APS11060LLHALX1NH [ALLEGRO]

Vertical and Planar Hall-Effect Switches;
APS11060LLHALX1NH
型号: APS11060LLHALX1NH
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Vertical and Planar Hall-Effect Switches

文件: 总21页 (文件大小:1302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APS11000 and APS11060  
2
-
Vertical and Planar Hall-Effect Switches  
FEATURES AND BENEFITS  
DESCRIPTION  
• ASIL A functional safety compliance (pending  
confirmation)  
• Planar and vertical Hall-effect sensor ICs  
• 3.3 to 24 V operation  
• Automotive-grade ruggedness and fault tolerance  
Extended AEC-Q100 qualification  
Internal protection circuits enable 40 V load dump  
compliance  
TheAPS11000andAPS11060familiesofHall-effectswitches  
are AEC-Q100 qualified for 24 V automotive applications  
and compliant with ISO 26262:2011 ASIL A (pending  
confirmation).Thesesensorsaretemperature-stableandsuited  
for operation over extended junction temperature ranges up to  
165°C. The APS11000 and APS11060 families are available  
in several different magnetic sensitivities and polarities to  
offer flexible options for system design. They are available in  
active high and active low variants for ease of integration into  
electronic subsystems.  
Reverse-battery protection  
Output short-circuit and overvoltage protection  
Operation from –40°C to 165°C junction temperature  
High EMC immunity  
The APS11000 features a Hall-effect element that is sensitive  
to magnetic flux perpendicular to the face of the IC package.  
TheAPS11060 features a vertical Hall-effect sensing element  
sensitivetomagneticfluxparalleltothefaceoftheICpackage.  
• Omnipolar and unipolar switch threshold options  
• Choice of output polarity  
• Open-drain output  
Continued on next page...  
• Solid-state reliability  
PACKAGES  
Not to scale  
TYPICAL APPLICATIONS  
• Gear shift selectors and driver controls (PRNDL)  
• Human-machine interfaces (HMI) and driver controls  
• Open/close sensor for LCD screens/doors/lids/trunks  
• Clutch/brake position sensor  
3-pin SOT23W  
(suffix LH)  
• Magnetically actuated lighting  
• Wiper home/end position sensor  
• End of travel and index sensors  
3-pin SIP (suffix UA)  
VCC  
POK  
Regulator  
To All Subcircuits  
Low-Pass  
Filter  
Schmitt  
Trigger  
VOUT  
Output  
Control  
Sample, Hold &  
Averaging  
Hall  
Amp.  
Current  
Limit  
GND  
Figure 1: Functional Block Diagram  
APS11060-DS, Rev. 4  
MCO-0000392  
May 12, 2020  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
DESCRIPTION (continued)  
The devices include on-board reverse-battery and overvoltage Two package styles provide a choice of through-hole or surface  
protection for operating directly from an automobile battery, as mounting. Package type LH is a modified 3-pin SOT23W surface  
well as protection from shorts to ground by limiting the output mount package, while package type UA is a 3-pin ultra-mini SIP  
current until the short is removed. The device is especially suited for through-hole mounting. Both packages are lead (Pb) free, with  
for operation from unregulated supplies.  
100% matte-tin-plated leadframes.  
ꢀꢁꢂꢃlete Part  
ꢄꢅꢂꢆer ꢇꢁrꢂat  
Allegro Iden�fier (Device Family)  
APS – Digital Posion Sensor  
Allegro Device Number  
11000 – Planar Hall-eect Switch  
11060 – Vercal Hall-eect Switch  
Conguraon Opons  
Planar  
A P S1 1 0 0 0  
-
L L H A L T 0 S L  
Vercal  
Output Polarity for B > BOP  
H – High (Output O)  
L – Low (Output On)  
A P S 1 1 0 6 0  
Operang Mode  
S – Unipolar South Sensing  
P – Omnipolar (North and South) Sensing  
N – Unipolar North Sensing  
Device Switch Threshold Magnitude  
0 – 35 G BOP, 25 G BRP (typ.)  
1 – 95 G BOP, 70 G BRP (typ.)  
ꢀ.g. APS110ꢁ0ꢂꢂHAꢃꢃ-ꢃꢃꢃ  
2 – 150 G BOP, 125 G BRP (typ.)  
3 – 280 G BOP, 225 G BRP (typ.)  
Instrucons (Packing)  
APS110ꢁ0ꢂꢂHAꢂ-0Sꢂ  
LT – 7-in. reel, 3,000 pieces/reel (LH Only)  
LX – 13-in. reel, 10,000 pieces/reel (LH Only)  
[blank] – bulk, 500 pieces/bag (UA Only)  
Package Designaon  
LHA – 3-pin SOT23W Surface Mount  
UAA – 3-pin SIP Through-Hole  
RoHS  
COMPLIANT  
Ambient Operang Temperature Range  
L – -40°C to +150°C  
2
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
SELECTION GUIDE  
Output  
State for  
B > BOP  
Sensing  
Orientation  
Operating  
Mode  
Part Number [1]  
Packing[2]  
Mounting  
APS11000LLHALT-0SL  
APS11000LLHALX-0SL  
APS11000LUAA-0SL  
APS11000LLHALT-0SH  
APS11000LLHALX-0SH  
APS11000LUAA-0SH  
APS11000LLHALT-0PL  
APS11000LLHALX-0PL  
APS11000LUAA-0PL  
APS11060LLHALT-0SL  
APS11060LLHALX-0SL  
APS11060LUAA-0SL  
APS11060LLHALT-0SH  
APS11060LLHALX-0SH  
APS11060LUAA-0SH  
APS11060LLHALT-0PL  
APS11060LLHALX-0PL  
APS11060LUAA-0PL  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through-hole  
Low  
Low  
Low  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
Low  
Low  
Low  
Unipolar  
South  
Z-Axis  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through-hole  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through-hole  
Z-Axis  
Omnipolar  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through-hole  
X-Axis  
X-Axis  
Y-Axis  
X-Axis  
X-Axis  
Y-Axis  
X-Axis  
X-Axis  
Y-Axis  
Unipolar  
South  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through-hole  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through-hole  
Omnipolar  
[1] Contact Allegro MicroSystems for options not listed in the selection guide.  
[2] Contact Allegro MicroSystems for additional packing options.  
3
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
VCC  
Notes  
Rating  
40  
Units  
V
Supply Voltage [1]  
Reverse Supply Voltage [1]  
Output Voltage [1]  
VRCC  
VOUT  
IOUT  
IROUT  
B
–18  
V
–0.3 to 32  
40  
V
Output Current [2]  
mA  
mA  
G
Reverse Output Current  
Magnetic Flux Density [3]  
Operating Ambient Temperature  
Maximum Junction Temperature  
Storage Temperature  
–50  
Unlimited  
–40 to 150  
165  
TA  
Range L  
°C  
°C  
°C  
TJ(max)  
Tstg  
–65 to 170  
[1] This rating does not apply to extremely short voltage transients. Transient events such as Load Dump and/or ESD have individual, specific ratings.  
[2] Through short-circuit current limiting device.  
[3] Guaranteed by design.  
ESD PERFORMANCE [4]  
Characteristic  
Symbol  
VESD(HBM)  
VESD(CDM)  
Notes  
Rating  
±11  
Units  
kV  
Human Body Model according to AEC-Q100-002  
Charged Device Model according to AEC-Q100-011  
ESD Voltage  
±1  
kV  
[4] ESD ratings provided are based on qualification per AEC-Q100 as an expected level of ESD robustness.  
4
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
PINOUT DIAGRAMS AND TERMINAL LIST  
(View from branded face)  
3
2
1
2
1
3
3-pin SIP  
(suffix UA)  
3-pin SOT23W  
(suffix LH)  
Terminal List  
Number  
Name  
Description  
LH  
UA  
1
VCC  
VOUT  
GND  
Connects power supply to chip  
Output from circuit  
1
2
3
3
Terminal for ground connection  
2
5
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
ELECTRICAL CHARACTERISTICS: Valid over full operating voltage and ambient temperature ranges for TJ < TJ(max) and  
CBYP = 0.1 µF, unless otherwise specified  
Characteristics  
SUPPLY AND STARTUP  
Supply Voltage  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
VCC  
ICC  
3.3  
1
2.2  
2.5  
180  
High  
2
24  
4
V
mA  
mA  
µs  
APS11000  
Supply Current  
APS11060  
1
5
Power-On Time [2]  
Power-On State [5]  
tPO  
VCC ≥ VCC(min)  
350  
POS  
VCC ≥ VCC(min), t < tPO  
VCC(UV)EN VCC ≥ VCC(min) → VCC < VCC(min)  
VCC(UV)DIS VCC < VCC(min) → VCC ≥ VCC(min)  
tPOR  
V
Undervoltage Lockout [3]  
UVLO Reset Time [3]  
2.3  
100  
V
µs  
CHOPPER STABILIZATION AND OUTPUT MOSFET CHARACTERISTICS  
Chopping Frequency  
fC  
800  
kHz  
µA  
VOUT(OFF) = 12 V, TA = –40°C to 85°C, output off,  
VCC ≥ VCC(min), t > tPO  
Output Leakage Current [4]  
IOUTOFF  
IOUTOFF  
0.1  
Output Leakage Current  
VOUT(OFF) = 24 V, output off, VCC ≥ VCC(min), t > tPO  
1
95  
500  
24  
2
µA  
µA  
mV  
V
Output Leakage Current, Power-On [4][5] IOUTOFF(PO) VCC ≥ VCC(min), t < tPO  
Output Saturation Voltage  
Output Off Voltage  
VOUT(SAT) Output on, IOUT = 5 mA  
VOUT(OFF)  
100  
Output Rise Time [6][7]  
tr  
tf  
CL = 20 pF, RPULL-UP = 4.8 kΩ  
CL = 20 pF, RPULL-UP = 4.8 kΩ  
0.2  
0.1  
µs  
µs  
Output Fall Time [6][7]  
2
ON-BOARD PROTECTION  
Output Short-Circuit Current Limit  
Output Zener Clamp Voltage  
Supply Zener Clamp Voltage  
Reverse Battery Zener Clamp Voltage  
Reverse Battery Current  
IOM  
VZ(OUT)  
VZ  
Output on  
15  
32  
40  
40  
mA  
V
IOUT = 1.5 mA, TA = 25°C  
ICC = ICC(max) + 3 mA, TA = 25°C  
ICC = –5 mA, TA = 25°C  
VCC = –18 V, TA = 25°C  
V
VRZ  
–18  
V
IRCC  
–5  
mA  
[1] Typical data is at TA = 25°C and VCC = 12 V unless otherwise noted.  
[2] Measured from VCC ≥ 3.3 V to valid output.  
[3] See Undervoltage Lockout section for operational characteristics.  
[4] Guaranteed by device design and characterization.  
[5] See Power-On Behavior section and Figure 4.  
VOUT(OFF)  
90%  
90%  
[6] CL = oscilloscope probe capacitance.  
[7] See Figure 2 - Definition of Output Rise and Fall Time.  
10%  
10%  
VOUT(SAT)  
t
tf  
tr  
Figure 2: Definition of Output Rise and Fall Time  
6
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
MAGNETIC CHARACTERISTICS: Valid over full operating voltage and ambient temperature ranges for TJ < TJ(max) and  
CBYP = 0.1 µF, unless otherwise specified  
Characteristics  
-0Px OPTION  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit [2]  
BOPS  
BOPN  
BRPS  
BRPN  
BHYS  
-0Px Option  
-0Px Option  
-0Px Option  
-0Px Option  
-0Px Option  
–70  
5
35  
–35  
25  
70  
G
G
G
G
G
Operate Point  
Release Point  
–25  
15  
–5  
25  
Hysteresis  
5
-0Sx OPTION  
Operate Point  
Release Point  
Hysteresis  
BOPS  
BRPS  
BHYS  
-0Sx Option  
-0Sx Option  
-0Sx Option  
5
5
35  
25  
15  
70  
G
G
G
25  
-0Nx OPTION  
Operate Point  
Release Point  
Hysteresis  
BOPN  
BRPN  
BHYS  
-0Nx Option  
-0Nx Option  
-0Nx Option  
‒70  
‒35  
‒25  
15  
G
G
G
‒5  
25  
5
[1] Typical data are at TA = 25°C and VCC = 12 V unless otherwise noted.  
[2] Magnetic flux density, B, is indicated as a negative value for north-polarity magnetic fields, and a positive value for south-polarity magnetic fields.  
Unipolar South  
“-xSL”  
Omnipolar  
“-xPL”  
Unipolar North  
“-xNL”  
V+  
V+  
VOUT(OFF)  
VOUT(OFF)  
VOUT(OFF)  
VOUT(OFF)  
Standard  
Output  
Polarity  
VOUT(SAT)  
VOUT(SAT)  
VOUT(SAT)  
B-  
VOUT(SAT)  
0
0
B-  
0
B+  
0
0
B+  
BHYS  
BHYS  
BHYS  
BHYS  
Unipolar South  
“-xSH”  
Omnipolar  
“-xPH”  
Unipolar North  
“-xNH”  
V+  
V+  
VOUT(OFF)  
VOUT(OFF)  
VOUT(OFF)  
VOUT(OFF)  
Inverted  
Output  
Polarity  
VOUT(SAT)  
VOUT(SAT)  
VOUT(SAT)  
VOUT(SAT)  
B-  
0
0
B-  
0
B+  
0
B+  
0
BHYS  
BHYS  
BHYS  
BHYS  
Figure 3: Hall Switch Output State vs. Magnetic Field  
B- indicates increasing north polarity magnetic field strength, and B+ indicates increasing south polarity magnetic field strength.  
7
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
MAGNETIC CHARACTERISTICS (continued): Valid over full operating voltage and ambient temperature ranges for TJ < TJ(max)  
and CBYP = 0.1 µF, unless otherwise specified  
Characteristics  
-1Px OPTION [3]  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit [2]  
BOPS  
BOPN  
BRPS  
BRPN  
BHYS  
-1Px Option  
-1Px Option  
-1Px Option  
-1Px Option  
-1Px Option  
50  
‒135  
40  
95  
‒95  
70  
135  
‒50  
110  
‒40  
42  
G
G
G
G
G
Operate Point  
Release Point  
‒110  
10  
‒70  
25  
Hysteresis  
-1Sx OPTION [3]  
Operate Point  
Release Point  
Hysteresis  
BOPS  
BRPS  
BHYS  
-1Sx Option  
-1Sx Option  
-1Sx Option  
50  
40  
10  
95  
70  
25  
135  
110  
42  
G
G
G
-1Nx OPTION [3]  
Operate Point  
Release Point  
Hysteresis  
BOPN  
BRPN  
BHYS  
-1Nx Option  
-1Nx Option  
-1Nx Option  
‒135  
‒110  
10  
‒95  
‒70  
25  
‒50  
‒40  
42  
G
G
G
-2Px OPTION [3]  
BOPS  
BOPN  
BRPS  
BRPN  
BHYS  
-2Px Option  
-2Px Option  
-2Px Option  
-2Px Option  
-2Px Option  
120  
‒200  
110  
150  
‒150  
125  
‒125  
25  
200  
‒120  
190  
‒110  
42  
G
G
G
G
G
Operate Point  
Release Point  
‒190  
10  
Hysteresis  
-2Sx OPTION [3]  
Operate Point  
Release Point  
Hysteresis  
BOPS  
BRPS  
BHYS  
-2Sx Option  
-2Sx Option  
-2Sx Option  
120  
110  
10  
150  
125  
25  
200  
190  
42  
G
G
G
-2Nx OPTION [3]  
Operate Point  
Release Point  
Hysteresis  
BOPN  
BRPN  
BHYS  
-2Nx Option  
-2Nx Option  
-2Nx Option  
‒200  
‒190  
10  
‒150  
‒125  
25  
‒120  
‒110  
42  
G
G
G
[1] Typical data are at TA = 25°C and VCC = 12 V unless otherwise noted.  
[2] Magnetic flux density, B, is indicated as a negative value for north-polarity magnetic fields, and a positive value for south-polarity magnetic fields.  
[3] Contact Allegro MicroSystems for availability.  
8
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
PACKAGE THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information.  
Characteristic  
Symbol  
Test Conditions  
Value Units  
Package LH, 1-layer PCB with copper limited to solder pads  
228  
110  
165  
°C/W  
°C/W  
°C/W  
2
Package LH, 2-layer PCB with 0.463 in. of copper area each side  
Package Thermal Resistance  
RθJA  
connected by thermal vias  
Package UA, 1-layer PCB with copper limited to solder pads  
Power Derating Curve  
TJ(max) = 165°C; ICC = ICC(max), IOUT = 0 mA (Output Off)  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VCC(max)  
Package LH, 2-layer PCB  
(RθJA = 110°C/W)  
Package UA, 1-layer PCB  
(RθJA = 165°C/W)  
Package LH, 1-layer PCB  
(RθJA = 228°C/W)  
8
7
6
5
4
VCC(min)  
3
2
25  
45  
65  
85 105 125 145 165 185  
TJ(max)  
Temperature (°C)  
Power Dissipation versus Ambient Temperature  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
Package LH, 2-layer PCB  
(RθJA = 110°C/W)  
Package UA, 1-layer PCB  
(RθJA = 165°C/W)  
800  
700  
600  
500  
400  
300  
Package LH, 1-layer PCB  
(RθJA = 228°C/W)  
200  
100  
0
25  
45  
65  
85  
105 125 145 165 185  
Temperature (°C)  
9
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
CHARACTERISTIC PERFORMANCE DATA  
Electrical Characteristics  
Supply Current versus Supply Voltage  
Supply Current versus Ambient Temperature  
(Output Off)  
(Output Off)  
5
4.5  
4
5
TA (°C)  
APS11000  
VCC (V)  
APS11000  
4.5  
4
3.3  
12  
-40  
3.5  
3
3.5  
25  
3
2.5  
2
24  
2.5  
2
150  
APS11060  
APS11060  
1.5  
1
1.5  
1
3.3  
12  
24  
-40  
25  
0.5  
0
0.5  
0
150  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
VCC (V)  
TA (°C)  
Output Saturation Voltage versus Supply Voltage  
for IOUT = 5 mA  
Output Saturation Voltage versus Ambient  
Temperature for IOUT = 5 mA  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA (°C)  
-40  
VCC (V)  
3.3  
25  
12  
150  
24  
0
0
2
6
10  
14  
18  
22  
26  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140 160  
VCC (V)  
TA (°C)  
10  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
CHARACTERISTIC PERFORMANCE DATA  
Magnetic Characteristics  
Aeraꢁe ꢂꢃerate Pꢄint ꢀersꢅs Aꢆꢇient ꢈeꢆꢃeratꢅre  
Aeraꢁe ꢂꢃerate Pꢄint ꢀersꢅs Sꢅꢃꢃlꢉ Vꢄltaꢁe  
ꢀ0  
50  
VCC (V)  
ꢂꢃꢄ  
ꢀ0  
50  
TA (°C)  
ꢂꢃꢄ  
3.3  
-40  
30  
30  
12  
24  
25  
10  
10  
150  
ꢂꢃꢅ  
-10  
-30  
-50  
-ꢀ0  
ꢂꢃꢅ  
-10  
-30  
-50  
-ꢀ0  
3.3  
12  
24  
-40  
25  
150  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140 160  
2
4
6
8
10  
12  
14  
VCC (V)  
16  
18  
20  
22  
24  
26  
TA (°C)  
Aeraꢁe ꢊelease Pꢄint ꢀersꢅs Sꢅꢃꢃlꢉ Vꢄltaꢁe  
Aeraꢁe ꢊelease Pꢄint ꢀersꢅs Aꢆꢇient ꢈeꢆꢃeratꢅre  
50  
40  
50  
40  
VCC (V)  
ꢆꢃꢄ  
TA (°C)  
ꢆꢃꢄ  
30  
30  
3.3  
12  
-40  
20  
20  
25  
10  
10  
24  
0
150  
0
ꢆꢃꢅ  
-10  
-20  
-30  
-40  
-50  
ꢆꢃꢅ  
-10  
-20  
-30  
-40  
-50  
3.3  
12  
24  
-40  
25  
150  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140 160  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
VCC (V)  
TA (°C)  
Aeraꢁe Hꢉsteresis ꢀersꢅs Sꢅꢃꢃlꢉ Vꢄltaꢁe  
Aeraꢁe Hꢉsteresis ꢀersꢅs Aꢆꢇient ꢈeꢆꢃeratꢅre  
25  
22.5  
20  
25  
22.5  
20  
VCC (V)  
ꢇꢈꢄ(ꢄ)  
TA (°C)  
ꢇꢈꢄ(ꢄ)  
3.3  
12  
-40  
1ꢀ.5  
15  
1ꢀ.5  
15  
25  
24  
150  
ꢇꢈꢄ(ꢅ)  
ꢇꢈꢄ(ꢅ)  
12.5  
10  
12.5  
10  
3.3  
12  
24  
-40  
25  
ꢀ.5  
5
ꢀ.5  
5
150  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140 160  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
VCC (V)  
TA (°C)  
11  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
FUNCTIONAL DESCRIPTION  
Undervoltage Lockout Operation  
Power-On Behavior  
Device power-on begins when the supply voltage reaches  
The APS11000 and APS11060 have an internal diagnostic to  
VCC(min). During the power-on time, tPO, the device output is off check the voltage supply (an undervoltage lockout regulator).  
with the exception of the leakage current, IOUTOFF(PO). Use of a  
large pull-up resistor, RPULL-UP (see Figure 6), can influence the  
Power-On State (POS) voltage level on the output pin during tON  
When the supply voltage falls below the undervoltage lockout  
voltage threshold, VCC(UV)EN, the device enters reset, where  
the output state returns to the Power-On State (POS) until VCC  
.
The output voltage level during the POS is a function of the pull- is increased to VCC(UV)DIS. Once the VCC(UV)DIS threshold is  
up resistor and pull-up voltage. The level can be determined by reached, the power-on sequence begins and the output will cor-  
subtracting the voltage drop created by RPULL-UP and IOUTOFF(PO) respond with the applied magnetic field for B > BOP and B < BRP  
from the pull-up voltage. To retain a power-on output voltage  
level above VPULL-UP/2, a pull-up resistor less than or equal to  
20 kΩ is recommended. After power-on is complete and the  
after tPOR has elapsed. In the case the supply voltage does not  
return to these operational levels, or if the applied magnetic field  
is within the hysteresis range, the output will remain in the power-  
power-on time has elapsed, the device output will correspond with on state. See Figure 4 for an example of the undervoltage lockout  
the applied magnetic field for B > BOP and B < BRP. Powering-on behavior.  
the device in the hysteresis range (less than BOP and higher than  
BRP) will cause the device output to remain off. A valid output  
state is attained after the first excursion beyond BOP or BRP.  
ꢁꢁꢂminꢃ  
Sꢀꢁꢁꢈꢋ  
Vꢇꢈtaꢌꢂ  
ꢁꢁꢂUꢀꢃꢊꢋS  
ꢁꢁꢂUꢀꢃꢌN  
Power-ꢄꢇꢇ  
0
ꢀꢁ  
ꢌꢎternal  
Sꢅꢆꢆly ꢏlitch  
PꢄS  
PꢄS  
High  
ꢉow  
ꢄꢅtꢆꢅt State  
Undeꢇined ꢇor  
ꢍꢂꢋ  
ꢀꢁꢂ  
ꢃ ꢄ ꢃꢁꢀ  
Uꢀꢉꢄ ꢌnaꢍled  
Oꢀtꢁꢀt Statꢃ  
ꢄꢅꢆ Pꢇꢈaꢉꢊtꢋ  
ꢁꢁ ꢈ ꢀꢁꢁꢂminꢃ  
ꢃ ꢅ ꢃꢁꢀ  
PꢄS  
PꢄS  
ꢍꢂꢋ  
High  
ꢉow  
ꢄꢅtꢆꢅt State  
Undeꢇined ꢇor  
ꢀꢁꢂ  
Oꢀtꢁꢀt Statꢃ  
ꢄꢎꢆ Pꢇꢈaꢉꢊtꢋ  
Uꢀꢉꢄ ꢌnaꢍled  
ꢃ ꢄ ꢃꢁꢀꢆ ꢇꢀ ꢅ ꢃ ꢅ ꢃꢁꢀ  
ꢃ ꢅ ꢃꢇꢀ  
ꢁꢁ ꢈ ꢀꢁꢁꢂminꢃ  
Figure 4: Power-On and Undervoltage Lockout Behavior  
12  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
Functional Safety  
Table 1: Switch Polarity Configuration Options  
2
Part  
Number  
Suffix  
Output  
State for  
B > BOP  
Output  
State for  
B = 0 G  
Power-On  
State,  
t < tPO  
The APS11000 and APS11060 were designed  
accordance with the international standard for  
automotive functional safety, ISO 26262:2011.  
in  
Operating  
Mode  
-
Unipolar  
South  
xSL  
xSH  
xNL  
xNH  
Low  
High  
Low  
High  
High  
Low  
High  
Low  
High  
High  
High  
High  
These products achieve an ASIL (Automotive Safety Integrity  
Unipolar  
South  
Level) rating of ASILA (pending confirmation) according to the  
standard. The APS11000 and APS11060 are both classified as a  
SEooC (Safety Element out of Context) and can be easily inte-  
grated into safety-critical systems requiring higher ASIL ratings  
that incorporate external diagnostics or use measures such as redun-  
dancy. Safety documentation will be provided to support and guide  
the integration process. For further information, contact your local  
FAE for A2-SIL™ documentation: www.allegromicro.com/ASIL.  
Unipolar  
North  
Unipolar  
North  
xPL  
xPH  
Omnipolar  
Omnipolar  
Low  
High  
Low  
High  
High  
High  
Configurations xPL and xPH. The omnipolar operation of these  
devices allows actuation with either a north or a south polarity  
field. The xPL operates using the standard output polarity conven-  
tion. Fields exceeding the operating points, BOPS or BOPN, will turn  
the output on (low). When the magnetic field is removed or reduced  
below the release point, BRPN or BRPS, the device output turns off  
(goes high). The xPH is complementary, in that for the device, a  
north or south polarity field exceeding the operate points, BOPS  
or BOPN, will turn the output off (high). Removal of the field, or  
reduction below the release point threshold, BRPS or BRPN, will turn  
the output on (low). See Figure 3 for omnipolar switching behavior.  
Operation  
The APS11000 and APS11060 are integrated Hall-effect sensor  
ICs with an open-drain output. Table 1 offers a guide for select-  
ing the output polarity configuration, further explained in the  
configuration sections below. The open-drain output is an NMOS  
transistor that actuates in response to a magnetic field. The direc-  
tion of the applied magnetic field is perpendicular to the branded  
face for the APS11000, and parallel with the branded face for  
the APS11060; see Figure 5 for an illustration. The devices are  
offered in two packages: the UA package, a 3-pin through-hole  
mounting configuration, or in the LH package, a 3-pin surface-  
mount configuration. See the Selection Guide for a complete list  
of available options.  
After turn-on, the output transistor is capable of sinking current  
up to the short circuit current limit, IOM, which is a minimum of  
15 mA. The difference in the magnetic operate and release points  
is the hysteresis, BHYS, of the device. This built-in hysteresis  
allows clean switching of the output even in the presence of exter-  
nal mechanical vibration and electrical noise.  
Configurations xSL and xSH. The unipolar output of these  
devices is actuated when a south-polarity magnetic field perpen-  
dicular to the Hall element exceeds the operate point threshold,  
BOPS. When BOPS is exceeded, the xSL output turns on (goes  
low). The xSH is complementary, in that for this device the output  
turns off (goes high) when BOPS is exceeded. When the magnetic  
field is removed or reduced below the release point, BRPS, the  
device outputs return to their original state—off for the xSL and  
on for the xSH. See Figure 3 for unipolar south switching behav-  
ior.  
Configurations xNL and xNH. The unipolar output of these  
devices is actuated when a north-polarity magnetic field perpen-  
dicular to the Hall element exceeds the operate point threshold,  
BOPN. When BOPN is exceeded, the xNL output turns on (goes low).  
The xNH is complementary, in that for this device the output turns  
off (goes high) when BOPN is exceeded. When the magnetic field  
is removed or reduced below the release point, BRPN, the device  
outputs return to their original state—off for the xNL and on for the  
xNH. See Figure 3 for unipolar north switching behavior.  
Figure 5: Magnetic Sensing Orientations  
APS11000 LH (Panel A), APS11000 UA (Panel B),  
APS11060 LH (Panel C), and APS11060 UA (Panel D)  
13  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
Applications  
It is strongly recommended that an external bypass capacitor be  
connected (in close proximity to the Hall element) between the  
supply and ground of the device to guarantee correct performance  
under harsh environmental conditions and to reduce noise from  
internal circuitry. As is shown in Figure 6: Typical and Enhanced  
Protection Application Circuits, a 0.1 µF capacitor is required.  
Extensive applications information for Hall-effect devices is  
available in:  
• Hall-Effect IC Applications Guide, AN27701,  
• Hall-Effect Devices: Guidelines for Designing Subassemblies  
Using Hall-Effect Devices AN27703.1  
• Soldering Methods for Allegros Products – SMD and Through-  
Hole, AN26009  
In applications where the APS11000 or APS11060 receives  
its power from an unregulated source such as a car battery, or  
where greater immunity is required, additional measures may  
be employed. Specifications for such transients will vary, so  
protection circuit design should be optimized for each application.  
For example, the circuit shown in Figure 6 includes an optional  
series resistor and output capacitor which improves performance  
during Powered ESD testing (ISO 10605) and Bulk Current  
Injection testing (ISO 11452-4).  
All are provided on the Allegro website:  
www.allegromicro.com  
Vertical Hall-Effect Sensor Linear Tools  
ꢁꢂꢃical Aꢃꢃlicatiꢄns ꢅircꢆit  
System design and magnetic sensor evaluation often require  
an in-depth look at the overall strength and profile gener-  
ated by a magnetic field input. To aid in this evaluation,  
Allegro MicroSystems, LLC provides a high-accuracy linear  
output tool capable of reporting the nonperpendicular magnetic  
field by means of an vertical Hall-effect sensor IC equipped with  
a calibrated analog output. For further information, contact your  
local Allegro field applications engineer or sales representative.  
SUPPꢁꢂ  
RPUꢁꢁ-UP  
ꢊ.ꢋ ꢌ  
APS110ꢀꢀ  
1
ꢀꢆꢆ  
ꢀꢃUꢄ  
ꢃUꢄ  
ꢇꢂP  
ꢎNꢏ  
3
0.1 ꢈꢉ  
Enhanced Prꢄtectiꢄn ꢅircꢆit  
PUꢁꢁ-UP  
SUPPꢁꢂ  
RPUꢁꢁ-UP  
ꢊ.ꢋ ꢌΩ  
RS  
100 Ω  
APS110ꢀꢀ  
1
ꢀꢆꢆ  
ꢀꢃUꢄ  
ꢃUꢄ  
ꢎNꢏ  
3
ꢇꢂP  
0.1 ꢈꢉ  
ꢃUꢄ  
ꢊ.ꢍ nꢉ  
Figure 6: Typical and Enhanced  
Protection Application Circuits  
Recommended RPULL-UP ≤ 20 kΩ.  
See Power-On Behavior section.  
14  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
CHOPPER STABILIZATION  
A limiting factor for switchpoint accuracy when using Hall-effect offset causing the magnetically induced signal to recover its  
original spectrum at baseband while the DC offset becomes a  
high-frequency signal. Then, using a low-pass filter, the signal  
passes while the modulated DC offset is suppressed. Allegro’s  
innovative chopper-stabilization technique uses a high-frequency  
clock.  
technology is the small signal voltage developed across the Hall  
plate. This voltage is proportionally small relative to the offset  
that can be produced at the output of the Hall sensor. This makes  
it difficult to process the signal and maintain an accurate, reliable  
output over the specified temperature and voltage range. Chopper  
stabilization is a proven approach used to minimize Hall offset.  
The high-frequency operation allows a greater sampling rate  
that produces higher accuracy, reduced jitter, and faster signal  
processing. Additionally, filtering is more effective and results  
in a lower noise analog signal at the sensor output. Devices such  
as the APS11000 and APS11060 that use this approach have an  
extremely stable quiescent Hall output voltage, are immune to  
thermal stress, and have precise recoverability after temperature  
cycling. This technique is made possible through the use of a  
BiCMOS process which allows the use of low offset and low  
noise amplifiers in combination with high-density logic and  
sample-and-hold circuits.  
The technique, dynamic quadrature offset cancellation, removes  
key sources of the output drift induced by temperature and pack-  
age stress. This offset reduction technique is based on a signal  
modulation-demodulation process. Figure 7: Model of Chopper  
Stabilization Circuit (Dynamic Offset Cancellation) illustrates  
how it is implemented.  
The undesired offset signal is separated from the magnetically  
induced signal in the frequency domain through modulation. The  
subsequent demodulation acts as a modulation process for the  
Regulator  
Clock/Logic  
Low-Pass  
Filter  
Hall Element  
Amp  
Figure 7: Model of Chopper Stabilization Circuit  
(Dynamic Offset Cancellation)  
15  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
POWER DERATING  
The device must be operated below the maximum junction tem-  
perature, TJ(max). Reliable operation may require derating supplied  
power and/or improving the heat dissipation properties of the  
application.  
This provides the allowable increase to TJ resulting from internal  
power dissipation. Then, using equation 2 first for the output as  
shown below:  
PD(VOUT) = VOUT × IOUT = 500 mV × 20 mA = 10 mW  
Then, for the VCC supply:  
Thermal Resistance, RθJA (junction to ambient), is a figure of  
merit summarizing the ability of the application and the device to  
dissipate heat from the junction (die), through all paths to ambient  
air. RθJA is dominated by the Effective Thermal Conductivity,  
K, of the printed circuit board which includes adjacent devices  
and board layout. Thermal resistance from the die junction to  
case, RθJC, is a relatively small component of RθJA. Ambient air  
temperature, TA, and air motion are significant external factors in  
determining a reliable thermal operating point.  
PD(VCC) = VCC × ICC = 24 V × 5 mA = 120 mW  
Combine the power dissipated by the device pins:  
PD(total) = (PD(VOUT) + PD(VCC)  
)
PD(total) = (10 mW + 120 mW) = 130 mW  
Next, solve for the maximum allowable VCC for the given condi-  
tions using equation 1:  
VCC(est) = PD(total) ÷ (ICC + IOUT  
130 mW ÷ (5 mA + 20 mA)  
)
The following three equations can be used to determine operation  
points for given power and thermal conditions:  
VCC(est) =130 mW ÷ 25 mA = 5.2 V  
PD = VIN × IIN (1)  
ΔT = PD × RθJA (2)  
TJ = TA + ΔT (3)  
The result indicates that, at TA, the application and device can dis-  
sipate adequate amounts of heat at voltages ≤ VCC(est)  
.
If the application requires VCC > VCC(est) then RθJA must by  
improved. This can be accomplished by adjusting the layout, PCB  
materials, or by controlling the ambient temperature.  
Determining Junction Temperature  
For example, given common conditions: TA = 25°C, VCC = 12 V,  
Determining Maximum TA  
ICC = 2.5 mA, VOUT(SAT) = 100 mV, IOUT = 5 mA, and RθJA  
165°C/W, then:  
=
In cases where the VCC(max) level is known, and the system  
designer would like to determine the maximum allowable ambient  
temperature, TA(max), the calculations can be reversed.  
PD = (VCC × ICC) + (VOUT × IOUT) =  
(12 V × 2.5 mA) + (100 mV × 5 mA) =  
30 mW + 0.5 mW = 30.5 mW  
For example, in a worst-case scenario with conditions VCC(max)  
=
24 V, ICC(max) = 5 mA, VOUT = 500 mV, IOUT(max) = 15 mA, and  
RθJA = 228°C/W, for the LH package using equation 1, the largest  
possible amount of dissipated power is:  
ΔT = PD × RθJA = 30.5 mW × 165°C/W = 5°C  
TJ = TA + ΔT = 25°C + 5°C = 30°C  
PD = VIN × IIN  
PD = PD(VOUT) + PD(VCC) = 500 mV × 15 mA + 24 V × 5 mA  
PD = 7.5 mW + 120 mW = 127.5 mW  
Then, by rearranging equation 3:  
Determining Maximum VCC  
For a given ambient temperature (TA), the maximum allowable  
power dissipation as a function of VCC can be calculated. PD(max)  
represents the maximum allowable power level without exceeding  
TJ(max), at a selected RθJA and TA.  
,
TA(max) = TJ(max) – ΔT  
Example: VCC estimation using the conditions RθJA = 228°C/W,  
TA(max) = 165°C – (127.5 mW × 228°C/W)  
TA(max) = 165°C – 29.1°C = 135.9°C  
TA(max) = 150°C, TJ(max) = 165°C, VCC(max) = 24 V, ICC(max)  
=
5 mA, VOUT = 500 mV, and IOUT = 20 mA (output on), calculate  
the maximum allowable power level, PD(max), first using equa-  
tion 3:  
Finally, note that the TA(max) rating of the device is 150°C and  
performance is not guaranteed above this temperature for any  
power level.  
ΔT(max) = TJ(max) – TA = 165°C – 150°C = 15°C  
16  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
Package LH, 3-Pin SMD (SOT23W)  
APS11000  
+0.12  
–0.08  
2.98  
D
1.49  
4°±4°  
3
A
+0.020  
0.180  
–0.053  
D
0.96  
D
+0.10  
–0.20  
+0.19  
1.91  
–0.06  
2.40  
2.90  
0.70  
0.25 MIN  
1.00  
2
1
0.55 REF  
0.25 BSC  
0.95  
Seating Plane  
Gauge Plane  
PCB Layout Reference View  
B
Branded Face  
8X 10° REF  
1.00 ±0.13  
+0.10  
AAH  
0.05  
–0.05  
0.95 BSC  
0.40 ±0.10  
1
C
Standard Branding Reference View  
For Reference Only; not for tooling use (reference DWG-2840)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
Active Area Depth, 0.28 mm REF  
A
B
Reference land pattern layout  
All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
D
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
17  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
Package LH, 3-Pin SMD (SOT23W)  
APS11060  
+0.12  
–0.08  
2.98  
4°±4°  
3
+0.020  
0.180  
–0.053  
D
0.96  
D
+0.10  
–0.20  
+0.19  
1.91  
–0.06  
2.40  
2.90  
0.70  
0.25 MIN  
1.00  
2
1
0.55 REF  
0.25 BSC  
0.95  
PCB Layout Reference View  
A
Seating Plane  
Gauge Plane  
B
Branded Face  
8X 10° REF  
1.00 ±0.13  
+0.10  
A44  
0.05  
–0.05  
0.95 BSC  
0.40 ±0.10  
1
C
Standard Branding Reference View  
For Reference Only; not for tooling use (reference DWG-2840)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
Active Area Depth, 1.32 mm  
A
B
Reference land pattern layout  
All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
D
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
18  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
Package UA, 3-Pin SIP  
APS11000  
+0.08  
–0.05  
4.09  
45°  
B
C
E
2.04  
1.52 ±0.05  
10°  
1.44  
E
Mold Ejector  
Pin Indent  
E
+0.08  
3.02  
–0.05  
45°  
Branded  
Face  
0.79 REF  
A
AAH  
1.02  
MAX  
1
Standard Branding Reference View  
D
1
2
3
14.99 ±0.25  
+0.03  
–0.06  
0.41  
For Reference Only; not for tooling use (reference DWG-9065)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.05  
–0.07  
0.43  
Dambar removal protrusion (6X)  
A
D
Gate and tie bar burr area  
Active Area Depth, 0.50 mm REF  
Branding scale and appearance at supplier discretion  
Hall element (not to scale)  
E
1.27 NOM  
19  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
Package UA, 3-Pin SIP  
APS11060  
+0.08  
–0.05  
4.09  
45°  
B
E
2.04  
1.52 ±0.05  
10°  
C
E
Mold Ejector  
+0.08  
3.02  
Pin Indent  
–0.05  
45°  
Branded  
Face  
0.79 REF  
A
A44  
1.02  
MAX  
1
Standard Branding Reference View  
D
1
2
3
14.99 ±0.25  
+0.03  
–0.06  
0.41  
For Reference Only; not for tooling use (reference DWG-9065)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.05  
–0.07  
0.43  
Dambar removal protrusion (6X)  
Gate and tie bar burr area  
A
D
Active Area Depth, 1.27 mm  
Branding scale and appearance at supplier discretion  
Hall element (not to scale)  
E
1.27 NOM  
20  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS11000 and  
APS11060  
Vertical and Planar Hall-Effect Switches  
Revision History  
Number  
Date  
Description  
1
March 15, 2018  
July 16, 2018  
Initial release  
Added APS11000 part option; updated Magnetic Characteristics tables; other minor editorial updates  
Updated TJ(max) to 165°C, Selection Guide (page 3), Absolute Maximum Ratings footnotes (page 4), Power-  
On State (page 6), Magnetic Characteristics table (page 8), Package Thermal Characteristics (page 9),  
Magnetic Characteristic Performance chart labels (page 11), and Power Derating section (page 16).  
2
October 22, 2018  
3
4
February 7, 2020  
May 12, 2020  
Minor editorial updates  
Added “(pending confirmation)” to ASIL references.  
Copyright 2020, Allegro MicroSystems.  
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit  
improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor  
for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
21  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY