APS13295 [ALLEGRO]

Precision Hall-Effect Switch for Consumer and Industrial Applications;
APS13295
型号: APS13295
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Precision Hall-Effect Switch for Consumer and Industrial Applications

文件: 总14页 (文件大小:656K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APS13295  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
FEATURES AND BENEFITS  
DESCRIPTION  
The APS13295 Hall-effect switch is a three-wire, planar  
Hall-effect sensor integrated circuit (IC) especially suited for  
operation over extended temperature ranges (up to 125°C).  
• Unipolar switchpoints  
• Superior ruggedness and fault tolerance  
• Reverse-polarity and transient protection  
• Operation from –40°C to 175°C junction temperature  
• Output short-circuit and overvoltage protection  
• Superior temperature stability  
This Hall-effect switch IC is ideal for industrial and consumer  
applicationsandfeaturesperformanceenhancementspermitting  
high-temperatureoperationupto175°Cjunctiontemperatures.  
In addition, the APS13295 includes a number of features  
designed specifically to maximize system robustness such as  
reverse-polarityprotection,outputcurrentlimiter,overvoltage,  
and EMC protection.  
• Resistant to physical stress  
• High EMC immunity, ±12 kV HBM ESD  
• Operation from unregulated supplies, 2.8 to 24 V  
• Chopper stabilization  
• Solid-state reliability  
The single silicon chip includes: a voltage regulator, a Hall  
plate, small signal amplifier, chopper stabilization, Schmitt  
trigger, and a short-circuit-protected open-drain output. A  
south pole of sufficient strength turns the output on. Removal  
of the magnetic field—or a north pole—turns the output off.  
The devices include on-board transient protection for all pins,  
permitting operation directly from unregulated or regulated  
supplies from 2.8 to 24 V.  
• Industry-standard packages and pinouts  
PACKAGES:  
Not to scale  
3-pin SIP  
(suffix UA)  
Twopackagestylesprovideachoiceofthrough-holeorsurface  
mounting. Package type LH is a modified SOT23W, surface-  
mount package, while UA is a three-lead ultra-mini SIP for  
through-hole mounting. Both packages are lead (Pb) free and  
RoHs compliant with 100% matte-tin leadframe plating.  
3-pin SOT23W  
(suffix LH)  
Functional Block Diagram  
VCC  
REGULATOR  
TO ALL SUBCIRCUITS  
L
OW-PASS  
ILTER  
S
CHMITT  
RIGGER  
VOUT  
F
T
Hall  
Element  
S
AMPLE, HOLD  
&
H
ALL  
C
ONTROL  
URRENT  
A
VERAGING  
A
MP  
.
C
L
IMIT  
GND  
APS13295-DS, Rev. 1  
MCO-0000386  
May 10, 2018  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
SELECTION GUIDE  
Switchpoints  
Ambient Temperature,  
(Typ.)  
Part Number  
Packing[1]  
Mounting  
Branding  
TA  
BOP  
BRP  
APS13295KLHALX  
APS13295KLHALT[2] 7-in. reel, 3000 pieces/reel  
APS13295KUAA Bulk, 500 pieces/bag  
13-in. reel, 10000 pieces/reel  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
A33  
A33  
A34  
–40°C to 125°C  
35 G  
25 G  
[1] Contact Allegro for additional packing options.  
[2] Available through authorized Allegro distributors only.  
RoHS  
COMPLIANT  
SUPPLꢁ  
RPULL-UP  
1 ꢉ  
APS13295  
1
ꢀCC  
ꢀꢂUꢃ  
ꢂUꢃ  
CꢅꢁP  
ꢊNꢋ  
0.1 ꢇꢈ  
3
Figure 1: Typical Application Circuit  
2
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Forward Supply Voltage [1]  
Reverse Supply Voltage [1]  
Output Off Voltage [1]  
Symbol  
Notes  
Rating  
30  
Units  
V
VCC  
VRCC  
VOUT  
IOUT  
IROUT  
B
–18  
V
30  
V
Output Current [2]  
60  
mA  
mA  
Reverse Output Current  
Magnetic Flux Density [3]  
–50  
Unlimited  
165  
°C  
°C  
°C  
kV  
kV  
Maximum Junction Temperature  
Storage Temperature  
ESD Voltage  
TJ(max)  
For 500 hours  
175  
Tstg  
–65 to 170  
±12  
VESD(HBM)  
VESD(CDM)  
Human Body Model according to AEC-Q100-002  
Charged Device Model according to AEC-Q100-011  
±1  
[1] This rating does not apply to extremely short voltage transients such as load dump and/or ESD. Those events have individual ratings,  
specific to the respective transient voltage event.  
[2] Through short-circuit current limiting device.  
[3] Guaranteed by design.  
PINOUT DIAGRAMS AND TERMINAL LIST  
3
Terminal List  
Number  
Name  
Description  
LH  
UA  
1
VCC  
VOUT  
GND  
Connects power supply to chip  
Output from circuit  
Ground  
1
2
3
3
2
2
1
2
1
3
3-pin SIP  
(suffix UA)  
3-pin SOT23W  
(suffix LH)  
3
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
ELECTRICAL CHARACTERISTICS: Valid over full operating voltage, ambient temperature range TA = –40°C to 125°C,  
and with CBYP = 0.1 µF, unless otherwise specified  
Characteristics  
ELECTRICAL CHARACTERISTICS  
Forward Supply Voltage  
Supply Current  
Symbol  
Test Conditions  
Min.  
Typ.[1]  
Max.  
Unit[2]  
VCC  
ICC  
Operating, TJ < 175°C  
2.8  
1
2
24  
3
V
mA  
µA  
mV  
V
Output Leakage Current  
Output Saturation Voltage  
Output Off Voltage  
IOUTOFF  
VOUTOFF = 24 V, B < BRP  
10  
500  
24  
VOUT(SAT) IOUT = 20 mA, B > BOP  
VOUTOFF B < BRP  
200  
VCC ≥ VCC(min), B < BRP(min) – 10 G,  
B > BOP(max) + 10 G  
Power-On Time [3]  
tON  
25  
µs  
Power-On State, Output[3]  
Chopping Frequency  
Output Rise Time[4]  
Output Fall Time[4]  
POS  
VCC ≥ VCC(min), t < tON  
Low  
800  
0.2  
fC  
tr  
2
2
kHz  
µs  
RPULL-UP = 1 kΩ, CL = 20 pF  
RPULL-UP = 1 kΩ, CL = 20 pF  
tf  
0.1  
µs  
TRANSIENT PROTECTION CHARACTERISTICS  
Output Short-Circuit Current Limit  
Output Zener Clamp Voltage  
Reverse Battery Current  
Supply Zener Clamp Voltage  
MAGNETIC CHARACTERISTICS  
Operate Point  
IOM  
VZoutput  
IRCC  
30  
30  
60  
mA  
V
IOUTOFF = 3 mA; TA = 25°C, Output Off  
VRCC = –18 V, TA = 25°C  
–5  
mA  
V
VZ  
ICC = ICC(max) + 3 mA, TA = 25°C  
30  
BOP  
BRP  
5
7
35  
25  
10  
50  
G
G
G
Release Point  
Hysteresis  
BHYS  
(BOP – BRP  
)
20  
[1] Typical data are at TA = 25°C and VCC = 12 V.  
[2] 1 G (gauss) = 0.1 mT (millitesla).  
[3] Guaranteed by device design and characterization.  
[4] CL = oscilloscope probe capacitance.  
4
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information  
Characteristic  
Symbol  
Test Conditions  
Value Units  
Package LH, 1-layer PCB with copper limited to solder pads  
228  
110  
165  
°C/W  
°C/W  
°C/W  
2
Package LH, 2-layer PCB with 0.463 in. of copper area each side  
Package Thermal Resistance  
RθJA  
connected by thermal vias  
Package UA, 1-layer PCB with copper limited to solder pads  
Power Derating Curve  
TJ(max) = 175°C; ICC = ICC(max), IOUT = 0 mA (Output Off)  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VCC(max)  
Package LH, 2-layer PCB  
(RθJA = 110 °C/W)  
Package UA, 1-layer PCB  
(RθJA = 165 °C/W)  
Package LH, 1-layer PCB  
(RθJA = 228 °C/W)  
8
7
6
5
4
VCC(min)  
85 105 125 145 165 185  
3
2
25  
45  
65  
TJ(max)  
Temperature (°C)  
Power Dissipation versus Ambient Temperature  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
Package LH, 2-layer PCB  
(RθJA = 110°C/W)  
Package UA, 1-layer PCB  
(RθJA = 165°C/W)  
800  
700  
600  
500  
400  
300  
200  
100  
Package LH, 1-layer PCB  
(RθJA = 228°C/W)  
0
25  
45  
65  
85  
105 125 145 165 185  
Temperature (°C)  
5
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
CHARACTERISTIC PERFORMANCE DATA  
Average Supply Current versus Supply Voltage  
Average Supply Current versus Ambient Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
125  
2
6
10  
14  
18  
22  
26  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
VCC (V)  
TA (°C)  
Average Low Output Voltage versus Supply Voltage for IOUT = 20 mA  
Average Low Output Voltage versus Ambient Temperature for IOUT = 20 mA  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
125  
24  
0
0
2
6
10  
14  
18  
22  
26  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
VCC (V)  
TA (°C)  
6
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
CHARACTERISTIC PERFORMANCE DATA (continued)  
Average Operate Point versus Ambient Temperature  
Average Operate Point versus Supply Voltage  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
125  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Release Point versus Ambient Temperature  
Average Release Point versus Supply Voltage  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
TA (°C)  
-40  
VCC (V)  
2.8  
25  
12  
24  
125  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
VCC (V)  
18  
22  
26  
TA (°C)  
Average Switchpoint Hysteresis versus Supply Voltage  
Average Switchpoint Hysteresis versus Ambient Temperature  
25  
25  
23  
21  
19  
17  
15  
13  
11  
9
23  
21  
19  
17  
15  
13  
11  
9
VCC (V)  
2.8  
TA (°C)  
-40  
12  
25  
24  
125  
7
7
5
5
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
2
6
10  
14  
18  
22  
26  
TA (°C)  
VCC (V)  
7
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
FUNCTIONAL DESCRIPTION  
OPERATION  
POWER-ON BEHAVIOR  
The output of the APS13295 switches low (turns on) when a  
south-polarity magnetic field perpendicular to the Hall element  
exceeds the operate point threshold, BOP (see Figure 2). After  
turn-on, the output voltage is VOUT(SAT). The output transistor is  
Device power-on occurs once tON has elapsed. During the  
time prior to tON, and after VCC ≥ VCC(min), the output state is  
VOUT(SAT). After tON has elapsed, the output will correspond with  
the applied magnetic field for B > BOP or B < BRP. See Figure 3  
capable of continuously sinking up to 30 mA. When the magnetic for an example.  
field is reduced below the release point, BRP, the device output  
Powering-on the device in the hysteresis range (less than BOP and  
higher than BRP) will give an output state of VOUTOFF. The cor-  
goes high (turns off) to VOUTOFF  
.
rect state is attained after the first excursion beyond BOP or BRP  
.
V+  
VOUTOFF  
Key  
POS  
B>BOP  
B<BRP,BRP<B<BOP  
V
VOUT(OFF)  
Output State  
Undefined for  
VOUT(SAT)  
POS  
VCC<VCC(min)  
0
VOUT(SAT)  
B+  
(south)  
0
t
t
V
BHYS  
VCC(min)  
Figure 2: Device Switching Behavior  
On the horizontal axis, the B+ direction indicates increasing  
south polarity magnetic field strength.  
0
tON  
The difference in the magnetic operate and release points is the  
hysteresis, BHYS, of the device. This built-in hysteresis allows  
clean switching of the output even in the presence of external  
mechanical vibration and electrical noise.  
Figure 3: Power-On Sequence and Timing  
8
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
Applications  
PULL-UP  
SUPPLꢁ  
It is strongly recommended that an external bypass capacitor be  
connected (in close proximity to the Hall element) between the  
supply and ground of the device to guarantee correct performance  
under harsh environmental conditions and to reduce noise from  
internal circuitry. As is shown in Figure 1: Typical Application  
Circuit, a 0.1 µF capacitor is required. In applications where max-  
imum robustness is required, additional measures may be taken.  
In Figure 4: Enhanced Protection Circuit, a resistor in series with  
the VCC pin and a capacitor on the VOUT pin enhance the EMC  
immunity of the device. It is up to the user to fully qualify the  
Allegro sensor IC in their end system to ensure they achieve their  
system requirements.  
A
RPULL-UP  
1 ꢉ  
RS ꢆ  
100 Ω  
APS13295  
ꢂUꢃ  
1
ꢀCC  
ꢀꢂUꢃ  
A
ꢌNꢍ  
3
CꢅꢁP  
0.1 ꢇꢈ  
CꢂUꢃ  
ꢊ.ꢋ nꢈ  
A
RS and CꢂUꢃ are recommended ꢎor maꢏimꢐm  
roꢑꢐstness in an aꢐtomotiꢒe enꢒironment.  
These devices are sensitive in the direction perpendicular to the  
branded package face, and may be configured to sense magnetic  
fields in a variety of orientations, such as the ones shown in  
Figure 5.  
Figure 4: Enhanced Protection Circuit  
Extensive applications information for Hall-effect devices is  
available in:  
• Hall-Effect IC Applications Guide, AN27701,  
• Hall-Effect Devices: Guidelines for Designing Subassemblies  
Using Hall-Effect Devices AN27703.1  
• Soldering Methods for Allegros Products – SMD and  
Through-Hole, AN26009  
All are provided on the Allegro website:  
www.allegromicro.com  
N
S
S
N
PCB  
Figure 5: Sensing Configurations  
9
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
CHOPPER STABILIZATION  
A limiting factor for switchpoint accuracy when using Hall-effect the offset causing the magnetically induced signal to recover its  
technology is the small-signal voltage developed across the Hall  
plate. This voltage is proportionally small relative to the offset  
that can be produced at the output of the Hall sensor. This makes  
it difficult to process the signal and maintain an accurate, reliable  
output over the specified temperature and voltage range. Chopper  
stabilization is a proven approach used to minimize Hall offset.  
original spectrum at baseband while the DC offset becomes a  
high-frequency signal. Then, using a low-pass filter, the signal  
passes while the modulated DC offset is suppressed. Allegro’s  
innovative chopper stabilization technique uses a high-frequency  
clock. The high-frequency operation allows a greater sampling  
rate that produces higher accuracy, reduced jitter, and faster sig-  
nal processing. Additionally, filtering is more effective and results  
in a lower noise analog signal at the sensor output. Devices such  
as the APS13295 that use this approach have an extremely stable  
quiescent Hall output voltage, are immune to thermal stress,  
and have precise recoverability after temperature cycling. This  
technique is made possible through the use of a BiCMOS process  
which allows the use of low-offset and low-noise amplifiers  
in combination with high-density logic and sample-and-hold  
circuits.  
The Allegro technique, dynamic quadrature offset cancellation,  
removes key sources of the output drift induced by temperature  
and package stress. This offset reduction technique is based on  
a signal modulation-demodulation process. Figure 6: Model of  
Chopper Stabilization Circuit (Dynamic Offset Cancellation)  
illustrates how it is implemented.  
The undesired offset signal is separated from the magnetically  
induced signal in the frequency domain through modulation.  
The subsequent demodulation acts as a modulation process for  
Regulator  
Clock/Logic  
Low-Pass  
Filter  
Hall Element  
Amp  
Figure 6: Model of Chopper Stabilization Circuit  
(Dynamic Offset Cancellation)  
10  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
For example, given common conditions such as: TA= 25°C,  
POWER DERATING  
The device must be operated below the maximum junction tem-  
perature of the device, TJ(max). Under certain combinations of  
peak conditions, reliable operation may require derating supplied  
power or improving the heat dissipation properties of the appli-  
cation. This section presents a procedure for correlating factors  
affecting operating TJ. (Thermal data is also available on the  
Allegro MicroSystems website.)  
VCC = 12 V, ICC = 2 mA, VOUT = 185 mV, IOUT = 20 mA (output  
on), and RθJA = 165°C/W, then:  
PD = (VCC × ICC) + (VOUT × IOUT) =  
(12 V × 2 mA) + (185 mV × 20 mA) =  
24 mW + 3.7 mW = 27.7 mW  
ΔT = PD × RθJA = 27.7 mW × 165°C/W = 4.6°C  
TJ = TA + ΔT = 25°C + 4.6°C = 29.6°C  
The Package Thermal Resistance, RθJA, is a figure of merit sum-  
marizing the ability of the application and the device to dissipate  
heat from the junction (die), through all paths to the ambient air.  
Its primary component is the Effective Thermal Conductivity, K,  
of the printed circuit board, including adjacent devices and traces.  
Radiation from the die through the device case, RθJC, is relatively  
small component of RθJA. Ambient air temperature, TA, and air  
motion are significant external factors, damped by overmolding.  
A worst-case estimate, PD(max), represents the maximum allow-  
able power level (VCC(max), ICC(max)), without exceeding  
TJ(max), at a selected RθJA  
.
For example, given the conditions RθJA = 228°C/W, TJ(max) =  
175°C, VCC(max) = 24 V, ICC(max) = 4 mA, VOUT = 500 mV,  
and IOUT = 25 mA (output on), the maximum allowable operating  
ambient temperature can be determined.  
The resulting power dissipation capability directly reflects upon  
the ability of the device to withstand extreme operating condi-  
tions. The junction temperature mission profile specified in the  
Absolute Maximum Ratings table designates a total operating life  
capability based on qualification for the most extreme conditions,  
where TJ may reach 175°C.  
The power dissipation required for the output is shown below:  
PD(VOUT) = VOUT × IOUT = 500 mV × 25 mA = 12.5 mW  
The power dissipation required for the IC supply is shown below:  
PD(VCC) = VCC × ICC = 24 V × 4 mA = 96 mW  
The silicon IC is heated internally when current is flowing into  
the VCC terminal. When the output is on, current sinking into the  
VOUT terminal generates additional heat. This may increase the  
junction temperature, TJ, above the surrounding ambient tempera-  
ture. The APS13295 is permitted to operate up to TJ = 175°C. As  
mentioned above, an operating device will increase TJ according  
to equations 1, 2, and 3 below. This allows an estimation of the  
maximum ambient operating temperature.  
Next, by inverting using equation 2:  
ΔT = PD × RθJA = [PD(VOUT) + PD(VCC)] × 228°C/W =  
(12.5 mW + 96 mW) × 228°C/W =  
108.5 mW × 228°C/W = 24.7°C  
Finally, by inverting equation 3 with respect to voltage:  
TA(est) = TJ(max) – ΔT = 175°C – 24.7°C = 150.3°C  
In the above case, there is sufficient power dissipation capability  
to operate up to TA(est).The example indicates that TA(max) can  
be as high as 150.3°C without exceeding TJ(max). However, the  
TA(max) rating of the device is 125°C; the APS13295 perfor-  
mance is not guaranteed above TA = 125°C.  
PD = VIN  
I
(1)  
(2)  
(3)  
×
IN  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀΔT = PD  
R
θJA  
×
TJ = TA + ΔT  
11  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
Package LH, 3-Pin (SOT-23W)  
+0.12  
–0.08  
2.98  
3
D
1.49  
4°±4°  
A
+0.020  
0.180  
–0.053  
D
0.96  
D
+0.10  
2.90  
+0.19  
–0.06  
2.40  
1.91  
–0.20  
0.70  
0.25 MIN  
1.00  
2
1
0.55 REF  
0.25 BSC  
0.95  
Seating Plane  
Gauge Plane  
PCB Layout Reference View  
B
Branded Face  
8X 10° REF  
C
Standard Branding Reference View  
1.00 ±0.13  
+0.10  
A33  
0.05  
–0.05  
0.95 BSC  
0.40 ±0.10  
1
For Reference Only; not for tooling use (reference dwg. 802840)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
Active Area Depth, 0.28 mm REF  
A
B
Reference land pattern layout  
All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
D
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
12  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
Package UA, 3-Pin SIP  
For Reference Only – Not for Tooling Use  
(Reference DWG-0000406, Rev. 1)  
NOT TO SCALE  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.08  
–0.05  
4.09  
45°  
B
C
E
2.04  
1.52 ±0.05  
10°  
1.44  
E
E
Mold Ejector  
Pin Indent  
+0.08  
3.02  
–0.05  
45°  
Branded  
Face  
D
Standard Branding Reference View  
0.51 REF  
0.79 REF  
1.02  
MAX  
A34  
A
1
1
2
3
14.99 ±0.25  
+0.03  
–0.06  
0.41  
+0.05  
–0.07  
0.43  
Dambar removal protrusion (6×)  
Gate and tie bar burr area  
A
B
C
D
Active Area Depth, 0.50 mm ±0.08  
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
E
1.27 NOM  
13  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Precision Hall-Effect Switch  
for Consumer and Industrial Applications  
APS13295  
Revision History  
Number  
Date  
Description  
1
February 26, 2018  
May 10, 2018  
Initial release  
Corrected part numbers in selection guide (page 2); renamed RLOAD to RPULL-UP (page 2, 4, 9).  
Copyright ©2018, Allegro MicroSystems, LLC  
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to  
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that  
the information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its  
use; nor for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
14  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY