APS12200LLHALT [ALLEGRO]

High-Temperature Precision Hall-Effect Latches;
APS12200LLHALT
型号: APS12200LLHALT
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

High-Temperature Precision Hall-Effect Latches

文件: 总16页 (文件大小:1046K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APS12200, APS12210,  
and APS12230  
2
-
High-Temperature Precision Hall-Effect Latches  
FEATURES AND BENEFITS  
DESCRIPTION  
• Symmetrical latch switchpoints  
The APS12200, APS12210, and APS12230 are three-wire,  
planar Hall-effect sensor integrated circuits (ICs). These  
devices were developed in accordance with ISO 26262:2011  
and support a functional safety level of ASIL A.  
• ASIL A functional safety compliance  
• Automotive-grade ruggedness and fault tolerance  
Extended AEC-Q100 qualification  
Reverse-battery and 40 V load dump protection  
Operation from –40°C to 175°C junction temperature  
High EMC immunity, ±12 kV HBM ESD  
Output short-circuit and overvoltage protection  
Superior temperature stability  
This family of precision Hall-effect latch ICs feature extended  
AEC-Q100 qualification and are ideal for high-temperature  
operation up to 175°C junction temperatures. In addition,  
the APS12200/10/30 include a number of features designed  
specifically to maximize system robustness, such as reverse-  
battery protection, output current limiter, overvoltage, and  
EMC protection.  
Resistant to physical stress  
• Operation from unregulated supplies, 2.8 to 24 V  
• Chopper stabilization  
• Solid-state reliability  
• Industry-standard packages and pinouts  
The single silicon chip includes: a voltage regulator, a Hall  
plate, small signal amplifier, chopper stabilization, Schmitt  
trigger, and a short-circuit-protected open-drain output. A  
south pole of sufficient strength turns the output on; a north  
pole of sufficient strength is necessary to turn the output off.  
The devices include on-board transient protection for all pins,  
permittingoperationdirectlyfromavehiclebatteryorregulator  
with supply voltages from 2.8 to 24 V.  
PACKAGES:  
Not to scale  
3-pin SIP  
(suffix UA)  
Twopackagestylesprovideachoiceofthrough-holeorsurface  
mounting. Package type LH is a modified 3-pin SOT23W  
surface-mount package, while UAis a three-pin ultramini SIP  
for through-hole mounting. Both packages are lead (Pb) free  
and RoHS compliant, with 100% matte-tin-plated leadframes.  
3-pin SOT23W  
(suffix LH)  
Functional Block Diagram  
VCC  
R
EGULATOR  
TO ALL SUBCIRCUITS  
L
OW-PASS  
ILTER  
S
CHMITT  
RIGGER  
VOUT  
F
T
Hall  
Element  
S
AMPLE, HOLD  
&
H
ALL  
C
ONTROL  
URRENT  
AVERAGING  
A
MP  
.
C
L
IMIT  
GND  
APS12200-10-30-DS, Rev. 1  
MCO-0000382  
February 11, 2019  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
SELECTION GUIDE  
Part Number  
Packing[1]  
Mounting  
Branding  
A14  
BRP (Min) BOP (Max)  
APS12200LLHALX  
APS12200LLHALT[2]  
APS12200LUAA  
13-in. reel, 10000 pieces/reel 3-pin SOT23W surface mount  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SIP through hole  
A14  
–35 G  
–80 G  
35 G  
80 G  
A15  
APS12210LLHALX  
APS12210LLHALT[2]  
APS12210LUAA  
13-in. reel, 10000 pieces/reel 3-pin SOT23W surface mount  
A16  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SIP through hole  
A16  
A17  
APS12230LLHALX  
APS12230LLHALT[2]  
APS12230LUAA  
13-in. reel, 10000 pieces/reel 3-pin SOT23W surface mount  
A19  
RoHS  
COMPLIANT  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SIP through hole  
A19  
–180 G  
180 G  
A20  
[1] Contact Allegro for additional packing options.  
[2] Available through authorized Allegro distributors only.  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Forward Supply Voltage [1]  
Reverse Supply Voltage [1]  
Output Off Voltage [1]  
Symbol  
Notes  
Rating  
Units  
V
VCC  
30  
–18  
30  
VRCC  
VOUT  
IOUT  
V
V
Output Current [2]  
60  
mA  
mA  
Reverse Output Current  
Magnetic Flux Density [3]  
IROUT  
B
–50  
Unlimited  
165  
°C  
°C  
°C  
kV  
kV  
kV  
Maximum Junction Temperature  
Storage Temperature  
TJ(max)  
For 500 hours  
175  
Tstg  
–65 to 170  
±12  
VESD(HBM)  
VESD(CDM)  
VESD(SYS)  
Human Body Model according to AEC-Q100-002  
Charged Device Model according to AEC-Q100-011  
ISO 10605, System Level  
ESD Voltage [4]  
±1  
±15  
[1] This rating does not apply to extremely short voltage transients such as load dump and/or ESD. Those events have individual ratings,  
specific to the respective transient voltage event.  
[2] Through short-circuit current limiting device.  
[3] Guaranteed by design.  
[4] System level ESD rating based on characterization performed under ISO 10605:2008 (2 kΩ / 330 pF) with the application circuit  
shown in Figure 4.  
2
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
PINOUT DIAGRAMS AND TERMINAL LIST TABLE  
3
2
1
3
1
2
Package UA  
Package LH  
Terminal List  
Number  
Name  
Description  
Package LH  
Package UA  
VCC  
VOUT  
GND  
Connects power supply to chip  
Output from circuit  
Ground  
1
2
3
1
3
2
VSUPPLY  
RLOAD  
=
1 k  
APS122XX  
1
2
VCC  
VOUT  
VOUT  
CBYP  
=
GND  
0.1 µF  
3
Figure 1: Typical Application Diagram  
3
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
ELECTRICAL CHARACTERISTICS: Valid over full operating voltage, ambient temperature range TA = –40°C to 150°C, and with  
BYP = 0.1 µF (unless otherwise specified)  
C
Characteristics  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit [2]  
ELECTRICAL CHARACTERISTICS  
Forward Supply Voltage  
Supply Current  
VCC  
ICC  
Operating, TJ < 175°C  
2.8  
1
2
24  
3
V
mA  
µA  
mV  
V
Output Leakage Current  
Output Saturation Voltage  
Output Off Voltage  
IOUTOFF  
VOUTOFF = 24 V, B < BRP  
10  
500  
24  
VOUT(SAT) IOUT = 20 mA, B > BOP  
200  
VOUTOFF  
tON  
B < BRP  
VCC ≥ VCC(min), B < BRP(min) – 10 G,  
B > BOP(max) + 10 G  
Power-On Time  
25  
µs  
[3]  
POS  
VCC ≥ VCC(min), t < tON  
Low  
800  
0.2  
Power-On State, Output  
Chopping Frequency  
fC  
tr  
2
2
kHz  
µs  
[4]  
RLOAD = 1 kΩ, CL = 20 pF  
RLOAD = 1 kΩ, CL = 20 pF  
Output Rise Time  
[4]  
tf  
0.1  
µs  
Output Fall Time  
TRANSIENT PROTECTION CHARACTERISTICS  
Output Short-Circuit Current Limit  
Output Zener Clamp Voltage  
Reverse Battery Current  
IOM  
VZoutput  
IRCC  
30  
30  
60  
mA  
V
IOUT = 3 mA, TA = 25°C, Output Off  
VRCC = –18 V, TA = 25°C  
–5  
mA  
V
Supply Zener Clamp Voltage  
MAGNETIC CHARACTERISTICS  
VZ  
ICC = ICC(max) + 3 mA, TA = 25°C  
30  
APS12200  
APS12210  
APS12230  
APS12200  
APS12210  
APS12230  
APS12200  
APS12210  
APS12230  
BOP + BRP  
(BOP + BRP) / 2  
5
25  
20  
50  
35  
80  
G
G
G
G
G
G
G
G
G
G
G
Operate Point  
Release Point  
Hysteresis  
BOP  
100  
–35  
–80  
–180  
10  
150  
–20  
–50  
–150  
40  
180  
–5  
BRP  
–25  
–100  
70  
BHYS  
50  
100  
300  
160  
360  
27.5  
13.75  
200  
–27.5  
–13.75  
Symmetry  
BSYM  
BOFF  
Magnetic Offset  
[1] Typical data are at TA = 25°C and VCC = 12 V.  
[2] 1 G (gauss) = 0.1 mT (millitesla).  
[3] Guaranteed by device design and characterization.  
[4] CL = oscilloscope probe capacitance.  
4
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information  
Characteristic  
Symbol  
Test Conditions  
Value  
Units  
Package LH, 1-layer PCB with copper limited to solder pads  
228  
°C/W  
2
Package LH, 2-layer PCB with 0.463 in. of copper area each side  
connected by thermal vias  
Package Thermal Resistance  
RθJA  
110  
165  
°C/W  
°C/W  
Package UA, 1-layer PCB with copper limited to solder pads  
Power Derating Curve  
TJ(max) = 175°C; ICC = ICC(max), IOUT = 0 mA (Output Off)  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VCC(max)  
Package LH, 2-layer PCB  
(RθJA = 110 °C/W)  
Package UA, 1-layer PCB  
(RθJA = 165 °C/W)  
Package LH, 1-layer PCB  
(RθJA = 228 °C/W)  
8
7
6
5
4
VCC(min)  
3
2
25  
45  
65  
85 105 125 145 165 185  
TJ(max)  
Temperature (°C)  
Power Dissipation versus Ambient Temperature  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
Package LH, 2-layer PCB  
(RθJA = 110°C/W)  
Package UA, 1-layer PCB  
(RθJA = 165°C/W)  
800  
700  
600  
500  
400  
300  
200  
100  
Package LH, 1-layer PCB  
(RθJA = 228°C/W)  
0
25  
45  
65  
85  
105 125 145 165 185  
Temperature (°C)  
5
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
CHARACTERISTIC PERFORMANCE DATA  
Electrical Characteristics  
Aꢀerage Sꢁꢂꢂly Cꢁrrent ꢀersꢁs Sꢁꢂꢂly ꢅoltage  
Aꢀerage Sꢁꢂꢂly Cꢁrrent ꢀersꢁs Amꢃient ꢄemꢂeratꢁre  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
150  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
VCC (V)  
TA (°C)  
Aꢀerage Low ꢁꢂtꢃꢂt ꢄoltage ꢀersꢂs Sꢂꢃꢃly ꢄoltage ꢇor ꢈꢁUꢆ ꢉ ꢊ0 mA  
Aꢀerage Low ꢁꢂtꢃꢂt ꢄoltage ꢀersꢂs Amꢅient ꢆemꢃeratꢂre ꢇor ꢈꢁUꢆ ꢉ ꢊ0 mA  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA (°C)  
-40  
VCC (V)  
2.8  
12  
24  
25  
150  
0
0
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
VCC (V)  
TA (°C)  
6
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
CHARACTERISTIC PERFORMANCE DATA (continued)  
APS12200 Magnetic Characteristics  
Average Operate Point versus Ambient Temperature  
Average Operate Point versus Supply Voltage  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Release Point versus Ambient Temperature  
Average Release Point versus Supply Voltage  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Switchpoint Hysteresis versus Supply Voltage  
Average Switchpoint Hysteresis versus Ambient Temperature  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
VCC (V)  
2.8  
TA (°C)  
-40  
12  
25  
24  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
Average BOP + BRP Symmetry versus Supply Voltage  
Average BOP + BRP Symmetry versus Ambient Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
VCC (V)  
2.8  
TA (°C)  
-40  
0
12  
0
25  
-5  
-5  
24  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
150  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
7
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
CHARACTERISTIC PERFORMANCE DATA (continued)  
APS12210 Magnetic Characteristics  
Average Operate Point versus Ambient Temperature  
Average Operate Point versus Supply Voltage  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Release Point versus Ambient Temperature  
Average Release Point versus Supply Voltage  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Switchpoint Hysteresis versus Supply Voltage  
Average Switchpoint Hysteresis versus Ambient Temperature  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
VCC (V)  
2.8  
TA (°C)  
-40  
12  
25  
24  
80  
80  
150  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
Average BOP + BRP Symmetry versus Supply Voltage  
Average BOP + BRP Symmetry versus Ambient Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
VCC (V)  
2.8  
TA (°C)  
-40  
0
12  
0
25  
-5  
-5  
24  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
8
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
CHARACTERISTIC PERFORMANCE DATA (continued)  
APS12230 Magnetic Characteristics  
Average Operate Point versus Ambient Temperature  
Average Operate Point versus Supply Voltage  
180  
175  
170  
165  
160  
155  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
180  
175  
170  
165  
160  
155  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Release Point versus Ambient Temperature  
Average Release Point versus Supply Voltage  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
-175  
-180  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
-175  
-180  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Switchpoint Hysteresis versus Supply Voltage  
Average Switchpoint Hysteresis versus Ambient Temperature  
360  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
360  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
VCC (V)  
2.8  
TA (°C)  
-40  
12  
25  
24  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
Average BOP + BRP Symmetry versus Supply Voltage  
Average BOP + BRP Symmetry versus Ambient Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
VCC (V)  
2.8  
TA (°C)  
-40  
0
12  
0
25  
-5  
-5  
24  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
150  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140 160  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
9
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
FUNCTIONAL DESCRIPTION  
OPERATION  
POWER-ON BEHAVIOR  
The output of these devices switches low (turns on) when a mag-  
netic field perpendicular to the Hall element exceeds the operate  
Device power-on occurs once tON has elapsed. During the  
time prior to tON, and after VCC ≥ VCC(min), the output state is  
point threshold, BOP (see Figure 2). After turn-on, the output volt- VOUT(SAT) (Low). After tON has elapsed, the output will corre-  
age is VOUT(SAT). The output transistor is capable of continuously spond with the applied magnetic field for B > BOP or B < BRP.  
sinking up to 30 mA. When the magnetic field is reduced below  
the release point, BRP, the device output goes high (turns off)  
to VOUTOFF. The difference in the magnetic operate and release  
points is the hysteresis, BHYS, of the device. This built-in hyster-  
esis allows clean switching of the output even in the presence of  
external mechanical vibration and electrical noise.  
See Figure 3 for an example.  
Powering-on the device in the hysteresis range (less than BOP and  
higher than BRP) will give an output state of VOUT(SAT). The cor-  
rect state is attained after the first excursion beyond BOP or BRP  
.
POS  
Removal of the magnetic field will leave the device output  
latched on if the last crossed switchpoint is BOP, or latched off if  
the last crossed switch point is BRP.  
B > BOP, BRP < B < BOP  
V
B < BRP  
VOUTOFF  
Output State  
Undefined for  
V+  
POS  
VCC<VCC(min)  
VOUTOFF  
VOUT(SAT )  
t
t
V
VCC(min)  
VOUT(SAT)  
B+  
0
0
B–  
0
tON  
BHYS  
Figure 3: Power-On Timing Diagram  
Figure 2: Switching Behavior of Latches  
On the horizontal axis, the B+ direction indicates increasing  
south polarity magnetic field strength, and the B– direction  
indicates increasing north polarity field strength.  
10  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
VPULL-UP  
VSUPPLY  
FUNCTIONAL SAFETY  
2
-
The APS12200, APS12210, and APS12230  
were designed in accordance with the interna-  
A
RLOAD  
1 k  
=
RS =  
100 Ω  
APS122XX  
tional standard for automotive functional safety, ISO 26262:2011.  
These products achieve an ASIL (Automotive Safety Integrity  
Level) rating of ASILA according to the standard. The APS12200,  
APS12210, and APS12230 are all classified as a SEooC (Safety  
Element out of Context) and can be easily integrated into safety-  
critical systems requiring higher ASIL ratings that incorporate  
external diagnostics or use measures such as redundancy. Safety  
documentation will be provided to support and guide the integra-  
tion process. For further information, contact your local Allegro  
field applications engineer or sales representative.  
VOUT  
1
2
VCC  
VOUT  
A
GND  
3
CBYP  
0.1 µF  
=
COUT  
=
4.7 nF  
A
RS and COUT are recommended for maximum  
robustness in an automotive environment.  
Figure 4: Enhanced Protection Circuit  
APPLICATIONS  
These devices are sensitive in the direction perpendicular to the  
branded face, as depicted in Figure 5. For further information,  
extensive applications information on magnets and Hall-effect  
sensors is available in:  
It is strongly recommended that an external bypass capacitor be  
connected (in close proximity to the Hall element) between the  
supply and ground of the device to guarantee correct performance  
under harsh environmental conditions and to reduce noise from  
internal circuitry. As is shown in Figure 1: Typical Application  
Circuit, a 0.1 µF capacitor is required. In applications where  
maximum robustness is required, such as in an automobile, addi-  
tional measures may be taken. In Figure 4: Enhanced Protection  
Circuit, a resistor in series with the VCC pin and a capacitor on  
the VOUT pin enhance the EMC immunity of the device. It is  
up to the user to fully qualify the Allegro sensor IC in their end  
system to ensure they achieve their system requirements.  
• Hall-Effect IC Applications Guide, AN27701,  
• Hall-Effect Devices: Guidelines for Designing Subassemblies  
Using Hall-Effect Devices AN27703.1  
• Soldering Methods for Allegros Products – SMD and  
Through-Hole, AN26009  
All are provided on the Allegro website:  
www.allegromicro.com  
Figure 5: Sensing Configurations  
11  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
offset, causing the magnetically induced signal to recover its orig-  
CHOPPER STABILIZATION  
inal spectrum at baseband while the DC offset becomes a high-  
frequency signal. Then, using a low-pass filter, the signal passes  
while the modulated DC offset is suppressed. Allegro’s innova-  
tive chopper stabilization technique uses a high-frequency clock.  
The high-frequency operation allows a greater sampling rate  
that produces higher accuracy, reduced jitter, and faster signal  
processing. Additionally, filtering is more effective and results in  
a lower noise analog signal at the sensor output. Devices such as  
the APS12200, APS12210, and APS12230 that use this approach  
have an extremely stable quiescent Hall output voltage, are  
immune to thermal stress, and have precise recoverability after  
temperature cycling. This technique is made possible through the  
use of a BiCMOS process which allows the use of low offset and  
low noise amplifiers in combination with high-density logic and  
sample-and-hold circuits.  
A limiting factor for switchpoint accuracy when using Hall-effect  
technology is the small signal voltage developed across the Hall  
plate. This voltage is proportionally small relative to the offset  
that can be produced at the output of the Hall sensor. This makes  
it difficult to process the signal and maintain an accurate, reliable  
output over the specified temperature and voltage range. Chopper  
stabilization is a proven approach used to minimize Hall offset.  
The Allegro technique, dynamic quadrature offset cancellation,  
removes key sources of the output drift induced by temperature  
and package stress. This offset reduction technique is based on a  
signal modulation-demodulation process. Figure 6 illustrates how  
it is implemented.  
The undesired offset signal is separated from the magnetically  
induced signal in the frequency domain through modulation. The  
subsequent demodulation acts as a modulation process for the  
Regulator  
Clock/Logic  
Low-Pass  
Filter  
Hall Element  
Amp  
Figure 6: Model of Chopper Stabilization  
(Dynamic Offset Cancellation)  
12  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
For example, given common conditions such as: TA= 25°C,  
POWER DERATING  
The device must be operated below the maximum junction tem-  
perature of the device, TJ(max). Under certain combinations of  
peak conditions, reliable operation may require derating supplied  
power or improving the heat dissipation properties of the appli-  
cation. This section presents a procedure for correlating factors  
affecting operating TJ. (Thermal data is also available on the  
Allegro MicroSystems website.)  
VCC = 12 V, ICC = 2 mA, VOUT = 185 mV, IOUT = 20 mA (output  
on), and RθJA = 165°C/W, then:  
PD = (VCC × ICC) + (VOUT × IOUT) =  
(12 V × 2 mA) + (185 mV × 20 mA) =  
24 mW + 3.7 mW = 27.7 mW  
ΔT = PD × RθJA = 27.7 mW × 165°C/W = 4.6°C  
TJ = TA + ΔT = 25°C + 4.6°C = 29.6°C  
The Package Thermal Resistance, RθJA, is a figure of merit sum-  
marizing the ability of the application and the device to dissipate  
heat from the junction (die), through all paths to the ambient air.  
Its primary component is the Effective Thermal Conductivity, K,  
of the printed circuit board, including adjacent devices and traces.  
Radiation from the die through the device case, RθJC, is a relatively  
small component of RθJA. Ambient air temperature, TA, and air  
motion are significant external factors, damped by overmolding.  
A worst-case estimate, PD(max), represents the maximum allow-  
able power level (VCC(max), ICC(max)), without exceeding  
TJ(max), at a selected RθJA  
.
For example, given the conditions RθJA = 228°C/W, TJ(max) =  
175°C, VCC(max) = 24 V, ICC(max) = 4 mA, VOUT = 500 mV,  
and IOUT = 25 mA (output on), the maximum allowable operating  
ambient temperature can be determined.  
The resulting power dissipation capability directly reflects upon  
the ability of the device to withstand extreme operating condi-  
tions. The junction temperature mission profile specified in the  
Absolute Maximum Ratings table designates a total operating life  
capability based on qualification for the most extreme conditions,  
where TJ may reach 175°C.  
The power dissipation required for the output is shown below:  
PD(VOUT) = VOUT × IOUT = 500 mV × 25 mA = 12.5 mW  
The power dissipation required for the IC supply is shown below:  
PD(VCC) = VCC × ICC = 24 V × 4 mA = 96 mW  
The silicon IC is heated internally when current is flowing into  
the VCC terminal. When the output is on, current sinking into the  
VOUT terminal generates additional heat. This may increase the  
junction temperature, TJ, above the surrounding ambient tempe-  
rature. The APS12200, APS12210, and APS12230 are permitted  
to operate up to TJ = 175°C. As mentioned above, an operating  
device will increase TJ according to equations 1, 2, and 3 below.  
This allows an estimation of the maximum ambient operating  
temperature.  
Next, by inverting using equation 2:  
ΔT = PD × RθJA = [PD(VOUT) + PD(VCC)] × 228°C/W =  
(12.5 mW + 96 mW) × 228°C/W =  
108.5 mW × 228°C/W = 24.7°C  
Finally, by inverting equation 3 with respect to voltage:  
TA(est) = TJ(max) – ΔT = 175°C – 24.7°C = 150.3°C  
In the above case, there is sufficient power dissipation capability  
to operate up to TA(est). The example indicates that TA(max)  
can be as high as 150.3°C without exceeding TJ(max). Howe-  
ver, the TA(max) rating of the devices is 150°C; the APS12200,  
APS12210, and APS12230 performance is not guaranteed above  
TA = 150°C.  
PD = VIN  
I
(1)  
(2)  
(3)  
×
IN  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀΔT = PD  
R
θJA  
×
TJ = TA + ΔT  
13  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
Package LH, 3-Pin (SOT-23W)  
+0.12  
–0.08  
2.98  
3
D
1.49  
4°±4°  
A
+0.020  
–0.053  
0.180  
D
0.96  
D
+0.10  
2.90  
+0.19  
–0.06  
2.40  
1.91  
–0.20  
0.70  
0.25 MIN  
1.00  
2
1
0.55 REF  
0.25 BSC  
0.95  
PCB Layout Reference View  
Seating Plane  
Gauge Plane  
B
Branded Face  
8X 10° REF  
C
Standard Branding Reference View  
1.00 ±0.13  
+0.10  
0.05  
A14  
–0.05  
0.95 BSC  
0.40 ±0.10  
1
For Reference Only; not for tooling use (reference dwg. 802840)  
Dimensions in millimeters  
APS12200LLHA  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
Active Area Depth, 0.28 mm REF  
A
B
A16  
A19  
Reference land pattern layout  
All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
D
1
1
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
APS12210LLHA  
APS12230LLHA  
14  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
Package UA, 3-Pin SIP  
+0.08  
4.09  
–0.05  
For Reference Only; not for tooling use (reference DWG-9065)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
45°  
B
Exact case and lead configuration at supplier discretion within limits shown  
C
E
Dambar removal protrusion (6X)  
Gate and tie bar burr area  
A
2.04  
B
C
D
1.52 ±0.05  
Active Area Depth, 0.50 mm REF  
10°  
1.44  
E
Branding scale and appearance at supplier discretion  
Hall element (not to scale)  
Mold Ejector  
Pin Indent  
E
+0.08  
3.02  
E
–0.05  
45°  
Branded  
Face  
Standard Branding Reference View  
A15  
D
0.79 REF  
A
1.02  
MAX  
1
1
2
3
APS12200LUAA  
14.99 ±0.25  
+0.03  
–0.06  
0.41  
A17  
1
+0.05  
–0.07  
APS12210LUAA  
0.43  
A20  
1
APS12230LUAA  
1.27 NOM  
15  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS12200,  
APS12210,  
and APS12230  
High-Temperature Precision Hall-Effect Latches  
Revision History  
Number  
Date  
March 6, 2018  
February 11, 2019  
Description  
1
Initial release  
Minor editorial updates  
Copyright ©2019, Allegro MicroSystems, LLC  
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to  
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that  
the information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its  
use; nor for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
16  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY