APS12450LLHALX-0SLA [ALLEGRO]

Three-Wire Hall-Effect Latch with Advanced Diagnostics;
APS12450LLHALX-0SLA
型号: APS12450LLHALX-0SLA
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Three-Wire Hall-Effect Latch with Advanced Diagnostics

输出元件 传感器 换能器
文件: 总23页 (文件大小:1158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APS12450  
2
-
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
FEATURES AND BENEFITS  
• Functional safety  
DESCRIPTION  
The APS12450 three-wire planar Hall-effect sensor integrated  
circuits(ICs)weredevelopedinaccordancewithISO26262:2011  
as a hardware safety element out of context with ASIL B  
capability (pending assessment) for use in automotive safety-  
related systems when integrated and used in the manner  
prescribed in the applicable safety manual and datasheet. The  
enhanced three-wire interface provides interconnect open/  
short diagnostics and a fault state to communicate diagnostic  
information while maintaining compatibility with legacy  
three-wire systems. The continuous background diagnostics  
are transparent to the host system and results in a reduced  
fault tolerant time.  
Developed in accordance with ISO 26262:2011 to meet  
ASIL B requirements (pending assessment)  
Integrated background diagnostics for:  
Signal path  
Regulator  
Hall plate and bias  
Overtemperature detection  
Nonvolatile memory  
Defined fault state  
• Multiple product options  
Magnetic polarity, switchpoints, and hysteresis  
Temperature coefficient  
Output polarity  
TheAPS12450productoptionsincludemagneticswitchpoints,  
temperature coefficient, and output polarity. The response can  
be matched to SmCo, NdFeB, or low-cost ferrite magnets. For  
situations where a functionally equivalent three-wire switch  
device is preferred, refer to the APS11450.  
• Reduces module bill-of-materials (BOM) and assembly cost  
ASIL B sensor can replace redundant sensors  
Integrated overvoltage clamp and reverse-battery diode  
Continued on the next page…  
Continued on the next page…  
PACKAGES  
TYPICAL APPLICATIONS  
• Automotive and industrial safety systems  
• Seat/window motors  
3-pin SOT23-W (LH)  
3-pin ultramini SIP (UA)  
• Sun roof/convertible top/tailgate/liftgate actuation  
• Brake and clutch by wire actuators  
• Engine management actuators  
• Electric power steering (EPS)  
• Transmission shift actuator  
Not to scale  
VCC  
REGULATOR  
To All Subcircuits  
Schmitt Output  
Low-Pass  
Filter  
VOUT  
(Internal)  
O
UTPUT  
CONTROL  
S
AMPLE, HOLD  
&
H
AMALPL  
.
SYSTEM DIAGNOSTICS  
A
VERAGING  
CLOCK LOGIC  
GND  
Functional Block Diagram  
APS12450-DS, Rev. 1  
MCO-0000562  
April 23, 2019  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
FEATURES AND BENEFITS (continued)  
• Automotive-grade ruggedness and fault tolerance  
Extended AEC-Q100 Grade 0 qualification  
Operation to 175°C junction temperature  
3 to 30 V operating voltage range  
DESCRIPTION (continued)  
APS12450 sensors are engineered to operate in the harshest  
environmentswithminimalexternalcomponents.Theyarequalified  
beyond the requirements of AEC-Q100 Grade 0 and will survive  
extended operation at 175°C junction temperature.  
±8 kV HBM ESD  
Overtemperature indication  
These monolithic ICs include on-chip reverse-battery protection,  
overvoltage protection (e.g., 40 V load dump), ESD protection,  
overtemperature detection, and an internal voltage regulator for  
operation directly from an automotive battery bus. These integrated  
features reduce the end-product bill-of-materials (BOM) and  
assembly cost.  
Packageoptionsincludeindustry-standardsurface-mountSOT(LH)  
and through-hole SIP (UA) packages. Both packages are RoHS-  
compliantandlead(Pb)freewith100%matte-tin-platedleadframes.  
SELECTION GUIDE [1]  
Magnetic  
Operate Point,  
BOP (typ)  
Output Polarity  
Temperature  
Coefficient  
Part Number  
Package  
Packing  
(B > BOP  
)
APS12450LLHALX-0SLA  
APS12450LLHALT-0SLA  
APS12450LUAA-0SLA  
APS12450LLHALX-1SLA  
APS12450LLHALT-1SLA  
APS12450LUAA-1SLA  
APS12450LLHALX-3SLA  
APS12450LLHALT-3SLA  
APS12450LUAA-3SLA  
3-pin SOT23W surface mount 13-in. reel, 10,000 pieces/reel  
3-pin SOT23W surface mount  
3-pin SIP through-hole  
7-in. reel, 3000 pieces/reel  
bulk, 500 pieces/bag  
Low  
0%/°C  
0%/°C  
0%/°C  
22 G  
50 G  
3-pin SOT23W surface mount 13-in. reel, 10,000 pieces/reel  
3-pin SOT23W surface mount  
3-pin SIP through-hole  
7-in. reel, 3000 pieces/reel  
bulk, 500 pieces/bag  
Low  
Low  
3-pin SOT23W surface mount 13-in. reel, 10,000 pieces/reel  
3-pin SOT23W surface mount  
3-pin SIP through-hole  
7-in. reel, 3000 pieces/reel  
bulk, 500 pieces/bag  
150 G  
[1] Contact Allegro MicroSystems for options not listed in the selection guide.  
RoHS  
COMPLIANT  
2
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
ꢀoꢁꢂlete Part  
ꢃꢄꢁꢅer ꢆorꢁat  
Allegro Iden�fier (Device Family)  
APS – Digital Posion Sensor  
Allegro Device Number  
12450 – ASIL B Hall-eect Latch  
Conguraon Opons  
-
A P S 1 2 4 5 0  
L L H A L T 0 S L C  
Temperature Coecient  
A – Flat  
B – -0.035 %/°C  
C – -0.12 %/°C  
D – -0.2 %/°C  
Output Polarity for B > BOP  
H – High (Output O)  
L – Low (Output On)  
Operang Mode  
S – Unipolar South Sensing  
N – Unipolar North Sensing  
Device Switch Threshold Magnitude  
0 – 22 G BOP, -22 G BRP (typ.)  
1 – 50 G BOP, -50 G BRP (typ.)  
3 – 150 G BOP, -150 G BRP (typ.)  
Instrucons (Packing)  
LT – 7-in. reel, 3,000 pieces/reel (LH Only)  
LX – 13-in. reel, 10,000 pieces/reel (LH Only)  
TN – 13-in. reel, 4,000 pieces/reel (UA Only)  
(no opon code) – bulk, 500 pieces/bag (UA only)  
Package Designaon  
LHA – 3-pin SOT23W Surface Mount  
UAA – 3-pin SIP Through-Hole  
Ambient Operang Temperature Range  
L – -40°C to +150°C  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
Notes  
Rating  
35  
Unit  
V
Supply Voltage [2]  
VCC  
VRCC  
Reverse Supply Voltage  
Forward Output Voltage  
Reverse Output Voltage  
Output Current Sink  
–30  
V
VOUT  
30  
V
VROUT  
IOUT(SINK)  
–0.3  
12  
V
VCC to VOUT  
For 500 hours  
mA  
°C  
°C  
°C  
165  
Maximum Junction Temperature  
Storage Temperature  
TJ(MAX)  
Tstg  
175  
–65 to 170  
[2] This rating does not apply to extremely short voltage transients such as load dump and/or ESD. Those events have individual ratings  
specific to the respective transient voltage event. Contact your local field applications engineer for information on EMC test results.  
3
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
PINOUT DIAGRAMS AND TERMINAL LIST  
3
1
3
1
LH Package, 3-Pin SOT23W Pinout  
UA Package, 3-Pin SIP Pinout  
Terminal List Table  
Pin Number  
Name  
Function  
LH  
1
UA  
1
VCC  
VOUT  
GND  
Supply voltage  
Output  
2
3
3
2
Ground  
4
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
OPERATING CHARACTERISTICS: Valid over full operating voltage and ambient temperature ranges for TJ < TJ(max),  
unless otherwise specified  
Characteristics  
SUPPLY AND STARTUP  
Supply Voltage [2]  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
VCC  
Operating, TJ < 165°C  
3.0  
30  
V
Supply Current  
ICC  
4.5  
mA  
VCC > VCC(min), B < BRP(min) – 10 G,  
B > BOP(max) + 10 G  
Power-On Time [3]  
ton  
150  
µs  
Power-On State  
Output Rise Time  
Output Fall Time  
Output On Voltage  
Output Off Voltage  
POS  
tRISE  
t < ton(max)  
VOUT(FAULT)  
2
2
4
4
15  
15  
30  
90  
µs  
µs  
%
%
See Applications Circuit, Figure 9;  
VPU = VCC, RPU = 3 kΩ, COUT = 1 nF, IOUT < 12 mA  
tFALL  
VOUT(LOW)  
VOUT(HIGH)  
10  
70  
20  
80  
Output ratiometric to VPU  
VPU = VCC, τ < 3 µs [5], IOUT < 12 mA  
;
Overshoot percentage relative to VPU (see Figure 8);  
VOUT(HIGH)OVER  
tVOUT(H)OVER  
2
5
%
VPU = VCC, τ < 3 µs [5], IOUT < 12 mA  
Output Off Voltage Overshoot [4]  
Duration of output voltage overshoot (VOUT(HIGH)OVER  
)
µs  
ON-BOARD PROTECTION  
Fault Reaction Time  
tDIAG  
25  
2
60  
µs  
Diagnostics Fault Retry Time [6]  
tDIAGF  
ms  
Fault Mode Output Voltage  
(Fault State)  
> VOUT(HIGH)  
VOUT(FAULT)  
VPU = VCC, τ < 3 µs, IOUT < 12 mA  
VPU  
V
MAX  
Overtemperature Shutdown  
Overtemperature Hysteresis  
TSD  
Temperature increasing  
205  
25  
°C  
°C  
TJHYS  
[1] Typical data is at TA = 25°C and VCC = 12 V and is for design information only.  
[2]  
V
represents the voltage between the VCC pin and the GND pin.  
CC  
[3] Power-On Time (tON) is measured from VCC = VCC(min) to 50% of the output transition from VPU to final value. Adding a bypass capacitor will  
increase Power-On Time.  
[4] The overshoot specification pertains only to conditions where the overshoot is greater than the VOUT(HIGH)MAX specification.  
[5]  
τ is the time constant of the RC circuit; τ = RPU × COUT  
The diagnostics fault retry repeats continuously until a fault condition is no longer observed. See Diagnostics Mode Operation section for details.  
.
[6]  
TRANSIENT PROTECTION CHARACTERISTICS: Valid for TA = 25°C and CBYP = 0.1 µF, unless otherwise specified  
Characteristics  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
PROTECTION  
Forward Supply Zener  
Clamp Voltage  
VZ  
ICC(max) + 3 mA  
35  
V
Reverse Supply Zener  
Clamp Voltage  
VRCC  
ICC = –1 mA  
–30  
–5  
V
Reverse Supply Current  
IRCC  
VRCC = –30 V  
mA  
5
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
MAGNETIC CHARACTERISTICS: Valid over full operating voltage and ambient temperature ranges for TJ < TJ(max),  
unless otherwise specified  
Characteristics  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
0
Max.  
Unit [2]  
%/°C  
%/°C  
%/°C  
%/°C  
kHz  
G
(A) Flat  
(B) SmCo  
(C) NdFeB  
(D) Ferrite  
–0.035  
–0.12  
–0.2  
10  
Sensitivity Temperature  
Coefficient  
Relative to sensitivity  
at 25°C  
TCSENS  
Analog Signal Bandwidth  
Operate Point  
f(-3dB)  
APS12450–0SxA  
APS12450–1SxA  
APS12450–3SxA  
APS12450–0SxA  
APS12450–1SxA  
APS12450–3SxA  
APS12450–0SxA  
APS12450–1SxA  
APS12450–3SxA  
BOP + BRP  
5
22  
40  
90  
180  
–5  
–15  
–100  
80  
180  
360  
30  
BOP  
15  
100  
–40  
–90  
–180  
10  
30  
200  
-30  
50  
G
150  
–22  
–50  
–150  
45  
G
G
Release Point  
Hysteresis  
BRP  
G
G
G
BHYS  
100  
300  
G
G
Symmetry  
Jitter [3]  
BSYM  
G
BOP = 22 G, B = 100 GPK-PK, 1000 Hz  
0.25  
%
[1] Typical data is at TA = 25°C and VCC = 12 V, unless otherwise noted; for design information only.  
[2] 1 G (gauss) = 0.1 mT (millitesla).  
[3] Output edge repeatability as a percentage of the period.  
THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information  
Characteristic  
Symbol  
Test Conditions*  
Value  
Unit  
Package LH, on 1-layer PCB based on JEDEC standard  
228  
110  
165  
°C/W  
Package Thermal Resistance  
RθJA  
Package LH, on 2-layer PCB with 0.463 in.2 of copper area each side  
Package UA, on 1-layer PCB with copper limited to solder pads  
°C/W  
°C/W  
*Additional thermal information available on the Allegro website.  
6
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
CHARACTERISTIC PERFORMANCE DATA  
VOUT(HIGH) vs. TA  
VOUT(HIGH) vs. VCC  
90  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
TA (°C)  
-40  
VCC (V)  
3
25  
150  
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
V
OUT(LOW) vs. TA  
VOUT(LOW) vs. VCC  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
TA (°C)  
-40  
VCC (V)  
3
25  
150  
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
VOUT(FAULT) vs. TA  
V
OUT(FAULT) vs. VCC  
102  
100  
98  
102  
100  
98  
96  
96  
TA (°C)  
-40  
94  
94  
VCC (V)  
92  
92  
25  
3
150  
30  
90  
90  
0
5
10  
15  
20  
25  
30  
35  
-50  
-20  
10  
40  
70  
100  
130  
160  
Supply Voltage, VCC (V)  
Ambient Temperature, TA (°C)  
tDIAGF vs. TA  
tDIAGF vs. VCC  
4
3.5  
3
4
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
TA (°C)  
-40  
VCC (V)  
3
25  
0.5  
0
0.5  
0
30  
150  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
7
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
CHARACTERISTIC PERFORMANCE DATA (continued)  
ICC vs. TA  
ICC vs. VCC  
4.5  
4.5  
4
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
VCC (V)  
3
TA (°C)  
-40  
1.5  
1
1.5  
1
12  
24  
30  
25  
0.5  
0
0.5  
0
150  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
ton vs. TA  
tRISE & tFALL vs. TA  
150  
135  
120  
105  
90  
15  
12.5  
10  
7.5  
5
75  
60  
45  
30  
2.5  
0
Fall  
15  
Rise  
0
-50  
-20  
10  
40  
70  
100  
130  
160  
-50  
-20  
10  
40  
70  
100  
130  
160  
Ambient Temperature, TA (°C)  
Ambient Temperature, TA (°C)  
8
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
CHARACTERISTIC PERFORMANCE DATA  
APS12450–0SxA  
BOP(0S_A) vs. TA  
BOP(0S_A) vs. VCC  
40  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
TA (°C)  
-40  
VCC (V)  
3
25  
30  
150  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
BRP(0S_A) vs. TA  
BRP(0S_A) vs. VCC  
-5  
-5  
TA (°C)  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
25  
150  
VCC (V)  
3
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
BHYS(0S_A) vs. TA  
BHYS(0S_A) vs. VCC  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
TA (°C)  
-40  
VCC (V)  
3
25  
150  
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
BSYM(0S_A) vs. TA  
BSYM(0S_A) vs. VCC  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-5  
-5  
TA (°C)  
-40  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
VCC (V)  
3
25  
150  
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
9
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
CHARACTERISTIC PERFORMANCE DATA  
APS12450–1SxA  
BOP(1S_A) vs. TA  
BOP(1S_A) vs. VCC  
90  
90  
82.5  
75  
82.5  
75  
67.5  
60  
67.5  
60  
52.5  
45  
52.5  
45  
TA (°C)  
-40  
37.5  
30  
37.5  
30  
VCC (V)  
3
25  
22.5  
15  
22.5  
15  
30  
150  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
BRP(1S_A) vs. TA  
BRP(1S_A) vs. VCC  
-15  
-22.5  
-30  
-15  
-22.5  
-30  
TA (°C)  
-40  
25  
-37.5  
-45  
-37.5  
-45  
150  
-52.5  
-60  
-52.5  
-60  
-67.5  
-75  
-67.5  
-75  
VCC (V)  
3
-82.5  
-90  
-82.5  
-90  
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
BHYS(1S_A) vs. TA  
BHYS(1S_A) vs. VCC  
180  
155  
130  
105  
80  
180  
155  
130  
105  
80  
TA (°C)  
-40  
VCC (V)  
3
55  
55  
25  
150  
30  
30  
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
BSYM(1S_A) vs. TA  
BSYM(1S_A) vs. VCC  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-5  
-5  
TA (°C)  
-40  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
VCC (V)  
3
25  
150  
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
10  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
CHARACTERISTIC PERFORMANCE DATA  
APS12450–3SxA  
BOP(3S_A) vs. TA  
BOP(3S_A) vs. VCC  
180  
180  
170  
160  
150  
140  
130  
120  
110  
100  
170  
160  
150  
140  
130  
120  
110  
100  
TA (°C)  
-40  
VCC (V)  
3
25  
30  
150  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
BRP(3S_A) vs. TA  
BRP(3S_A) vs. VCC  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
TA (°C)  
-40  
25  
150  
VCC (V)  
3
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
BHYS(3S_A) vs. TA  
BHYS(3S_A) vs. VCC  
360  
340  
320  
300  
280  
260  
240  
220  
200  
360  
340  
320  
300  
280  
260  
240  
220  
200  
TA (°C)  
-40  
VCC (V)  
3
25  
150  
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
BSYM(3S_A) vs. TA  
BSYM(3S_A) vs. VCC  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-5  
-5  
TA (°C)  
-40  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
VCC (V)  
3
25  
150  
30  
-50  
-20  
10  
40  
70  
100  
130  
160  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature, TA (°C)  
Supply Voltage, VCC (V)  
11  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
FUNCTIONAL DESCRIPTION  
Figure 1 shows the output switching behavior relative to increas-  
ing and decreasing magnetic field. On the horizontal axis, the  
B+ direction indicates increasing south polarity magnetic field  
strength. Figure 2 shows the sensing orientation of the magnetic  
field, relative to the device package.  
Operation  
The output of these devices switches when a magnetic field perpen-  
dicular to the Hall-effect sensor exceeds the operate point threshold  
(BOP). When the magnetic field is reduced below the release point  
(BRP), the device output switches to the alternate state. The output  
state (polarity) and magnetic field polarity depends on the selected  
device options. The device is a latch, therefore BOP and BRP will be  
in opposite magnetic field polarities.  
Note that this device latches; that is, a south pole of sufficient  
strength towards the branded face of the device turns the device  
on, and the device remains on with removal of the south pole.  
The difference between operate (BOP) and release (BRP) points is  
the hysteresis (BHYS). Hysteresis allows clean switching of the  
output even in the presence of external mechanical vibration and  
electrical noise. The hysteresis is set to double the programmed  
operating point.  
Figure 1 shows the potential unipolar and omnipolar options and  
output polarity options of the APS12450 that can be configured.  
The direction of the applied magnetic field is perpendicular to the  
branded face of the APS12450 (see Figure 2).  
Standard Polaritꢁ  
ꢀnverted Polaritꢁ  
ꢅꢄ  
ꢅꢄ  
ꢃUꢆꢇHꢊꢋHꢉ  
ꢃUꢆꢇHꢊꢋHꢉ  
ꢃUꢆꢇꢀꢃꢈꢉ  
ꢃUꢆꢇꢀꢃꢈꢉ  
ꢁ-  
ꢇnorthꢉ  
0
ꢁꢄ  
ꢇsoꢌthꢉ  
ꢁꢍ  
ꢇnorthꢉ  
0
ꢁꢄ  
ꢇsoꢌthꢉ  
HꢂS  
HꢂS  
Figure 1: Hall latch magnetic and output polarity options  
B- indicates increasing north polarity magnetic field strength, and  
B+ indicates increasing south polarity magnetic field strength.  
Y
Y
X
X
A
B
Z
Z
Figure 2: Magnetic Sensing Orientations  
APS12450 LH (Panel A), APS12450 UA (Panel B)  
12  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
FUNCTIONAL SAFETY  
The APS12450 was developed in accordance with ISO 26262:2011 The signal path monitoring system verifies two internal state  
transitions (BOP and BRP within limits) under normal operation.  
In cases when these output transitions do not occur, or if another  
internal fault is detected, the output will go to the fault state (see  
“Three-Wire Diagnostic Output” section).  
as a hardware safety element out of context with ASIL B capability  
(pending assessment) for use in automotive safety-related systems  
when integrated and used in the manner prescribed in the appli-  
cable safety manual and datasheet.  
In the event of an internal fault, the device will continuously run  
the diagnostics routine every 2 ms (tDIAGF). The periodic recov-  
ery attempt sequence allows the device to continually check for  
the presence of a fault and return to normal operation if the fault  
condition clears.  
Diagnostics Mode Operation  
The APS12450 features a proprietary diagnostics routine that  
meets ASIL B safety requirements (pending assessment). This  
internal diagnostics routine continuously runs in the background,  
monitoring all key subsystems of the IC. These subsystems are  
shown in Table 1 and Figure 3. The diagnostic scheme runs at  
high speed and provides minimal impact on device performance.  
Signal path diagnostics are injected and measured in less than  
2 μs, while all other diagnostics are running in real time in the  
background. The Hall element biasing circuit and voltage regula-  
tor are checked for valid operation, and the digital and non‐vola-  
tile memory blocks are checked for valid device configuration.  
In the case where the fault is no longer present, the output will  
resume normal operation. However, if the fault is persistent, the  
device will not exit fault mode and the output voltage will con-  
tinue to be VOUT(FAULT)  
.
When a system rating higher than ASIL B is required, additional  
external safety measures may be employed (e.g., sensor redun-  
dancy and rationality checks, etc.). Refer to the device safety  
manual for additional details about the diagnostics.  
Table 1: Diagnostics Coverage  
Feature  
Coverage  
1
2
3
4
5
6
Hall plate  
Connectivity and biasing of Hall plate  
Signal path  
Signal path and Schmitt trigger  
Voltage regulator  
Digital subsystem  
Entire system  
Output  
Regulator voltage for normal operation  
Digital subsystem and non-volatile memory  
Overtemperature and redundancies for single point failures  
Output verified through valid regulations states (external monitor)  
VCC  
3
5
REGULATOR  
To All Subcircuits  
Schmitt Output  
(Internal)  
Low-Pass  
Filter  
VOUT  
4
1
2
S
6
O
UTPUT  
AMPLE, HOLD  
&
H
AMALPL  
.
CONTROL  
SYSTEM  
D
IAGNOSTICS  
A
VERAGING  
CLOCK LOGIC  
GND  
Figure 3: Diagnostics Coverage Block Diagram  
13  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
Power-On Behavior  
Temperature Coefficient and Magnet Selection  
During Power-on, the output voltage is in the fault state  
(VOUT(FAULT)), which is the pull-up voltage (VPU), until the  
device is ready to respond appropriately to the input magnetic  
field (t > tON). If the device powers-on with the field within the  
hysteresis band, the output will switch from VOUT(FAULT) to the  
off state (VOUT(HIGH)) with standard output polarity as shown in  
Figure 4. For inverted output polarity operation, the output will  
switch from VOUT(FAULT) to VOUT(LOW) (not shown).  
The APS12450 allows the user to select the magnetic temperature  
coefficient to compensate for drifts of SmCo, NdFeB, and ferrite  
magnets over temperature, as indicated in the Magnetic Char-  
acteristics specifications table. This compensation improves the  
magnetic system performance over the entire temperature range.  
For example, the magnetic field strength from NdFeB decreases  
as the temperature increases from 25°C to 150°C. This lower  
magnetic field strength means that a lower switching threshold  
is required to maintain switching at the same distance from the  
magnet to the sensor. Correspondingly, higher switching thresh-  
olds are required at cold temperatures, as low as –40°C, due to  
the higher magnetic field strength from the NdFeB magnet. The  
APS12450 compensates the switching thresholds over tempera-  
ture as described above. It is recommended that system design-  
ers evaluate their magnetic circuit over the expected operating  
temperature range to ensure the magnetic switching requirements  
are met.  
POS  
VOUT(FAULT )  
B ꢁ BRP  
BRP ꢁ B ꢁ BOP  
VOUT(HIGH)  
Output Undefined for VCC ꢁ VCC(MIꢀ)  
VOUT(LOW)  
B ꢂ BOP  
t
t
VCC(MIꢀ)  
A sample calculation is provided in the “Applications Informa-  
tion” section.  
0
tOꢀ  
Figure 4: Power-On Sequence  
14  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
VPULL-UP of 5 V, the output state levels will be 1.0 V and 4.0 V  
Three-Wire Diagnostic Output  
±0.5 V. The output RC time constant (τ) must be less than 3 µs  
(e.g., RPU = 3 kΩ and COUT = 1 nF), and VPU must be equal to  
VCC (recommend pulling up VOUT directly to VCC).  
Three-wire diagnostic output enables the user to identify various  
fault conditions external to the IC, in addition to the internal fault  
detection. The output low (VOUT(LOW)) and high (VOUT(HIGH)  
)
Under normal operation (Figure 5), the output switches between  
the VOUT(LOW) (20%) and VOUT(HIGH) (80%) states.  
states are ratiometric to the pull-up voltage, with low and high  
states being 20% and 80% respectively. For example, a VCC and  
ꢂUꢃꢊꢑAUꢆꢃ ꢌ ꢊꢀPU  
ꢂUꢃꢊHꢋꢄHꢌ ꢊꢍ0ꢎꢌ  
RPUꢆ-UP  
ꢀꢁꢁ  
ꢄNꢅ  
ꢇꢈPASS  
ꢀꢂUꢃ  
ꢂUꢃꢊꢆꢂꢏꢌ ꢊꢐ0ꢎꢌ  
ꢄNꢅ  
Normal  
ꢂꢉeration  
ꢂUꢃ  
Figure 5: The APS12450 diagnostic output under normal operation (no fault detected)  
With various opens and shorts on any of the IC pins, the output  
Any output voltage levels outside of the valid VOUT(HIGH) and  
VOUT(LOW) ranges indicates a fault as shown in Figure 6. The  
observed voltage on VOUT relative to potential fault conditions  
are summarized in Table 2.  
will no longer be controlled by the IC. The output itself may  
continue to switch, depending on the external connectivity fault;  
however, the output level(s) observed will deviate from the 20%  
and 80% (of VPU) output levels.  
The output relative to the fault condition is summarized in Table 2  
below.  
If an internal fault is detected via diagnostics monitoring, the  
output will be set to the fault state, VOUT(FAULT), which is equal  
Table 2: Fault Conditions and Resulting Output  
Level  
to the pull-up voltage, VPU  
.
Fault  
Output Level  
ꢀ V  
20% or 80% of VPU  
,
VOUT(FAULT )  
No Fault  
VPU ꢃ VCC  
respectively  
Fault State  
Range ꢁor valiꢂ VOUT(HIGH)  
External Fault  
Short, VCC-VOUT  
Short, VOUT-GND  
Short, VCC-GND  
Open, VCC  
VCC  
GND  
VPU  
VPU  
VPU  
VPU  
VPU  
VOUT(HIGH) (max)  
VOUT(HIGH) (min)  
90% VPU  
70% VPU  
VOUT(LOW) (max)  
VOUT(LOW) (min)  
0
30% VPU  
10% VPU  
Open, VOUT  
Range ꢁor valiꢂ VOUT(LOW)  
External Fault  
Open, GND  
Internal Fault  
Note: VOUT(FAULT) ≤ VPULL-UP and VPULL-UP = VCC  
.
Figure 6: APS12450 valid (normal) and  
fault condition output levels  
15  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
Fault Detection and Retry  
The fault detection diagnostics runs continuously in the background  
during normal operation after the device has powered-on. In the  
event a fault is detected, the output will immediately change to the  
VOUT(FAULT) state. The diagnostics will continue to retry the diag-  
nostics approximately every 2 ms. If the fault recovers, the output  
will return to normal operation. See Figure 7.  
VOUT(FAULT )  
VOUT(HIGH)  
Output switcꢀes accorꢁing  
to external magne�c field  
Output switcꢀes accorꢁing  
to external magne�c field  
VOUT(LOW )  
t
Bacꢂgrounꢁ  
Diagnos�csꢃ  
Bacꢂgrounꢁ  
Diagnos�csꢃ  
2 ms  
2 ms  
t
Failure Detecteꢁ  
Device Recovers  
Diag Retryꢃꢃ  
4x Diagnos�c Cycles completed every 0.025 ms (nom.)  
ꢃꢃ Diagnos�c Fault Retry Time interval is 2 ms (nom.)  
Figure 7: Fault Detection and Retry  
this condition is not out of specification. The Output Off Voltage  
Overshoot specification pertains only to conditions where the over-  
shoot is greater than the VOUT(HIGH)MAX specification.  
Output Overshoot  
When the output switches from VOUT(LOW) to VOUT(HIGH)  
,
depending upon the RC circuit, a small overshoot can occur  
(VOUT(H)OVER). VOUT(H)OVER is specified as a percentage of  
VPULL-UP (and/or VCC, which need to be the same). Therefore  
with an RC Time Constant (τ) of 3 µs (see the “Applications  
Information” section), a nominal overshoot of 2% is possible.  
With VPULL-UP at 5.0 V, the output may overshoot by 0.1 V, for  
less than 5 µs (tVOUT(H)OVER). Figure 7 demonstrates output edge  
profile.  
For example, with a 5 V pull-up, if VOUT(HIGH) is at the upper limit  
(90%), VOUT(HIGH) will be 4.5 V. With a τ of 3 µs at room tem-  
perature, the output can briefly reach 4.6 V until it settles to 4.5 V.  
Since VOUT(HIGH) is valid between 70% and 90%, or 3.5 and 4.5 V,  
Figure 8: Output Overshoot  
16  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
APPLICATIONS INFORMATION  
Temperature Compensation  
Typical Applications  
For the LH and UA packages, an external bypass capacitor,  
CBYP, should be connected (in close proximity to the Hall sen-  
sor) between the supply and ground of the device to reduce both  
external noise and noise generated by the chopper stabilization  
technique. As is shown in Figure 9, a 0.1 µF bypass capacitor is  
typical, with an optional output capacitor, COUT (recommended  
1 nF).  
To calculate the typical effect of the TCSENS on BOP (or BRP),  
simply multiply the BOP at the starting temperature by TCSENS  
and the change in temperature.  
Sample BOP calculation for TCSENS compensation from 25°C to  
150°C, for TCSENS = –0.12%/°C, and BOP(25C) = 180 G:  
ΔTA = 150°C – 25°C = 125°C  
BOP(150C) = BOP(25C) + (BOP(25C) × TC × ΔTA )  
= 180 G + (180 G × –0.12%/°C × 125°C)  
= 180 G + (–27 G)  
The time constant of the RC circuit (τ) on output must be less  
than 3 µs, where:  
τ
= RPULLUP × COUT  
= 3 kΩ × 1 nF  
= 3 µs  
= 153 G  
The resistor, RPULLUP, must be between 2 and 30 kΩ.  
PUꢋ-UP  
ꢁꢁ  
Diagnostic Output*  
RSꢓRꢀꢓS  
ꢊoꢄtionalꢍ  
VCC  
VPU  
3 to 30 V  
VCC  
RPUꢋ-UP  
ꢈꢁꢁ  
CBYP  
COUT  
RPU  
0.1 µF  
ꢓꢁU  
τRC < 3 µs  
ꢈꢂUꢉ  
ꢏꢐPASS  
0.1 ꢑꢒ  
Aꢆꢁ  
IOUT < 12 mA  
τRC < 3 µs  
2 kΩ < R < 30 kΩ  
ꢎPꢀꢂ  
ꢂUꢉ  
ꢊoꢄtionalꢍ  
ꢎNꢆ  
RS  
100 Ω*  
ꢀꢁ ꢂꢃtꢄꢃtꢅ ꢆiagnostic ꢂꢃtꢄꢃt  
switching ꢇetween ꢈꢂUꢉꢊꢋꢂꢌꢍ and ꢈꢂUꢉꢊHꢀꢎHꢍ  
* The following application circuit conditions are required  
• The τ of the RC on output must be < 3 µs.  
• 2 kΩ < RPU < 30 kΩ.  
• VPU = VCC (recommend pulling VOUT up  
to VCC).  
Figure 9: Typical Applications Circuits  
Diagnostic Output  
17  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
Extensive applications information on magnets and Hall-effect  
sensors is available in:  
• Hall-Effect IC Applications Guide, AN27701  
• Guidelines For Designing Subassemblies Using Hall-Effect  
Devices, AN27703.1  
• Soldering Methods for Allegros Products – SMT and Through-  
Hole, AN26009  
• Functional Safety Challenges to the Automotive Supply Chain  
(https://www.allegromicro.com/en/Design-Center/Technical-  
Documents/General-Semiconductor-Information/Functional-  
Safety-Challenges-Automotive-Supply-Chain.aspx)  
All are provided on the Allegro website:  
www.allegromicro.com  
18  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
Chopper Stabilization Technique  
A limiting factor for switchpoint accuracy when using Hall-  
effect technology is the small-signal voltage developed across  
the Hall plate. This voltage is proportionally small relative to the  
offset that can be produced at the output of the Hall sensor. This  
makes it difficult to process the signal and maintain an accurate,  
reliable output over the specified temperature and voltage range.  
Chopper stabilization is a proven approach used to minimize  
Hall offset.  
subsequent demodulation acts as a modulation process for the  
offset causing the magnetically induced signal to recover its origi-  
nal spectrum at baseband while the DC offset becomes a high-  
frequency signal. Then, using a low-pass filter, the signal passes  
while the modulated DC offset is suppressed. Allegro’s innovative  
chopper-stabilization technique uses a high-frequency clock.  
The high-frequency operation allows a greater sampling rate that  
produces higher accuracy, reduced jitter, and faster signal pro-  
cessing. Additionally, filtering is more effective and results in a  
lower noise analog signal at the sensor output. Devices such as the  
APS12450 that use this approach have an extremely stable quies-  
cent Hall output voltage, are immune to thermal stress, and have  
precise recoverability after temperature cycling. This technique is  
made possible through the use of a BiCMOS process which allows  
the use of low offset and low noise amplifiers in combination with  
high-density logic and sample-and-hold circuits.  
The technique, dynamic quadrature offset cancellation, removes  
key sources of the output drift induced by temperature and  
package stress. This offset reduction technique is based on a  
signal modulation-demodulation process. “Figure 10: Model of  
Chopper Stabilization Circuit (Dynamic Offset Cancellation)”  
illustrates how it is implemented.  
The undesired offset signal is separated from the magnetically  
induced signal in the frequency domain through modulation. The  
Regulator  
Clock/Logic  
Low-Pass  
Filter  
Hall Element  
Amp  
Figure 10: Model of Chopper Stabilization Circuit  
(Dynamic Offset Cancellation)  
19  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
POWER DERATING  
The device must be operated below the maximum junction  
temperature, TJ (max). Reliable operation may require derating  
supplied power and/or improving the heat dissipation properties  
of the application.  
Finally, using equation 1, solve for maximum allowable VCC for  
the given conditions:  
V
CC (est) = PDꢀ(max)ꢀ÷ꢀICCꢀ(max)ꢀ=ꢀ91ꢀmWꢀ÷ꢀ4ꢀmAꢀ=ꢀ22.8ꢀV  
The result indicates that, at TA, the application and device can  
Thermal Resistance (junction to ambient), RθJA, is a figure of  
merit summarizing the ability of the application and the device to  
dissipate heat from the junction (die), through all paths to ambi-  
ent air. RθJA is dominated by the Effective Thermal Conductivity,  
K, of the printed circuit board which includes adjacent devices  
and board layout. Thermal resistance from the die junction to  
case, RθJC, is a relatively small component of RθJA. Ambient air  
temperature, TA, and air motion are significant external factors in  
determining a reliable thermal operating point.  
dissipate adequate amounts of heat at voltages ≤ VCC (est).  
If the application requires VCC > VCC(est) then RθJA must by  
improved. This can be accomplished by adjusting the layout,  
PCB materials, or by controlling the ambient temperature.  
Determining Maximum TA  
In cases where the VCC (max) level is known, and the system  
designer would like to determine the maximum allowable ambi-  
ent temperature TA (max), for example, in a worst-case scenario  
with conditions VCC (max) = 40 V, ICC (max) = 4 mA, and RθJA  
= 228°C/W for the LH package using equation 1, the largest pos-  
sible amount of dissipated power is:  
The following three equations can be used to determine operation  
points for given power and thermal conditions.  
PD = VIN × IIN  
∆Tꢀ=ꢀPD × RθJA  
TJ = TAꢀ+ꢀ∆Tꢀꢀ  
(1)  
(2)  
(3)  
PD = VIN × IIN  
PD = 40 V × 4 mA = 160 mW  
Then, by rearranging equation 3 and substituting with equation 2:  
For example, given common conditions: TA = 25°C, VCC = 12 V,  
I
CC = 4 mA, and RθJA = 110°C/W for the LH package, then:  
TA (max) = TJꢀ(max)ꢀ–ꢀΔT  
PD = VCC × ICC = 12 V × 4 mA = 48 mW  
TA (max) = 165°C – (160 mW × 228°C/W)  
∆Tꢀ=ꢀPD × RθJA = 48 mW × 110°C/W = 5.28°C  
TJ = TAꢀ+ꢀ∆Tꢀ=ꢀ25°Cꢀ+ꢀ5.28°Cꢀ=ꢀ31.28°C  
TAꢀ(max)ꢀ=ꢀ165°Cꢀ–ꢀ36.5°Cꢀ=ꢀ128.5°C  
In another example, the maximum supply voltage is equal to  
V
CC (min). Therefore, VCC (max) = 3 V and ICC (max) = 4 mA.  
Determining Maximum VCC  
By using equation 1 the largest possible amount of dissipated  
power is:  
For a given ambient temperature, TA, the maximum allow-  
able power dissipation as a function of VCC can be calculated.  
PD (max) represents the maximum allowable power level without  
exceeding TJ (max) at a selected RθJA and TA.  
PD = VIN × IIN  
PDꢀ=ꢀ3ꢀVꢀ×ꢀ4ꢀmAꢀ=ꢀ12ꢀmW  
Example: VCC at TA = 150°C, package UA, using low-K PCB.  
Then, by rearranging equation 3 and substituting with equation 2:  
Using the worst-case ratings for the device, specifically: RθJA  
=
TA (max) = TJꢀ(max)ꢀ–ꢀΔT  
165°C/W, TJ (max) = 165°C, VCC (max) = 24 V, and ICC (max) =  
4 mA, calculate the maximum allowable power level, PD (max).  
First, using equation 3:  
TA (max) = 165°C – (12 mW × 228°C/W)  
TAꢀ(max)ꢀ=ꢀ165°Cꢀ–ꢀ11.6°Cꢀ=ꢀ162.3°C  
∆Tꢀ(max)ꢀ=ꢀTJ (max) – TA = 165°C – 150°C = 15°C  
The example above indicates that at VCC = 3 V and ICC = 4 mA,  
the TA (max) can be as high as 162.3°C without exceeding  
TJ (max). However the TA (max) rating of the device is 150°C;  
the device performance is not guaranteed above TA = 150°C.  
This provides the allowable increase to TJ resulting from internal  
power dissipation. Then, from equation 2:  
PDꢀ(max)ꢀ=ꢀ∆Tꢀ(max)ꢀ÷ꢀRθJAꢀ=ꢀ15°Cꢀ÷ꢀ165°C/Wꢀ=ꢀ91ꢀmW  
20  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
Package LH, 3-Pin SOT23W  
ꢭꢀꢁꢔꢐꢂ  
ꢮꢀꢁꢕꢂ  
ꢐꢁꢓꢕꢂ  
ꢔꢁꢖꢓ  
ꢖꢯꢟꢖꢯ  
A
ꢭꢀꢁꢀꢐꢀ  
ꢮꢀꢁꢀꢂꢱ  
ꢀꢁꢔꢞꢀ  
ꢀꢁꢓꢳ  
ꢭꢀꢁꢔꢀ  
ꢐꢁꢓꢀ  
ꢭꢀꢁꢔꢓ  
ꢮꢀꢁꢀꢳ  
ꢐꢁꢖꢀ  
ꢔꢁꢓꢔ  
ꢮꢀꢁꢐꢀ  
ꢀꢁꢕꢀ  
ꢀꢁꢐꢂ MIꢲ  
ꢔꢁꢀꢀ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢐꢂ ꢑꢍꢒ  
ꢀꢁꢓꢂ  
ꢊꢒꢑ ꢩꢆꢣꢤꢇꢎ ꢃꢉꢡꢉꢙꢉꢌꢗꢉ Vꢏꢉꢪ  
ꢍꢉꢆꢎꢏꢌꢈ ꢊꢋꢆꢌꢉ  
Gꢆꢇꢈꢉ ꢊꢋꢆꢌꢉ  
ꢑꢙꢆꢌꢢꢉꢢ ꢅꢆꢗꢉ  
ꢞꢰ ꢔꢀꢯ ꢟꢂꢯ  
ꢔꢁꢀꢀ ꢟꢀꢁꢔꢱ  
ꢭꢀꢁꢔꢀ  
XXX  
ꢀꢁꢀꢂ  
ꢮꢀꢁꢀꢂ  
ꢍꢎꢆꢌꢢꢆꢙꢢ ꢑꢙꢆꢌꢢꢏꢌꢈ ꢃꢉꢡꢉꢙꢉꢌꢗꢉ Vꢏꢉꢪ  
ꢀꢁꢓꢂ ꢑꢍꢒ  
ꢀꢁꢖꢀ ꢟꢀꢁꢔꢀ  
ꢩꢏꢌꢉ ꢔ ꢫ Tꢜꢙꢉꢉ ꢢꢏꢈꢏꢎ ꢆꢥꢥꢏꢈꢌꢉꢢ ꢬꢙꢆꢌꢢ ꢌꢇꢠꢬꢉꢙ  
ꢅꢤꢙ ꢙꢉꢡꢉꢙꢉꢌꢗꢉ ꢤꢌꢋꢣꢧ ꢌꢤꢎ ꢡꢤꢙ ꢎꢤꢤꢋꢏꢌꢈ ꢇꢥꢉ (ꢙꢉꢡꢉꢙꢉꢌꢗꢉ ꢚꢴGꢵꢀꢀꢀꢀꢳꢐꢞꢝ ꢃꢉꢘꢁ ꢔ)ꢁ  
ꢚꢏꢠꢉꢌꢥꢏꢤꢌꢥ ꢏꢌ ꢠꢏꢋꢋꢏꢠꢉꢎꢉꢙꢥꢁ  
ꢚꢏꢠꢉꢌꢥꢏꢤꢌꢥ ꢉꢶꢗꢋꢇꢥꢏꢘꢉ ꢤꢡ ꢠꢤꢋꢢ ꢡꢋꢆꢥꢜꢝ ꢈꢆꢎꢉ ꢬꢇꢙꢙꢥꢝ ꢆꢌꢢ ꢢꢆꢠꢬꢆꢙ ꢛꢙꢤꢎꢙꢇꢥꢏꢤꢌꢥꢁ  
ꢄꢶꢆꢗꢎ ꢗꢆꢥꢉ ꢆꢌꢢ ꢋꢉꢆꢢ ꢗꢤꢌꢡꢏꢈꢇꢙꢆꢎꢏꢤꢌ ꢆꢎ ꢥꢇꢛꢛꢋꢏꢉꢙ ꢢꢏꢥꢗꢙꢉꢎꢏꢤꢌ ꢪꢏꢎꢜꢏꢌ ꢋꢏꢠꢏꢎꢥ ꢥꢜꢤꢪꢌꢁ  
Aꢗꢎꢏꢘꢉ Aꢙꢉꢆ ꢚꢉꢛꢎꢜꢝ ꢀꢁꢐꢞ ꢟꢀꢁꢀꢖ ꢠꢠ  
A
ꢃꢉꢡꢉꢙꢉꢌꢗꢉ ꢋꢆꢌꢢ ꢛꢆꢎꢎꢉꢙꢌ ꢋꢆꢣꢤꢇꢎ  
Aꢋꢋ ꢛꢆꢢꢥ ꢆ ꢠꢏꢌꢏꢠꢇꢠ ꢤꢡ ꢀꢁꢐꢀ ꢠꢠ ꢡꢙꢤꢠ ꢆꢋꢋ ꢆꢢꢦꢆꢗꢉꢌꢎ ꢛꢆꢢꢥꢧ ꢆꢢꢦꢇꢥꢎ ꢆꢥ ꢌꢉꢗꢉꢥꢥꢆꢙꢣ  
ꢎꢤ ꢠꢉꢉꢎ ꢆꢛꢛꢋꢏꢗꢆꢎꢏꢤꢌ ꢛꢙꢤꢗꢉꢥꢥ ꢙꢉꢨꢇꢏꢙꢉꢠꢉꢌꢎꢥ ꢆꢌꢢ ꢊꢒꢑ ꢋꢆꢣꢤꢇꢎ ꢎꢤꢋꢉꢙꢆꢌꢗꢉꢥ  
ꢑꢙꢆꢌꢢꢏꢌꢈ ꢥꢗꢆꢋꢉ ꢆꢌꢢ ꢆꢛꢛꢉꢆꢙꢆꢌꢗꢉ ꢆꢎ ꢥꢇꢛꢛꢋꢏꢉꢙ ꢢꢏꢥꢗꢙꢉꢎꢏꢤꢌ  
Hꢆꢋꢋ ꢉꢋꢉꢠꢉꢌꢎꢝ ꢌꢤꢎ ꢎꢤ ꢥꢗꢆꢋꢉ  
21  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
Package UA, 3-Pin SIP, Matrix HD Style  
ꢳꢆꢃꢆꢣ  
ꢇꢃꢆꢵ  
ꢴꢆꢃꢆꢈ  
ꢇꢈꢉ  
ꢀꢃꢆꢇ ꢅOM  
ꢂꢃꢈꢀ ꢋꢆꢃꢆꢈ  
ꢂꢆꢉ  
ꢂꢃꢇꢇ ꢅOM  
Mꢘꢚꢑ ꢟꢯꢏꢠꢎꢘꢔ  
ꢰꢒꢐ Iꢐꢑꢏꢐꢎ  
ꢳꢆꢃꢆꢣ  
ꢴꢆꢃꢆꢈ  
ꢁꢃꢆꢀ  
ꢇꢈꢉ  
ꢌꢔꢍꢐꢑꢏꢑ  
ꢥꢍꢠꢏ  
XXX  
ꢆꢃꢄꢵ ꢫꢟꢥ  
A
ꢂꢃꢆꢀ  
MAX  
ꢮꢎꢍꢐꢑꢍꢔꢑ ꢌꢔꢍꢐꢑꢒꢐꢤ ꢫꢏꢦꢏꢔꢏꢐꢠꢏ Vꢒꢏꢭ  
ꢱꢒꢐꢏ ꢂꢲ ꢱꢘꢤꢘ A  
ꢱꢒꢐꢏ ꢀꢲ Tꢡꢔꢏꢏ ꢑꢒꢤꢒꢎ ꢍꢜꢜꢒꢤꢐꢏꢑ ꢓꢔꢍꢐꢑ ꢐꢕꢗꢓꢏꢔ  
ꢂꢇꢃꢵꢵ ꢋꢆꢃꢀꢈ  
ꢳꢆꢃꢆꢁ  
ꢴꢆꢃꢆꢝ  
ꢆꢃꢇꢂ  
ꢥꢘꢔ ꢔꢏꢦꢏꢔꢏꢐꢠꢏ ꢘꢐꢚꢧꢨ ꢐꢘꢎ ꢦꢘꢔ ꢎꢘꢘꢚꢒꢐꢤ ꢕꢜꢏ (ꢔꢏꢦꢏꢔꢏꢐꢠꢏ ꢖꢩGꢪꢆꢆꢆꢆꢇꢆꢇꢢ ꢫꢏꢙꢃ ꢂ)ꢃ  
ꢖꢒꢗꢏꢐꢜꢒꢘꢐꢜ ꢒꢐ ꢗꢒꢚꢚꢒꢗꢏꢎꢏꢔꢜꢃ  
ꢖꢒꢗꢏꢐꢜꢒꢘꢐꢜ ꢏꢬꢠꢚꢕꢜꢒꢙꢏ ꢘꢦ ꢗꢘꢚꢑ ꢦꢚꢍꢜꢡꢢ ꢤꢍꢎꢏ ꢓꢕꢔꢔꢜꢢ ꢍꢐꢑ ꢑꢍꢗꢓꢍꢔ ꢛꢔꢘꢎꢔꢕꢜꢒꢘꢐꢜꢃ  
ꢟꢬꢍꢠꢎ ꢠꢍꢜꢏ ꢍꢐꢑ ꢚꢏꢍꢑ ꢠꢘꢐꢦꢒꢤꢕꢔꢍꢎꢒꢘꢐ ꢍꢎ ꢜꢕꢛꢛꢚꢒꢏꢔ ꢑꢒꢜꢠꢔꢏꢎꢒꢘꢐ ꢭꢒꢎꢡꢒꢐ ꢚꢒꢗꢒꢎꢜ ꢜꢡꢘꢭꢐꢃ  
ꢳꢆꢃꢆꢈ  
ꢴꢆꢃꢆꢄ  
ꢆꢃꢇꢁ  
ꢖꢍꢗꢓꢍꢔ ꢔꢏꢗꢘꢙꢍꢚ ꢛꢔꢘꢎꢔꢕꢜꢒꢘꢐ (ꢝꢞ)  
Gꢍꢎꢏ ꢍꢐꢑ ꢎꢒꢏ ꢓꢍꢔ ꢓꢕꢔꢔ ꢍꢔꢏꢍ  
A
Aꢠꢎꢒꢙꢏ Aꢔꢏꢍ ꢖꢏꢛꢎꢡꢢ ꢆꢃꢈꢆ ꢋꢆꢃꢆꢣ ꢗꢗ  
ꢌꢔꢍꢐꢑꢒꢐꢤ ꢜꢠꢍꢚꢏ ꢍꢐꢑ ꢍꢛꢛꢏꢍꢔꢍꢐꢠꢏ ꢍꢎ ꢜꢕꢛꢛꢚꢒꢏꢔ ꢑꢒꢜꢠꢔꢏꢎꢒꢘꢐ  
Hꢍꢚꢚ ꢏꢚꢏꢗꢏꢐꢎ (ꢐꢘꢎ ꢎꢘ ꢜꢠꢍꢚꢏ)  
ꢂꢃꢀꢄ ꢅOM  
22  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Three-Wire Hall-Effect Latch with Advanced Diagnostics  
APS12450  
REVISION HISTORY  
Number  
Date  
Description  
1
January 31, 2019  
April 23, 2019  
Initial release  
Updated ASIL status  
Copyright 2019, Allegro MicroSystems.  
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit  
improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor  
for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
23  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY