule applies likewise for the IP– trace.  
w
Figure 11: ACS72981 with nearby current path, viewed  
from the bottom of the sensor  
When it is not possible to keep θ close to 90°, the next best  
option is to keep the distance from the current path to the current  
sensor IC, d, as large as possible. Assuming that the current path  
is at the worst-case angle in relation to the IC, θ = 0° or 180°, the  
equation:  
The limitation of this region is to prevent the current-carrying  
trace from contributing any stray field that can cause error on  
the IC output. When the current traces connected to IP are outside  
this region, they must be treated as discussed above (Field from a  
Nearby Current Path).  
50  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
Figure 12: ACS72981 Current Trace Approach – the  
desired range of the angle θ is from 0° to 85°  
ENCROACHMENT UNDER THE IC  
In the LR package, the encroachment of the current-carrying  
trace under the device actually changes the path of the current  
flowing through the IP bus. This can cause a change in the cou-  
pling factor of the IP bus to the IC and can significantly reduce  
device performance. Using ANSYS Maxwell Electromagnetic  
Suites, the current density and magnetic field generated from the  
current flow were simulated. In Figure 13, there are results from  
two different simulations. The first is the case where the current  
trace leading up to the IP bus terminates at the desired point. The  
second case is where the current trace encroaches far up the IP  
bus. The red arrows in both simulations represent the areas of  
high current density. In the simulation with no excess overlap, the  
red areas, and hence the current density, are very different from  
the simulation with the excess overlap. It was also observed that  
the field on H1 was larger when there was no excess overlap.  
This can be observed by the darker shade of blue.  
Figure 13: Simulations of ACS72981 Leadframe with  
Different Overlap of the Current Trace and the IP Bus  
51  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
The thermal capacity of the ACS72981 should be verified by the  
end user in the application’s specific conditions. The maximum  
Thermal Rise vs. Primary Current  
Self-heating due to the flow of current should be considered dur-  
ing the design of any current sensing system. The sensor, printed  
circuit board (PCB), and contacts to the PCB will generate heat as  
current moves through the system.  
junction temperature, TJ(MAX) (165℃), should not be exceeded.  
Further information on this application testing is available in  
the DC Current Capability and Fuse Characteristics of Current  
Sensor ICs with 50 to 200 A Measurement Capability application  
note on the Allegro website.  
The thermal response is highly dependent on PCB layout, copper  
thickness, cooling techniques, and the profile of the injected current.  
The current profile includes peak current, current “on-time”, and  
duty cycle. While the data presented in this section was collected  
with direct current (DC), these numbers may be used to approximate  
thermal response for both AC signals and current pulses.  
ASEK72981 Evaluation Board Layout  
Thermal data shown in Figure 14 and Figure 15 was collected  
using the ASEK72981 Evaluation Board (TED-0002378). This  
board includes 1530 mm2 of 2 oz. copper (0.0694 mm) connected  
to pins 5 and 6 with thermal vias connecting the 8 layers. The  
PCB is shown below in Figure 16.  
The plot in Figure 14 shows the measured rise in steady-state die  
temperature of the ACS72981 versus continuous current at an ambi-  
ent temperature, TA, of 25°C. The thermal offset curves may be  
directly applied to other values of TA. Conversely, Figure 15 shows  
the maximum continuous current at a given TA. Surges beyond the  
maximum current listed in Figure 15 are allowed given the maxi-  
mum junction temperature, TJ(MAX) (165℃), is not exceeded.  
Figure 16: ASEK72981 Evaluation Board  
Gerber files for the ASEK72981 evaluation board are available  
for download from the Allegro website. See the technical docu-  
ments section of the ACS72981 device webpage.  
Figure 14: Self Heating in the LR Package  
Due to Current Flow  
Figure 15: Maximum Continuous Current  
at a Given TA  
52  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
PACKAGE OUTLINE DRAWING  
6.40 0.10  
1.20 0.10  
NNNNN  
YYWW  
LLLL  
+0.05  
–0.03  
1.79 0.10 ×2  
7
0.38  
(Plating Included)  
Parting Line  
0.81 0.10 ×2  
1
5º 2º ꢀ2  
0.80 0.10  
Standard Branding Reference View  
D
12º 2º ꢀ2  
= Part number  
N
Y
1.37 0.20  
E1  
E
= Last two digits of year of manufacture  
= Week of manufacture  
= Character 5, 6, 7, 11 of assembly lot  
number  
0.38 0.10 ×2  
E2  
W
L
7
4.80 0.10  
5º 2º ꢀ2  
A
12º 2º ꢀ2  
1.56 0.20  
0.80 0.10  
1.41 0.10 ×2  
1.60 0.10 ×2  
3.00  
B
1
2
1.80 MIN  
0.38 0.10 ×3  
5
6
0.80  
0.90  
Branded Face  
2.40  
12º 2º ꢀ2  
0.60  
5.60  
A
7
4
4.80  
+0.03  
0.9  
0.70  
1.50 0.10  
0.02  
-0.02  
SEATING  
PLANE  
0.90  
5º 2º ꢀ2  
3
2
1
A
1.60  
0.50  
R0.97 0.05  
R0.×5 0.05  
1
2
PCB Layout Reference View  
F
0.70 0.ꢀ0  
0.×8 ꢁ×  
7
0.25  
B
1
ꢀ.37 0.ꢀ0 ꢁ×  
0.90 0.ꢀ0 ꢁ×  
0.938  
R 0.20 ×4  
R0.50 0.05 ꢁ×  
1.27  
0.50 ꢁ×  
R 0.10 ×2  
7
0.88  
For Reference Only, not for tooling use (DWG-0000428)  
Dimensions in millimeters  
0.48  
Dimensions exclusive of mold flash, gate burs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
C
R 0.20 ×4  
1.138  
0.30  
Terminal #1 mark area  
A
0.35  
Dambar removal protrusion (16×)  
B
1.50  
Gate burr area  
C
Branding scale and appearance at supplier discretion  
D
0.10 0.10  
Hall elements (E1 and E2); not to scale  
E
R 0.10 ×2  
Reference land pattern layout;  
Detail A  
F
Detail B  
All pads a minimum of 0.20 mm from all adjacent pads; adjust as  
necessary to meet application process requirements and PCB  
layout tolerances  
Figure 17: Package LR, 7-Pin PSOF Package  
53  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Precision Linear Hall-Effect-Based  
Current Sensor IC with 200 µΩ Current Conductor  
ACS72981xLR  
Revision History  
Number  
Date  
Description  
1
2
3
4
March 2, 2018  
September 24, 2018  
April 12, 2019  
May 31, 2019  
July 17, 2019  
Initial release  
Updated Features and Benefits (page 1); minor editorial updates  
Updated product variants and added characteristic performance data plots (page 2, 6-17, 22-34).  
Added -200U3, -200U5, -200B3, and -200B5 product variants (page 2, 18-21, 38-41)  
Added Thermal Characteristics table (page 3)  
Added Maximum Continuous Current to Absolute Maximum Ratings table (page 3),  
ESD ratings table (page 3), and updated thermal data section (pages 51-52)  
5
August 28, 2019  
Removed Zero Current Output Voltage from Operating Characteristics table (page 5).  
Added Zero Current-Output Voltage to Performance Characteristics tables (pages 6-21).  
Updated Characteristic Performance Typical Frequency Response plots (page 42).  
Updated Zero-Current Output Voltage definition (page 44).  
6
November 8, 2019  
Added Output Slew Rate characteristic (page 5); corrected ASEK72981 Evaluation Board Layout section  
(page 52)  
7
8
9
November 21, 2019  
December 6, 2019  
September 24, 2020  
Updated ACS72981LLRATR-050B5 Electrical Offset Error vs. Temperature plot (page 27)  
Corrected Selection Guide sensitivity values for -200U3, -200U5, -200B3, and -200B5 product variants  
(page 2), and Performance Characteristics sensitivity value for -200U3 (page 18).  
Copyright 2020, Allegro MicroSystems.  
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit  
improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor  
for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
54  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY