AS4C1M16S-CI [ALSC]

Programmable Mode registers;
AS4C1M16S-CI
型号: AS4C1M16S-CI
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

Programmable Mode registers

文件: 总54页 (文件大小:1530K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS4C1M16S-C&I  
Revision History  
Revision Details  
Date  
Rev 1.0  
Rev 2.0  
Preliminary datasheet  
Add 166MHZ and industrial parts.  
February 2015  
March 2015  
Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070  
TEL: (650) 610-6800 FAX: (650) 620-9211  
Alliance Memory Inc. reserves the right to change products or specification without notice.  
Confidential  
Rev. 2.0 March /2015  
0
AS4C1M16S-C&I  
1M x 16 bit Synchronous DRAM (SDRAM)  
Advanced (Rev. 2.0, March /2015)  
Features  
Overview  
Fast access time: 5.4/5.4ns  
Fast clock rate: 166/143 MHz  
Self refresh mode: standard  
Internal pipelined architecture  
512K word x 16-bit x 2-bank  
Programmable Mode registers  
- CAS Latency: 2, or 3  
- Burst Length: 1, 2, 4, 8, or full page  
- Burst Type: Sequential or Interleaved  
- Burst stop function  
Individual byte controlled by LDQM and UDQM  
Auto Refresh and Self Refresh  
4096 refresh cycles/64ms  
CKE power down mode  
Industrial Temperature: -40~85 C  
The 16Mb SDRAM is a high-speed CMOS  
synchronous DRAM containing 16 Mbits. It is  
internally configured as a dual 512K word x 16  
DRAM with a synchronous interface (all signals are  
registered on the positive edge of the clock signal,  
CLK). Each of the 512K x 16 bit banks is organized  
as 2048 rows by 256 columns by 16 bits. Read and  
write accesses to the SDRAM are burst oriented;  
accesses start at a selected location and continue  
for a programmed number of locations in a  
programmed sequence. Accesses begin with the  
registration of a BankActivate command which is  
then followed by a Read or Write command.  
The SDRAM provides for programmable Read  
or Write burst lengths of 1, 2, 4, 8, or full page, with  
a burst termination option. An auto precharge  
function may be enabled to provide a self-timed row  
precharge that is initiated at the end of the burst  
sequence. The refresh functions, either Auto or Self  
Refresh are easy to use. By having a programmable  
mode register, the system can choose the most  
suitable modes to maximize its performance. These  
devices are well suited for applications requiring  
high memory bandwidth and particularly well suited  
to high performance PC applications  
°
JEDEC standard +3.3V 0.3V power supply  
Operating temperature range  
- Commercial (0 ~ 70°C)  
- Industrial (-40 ~ 85°C)  
Interface: LVTTL  
50-pin 400 mil plastic TSOP II package  
-Pb and Halogen Free  
Table 1. Key Specifications  
AS4C1M16S-C&I  
-6/7  
tCK3  
tAC3  
tRAS  
tRC  
Clock Cycle time(min.)  
Access time from CLK (max.)  
Row Active time(min.)  
Row Cycle time(min.)  
6/7  
ns  
5.4/5.4 ns  
42/42 ns  
60/63 ns  
Table 2.Ordering Information  
Part Number  
Frequency Package  
Temperature Temp Range  
AS4C1M16S-7TCN  
AS4C1M16S-6TIN  
143MHz  
166MHz  
50-Pin TSOPII Commercial  
50-Pin TSOPII Industrial  
0~70  
-40~85  
T: indicates TSOP II package  
C: Commercial  
I: Industrial  
N: indicates Pb and Halogen Free  
Confidential  
1
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 1 Pin Assignment (Top View)  
VDD  
DQ0  
DQ1  
VSSQ  
DQ2  
DQ3  
VDDQ  
DQ4  
DQ5  
VSSQ  
DQ6  
DQ7  
VDDQ  
LDQM  
WE#  
CAS#  
RAS#  
CS#  
1
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
VSS  
DQ15  
DQ14  
VSSQ  
DQ13  
DQ12  
VDDQ  
DQ11  
DQ10  
VSSQ  
DQ9  
DQ8  
VDDQ  
NC  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
UDQM  
CLK  
CKE  
NC  
A9  
A11  
A8  
A10/AP  
A0  
A7  
A1  
A6  
A2  
A5  
A3  
A4  
VDD  
VSS  
Confidential  
2
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 2. Block Diagram  
CLOCK  
BUFFER  
CLK  
CKE  
2048x256x16  
CELL ARRAY  
(BANK #0)  
CS#  
RAS#  
CAS#  
WE#  
COMMAND  
DECODER  
CONTROL  
SIGNAL  
GENERATOR  
Column Decoder  
DQ0  
DQs  
COLUMN  
COUNTER  
Buffer  
A10/AP  
MODE  
REGISTER  
DQ15  
LDQM, UDQM  
ADDRESS  
BUFFER  
A0  
A9  
A11  
2048x256x16  
CELL ARRAY  
(BANK #1)  
REFRESH  
COUNTER  
Column Decoder  
Confidential  
3
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Pin Descriptions  
Table 3. Pin Details  
Symbol  
Type  
Description  
CLK  
Input  
Clock: CLK is driven by the system clock. All SDRAM input signals are sampled on  
the positive edge of CLK. CLK also increments the internal burst counter and  
controls the output registers.  
CKE  
Input  
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal. If  
CKE goes low synchronously with clock (set-up and hold time same as other  
inputs), the internal clock is suspended from the next clock cycle and the state of  
output and burst address is frozen as long as the CKE remains low. When both  
banks are in the idle state, deactivating the clock controls the entry to the Power  
Down and Self Refresh modes. CKE is synchronous except after the device enters  
Power Down and Self Refresh modes, where CKE becomes asynchronous until  
exiting the same mode. The input buffers, including CLK, are disabled during  
Power Down and Self Refresh modes, providing low standby power.  
A11  
Input  
Input  
Bank Activate: A11 (BA) defines to which bank the BankActivate, Read, Write, or  
BankPrecharge command is being applied.  
A0-A10  
Address Inputs: A0-A10 are sampled during the BankActivate command (row  
address A0-A10) and Read/Write command (column address A0-A7 with A10  
defining Auto Precharge) to select one location out of the 512K available in the  
respective bank. During a Precharge command, A10 is sampled to determine if  
both banks are to be precharged (A10 = HIGH). The address inputs also provide  
the op-code during a Mode Register Set command.  
CS#  
Input  
Input  
Chip Select: CS# enables (sampled LOW) and disables (sampled HIGH) the  
command decoder. All commands are masked when CS# is sampled HIGH. CS#  
provides for external bank selection on systems with multiple banks. It is  
considered part of the command code.  
RAS#  
Row Address Strobe: The RAS# signal defines the operation commands in  
conjunction with the CAS# and WE# signals and is latched at the positive edges of  
CLK. When RAS# and CS# are asserted "LOW" and CAS# is asserted "HIGH,"  
either the BankActivate command or the Precharge command is selected by the  
WE# signal. When the WE# is asserted "HIGH," the BankActivate command is  
selected and the bank designated by BA is turned on to the active state. When the  
WE# is asserted "LOW," the Precharge command is selected and the bank  
designated by BA is switched to the idle state after the precharge operation.  
CAS#  
WE#  
Input  
Column Address Strobe: The CAS# signal defines the operation commands in  
conjunction with the RAS# and WE# signals and is latched at the positive edges of  
CLK. When RAS# is held "HIGH" and CS# is asserted "LOW," the column access  
is started by asserting CAS# "LOW." Then, the Read or Write command is  
selected by asserting WE# "LOW" or "HIGH."  
Input  
Input  
Write Enable: The WE# signal defines the operation commands in conjunction  
with the RAS# and CAS# signals and is latched at the positive edges of CLK. The  
WE# input is used to select the BankActivate or Precharge command and Read or  
Write command.  
LDQM,  
UDQM  
Data Input/Output Mask: LDQM and UDQM are byte specific, nonpersistent I/O  
buffer controls. The I/O buffers are placed in a high-z state when LDQM/UDQM is  
sampled HIGH. Input data is masked when LDQM/UDQM is sampled HIGH during  
a write cycle. Output data is masked (two-clock latency) when LDQM/UDQM is  
sampled HIGH during a read cycle. UDQM masks DQ15-DQ8, and LDQM masks  
DQ7-DQ0.  
Confidential  
4
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
DQ0-DQ15 Input/Output  
Data I/O: The DQ0-15 input and output data are synchronized with the positive  
edges of CLK. The I/Os are byte-maskable during Reads and Writes.  
NC  
-
No Connect: These pins should be left unconnected.  
VDDQ  
Supply  
DQ Power: Provide isolated power to DQs for improved noise immunity.  
( 3.3V 0.3V )  
VSSQ  
VDD  
VSS  
Supply  
Supply  
Supply  
DQ Ground: Provide isolated ground to DQs for improved noise immunity.  
Power Supply: 3.3V 0.3V  
Ground  
Confidential  
5
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Operation Mode  
Fully synchronous operations are performed to latch the commands at the positive edges of CLK. Table  
4 shows the truth table for the operation commands.  
Table 4. Truth Table (Note (1), (2))  
Command  
BankActivate  
State CKEn-1 CKEn DQM(6) A11 A10 A0-9 CS# RAS# CAS# WE#  
Idle(3)  
Any  
H
H
H
H
H
H
H
H
H
H
H
H
H
L
X
X
X
X
X
X
X
X
X
X
X
H
L
X
X
X
V
V
V
V
X
X
X
X
X
X
X
V
V
X
V
V
V
V
V
V
X
X
V
V
V
V
L
L
L
L
L
L
L
L
L
L
H
L
L
H
L
H
L
H
L
X
H
L
X
X
L
L
H
H
H
L
H
L
BankPrecharge  
PrechargeAll  
L
Any  
H
L
L
Write  
Active(3)  
Active(3)  
Active(3)  
Active(3)  
Idle  
L
H
H
H
H
L
L
Write and AutoPrecharge  
Read  
H
L
L
L
L
H
H
L
Read and Autoprecharge  
Mode Register Set  
No-Operation  
H
L
OP code  
L
Any  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
H
X
L
H
H
X
L
H
L
Burst Stop  
Active(4)  
Device Deselect  
AutoRefresh  
Any  
X
H
H
X
H
X
V
Idle  
SelfRefresh Entry  
SelfRefresh Exit  
Idle  
L
L
Idle  
H
X
H
X
V
X
H
X
V
(SelfRefresh)  
Clock Suspend Mode Entry  
Power Down Mode Entry  
Active  
Any(5)  
Active  
H
H
L
L
X
X
X
X
X
X
X
X
X
H
X
X
H
X
X
X
H
X
X
H
X
X
X
H
X
X
H
X
X
Clock Suspend Mode Exit  
Power Down Mode Exit  
L
L
H
H
X
X
X
X
X
X
X
X
Any  
(PowerDown)  
Data Write/Output Enable  
Data Mask/Output Disable  
Active  
Active  
H
H
X
X
L
X
X
X
X
X
X
H
Note: 1. V=Valid, X=Don't Care, L=Low level, H=High level  
2. CKEn signal is input level when commands are provided.  
CKEn-1 signal is input level one clock cycle before the commands are provided.  
3. These are states of bank designated by A11 signal.  
4. Device state is 1, 2, 4, 8, and full page burst operation.  
5. Power Down Mode can not enter in the burst operation.  
When this command is asserted in the burst cycle, device state is clock suspend mode.  
6. LDQM and UDQM  
Confidential  
6
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Commands  
1
BankActivate  
(RAS# = "L", CAS# = "H", WE# = "H", A11 = Bank, A0-A10 = Row Address)  
The BankActivate command activates the idle bank designated by the BA signals. By latching the  
row address on A0 to A10 at the time of this command, the selected row access is initiated. The read  
or write operation in the same bank can occur after a time delay of tRCD (min.) from the time of bank  
activation. A subsequent BankActivate command to a different row in the same bank can only be  
issued after the previous active row has been precharged (refer to the following figure). The minimum  
time interval between successive BankActivate commands to the same bank is defined by tRC (min.).  
The SDRAM has two internal banks on the same chip and shares part of the internal circuitry to  
reduce chip area; therefore it restricts the back-to-back activation of the two banks. tRRD (min.)  
specifies the minimum time required between activating different banks. After this command is used,  
the Write command and the Block Write command perform the no mask write operation.  
T0  
T1  
T2  
T3  
Tn+3 Tn+4  
Tn+5  
Tn+6  
CLK  
Bank A  
Bank A  
Bank B  
Bank A  
ADDRESS  
Row Addr.  
Col Addr.  
Row Addr.  
Row Addr.  
RAS# - CAS# delay(tRCD  
)
RAS# - RAS# delay time(tRRD)  
Bank A  
Activate  
Bank B  
Activate  
Bank A  
Activate  
R/W A with  
AutoPrecharge  
NOP  
NOP  
NOP  
NOP  
COMMAND  
RAS# - Cycle time(tRC  
)
AutoPrecharge  
Begin  
Don’t Care  
Figure 3. BankActivate Command Cycle  
(Burst Length = n)  
2
BankPrecharge command  
(RAS# = "L", CAS# = "H", WE# = "L", A11 = “V”, A10 = "L", A0-A9 = Don't care)  
The BankPrecharge command precharges the bank disignated by A11 signal. The precharged bank  
is switched from the active state to the idle state. This command can be asserted anytime after tRAS  
(min.) is satisfied from the BankActivate command in the desired bank. The maximum time any bank  
can be active is specified by tRAS (max.). Therefore, the precharge function must be performed in any  
active bank within tRAS (max.). At the end of precharge, the precharged bank is still in the idle state  
and is ready to be activated again.  
3
4
PrechargeAll command  
(RAS# = "L", CAS# = "H", WE# = "L", A11 = Don't care, A10 = "H", A0-A9 = Don't care)  
The PrechargeAll command precharges both banks simultaneously and can be issued even if both  
banks are not in the active state. Both banks are then switched to the idle state.  
Read command  
(RAS# = "H", CAS# = "L", WE# = "H", A11= “V”, A10 = "L", A0-A7 = Column Address)  
The Read command is used to read a burst of data on consecutive clock cycles from an active row in  
an active bank. The bank must be active for at least tRCD (min.) before the Read command is issued.  
During read bursts, the valid data-out element from the starting column address will be available  
following the CAS# latency after the issue of the Read command. Each subsequent data-out element  
will be valid by the next positive clock edge (refer to the following figure). The DQs go into high-  
impedance at the end of the burst unless other command is initiated. The burst length, burst  
sequence, and CAS# latency are determined by the mode register, which is already programmed. A  
full-page burst will continue until terminated (at the end of the page it will wrap to column 0 and  
continue).  
Confidential  
7
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS# Latency=2  
tCK2, DQ  
DOUT A0  
DOUT A1  
DOUT A0  
DOUT A2  
DOUT A1  
DOUT A3  
DOUT A2  
CAS# Latency=3  
tCK3, DQ  
DOUT A3  
Figure 4. Burst Read Operation  
(Burst Length = 4, CAS# Latency = 2, 3)  
The read data appears on the DQs subject to the values on the LDQM/UDQM inputs two clocks  
earlier (i.e. LDQM/UDQM latency is two clocks for output buffers). A read burst without the auto  
precharge function may be interrupted by a subsequent Read or Write command to the same bank or  
the other active bank before the end of the burst length. It may be interrupted by a BankPrecharge/  
PrechargeAll command to the same bank too. The interrupt coming from the Read command can  
occur on any clock cycle following a previous Read command (refer to the following figure).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS# Latency=2  
tCK2, DQ  
DOUT A0  
DOUT B0  
DOUT A0  
DOUT B1  
DOUT B0  
DOUT B2  
DOUT B1  
DOUT B3  
DOUT B2  
CAS# Latency=3  
tCK3, DQ  
DOUT B3  
Figure 5. Read Interrupted by a Read  
(Burst Length = 4, CAS# Latency = 2, 3)  
The LDQM/UDQM inputs are used to avoid I/O contention on the DQ pins when the interrupt  
comes from a Write command. The LDQM/UDQM must be asserted (HIGH) at least two clocks prior  
to the Write command to suppress data-out on the DQ pins. To guarantee the DQ pins against I/O  
contention, a single cycle with high-impedance on the DQ pins must occur between the last read data  
and the Write command (refer to the following three figures). If the data output of the burst read  
occurs at the second clock of the burst write, the LDQM/UDQM must be asserted (HIGH) at least one  
clock prior to the Write command to avoid internal bus contention.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
DQM  
Bank A  
Activate  
NOP  
NOP  
NOP  
NOP  
READ A  
WRITE A  
DIN A0  
NOP  
NOP  
NOP  
COMMAND  
CAS# Latency=2  
tCK2, DQ  
DIN A1  
DIN A2  
DIN A3  
Figure 6. Read to Write Interval  
(Burst Length 4, CAS# Latency = 2)  
Confidential  
8
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
NOP  
NOP  
READ A  
NOP  
NOP  
WRITE B  
DIN B0  
NOP  
NOP  
NOP  
COMMAND  
CAS# Latency=2  
tCK2, DQ  
DIN B1  
DIN B2  
DIN B3  
Must be Hi-Z before  
the Write Command  
Don’t Care  
Figure 7. Read to Write Interval  
(Burst Length 4, CAS# Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
WRITE B  
DIN B0  
NOP  
NOP  
COMMAND  
CAS# Latency=3  
tCK3, DQ  
DOUT A0  
DIN B1  
DIN B2  
Must be Hi-Z before  
the Write Command  
Don’t Care  
Figure 8. Read to Write Interval  
(Burst Length  
4, CAS# Latency = 3)  
A read burst without the auto precharge function may be interrupted by a BankPrecharge/  
PrechargeAll command to the same bank. The following figure shows the optimum time that  
BankPrecharge/ PrechargeAll command is issued in different CAS# latency.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Bank,  
Col A  
Bank  
Row  
Bank (s)  
ADDRESS  
tRP  
READ A  
NOP  
NOP  
NOP  
Precharge  
NOP  
NOP  
Activate  
NOP  
COMMAND  
CAS# Latency=2  
tCK2, DQ  
DOUT A0  
DOUT A1  
DOUT A0  
DOUT A2  
DOUT A1  
DOUT A3  
DOUT A2  
CAS# Latency=3  
tCK3, DQ  
DOUT A3  
Figure 9. Read to Precharge  
(CAS# Latency = 2, 3)  
Confidential  
9
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
5
6
Read and AutoPrecharge command  
(RAS# = "H", CAS# = "L", WE# = "H", A11 = “V”, A10 = "H", A0-A7 = Column Address)  
The Read and AutoPrecharge command automatically performs the precharge operation after the  
read operation. Once this command is given, any subsequent command cannot occur within a time  
delay of tRP (min.) + burst length . At full-page burst, only the read operation is performed in this  
{
}
command and the auto precharge function is ignored.  
Write command  
(RAS# = "H", CAS# = "L", WE# = "L", A11 = “V”, A10 = "L", A0-A7 = Column Address)  
The Write command is used to write a burst of data on consecutive clock cycles from an active row  
in an active bank. The bank must be active for at least tRCD (min.) before the Write command is  
issued. During write bursts, the first valid data-in element will be registered coincident with the Write  
command. Subsequent data elements will be registered on each successive positive clock edge  
(refer to the following figure). The DQs remain with high-impedance at the end of the burst unless  
another command is initiated. The burst length and burst sequence are determined by the mode  
register, which is already programmed. A full-page burst will continue until terminated (at the end of  
the page it will wrap to column 0 and continue).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
don’t care  
DIN A1  
DIN A2  
DIN A3  
DQ  
The first data element and the write  
are registered on the same clock edge  
Figure 10. Burst Write Operation  
(Burst Length = 4)  
A write burst without the auto precharge function may be interrupted by a subsequent Write,  
BankPrecharge/PrechargeAll, or Read command before the end of the burst length. An interrupt  
coming from Write command can occur on any clock cycle following the previous Write command  
(refer to the following figure).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
DIN A0  
WRITE B  
DIN B0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DIN B1  
DIN B2  
DIN B3  
DQ  
Figure 11. Write Interrupted by a Write  
(Burst Length = 4)  
The Read command that interrupts a write burst without auto precharge function should be  
issued one cycle after the clock edge in which the last data-in element is registered. In order to avoid  
data contention, input data must be removed from the DQs at least one clock cycle before the first  
read data appears on the outputs (refer to the following figure). Once the Read command is  
registered, the data inputs will be ignored and writes will not be executed.  
Confidential  
10  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
DIN A0  
READ B  
don’t care  
don’t care  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS# Latency=2  
tCK2, DQ  
DOUT B0  
DOUT B1  
DOUT B0  
DOUT B2  
DOUT B1  
DOUT B3  
DOUT B2  
CAS# Latency=3  
tCK3, DQ  
don’t care  
DIN A0  
DOUT B3  
Input data must be removed from the DQ at  
least one clock cycle before the Read data  
appears on the outputs to avoid data contention  
Figure 12. Write Interrupted by a Read  
(Burst Length = 4, CAS# Latency = 2, 3)  
The BankPrecharge/PrechargeAll command that interrupts a write burst without the auto  
precharge function should be issued m cycles after the clock edge in which the last data-in element is  
registered, where m equals tWR/tCK rounded up to the next whole number. In addition, the  
LDQM/UDQM signals must be used to mask input data, starting with the clock edge following the last  
data-in element and ending with the clock edge on which the BankPrecharge/PrechargeAll command  
is entered (refer to the following figure).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
DQM  
tRP  
WRITE  
NOP  
NOP  
Precharge  
Bank (s)  
NOP  
NOP  
Activate  
NOP  
COMMAND  
Bank  
Col n  
ROW  
ADDRESS  
DQ  
tWR  
DIN  
n
DIN  
N+1  
Don’t Care  
Note: The LDQM/UDQM can remain low in this example if the length of the write burst is 1 or 2.  
Figure 13. Write to Precharge  
7
Write and AutoPrecharge command (refer to the following figure)  
(RAS# = "H", CAS# = "L", WE# = "L", A11 = “V”, A10 = "H", A0-A7 = Column Address)  
The Write and AutoPrecharge command performs the precharge operation automatically after the  
write operation. Once this command is given, any subsequent command can not occur within a time  
delay of (burst length -1) + tWR + tRP (min.) . At full-page burst, only the write operation is performed  
{
}
in this command and the auto precharge function is ignored.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
Bank A  
Activate  
Bank A  
Activate  
WRITE A  
Auto Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tDAL  
DIN A0  
DIN A1  
DQ  
tDAL=tWR+tRP  
Begin AutoPrecharge  
Bank can be reactivated at  
completion of tDAL  
Figure 14. Burst Write with Auto-Precharge  
(Burst Length = 2)  
Confidential  
11  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
8
Mode Register Set command  
(RAS# = "L", CAS# = "L", WE# = "L", A11 = “V”, A10 = “V”, A0-A9 = Register Data)  
The mode register stores the data for controlling the various operating modes of SDRAM. The Mode  
Register Set command programs the values of CAS# latency, Addressing Mode and Burst Length in  
the Mode register to make SDRAM useful for a variety of different applications. The default values of  
the Mode Register after power-up are undefined; therefore this command must be issued at the  
power-up sequence. The state of pins A0~A9 and A11 in the same cycle is the data written to the  
mode register. Two clock cycles are required to complete the write in the mode register (refer to the  
following figure). The contents of the mode register can be changed using the same command and  
the clock cycle requirements during operation as long as both banks are in the idle state.  
Table 5. Mode Register Bitmap  
A11  
0
A10  
RFU* WBL  
A9  
A8  
Test Mode  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
CAS# Latency  
Burst Length  
A9  
0
1
Write Burst Mode  
Burst  
A8 A7  
Test Mode  
Normal  
Vendor Use Only  
Vendor Use Only  
A3 Burst Type  
0
1
0
0
0
1
0
1
Sequential  
Interleave  
Single Bit  
A6  
A5  
0
0
1
1
A4  
0
1
0
1
CAS# Latency  
Reserved  
Reserved  
2 clocks  
A2  
0
0
0
0
A1  
0
0
1
1
A0  
Burst Length  
0
0
0
0
1
0
1
0
1
1
1
2
4
8
3 clocks  
Reserved  
0
0
1
1
Full Page (Sequential)  
All other Reserved  
All other Reserved  
*Note: RFU (Reserved for future use) should stay “0” during MRS cycle.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CLK  
CKE  
CS#  
tMRD  
RAS#  
CAS#  
WE#  
A11  
A10  
Address Key  
A0-A9  
DQM  
DQ  
tRP  
Hi-Z  
Mode Register  
Set Command  
Any  
Command  
PrechargeAll  
Don’t Care  
Figure 15. Mode Register Set Cycle  
Confidential  
12  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Burst Length Field (A2~A0)  
This field specifies the data length of column access using the A2~A0 pins and selects the Burst  
Length to be 1, 2, 4, 8, or full page.  
Table 6. Burst length  
A2  
0
A1  
0
A0  
0
Burst Length  
1
0
0
1
2
0
1
0
4
0
1
1
8
1
0
0
Reserved  
Reserved  
Reserved  
Full Page  
1
0
1
1
1
0
1
1
1
Addressing Mode Select Field (A3)  
The Addressing Mode can be one of two modes, Interleave Mode or Sequential Mode. Sequential  
Mode supports burst length of 1, 2, 4, 8, or full page, but Interleave Mode only supports burst length  
of 4 and 8.  
Table 7. Addressing Mode Select Field  
A3  
0
Addressing Mode  
Sequential  
1
Interleave  
Burst Definition, Addressing Sequence of Sequential and Interleave Mode  
Table 8. Burst Definition  
Start Address  
Burst  
Length  
Sequential  
Interleave  
A2  
X
X
X
X
X
X
0
0
0
0
1
A1  
X
X
0
0
1
1
0
0
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0, 1  
1, 0  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
0, 1  
1, 0  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
2
4
3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
n, n+1, n+2, n+3, 255, 0,  
1, 2, n-1, n, …  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
1
0
0
1
8
1
1
1
1
Full page location = 0-255  
Not Support  
Confidential  
13  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
CAS# Latency Field (A6~A4)  
This field specifies the number of clock cycles from the assertion of the Read command to the first  
read data. The minimum whole value of CAS# Latency depends on the frequency of CLK. The  
minimum whole value satisfying the following formula must be programmed into this field. tCAC  
(min) CAS# Latency X tCK  
Table 9. CAS Latency  
A6  
0
A5  
0
A4  
0
CAS# Latency  
Reserved  
Reserved  
2 clocks  
0
0
1
0
1
0
0
1
1
3 clocks  
1
X
X
Reserved  
Test Mode field (A8~A7)  
These two bits are used to enter the test mode and must be programmed to "00" in normal  
operation.  
Table 10. Test Mode field  
A8  
0
A7  
0
Test Mode  
normal mode  
0
1
Vendor Use Only  
Vendor Use Only  
1
X
Write Burst Length (A9)  
This bit is used to select the write burst mode. When the A9 bit is "0", the Burst-Read-Burst-Write  
mode is selected. When the A9 bit is "1", the Burst-Read-Single-Write mode is selected.  
Table 11. Write Burst Length  
A9  
0
Write Burst Mode  
Burst-Read-Burst-Write  
Burst-Read-Single-Write  
1
Note: A11 should stay “L” during mode set cycle.  
9
No-Operation command  
(RAS# = "H", CAS# = "H", WE# = "H")  
The No-Operation command is used to perform a NOP to the SDRAM which is selected (CS# is Low).  
This prevents unwanted commands from being registered during idle or wait states.  
10 Burst Stop command  
(RAS# = "H", CAS# = "H", WE# = "L")  
The Burst Stop command is used to terminate either fixed-length or full-page bursts. This command  
is only effective in a read/write burst without the auto precharge function. The terminated read burst  
ends after a delay equal to the CAS# latency (refer to the following figure). The termination of a write  
burst is shown in the following figure.  
Confidential  
14  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Stop  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
The burst ends after a delay equal to the CAS# Latency  
CAS# Latency=2  
tCK2, DQ  
DOUT A0  
DOUT A1  
DOUT A0  
DOUT A2  
DOUT A1  
DOUT A3  
DOUT A2  
CAS# Latency=3  
tCK3, DQ  
DOUT A3  
Figure 16. Termination of a Burst Read Operation (Burst Length  
4, CAS# Latency = 2, 3)  
T7 T8  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
Burst  
Stop  
NOP  
WRITE A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
don’t care  
DIN A1  
DIN A2  
DQ  
Figure 17. Termination of a Burst Write Operation  
(Burst Length = X)  
11 Device Deselect command  
(CS# = "H")  
The Device Deselect command disables the command decoder so that the RAS#, CAS#, WE# and  
Address inputs are ignored, regardless of whether the CLK is enabled. This command is similar to  
the No Operation command.  
12 AutoRefresh command  
(RAS# = "L", CAS# = "L", WE# = "H", CKE = "H", A0-A11 = Don't care)  
The AutoRefresh command is used during normal operation of the SDRAM and is analogous to  
CAS#-before-RAS# (CBR) Refresh in conventional DRAMs. This command is non-persistent, so it  
must be issued each time a refresh is required. The addressing is generated by the internal refresh  
controller. This makes the address bits a "don't care" during an AutoRefresh command. The internal  
refresh counter increments automatically on every auto refresh cycle to all of the rows. The refresh  
operation must be performed 4096 times within 64ms. The time required to complete the auto refresh  
operation is specified by tRC (min.). To provide the AutoRefresh command, both banks need to be in  
the idle state and the device must not be in power down mode (CKE is high in the previous cycle).  
This command must be followed by NOPs until the auto refresh operation is completed. The  
precharge time requirement, tRP (min), must be met before successive auto refresh operations are  
performed.  
13 SelfRefresh Entry command  
(RAS# = "L", CAS# = "L", WE# = "H", CKE = "L", A0-A11 = Don't care)  
The SelfRefresh is another refresh mode available in the SDRAM. It is the preferred refresh mode for  
data retention and low power operation. Once the SelfRefresh command is registered, all the inputs  
to the SDRAM become "don't care" with the exception of CKE, which must remain LOW. The refresh  
addressing and timing is internally generated to reduce power consumption. The SDRAM may  
remain in SelfRefresh mode for an indefinite period. The SelfRefresh mode is exited by restarting the  
external clock and then asserting HIGH on CKE (SelfRefresh Exit command).  
Confidential  
15  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
14 SelfRefresh Exit command  
(CKE = "H", CS# = "H" or CKE = "H", RAS# = "H", CAS# = "H", WE# = "H")  
This command is used to exit from the SelfRefresh mode. Once this command is registered, NOP or  
Device Deselect commands must be issued for tXSR (min.) because time is required for the  
completion of any bank currently being internally refreshed. If auto refresh cycles in bursts are  
performed during normal operation, a burst of 4096 auto refresh cycles should be completed just  
prior to entering and just after exiting the SelfRefresh mode.  
15 Clock Suspend Mode Entry / PowerDown Mode Entry command (CKE = "L")  
When the SDRAM is operating the burst cycle, the internal CLK is suspended (masked) from the  
subsequent cycle by issuing this command (asserting CKE "LOW"). The device operation is held  
intact while CLK is suspended. On the other hand, when both banks are in the idle state, this  
command performs entry into the PowerDown mode. All input and output buffers (except the CKE  
buffer) are turned off in the PowerDown mode. The device may not remain in the Clock Suspend or  
PowerDown state longer than the refresh period (64ms) since the command does not perform any  
refresh operations.  
16 Clock Suspend Mode Exit / PowerDown Mode Exit command (CKE= "H")  
When the internal CLK has been suspended, the operation of the internal CLK is reinitiated from the  
subsequent cycle by providing this command (asserting CKE "HIGH"). When the device is in the  
PowerDown mode, the device exits this mode and all disabled buffers are turned on to the active  
state. tPDE (min.) is required when the device exits from the PowerDown mode. Any subsequent  
commands can be issued after one clock cycle from the end of this command.  
17 Data Write / Output Enable, Data Mask / Output Disable command (LDQM/UDQM = "L", "H")  
During a write cycle, the LDQM/UDQM signal functions as a Data Mask and can control every word  
of the input data. During a read cycle, the LDQM/UDQM functions as the controller of output buffers.  
LDQM/UDQM is also used for device selection, byte selection and bus control in a memory system.  
LDQM controls DQ0 to DQ7, UDQM controls DQ8 to DQ15.  
Confidential  
16  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Table 12. Absolute Maximum Rating  
Symbol  
VIN, VOUT  
VDD, VDDQ  
Item  
Values  
- 1.0 ~ 4.6  
-1.0 ~ 4.6  
0 ~ 70  
-40 ~ 85  
- 55 ~ 125  
260  
Unit  
V
Note  
Input, Output Voltage  
Power Supply Voltage  
1
1
1
1
1
1
1
1
V
Commercial  
Industrial  
C
°
C
°
C
°
C
°
TA  
Ambient Temperature  
TSTG  
TSOLDER  
PD  
Storage Temperature  
Soldering Temperature  
Power Dissipation  
1
W
IOS  
Short Circuit Output Current  
50  
mA  
Table 13. Recommended D.C. Operating Conditions  
(TA = -40~85 C)  
°
Symbol  
VDD  
Parameter  
Min.  
3.0  
Max.  
Unit  
V
Note  
Power Supply Voltage  
3.6  
3.6  
2
2
2
2
VDDQ  
VIH  
Power Supply Voltage(for I/O Buffer)  
LVTTL Input High Voltage  
LVTTL Input Low Voltage  
3.0  
V
2.0  
VDDQ+0.3  
0.8  
V
VIL  
- 0.3  
V
Input Leakage Current  
( 0V VIN VDD, All other pins not under test = 0V )  
IIL  
- 10  
- 10  
10  
10  
A  
A  
Output Leakage Current  
Output disable, 0V VOUT VDDQ  
IOZ  
)
VOH  
VOL  
LVTTL Full Drive Output "H" Level Voltage  
LVTTL Full Drive Output "L" Level Voltage  
IOUT = -2mA  
IOUT = 2mA  
2.4  
V
V
0.4  
Table 14. Capacitance  
(VDD = 3.3V, f = 1MHz, TA = 25 C)  
°
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
CI  
Input Capacitance  
Input/Output Capacitance  
2
4
5
7
CI/O  
pF  
Note: These parameters are periodically sampled and are not 100% tested.  
Confidential  
17  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Table 15. D.C. Characteristics  
(VDD = 3.3V 0.3V, TA = -40~85 C)  
°
-6  
80  
25  
-7  
70  
25  
Description/Test condition  
Symbol  
Unit Note  
Max.  
Operating Current  
tRC tRC(min), Outputs Open  
One bank active  
Precharge Standby Current in non-power down mode  
tCK = 15ns, CS# VIH(min), CKE VIH  
Input signals are changed every 2clks  
Precharge Standby Current in power down mode  
tCK = 15ns, CKE VIL(max)  
IDD1  
3
IDD2N  
2
2
2
2
IDD2P  
Precharge Standby Current in power down mode  
tCK = , CKE VIL(max)  
IDD2PS  
Active Standby Current in non-power down mode  
tCK = 15ns, CKE VIH(min), CS# VIH(min)  
Input signals are changed every 2clks  
Active Standby Current in non-power down mode  
CKE VIH(min), CLK VIL(max), tCK =   
Operating Current (Burst mode)  
tCK=tCK(min), Outputs Open, Multi-bank interleave  
Refresh Current  
mA  
40  
40  
IDD3N  
35  
110  
90  
35  
100  
80  
IDD3NS  
IDD4  
3, 4  
3
IDD5  
tRC tRC(min)  
Self Refresh Current  
CKE 0.2V ; for other inputs VIH VDD - 0.2V, VIL 0.2V  
2
2
IDD6  
Confidential  
18  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Table 16. Electrical Characteristics and Recommended A.C. Operating Conditions  
±
(VDD = 3.3V 0.3V, TA = -40~85 C) (Note: 5, 6, 7, 8)  
°
-6  
-7  
Symbol  
A.C. Parameter  
Row cycle time  
Unit Note  
Min.  
Max.  
Min.  
Max.  
tRC  
9
60  
-
63  
-
(same bank)  
tRCD  
RAS# to CAS# delay  
(same bank)  
9
18  
18  
12  
42  
-
21  
21  
14  
42  
-
ns  
9
tRP  
Precharge to refresh/row activate  
command (same bank)  
-
-
-
-
tRRD  
Row activate to row activate delay  
(different banks)  
9
tRAS  
tWR  
tCK  
Row activate to precharge time  
(same bank)  
100K  
100K  
Write recovery time  
tCK  
2
7.5  
6
-
2
8
-
CL* = 2  
-
-
10  
Clock cycle time  
CL* = 3  
-
7
-
tCH  
tCL  
Clock high time  
Clock low time  
2.5  
2.5  
-
-
2.5  
2.5  
-
-
ns  
11  
-
-
Access time from CLK  
(positive edge)  
CL* = 2  
CL* = 3  
6
6.5  
tAC  
-
5.4  
-
5.4  
tCCD  
tOH  
tLZ  
CAS# to CAS# Delay time  
Data output hold time  
1
-
1
-
tCK  
2
-
2
-
10  
Data output low impedance  
Data output high impedance  
1
-
1
-
tHZ  
-
5.4  
-
5.4  
ns  
8
tIS  
Data/Address/Control Input set-up time  
Data/Address/Control Input hold time  
PowerDown Exit set-up time  
2
-
2
-
11  
11  
tIH  
0.8  
-
-
0.8  
-
-
tPDE  
tREFI  
tXSR  
tCK  
s  
tIS+ CK  
t
tIS+tCK  
Refresh Interval Time  
-
15.6  
-
15.6  
Exit Self-Refresh to any Command  
tRC+ IS  
t
-
tRC+ IS  
t
-
ns  
* CL is CAS# Latency.  
Note:  
1. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device.  
2. All voltages are referenced to VSS. VIH (Max) = 4.6V for pulse width 3ns.VIL (Min) = -1.0V for pulse  
width 3ns.  
3. These parameters depend on the cycle rate and these values are measured by the cycle rate under the  
minimum value of tCK and tRC. Input signals are changed one time during every 2 tCK  
.
4. These parameters depend on the output loading. Specified values are obtained with the output open.  
5. Power-up sequence is described in Note 12.  
6. A.C. Test Conditions  
Confidential  
19  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Table 17. LVTTL Interface  
Reference Level of Output Signals  
1.4V / 1.4V  
Output Load  
Input Signal Levels  
Reference to the Under Output Load (B)  
2.4V / 0.4V  
1ns  
Transition Time (Rise and Fall) of Input Signals  
Reference Level of Input Signals  
1.4V  
1.4V  
3.3V  
50Ω  
1.2KΩ  
Output  
Output  
Z0=50Ω  
870Ω  
30pF  
30pF  
Figure 18.1 LVTTL D.C. Test Load (A)  
Figure 18.2 LVTTL A.C. Test Load (B)  
7. Transition times are measured between VIH and VIL. Transition (rise and fall) of input signals are in a fixed  
slope (1 ns).  
8. tHZ defines the time in which the outputs achieve the open circuit condition and are not at reference levels.  
9. These parameters account for the number of clock cycle and depend on the operating frequency of the  
clock as follows:  
the number of clock cycles = specified value of timing/Clock cycle time  
(count fractions as a whole number)  
10.If clock rising time is longer than 1 ns, ( tR / 2 -0.5) ns should be added to the parameter.  
11. Assumed input rise and fall time tT (tR & tF) = 1 ns  
If tR or tF is longer than 1 ns, transient time compensation should be considered, i.e., [(tr + tf)/2 - 1] ns  
should be added to the parameter.  
12. Power up Sequence  
Power up must be performed in the following sequence.  
1) Power must be applied to VDD and VDDQ (simultaneously) when CKE= L”, DQM= Hand all input  
signals are held "NOP" state.  
2) Start clock and maintain stable condition for minimum 200 s, then bring CKE= Hand, it is  
recommended that DQM is held "HIGH" (VDD levels) to ensure DQ output is in high impedance.  
3) All banks must be precharged.  
4) Mode Register Set command must be asserted to initialize the Mode register.  
5) A minimum of 2 Auto-Refresh dummy cycles must be required to stabilize the internal circuitry of the  
device.  
* The Auto Refresh command can be issue before or after Mode Register Set command.  
Confidential  
20  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Timing Waveforms  
Figure 19. AC Parameters for Write Timing  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCH  
tCL  
tIS  
tIS  
Begin Auto  
Precharge Bank A  
Begin Auto  
Precharge Bank B  
tIH  
CS#  
RAS#  
CAS#  
WE#  
A11  
tIH  
RAx  
RBx  
RBx  
RAy  
RAy  
A10  
tIS  
RAx  
CAx  
CBx  
CAy  
A0-A9  
DQM  
tRCD  
tDAL  
tIS  
tRC  
tWR  
tIH  
Hi-Z  
DQ  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
Bx2  
Bx3  
Ay0  
Ay1  
Ay2  
Ay3  
Write with  
Activate  
Command  
Bank A  
Write with  
Activate  
Auto Precharge Command  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Auto Precharge  
Command  
Bank B  
Command  
Bank A  
Bank B  
Don’t Care  
Confidential  
21  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 20. AC Parameters for Read Timing  
(Burst Length=2, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16  
CLK  
CKE  
tCH tCL  
Begin Auto  
Precharge Bank B  
tIH  
tIS  
tIS  
tIH  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
tIH  
RAx  
RBx  
RBx  
RAy  
RAy  
tIS  
A0-A9  
DQM  
RAx  
CAx  
tRRD  
CBx  
tRAS  
tRC  
tAC  
tLZ  
tRCD  
tRP  
tHZ  
Hi-Z  
DQ  
Bx0  
Bx1  
tHZ  
Ax0  
tOH  
Ax1  
Read with  
Auto Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Don’t Care  
Confidential  
22  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 21. Auto Refresh  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
RAx  
CAx  
A0-A9  
DQM  
tRC  
tRP  
tRC  
tRCD  
DQ  
Ax0  
Ax1  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge All  
Command  
Auto Refresh  
Command  
Auto Refresh  
Command  
Don’t Care  
Confidential  
23  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 22. Power on Sequene and Auto Refresh  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High Level  
Minimum for 2 Refresh Cycles are required  
Is reguired  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
Address Key  
A0-A9  
DQM  
tRP  
tMRD  
Hi-Z  
DQ  
Precharge All  
Command  
Any  
Command  
1st Auto Refresh(*)  
Command  
2nd Auto Refresh(*)  
Command  
Inputs must be  
Mode Register  
Set Command  
Stable for  
200μs  
Don’t Care  
Note(*): The Auto Refresh command can be issue before or after Mode Register Set command  
Confidential  
24  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 23. Self Refresh Entry & Exit Cycle  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19  
CLK  
CKE  
*Note 2  
*Note 8  
tXSR  
*Note 5  
*Note 1  
*Note 3,4  
tPDE  
tIS  
tIH  
*Note 6  
tIS  
*Note 7  
CS#  
RAS#  
CAS#  
WE#  
A11  
*Note 9  
A10  
A0-A9  
DQM  
DQ  
Hi-Z  
Hi-Z  
Self Refresh Exit  
Auto Refresh  
Self Refresh Entry  
Don’t Care  
Note: To Enter SelfRefresh Mode  
1. CS#, RAS# & CAS# with CKE should be low at the same clock cycle.  
2. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE.  
3. The device remains in SelfRefresh mode as long as CKE stays "low".  
4. Once the device enters SelfRefresh mode, minimum tRAS is required before exit from SelfRefresh.  
To Exit SelfRefresh Mode  
5. System clock restart and be stable before returning CKE high.  
6. Enable CKE and CKE should be set high for valid setup time and hold time.  
7. CS# starts from high.  
8. Minimum tXSR is required after CKE going high to complete SelfRefresh exit.  
9. 4096 cycles of burst AutoRefresh is required before SelfRefresh entry and after SelfRefresh exit if the  
system uses burst refresh.  
Confidential  
25  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 24.1. Clock Suspension During Burst Read (Using CKE)  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
RAx  
CAx  
A0-A9  
DQM  
tHZ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
DQ  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock Suspend  
3 Cycles  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Don’t Care  
Confidential  
26  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 24.2. Clock Suspension During Burst Read (Using CKE)  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
RAx  
CAx  
A0-A9  
DQM  
tHZ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
DQ  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock Suspend  
3 Cycles  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Don’t Care  
Confidential  
27  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 25. Clock Suspension During Burst Write (Using CKE)  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
RAx  
CAx  
A0-A9  
DQM  
Hi-Z  
DAx0  
Write  
DAx1  
DAx2  
DAx3  
DQ  
Activate  
Command  
Bank A  
Clock Suspend  
3 Cycles  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Command  
Bank A  
Don’t Care  
Confidential  
28  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
(Burst Length=4, CAS# Latency=2)  
Figure 26. Power Down Mode and Clock Suspension  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tIH tIS  
tPDE  
Valid  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
CAx  
A0-A9  
DQM  
tHZ  
Ax3  
Hi-Z  
Ax0  
Ax1  
Ax2  
DQ  
ACTIVE  
STANDBY  
PRECHARGE  
STANDBY  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Power Down  
Mode Exit  
Read  
Command  
Bank A  
Clock Suspension  
Start  
Clock Suspension  
End  
Any  
Command  
Power Down  
Mode Exit  
Power Down  
Mode Entry  
Power Down  
Mode Entry  
Don’t Care  
Confidential  
29  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 27.1. Random Column Read (Page within same Bank)  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAw  
RAw  
RAz  
RAz  
CAw  
CAx  
CAy  
CAz  
A0-A9  
DQM  
Hi-Z  
Aw0  
Aw1  
Aw2 Aw3  
Ax0  
Ax1  
Ay0  
Ay1  
Ay2  
Ay3  
Az0  
DQ  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Don’t Care  
Confidential  
30  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 27.2. Random Column Read (Page within same Bank)  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAw  
RAw  
RAz  
RAz  
CAw  
CAx  
CAy  
CAz  
A0-A9  
DQM  
Hi-Z  
Aw0  
Aw1  
Aw2 Aw3  
Read  
Ax0  
Ax1  
Ay0  
Ay1  
Ay2  
Ay3  
DQ  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Command  
Bank A  
Don’t Care  
Confidential  
31  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 28. Random Column Write (Page within same Bank)  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBw  
RBw  
RBz  
RBz  
CBw  
CBx  
CBy  
CBz  
A0-A9  
DQM  
Hi-Z  
DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3  
DBz0 DBz1  
DQ  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Don’t Care  
Confidential  
32  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 29.1. Random Row Read (Interleaving Banks)  
(Burst Length=8, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBx  
RAx  
RAx  
RBy  
RBy  
RBx  
CBx  
CAx  
CBy  
A0-A9  
DQM  
tAC  
tRCD  
tRP  
Hi-Z  
Bx0  
Bx1  
Bx2  
Bx3  
Bx4  
Bx5  
Bx6  
Bx7  
Ax0  
Ax1  
Ax2  
Ax3  
Ax4  
Ax5  
Ax6  
Ax7  
DQ  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Don’t Care  
Confidential  
33  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 29.2. Random Row Read (Interleaving Banks)  
(Burst Length=8, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBx  
RAx  
RAx  
RBy  
RBy  
RBx  
CBx  
CAx  
CBy  
A0-A9  
DQM  
tAC  
tRCD  
tRP  
Hi-Z  
Bx0  
Bx1  
Bx2  
Bx3  
Bx4  
Bx5  
Bx6  
Bx7  
Ax0  
Ax1  
Ax2  
Ax3  
Ax4  
Ax5  
Ax6  
Ax7  
By0  
DQ  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank A  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Don’t Care  
Confidential  
34  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 30. Random Row Write (Interleaving Banks)  
(Burst Length=8)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RBx  
RBx  
RAy  
RAy  
RAx  
CAx  
CBx  
CAy  
A0-A9  
DQM  
tRCD  
tWR*  
tRP  
tWR*  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3  
DQ  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank B  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank A  
Don’t Care  
*tWR>tWR (min.)  
Confidential  
35  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
(Burst Length=4, CAS# Latency=2)  
Figure 31.1. Read and Write Cycle  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
CAx  
CAy  
CAz  
A0-A9  
DQM  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
DAy0 DAy1  
DAy3  
Az0  
Az1  
Az3  
DQ  
The Write Data  
is Masked with a  
Zero Clock  
The Read Data  
is Masked with a  
Two Clock  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Write  
Command  
Bank A  
Latency  
Latency  
Don’t Care  
Confidential  
36  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 31.2. Read and Write Cycle  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
RAx  
CAx  
CAy  
CAz  
A0-A9  
DQM  
DQ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
DAy0 DAy1  
DAy3  
Az0  
Az1  
Az3  
The Write Data  
The Read Data  
is Masked with a  
Two Clock  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Write  
Command  
Bank A  
is Masked with a  
Zero Clock  
Read  
Command  
Bank A  
Latency  
Latency  
Don’t Care  
Confidential  
37  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 32.1. Interleaving Column Read Cycle  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
RBx  
RBx  
CAy  
CBw  
CBx  
CBy  
CAy  
CBz  
A0-A9  
DQM  
tRCD  
tAC  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bw0  
Bw1  
Bx0  
Bx1  
By0  
By1  
Ay0  
Ay1  
Bz0  
Bz1  
Bz2  
Bz3  
DQ  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Precharge  
Command  
Bank A  
Don’t Care  
Confidential  
38  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 32.2. Interleaved Column Read Cycle  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
RBx  
RBx  
CAx  
CBx  
CBy  
CBz  
CAy  
A0-A9  
DQM  
tRCD  
tAC  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
By0  
By1  
Bz0  
Bz1  
Ay0  
Ay1  
Ay2  
Ay3  
DQ  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Don’t Care  
Confidential  
39  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 33. Interleaved Column Write Cycle  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
RBw  
CAx RBw  
CBw  
CBx  
CBy  
CAy  
CBz  
tWR  
A0-A9  
DQM  
tWR  
tRCD  
tRRD>tRRD (min)  
DAx0 DAx1 DAx2 DAx3 DBw0 DBw1 DBx0 DBx1 DBy0 DBy1 DAy0 DAy1 DBz0 DBz1 DBz2 DBz3  
Hi-Z  
DQ  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank A  
Activate  
Precharge  
Command  
Bank B  
Command  
Bank A  
Don’t Care  
Confidential  
40  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 34.1. Auto Precharge after Read Burst  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
Begin Auto  
Precharge  
Bank B  
Begin Auto  
Precharge  
Bank A  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RBx  
RBx  
RBy  
RBy  
RAz  
RAz  
RAx  
CAx  
CBx  
CAy  
CBy  
A0-A9  
DQM  
tRP  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
Bx2  
Bx3  
Ay0  
Ay1  
Ay2  
Ay3  
By0  
By1  
By2  
DQ  
Read with  
Activate  
Command  
Bank A  
Read with  
Auto Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Read with  
Auto Precharge  
Command  
Bank B  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Auto precharge  
Command  
Bank A  
Don’t Care  
Confidential  
41  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 34.2. Auto Precharge after Read Burst  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
Begin Auto  
Precharge  
Bank B  
Begin Auto  
Precharge  
Bank A  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
RAx  
CAx  
CBx  
CAy  
tRP  
CBy  
A0-A9  
DQM  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
Bx2  
Bx3  
Ay0  
Ay1  
Ay2  
Ay3  
By0  
By1  
By2  
DQ  
Read with  
Auto Precharge  
Command  
Bank B  
Read with  
Auto Precharge  
Command  
Bank A  
Read with  
Auto Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Don’t Care  
Confidential  
42  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 35. Auto Precharge after Write Burst  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
Begin Auto  
Precharge  
Bank B  
Begin Auto  
Precharge  
Bank A  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
RAx  
CAx  
CBx  
CAy  
CBy  
A0-A9  
DQM  
tDAL  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DBx0 DBx1 DBx2 DBx3 DAy0 DAy1 DAy2 DAy3  
DBy0 DBy1 DBy2 DBy3  
DQ  
Write with  
Auto Precharge  
Command  
Bank B  
Write with  
Auto Precharge  
Command  
Bank A  
Write with  
Auto Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Don’t Care  
Confidential  
43  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 36.1. Full Page Read Cycle  
(Burst Length=Full Page, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
RAx  
CAx  
CBx  
A0-A9  
DQM  
tRP  
Hi-Z  
Ax  
Ax+1 Ax+2 Ax-2 Ax-1  
Ax  
Ax+1  
Bx  
Bx+1 Bx+2 Bx+3 Bx+4 Bx+5 Bx+6  
DQ  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Full Page burst operation does not  
Burst Stop  
Command  
Don’t Care  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address  
Confidential  
44  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 36.2. Full Page Read Cycle  
(Burst Length=Full Page, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
RAx  
CAx  
CBx  
A0-A9  
DQM  
tRP  
Hi-Z  
Ax  
Ax+1 Ax+2 Ax-2 Ax-1  
Ax  
Ax+1  
Bx  
Bx+1 Bx+2 Bx+3 Bx+4 Bx+5  
DQ  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
The burst counter wraps  
from the highest order  
Burst Stop  
Command  
Don’t Care  
page address back to zero  
during this time interval  
Full Page burst operation does not  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address  
Confidential  
45  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 37. Full Page Write Cycle  
(Burst Length=Full Page)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
RAx  
CAx  
CBx  
A0-A9  
DQM  
Data is ignored  
Hi-Z  
DAx  
DAx+1 DAx+2 DAx+3 DAx-1  
Activate  
DAx  
DAx+1  
DBx  
DBx+1 DBx+2 DBx+3 DBx+4 DBx+5  
DQ  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval  
Burst Stop  
Command  
Full Page burst operation does not  
Don’t Care  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address  
Confidential  
46  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 38. Byte Read and Write Operation  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
CAx  
CAy  
CAz  
A0-A9  
LDQM  
UDQM  
Ax0  
Ax1  
Ax1  
Ax2  
Ax2  
DAy1 Day2  
Az1  
Az1  
Az2  
Az2  
DQ0-DQ7  
DQ8-DQ15  
Ax3  
DAy0 DAy1  
DAy3  
Az0  
Az3  
Upper Byte  
is masked  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Upper Byte  
is masked  
Lower Byte  
is masked  
Write  
Command  
Bank A  
Lower Byte  
is masked  
Lower Byte  
is masked  
Don’t Care  
Confidential  
47  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 39. Random Row Read (Interleaving Banks)  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
Begin Auto  
Precharge  
Bank B  
Begin Auto  
Precharge  
Bank A  
Begin Auto  
Precharge  
Bank B  
Begin Auto  
Precharge  
Bank A  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAv  
RAv  
RBw  
RBw  
RBu  
RAu  
RBv  
RBv  
RBu  
CBu RAu  
CAu  
CBv  
CAv  
A0-A9  
DQM  
tRP  
tRP  
tRP  
Bu0  
Bu1  
Bu2  
Bu3  
Au0  
Au1  
Au2  
Au3  
Bv0  
Bv1  
Bv2  
Bv3  
Av0  
Av1  
Av2  
Av3  
DQ  
Read  
Bank A  
with Auto  
Precharge  
Read  
Bank A  
with Auto  
Precharge  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Bank B  
Read  
with Auto  
Precharge  
Bank B  
with Auto  
Precharge  
Don’t Care  
Confidential  
48  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
(Burst Length=Full Page, CAS# Latency=2)  
Figure 40. Full Page Random Column Read  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBw  
RBw  
RAx  
RAx  
RBx  
RBx  
CAx  
CBx  
CAy  
CBy  
CAz  
CBz  
A0-A9  
DQM  
tRP  
tRRD  
tRCD  
Hi-Z  
Ax0  
Ax1  
Bx0  
Ay0  
Ay1  
By0  
By1  
Az0  
Az1  
Az2  
Bz0  
Bz1  
Bz2  
DQ  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command Bank B  
(Precharge Temination)  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Activate  
Command  
Bank B  
Read  
Read  
Command  
Bank A  
Command  
Bank A  
Don’t Care  
Confidential  
49  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 41. Full Page Random Column Write  
(Burst Length=Full Page)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBw  
RBw  
RAx  
RAx  
RBx  
RBx  
CAx  
CBx  
CAy  
CBy  
CAz  
CBz  
A0-A9  
DQM  
tWR  
tRP  
tRRD  
tRCD  
DAx0 DAx1 DBx0 DAy0 DAy1 DBy0 DBy1 DAz0 DAz1 DAz2 DBz0 DBz1 DBz2  
Hi-Z  
DQ  
Write  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command Bank B  
(Precharge Temination)  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank A  
Write  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Write  
Command  
Bank A  
Write Data  
are masked  
Command  
Bank A  
Don’t Care  
Confidential  
50  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 42. Precharge Termination of a Burst  
(Burst Length=4, 8 or Full Page, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAy  
RAy  
RAz  
RAz  
RAx  
CAx  
CAy  
A0-A9  
DQM  
tWR  
tRP  
tRP  
DAx0 DAx1  
Ay0  
Ay1  
Ay2  
DQ  
Precharge Termination  
of a Read Burst  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge Termination  
of a Write Burst  
Write Data are masked  
Don’t Care  
Confidential  
51  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
Figure 43. 50 Pin TSOP II Package Outline Drawing Information  
50  
26  
  
L
L1  
1
25  
D
L
L1  
e
S
B
y
Symbol  
Dimension in inch  
Dimension in mm  
Min  
Normal  
Max  
0.047  
0.008  
0.043  
0.018  
Min  
Normal  
Max  
1.20  
0.20  
1.1  
0.45  
A
A1  
A2  
B
c
D
0.002  
0.035  
0.008  
0.005  
0.039  
0.05  
0.9  
0.2  
0.125  
1.0  
0.006  
0.825  
0.400  
0.031  
0.155  
20.95  
10.16  
0.80  
0.82  
0.395  
0.83  
0.405  
20.82  
10.03  
21.08  
10.29  
E
e
0.455  
0.016  
0.463  
0.020  
0.0315  
0.035  
0.471  
0.024  
11.56  
0.40  
11.76  
0.50  
0.80  
0.88  
11.96  
0.60  
HE  
L
L1  
S
0.004  
0.10  
y
8
0  
8  
0  
Notes:  
1. Dimension D&E do not include interlead flash.  
2. Dimension B does not include dambar protrusion/intrusion.  
3. Dimension S includes end flash.  
4. Controlling dimension: mm  
Confidential  
52  
Rev. 2.0  
March /2015  
AS4C1M16S-C&I  
PART NUMBERING SYSTEM  
AS4C  
DRAM  
1M16S  
6/7  
T
C/I  
N
C=Commercial  
(0° C70° C)  
I=Industrial  
Indicates Pb and  
Halogen Free  
1M16=1Mx16  
S=SDRAM  
6=166MHz  
7=143MHz  
T = TSOP II  
(-40° C85° C)  
Alliance Memory, Inc.  
511 Taylor Way,  
San Carlos, CA 94070  
Tel: 650-610-6800  
Fax: 650-620-9211  
www.alliancememory.com  
Copyright © Alliance Memory  
All Rights Reserved  
© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt  
are trademarks or registered trademarks of Alliance. All other brand and product names may be the  
trademarks of their respective companies. Alliance reserves the right to make changes to this document and  
its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in  
this document. The data contained herein represents Alliance's best data and/or estimates at the time of  
issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product  
described herein is under development, significant changes to these specifications are possible. The  
information in this product data sheet is intended to be general descriptive information for potential customers  
and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer.  
Alliance does not assume any responsibility or liability arising out of the application or use of any product  
described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance  
products including liability or warranties related to fitness for a particular purpose, merchantability, or  
infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and  
Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively  
according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not  
convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual  
property rights of Alliance or third parties. Alliance does not authorize its products for use as critical  
components in life-supporting systems where a malfunction or failure may reasonably be expected to result in  
significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies  
that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising  
from such use.  
Confidential  
53  
Rev. 2.0  
March /2015  

相关型号:

AS4C256K16E0

5V 256Kx16 CMOS DRAM (EDO)
ALSC

AS4C256K16E0-30

5V 256Kx16 CMOS DRAM (EDO)
ALSC

AS4C256K16E0-30JC

5V 256Kx16 CMOS DRAM (EDO)
ALSC

AS4C256K16E0-35

5V 256Kx16 CMOS DRAM (EDO)
ALSC

AS4C256K16E0-35JC

5V 256Kx16 CMOS DRAM (EDO)
ALSC

AS4C256K16E0-45JC

x16 EDO Page Mode DRAM
ETC

AS4C256K16E0-50

5V 256Kx16 CMOS DRAM (EDO)
ALSC

AS4C256K16E0-50JC

5V 256Kx16 CMOS DRAM (EDO)
ALSC

AS4C256K16E0-50TC

5V 256Kx16 CMOS DRAM (EDO)
ALSC

AS4C256K16F0-25JC

5V 256K X 16 CMOS DRAM (Fast Page Mode)
ALSC

AS4C256K16F0-25JI

5V 256K X 16 CMOS DRAM (Fast Page Mode)
ALSC

AS4C256K16F0-25TC

5V 256K X 16 CMOS DRAM (Fast Page Mode)
ALSC