APS13290 [ALLEGRO]

Precision Hall-Effect Latches for Consumer and Industrial Applications;
APS13290
型号: APS13290
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Precision Hall-Effect Latches for Consumer and Industrial Applications

文件: 总15页 (文件大小:991K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APS13290  
and APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
FEATURES AND BENEFITS  
DESCRIPTION  
• Symmetrical latch switchpoints  
• Superior ruggedness and fault tolerance  
TheAPS13290andAPS13291arethree-wire,planarHall-effect  
sensor integrated circuits (ICs) especially suited for operation  
• Reverse-polarity and transient protection  
• Operation from –40°C to 175°C junction temperature  
• Output short-circuit and overvoltage protection  
• Superior temperature stability  
over extended temperature ranges (up to 125°C).  
This family of precision Hall-effect latch ICs are ideal for  
industrial and consumer applications and feature performance  
enhancements permitting high-temperature operation up to  
175°C junction temperatures. In addition, the APS13290/1  
includeanumberoffeaturesdesignedspecificallytomaximize  
system robustness, such as reverse-polarity protection, output  
current limiter, overvoltage, and EMC protection.  
• Resistant to physical stress  
• High EMC immunity, ±12 kV HBM ESD  
• Operation from unregulated supplies, 2.8 to 24 V  
• Chopper stabilization  
• Solid-state reliability  
• Industry-standard packages and pinouts  
The single silicon chip includes: a voltage regulator, a Hall  
plate, small signal amplifier, chopper stabilization, Schmitt  
trigger, and a short-circuit-protected open-drain output. A  
south pole of sufficient strength turns the output on; a north  
pole of sufficient strength is necessary to turn the output off.  
The devices include on-board transient protection for all pins,  
permittingoperationdirectlyfromavehiclebatteryorregulator  
with supply voltages from 2.8 to 24 V.  
PACKAGES:  
Not to scale  
3-pin SIP  
(suffix UA)  
Twopackagestylesprovideachoiceofthrough-holeorsurface  
mounting. Package type LH is a modified 3-pin SOT23W  
surface-mount package, while UAis a three-pin ultramini SIP  
for through-hole mounting. Both packages are lead (Pb) free  
and RoHS compliant, with 100% matte-tin-plated leadframes.  
3-pin SOT23W  
(suffix LH)  
Functional Block Diagram  
VCC  
R
EGULATOR  
TO ALL SUBCIRCUITS  
L
OW-PASS  
ILTER  
S
CHMITT  
RIGGER  
VOUT  
F
T
Hall  
Element  
S
AMPLE, HOLD  
&
H
ALL  
C
ONTROL  
URRENT  
AVERAGING  
A
MP  
.
C
L
IMIT  
GND  
APS13290-1-DS, Rev. 1  
MCO-0000385  
February 11, 2019  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
SELECTION GUIDE  
Magnetic Switchpoints [2]  
Ambient Temperature,  
Part Number  
Packing[1]  
Mounting  
Operate  
BOP (G)  
Release  
BRP (G)  
TA  
APS13290KLHALX  
APS13290KLHALT [3]  
APS13290KUAA  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
5 to 40  
–5 to –40  
–40°C to 125°C  
APS13291KLHALX  
APS13291KLHALT [3]  
APS13291KUAA  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
25 to 80  
–25 to –80  
[1] Contact Allegro for additional packing options.  
[2] Algebraic convention used: (+) south polarity, (‒) north polarity.  
[3] Available through authorized Allegro distributors only.  
RoHS  
COMPLIANT  
SUPPLꢁ  
RLꢂAꢉ  
1 ꢊ  
APS1329ꢀ  
1
ꢀCC  
ꢀꢂUꢃ  
ꢂUꢃ  
CꢅꢁP  
ꢋNꢉ  
0.1 ꢇꢈ  
3
Figure 1: Typical Application Circuit  
2
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
VCC  
Notes  
Rating  
30  
Units  
V
Forward Supply Voltage [1]  
Reverse Supply Voltage [1]  
Output Off Voltage [1]  
VRCC  
VOUT  
IOUT  
IROUT  
B
–18  
V
30  
V
Output Current [2]  
60  
mA  
mA  
Reverse Output Current  
Magnetic Flux Density [3]  
Operating Temperature Range  
–50  
Unlimited  
–40 to 125  
165  
TA  
Range K  
°C  
°C  
°C  
°C  
kV  
kV  
Maximum Junction Temperature  
Storage Temperature  
TJ(max)  
Tstg  
For 500 hours  
175  
–65 to 170  
±12  
VESD(HBM)  
VESD(CDM)  
Human Body Model according to AEC-Q100-002  
Charged Device Model according to AEC-Q100-011  
ESD Voltage  
±1  
[1] This rating does not apply to extremely short voltage transients such as load dump and/or ESD. Those events have individual ratings,  
specific to the respective transient voltage event.  
[2] Through short-circuit current limiting device.  
[3] Guaranteed by design.  
PINOUT DIAGRAMS AND TERMINAL LIST TABLE  
3
2
1
3
1
2
Package UA  
Package LH  
Terminal List  
Number  
Name  
Description  
Package LH Package UA  
VCC  
VOUT  
GND  
Connects power supply to chip  
1
2
3
1
3
2
Output from circuit  
Ground  
3
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
ELECTRICAL CHARACTERISTICS: Valid over full operating voltage, ambient temperature range TA = –40°C to 125°C, and with  
CBYP = 0.1 µF (unless otherwise specified)  
Characteristics  
ELECTRICAL CHARACTERISTICS  
Forward Supply Voltage  
Supply Current  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit [2]  
VCC  
ICC  
Operating, TJ < 175°C  
2.8  
1
2
24  
3
V
mA  
µA  
mV  
V
Output Leakage Current  
Output Saturation Voltage  
Output Off Voltage  
IOUTOFF  
VOUTOFF = 24 V, B < BRP  
10  
500  
24  
VOUT(SAT) IOUT = 20 mA, B > BOP  
200  
VOUTOFF  
tON  
B < BRP  
VCC ≥ VCC(min), B < BRP(min) – 10 G,  
B > BOP(max) + 10 G  
[3]  
25  
µs  
Power-On Time  
[3]  
POS  
VCC ≥ VCC(min), t < tON  
Low  
800  
0.2  
Power-On State, Output  
Chopping Frequency  
fC  
tr  
2
2
kHz  
µs  
[4]  
RLOAD = 1 kΩ, CL = 20 pF  
RLOAD = 1 kΩ, CL = 20 pF  
Output Rise Time  
[4]  
tf  
0.1  
µs  
Output Fall Time  
TRANSIENT PROTECTION CHARACTERISTICS  
Output Short-Circuit Current Limit  
Output Zener Clamp Voltage  
Reverse Battery Current  
IOM  
VZoutput  
IRCC  
30  
30  
60  
mA  
V
IOUT = 3 mA, TA = 25°C, Output Off  
VRCC = –18 V, TA = 25°C  
–5  
mA  
V
Supply Zener Clamp Voltage  
MAGNETIC CHARACTERISTICS  
VZ  
ICC = ICC(max) + 3 mA, TA = 25°C  
30  
APS13290  
APS13291  
APS13290  
APS13291  
APS13290  
APS13291  
BOP + BRP  
(BOP + BRP) / 2  
5
25  
20  
50  
–20  
–50  
40  
100  
40  
80  
G
G
G
G
G
G
G
G
Operate Point  
Release Point  
Hysteresis  
BOP  
–40  
–80  
10  
–5  
BRP  
–25  
80  
BHYS  
50  
160  
27.5  
13.75  
Symmetry  
BSYM  
BOFF  
–27.5  
–13.75  
Magnetic Offset  
[1] Typical data are at TA = 25°C and VCC = 12 V.  
[2] 1 G (gauss) = 0.1 mT (millitesla).  
[3] Guaranteed by device design and characterization.  
[4] CL = oscilloscope probe capacitance.  
4
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information  
Characteristic  
Symbol  
Test Conditions  
Value  
Units  
Package LH, 1-layer PCB with copper limited to solder pads  
228  
°C/W  
2
Package LH, 2-layer PCB with 0.463 in. of copper area each side  
connected by thermal vias  
Package Thermal Resistance  
RθJA  
110  
165  
°C/W  
°C/W  
Package UA, 1-layer PCB with copper limited to solder pads  
Power Derating Curve  
TJ(max) = 175°C; ICC = ICC(max), IOUT = 0 mA (Output Off)  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VCC(max)  
Package LH, 2-layer PCB  
(RθJA = 110 °C/W)  
Package UA, 1-layer PCB  
(RθJA = 165 °C/W)  
Package LH, 1-layer PCB  
(RθJA = 228 °C/W)  
8
7
6
5
4
VCC(min)  
3
2
25  
45  
65  
85 105 125 145 165 185  
TJ(max)  
Temperature (°C)  
Power Dissipation versus Ambient Temperature  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
Package LH, 2-layer PCB  
(RθJA = 110°C/W)  
Package UA, 1-layer PCB  
(RθJA = 165°C/W)  
800  
700  
600  
500  
400  
300  
200  
100  
Package LH, 1-layer PCB  
(RθJA = 228°C/W)  
0
25  
45  
65  
85  
105 125 145 165 185  
Temperature (°C)  
5
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
CHARACTERISTIC PERFORMANCE DATA  
Electrical Characteristics  
Average Supply Current versus Supply Voltage  
Average Supply Current versus Ambient Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
125  
2
6
10  
14  
18  
22  
26  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
VCC (V)  
TA (°C)  
Average Low Output Voltage versus Supply Voltage for IOUT = 20 mA  
Average Low Output Voltage versus Ambient Temperature for IOUT = 20 mA  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
125  
24  
0
0
2
6
10  
14  
18  
22  
26  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
VCC (V)  
TA (°C)  
6
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
CHARACTERISTIC PERFORMANCE DATA (continued)  
APS13290 Magnetic Characteristics  
Average Operate Point versus Ambient Temperature  
Average Operate Point versus Supply Voltage  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
125  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Release Point versus Ambient Temperature  
Average Release Point versus Supply Voltage  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
125  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Switchpoint Hysteresis versus Supply Voltage  
Average Switchpoint Hysteresis versus Ambient Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
VCC (V)  
2.8  
TA (°C)  
-40  
12  
25  
24  
125  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
Average BOP + BRP Symmetry versus Supply Voltage  
Average BOP + BRP Symmetry versus Ambient Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
VCC (V)  
2.8  
TA (°C)  
-40  
0
12  
0
25  
-5  
-5  
24  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
125  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
7
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
CHARACTERISTIC PERFORMANCE DATA (continued)  
APS13291 Magnetic Characteristics  
Average Operate Point versus Ambient Temperature  
Average Operate Point versus Supply Voltage  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
125  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Release Point versus Ambient Temperature  
Average Release Point versus Supply Voltage  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
125  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Switchpoint Hysteresis versus Supply Voltage  
Average Switchpoint Hysteresis versus Ambient Temperature  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
VCC (V)  
2.8  
TA (°C)  
-40  
12  
25  
24  
80  
80  
125  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
Average BOP + BRP Symmetry versus Supply Voltage  
Average BOP + BRP Symmetry versus Ambient Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
VCC (V)  
2.8  
TA (°C)  
-40  
0
12  
0
25  
-5  
-5  
24  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
125  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
8
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
FUNCTIONAL DESCRIPTION  
OPERATION  
POWER-ON BEHAVIOR  
The output of these devices switches low (turns on) when a mag-  
netic field perpendicular to the Hall element exceeds the operate  
Device power-on occurs once tON has elapsed. During the  
time prior to tON, and after VCC ≥ VCC(min), the output state is  
point threshold, BOP (see Figure 2). After turn-on, the output volt- VOUT(SAT) (Low). After tON has elapsed, the output will corre-  
age is VOUT(SAT). The output transistor is capable of continuously spond with the applied magnetic field for B > BOP or B < BRP.  
sinking up to 30 mA. When the magnetic field is reduced below  
the release point, BRP, the device output goes high (turns off)  
to VOUTOFF. The difference in the magnetic operate and release  
points is the hysteresis, BHYS, of the device. This built-in hyster-  
esis allows clean switching of the output even in the presence of  
external mechanical vibration and electrical noise.  
See Figure 3 for an example.  
Powering-on the device in the hysteresis range (less than BOP and  
higher than BRP) will give an output state of VOUT(SAT). The cor-  
rect state is attained after the first excursion beyond BOP or BRP  
.
POS  
Removal of the magnetic field will leave the device output  
latched on if the last crossed switchpoint is BOP, or latched off if  
the last crossed switch point is BRP.  
B > BOP, BRP < B < BOP  
V
B < BRP  
VOUTOFF  
Output State  
Undefined for  
V+  
POS  
VCC<VCC(min)  
VOUTOFF  
VOUT(SAT )  
t
t
V
VCC(min)  
VOUT(SAT)  
B+  
0
0
B–  
0
tON  
BHYS  
Figure 3: Power-On Timing Diagram  
Figure 2: Switching Behavior of Latches  
On the horizontal axis, the B+ direction indicates increasing  
south polarity magnetic field strength, and the B– direction  
indicates increasing north polarity field strength.  
9
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
PULL-UP  
SUPPLꢁ  
APPLICATIONS  
It is strongly recommended that an external bypass capacitor be  
connected (in close proximity to the Hall element) between the  
supply and ground of the device to guarantee correct performance  
under harsh environmental conditions and to reduce noise from  
internal circuitry. As is shown in Figure 1: Typical Application  
Circuit, a 0.1 µF capacitor is typical. In applications where maxi-  
mum robustness is required, such as long-life industrial motors,  
additional measures may be taken. In Figure 4: Enhanced Protec-  
tion Circuit, a resistor in series with the VCC pin and a capacitor  
on the VOUT pin enhance the EMC immunity of the device. It is  
up to the user to fully qualify the Allegro sensor IC in their end  
system to ensure they achieve their system requirements.  
A
RLꢂAꢉ  
1 ꢊ  
RS ꢆ  
100 Ω  
APS1329ꢀ  
ꢂUꢃ  
1
ꢀCC  
ꢀꢂUꢃ  
A
ꢍNꢉ  
3
CꢅꢁP  
0.1 ꢇꢈ  
CꢂUꢃ  
ꢋ.ꢌ nꢈ  
A
RS and CꢂUꢃ are recommended ꢎor maꢏimꢐm  
roꢑꢐstness in an aꢐtomotiꢒe enꢒironment.  
Figure 4: Enhanced Protection Circuit  
These devices are sensitive in the direction perpendicular to the  
branded face, as depicted in Figure 5. For further information,  
extensive applications information on magnets and Hall-effect  
sensors is available in:  
• Hall-Effect IC Applications Guide, AN27701,  
• Hall-Effect Devices: Guidelines for Designing Subassemblies  
Using Hall-Effect Devices AN27703.1  
• Soldering Methods for Allegros Products – SMD and  
Through-Hole, AN26009  
All are provided on the Allegro website:  
www.allegromicro.com  
Figure 5: Sensing Configurations  
10  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
The subsequent demodulation acts as a modulation process for  
CHOPPER STABILIZATION  
the offset, causing the magnetically induced signal to recover  
its original spectrum at baseband while the DC offset becomes  
a high-frequency signal. Then, using a low-pass filter, the signal  
passes while the modulated DC offset is suppressed. Allegro’s  
innovative chopper stabilization technique uses a high-frequency  
clock. The high-frequency operation allows a greater sampling  
rate that produces higher accuracy, reduced jitter, and faster sig-  
nal processing. Additionally, filtering is more effective and results  
in a lower noise analog signal at the sensor output. Devices such  
as the APS13290 and APS13291 that use this approach have an  
extremely stable quiescent Hall output voltage, are immune to  
thermal stress, and have precise recoverability after temperature  
cycling. This technique is made possible through the use of a  
BiCMOS process which allows the use of low offset and low  
noise amplifiers in combination with high-density logic and  
sample-and-hold circuits.  
A limiting factor for switchpoint accuracy when using Hall-effect  
technology is the small signal voltage developed across the Hall  
plate. This voltage is proportionally small relative to the offset  
that can be produced at the output of the Hall sensor. This makes  
it difficult to process the signal and maintain an accurate, reliable  
output over the specified temperature and voltage range. Chopper  
stabilization is a proven approach used to minimize Hall offset.  
The Allegro technique, dynamic quadrature offset cancellation,  
removes key sources of the output drift induced by temperature  
and package stress. This offset reduction technique is based on a  
signal modulation-demodulation process. Figure 6 illustrates how  
it is implemented.  
The undesired offset signal is separated from the magnetically  
induced signal in the frequency domain through modulation.  
Regulator  
Clock/Logic  
Low-Pass  
Filter  
Hall Element  
Amp  
Figure 6: Model of Chopper Stabilization  
(Dynamic Offset Cancellation)  
11  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
For example, given common conditions such as: TA= 25°C,  
POWER DERATING  
The device must be operated below the maximum junction tem-  
perature of the device, TJ(max). Under certain combinations of  
peak conditions, reliable operation may require derating supplied  
power or improving the heat dissipation properties of the appli-  
cation. This section presents a procedure for correlating factors  
affecting operating TJ. (Thermal data is also available on the  
Allegro MicroSystems website.)  
VCC = 12 V, ICC = 2 mA, VOUT = 200 mV, IOUT = 20 mA (output  
on), and RθJA = 165°C/W, then:  
PD = (VCC × ICC) + (VOUT × IOUT) =  
(12 V × 2 mA) + (200 mV × 20 mA) =  
24 mW + 4 mW = 28 mW  
ΔT = PD × RθJA = 28 mW × 165°C/W = 4.6°C  
TJ = TA + ΔT = 25°C + 4.6°C = 29.6°C  
The Package Thermal Resistance, RθJA, is a figure of merit sum-  
marizing the ability of the application and the device to dissipate  
heat from the junction (die), through all paths to the ambient air.  
Its primary component is the Effective Thermal Conductivity, K,  
of the printed circuit board, including adjacent devices and traces.  
Radiation from the die through the device case, RθJC, is a relatively  
small component of RθJA. Ambient air temperature, TA, and air  
motion are significant external factors, damped by overmolding.  
A worst-case estimate, PD(max), represents the maximum allow-  
able power level (VCC(max), ICC(max)), without exceeding  
TJ(max), at a selected RθJA  
.
For example, given the conditions RθJA = 228°C/W, TJ(max) =  
175°C, VCC(max) = 24 V, ICC(max) = 3.25 mA, VOUT = 500 mV,  
and IOUT = 30 mA (output on), the maximum allowable operating  
ambient temperature can be determined.  
The resulting power dissipation capability directly reflects upon  
the ability of the device to withstand extreme operating condi-  
tions. The junction temperature mission profile specified in the  
Absolute Maximum Ratings table designates a total operating life  
capability based on qualification for the most extreme conditions,  
where TJ may reach 175°C.  
The power dissipation required for the output is shown below:  
PD(VOUT) = VOUT × IOUT = 500 mV × 30 mA = 15 mW  
The power dissipation required for the IC supply is shown below:  
PD(VCC) = VCC × ICC = 24 V × 3.25 mA = 78 mW  
Next, by inverting using equation 2:  
The silicon IC is heated internally when current is flowing into  
the VCC terminal. When the output is on, current sinking into the  
VOUT terminal generates additional heat. This may increase the  
junction temperature, TJ, above the surrounding ambient tempe-  
rature. The APS13290 and APS13291 are permitted to operate  
up to TJ = 175°C. As mentioned above, an operating device will  
increase TJ according to equations 1, 2, and 3 below. This allows  
an estimation of the maximum ambient operating temperature.  
ΔT = PD × RθJA = [PD(VOUT) + PD(VCC)] × 228°C/W =  
(15 mW + 78 mW) × 228°C/W =  
93 mW × 228°C/W = 21.2°C  
Finally, by inverting equation 3 with respect to voltage:  
TA(est) = TJ(max) – ΔT = 175°C – 21.2°C = 153.8°C  
In the above case, there is sufficient power dissipation capability  
to operate up to TA(est). The example indicates that TA(max)  
can be as high as 153.8°C without exceeding TJ(max). However,  
the TA(max) rating of the devices is 125°C; the APS13290 and  
APS13291 performance is not guaranteed above TA = 125°C.  
PD = VIN  
I
(1)  
(2)  
(3)  
×
IN  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀΔT = PD  
R
θJA  
×
TJ = TA + ΔT  
12  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
Package LH, 3-Pin (SOT-23W)  
+0.12  
–0.08  
2.98  
3
D
1.49  
4°±4°  
A
+0.020  
0.180  
–0.053  
D
0.96  
D
+0.10  
2.90  
+0.19  
–0.06  
2.40  
1.91  
–0.20  
0.70  
0.25 MIN  
1.00  
2
1
0.55 REF  
0.25 BSC  
0.95  
PCB Layout Reference View  
Seating Plane  
Gauge Plane  
B
Branded Face  
8X 10° REF  
C
Standard Branding Reference View  
1.00 ±0.13  
+0.10  
0.05  
A25  
–0.05  
0.95 BSC  
0.40 ±0.10  
1
For Reference Only; not for tooling use (reference dwg. 802840)  
Dimensions in millimeters  
APS13290KLHA  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
Active Area Depth, 0.28 mm REF  
A
B
A27  
Reference land pattern layout  
All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
D
1
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
APS13291KLHA  
13  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
Package UA, 3-Pin SIP  
For Reference Only – Not for Tooling Use  
(Reference DWG-0000406, Rev. 1)  
NOT TO SCALE  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.08  
–0.05  
4.09  
45°  
B
C
E
2.04  
1.52 ±0.05  
10°  
1.44  
E
E
Mold Ejector  
Pin Indent  
+0.08  
3.02  
–0.05  
45°  
Branded  
Face  
D
Standard Branding Reference View  
0.51 REF  
0.79 REF  
1.02  
MAX  
A26  
A
1
1
2
3
APS13290KUAA  
A28  
14.99 ±0.25  
+0.03  
–0.06  
0.41  
1
APS13291KUAA  
+0.05  
–0.07  
0.43  
Dambar removal protrusion (6×)  
Gate and tie bar burr area  
A
B
C
D
Active Area Depth, 0.50 mm ±0.08  
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
E
1.27 NOM  
14  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
APS13290 and  
APS13291  
Precision Hall-Effect Latches  
for Consumer and Industrial Applications  
Revision History  
Number  
Date  
Description  
1
March 6, 2018  
Initial release  
February 11, 2019  
Minor editorial updates  
Copyright ©2019, Allegro MicroSystems, LLC  
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to  
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that  
the information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its  
use; nor for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
15  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

APS13290KLHALT

Hall Effect Sensor,
ALLEGRO

APS13290KLHALX

Precision Hall-Effect Latches for Consumer and Industrial Applications
ALLEGRO

APS13290KUAA

Hall Effect Sensor,
ALLEGRO

APS13291

Precision Hall-Effect Latches for Consumer and Industrial Applications
ALLEGRO

APS13291KLHALT

Hall Effect Sensor,
ALLEGRO

APS13291KLHALX

Precision Hall-Effect Latches for Consumer and Industrial Applications
ALLEGRO

APS13291KUAA

Precision Hall-Effect Latches for Consumer and Industrial Applications
ALLEGRO

APS13295

Precision Hall-Effect Switch for Consumer and Industrial Applications
ALLEGRO

APS13295KLHALT

Precision Hall-Effect Switch for Consumer and Industrial Applications
ALLEGRO

APS13295KLHALX

Precision Hall-Effect Switch for Consumer and Industrial Applications
ALLEGRO

APS13295KUAA

Precision Hall-Effect Switch for Consumer and Industrial Applications
ALLEGRO

APS13568

Linear LED drive up to 150 mA
ALLEGRO