AS4C32M32MD1-5BCN [ALSC]

Automatic and Controlled Precharge Command;
AS4C32M32MD1-5BCN
型号: AS4C32M32MD1-5BCN
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

Automatic and Controlled Precharge Command

文件: 总43页 (文件大小:1239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS4C32M32MD1  
Revision History AS4C32M32MD1 - 90-ball FBGA PACKAGE  
Revision Details  
Rev 1.0 Preliminary datasheet  
Date  
September 2014  
Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070 TEL: (650) 610-6800 FAX: (650) 620-9211  
Alliance Memory Inc. reserves the right to change products or specification without notice  
Confidential  
-1-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
32M x 32 bit MOBILE DDR Synchronous DRAM (SDRAM)  
Confidential  
Advanced (Rev. 1.0, Sep. /2014)  
Feature  
Description  
-
-
-
-
-
4 banks x 8M x 32 organization  
The AS4C32M32MD1 is a four bank mobile  
DDR DRAM organized as 4 banks x 8M x 32. It  
achieves high speed data transfer rates by  
employing a chip architecture that pre-fetches  
multiple bits and then synchronizes the output data  
to a system clock.  
Data Mask for Write Control (DM)  
Four Banks controlled by BA0 & BA1  
Programmable CAS Latency: 2, 3  
Programmable Wrap Sequence: Sequential  
or Interleave  
Programmable Burst Length:  
2, 4, 8, 16 for Sequential Type  
2, 4, 8, 16 for Interleave Type  
Automatic and Controlled Precharge Command  
Power Down Mode  
-
All of the controls, address, circuits are  
synchronized with the positive edge of an  
externally sup-plied clock. I/O transactions are  
possible on both edges of DQS.  
-
-
-
-
-
-
-
Auto Refresh and Self Refresh  
Refresh Interval: 8192 cycles/64ms  
Available in 90-ball BGA  
Operating the four memory banks in an inter-  
leaved fashion allows random access operation to  
occur at a higher rate than is possible with  
standard DRAMs. A sequential and gapless data  
rate is possible depending on burst length, CAS  
latency and speed grade of the device.  
Double Data Rate (DDR)  
Bidirectional Data Strobe (DQS) for input  
and output data, active on both edges  
Differential clock inputs CLK and /CLK  
Power Supply 1.7V - 1.95V  
Drive Strength (DS) Option:Full, 1/2, 1/4, 3/4  
Auto Temperature-Compensated Self Refresh  
(Auto TCSR)  
-
-
-
-
Additionally, the device supports low power  
saving features like PASR, Auto-TCSR, DPD as  
well as options for different drive strength. It’s  
ideally suit-able for mobile application.  
-
Partial-Array Self Refresh (PASR) Option: Full,  
1/2, 1/4, 1/8, 1/16  
-
-
Deep Power Down (DPD) mode  
Operating Temperature Range  
-
-
Commercial -25°C to 85°C (Extended)  
Industrial -40°C to 85°C  
Table 1. Speed Grade Information  
Speed Grade Data rate Clock Frequency CAS Latency  
tRCD  
tRP  
(ns)  
(ns)  
400Mbps (max) 200 MHz (max)  
3
15  
15  
Table 2 Ordering Information for ROHS Compliant Products  
Product part No Org Temperature Package  
AS4C32M32MD1-5BCN 32M x 32 Commercial - 25°C to 85°C 90-ball BGA  
(Extended)  
AS4C32M32MD1-5BIN  
32M x 32 Industrial -40°C to 85°C  
90-ball BGA  
Confidential  
-2-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Block Diagram (32M x 32)  
Row Addresses *Reduced Page size  
Column Addresses  
*
A0-A9 (A0-A8), AP, BA0, BA1  
A0-A12 (A0-A13)*, BA0, BA1  
Row address  
buffer  
Column address  
counter  
Column address  
buffer  
Refresh Counter  
Row decoder  
Row decoder  
Row decoder  
Row decoder  
Memory array  
Bank A  
Memory array  
Bank B  
Memory array  
Bank C  
Memory array  
Bank D  
8192 x 1024  
x32 bits  
8192 x 1024  
x32 bits  
8192 x 1024  
x32 bits  
8192 x 1024  
x32 bits  
Control logic & timing generator  
Input buffer  
Output buffer  
DQ0-DQ31  
CLK, CLK  
Strobe  
Gen.  
DQS0 - DQS3  
Data Strobe  
Confidential  
-3-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
32MX32 90 BALL BGA  
CONFIGURATION  
Top View  
9
8
7
6
5
ꢁꢂꢂꢂꢂꢂꢃꢂꢂꢂꢂꢂꢄ  
:1C bmm!)7Y 26*!D T Q  
2
3
4
8
9
:
A
B
C
D
E
F
B
C
D
E
F
G
H
I
K
L
M
N
O
Q
S
W T T  
E R 42  
E R 3:  
E R 38  
E R 36  
E R T 4  
E N 4  
D L  
W T T R  
E R 41  
E R 39  
E R 37  
E R 35  
O D  
W E E R  
E R 28  
E R 2:  
E R 32  
E R 34  
B 242  
X F  
E R 27  
E R 29  
E R 31  
E R 33  
E R T 3  
E N 3  
W E E  
W E E R  
W T T R  
W E E R  
W T T R  
W E E  
D L F  
W T T R  
W E E R  
3
Uftu  
W E E R  
W T T  
D L  
B 23  
D B T  
C B 1  
S B T  
C B 2  
G
H
B :  
B 22  
D T  
B 7  
B 8  
B 9  
B 210B Q  
B 1  
E N 1  
E R T 1  
E R 7  
E R 5  
E R 3  
E R 1  
B 2  
B 5  
E N 2  
E R T 2  
E R :  
B 6  
B 3  
E R 8  
E R 6  
E R 4  
E R 2  
W E E R  
B 4  
J
K
/
W T T R  
W E E R  
W T T R  
W E E R  
W T T  
E R 9  
E R 21  
E R 23  
E R 25  
W T T R  
W E E R  
W T T R  
W E E R  
W T T R  
W E E  
E R 22  
E R 24  
E R 26  
0
1
3
O p uf !2 ;!B 2 4 !jt!pomz!bwbjmbcmf!gps!sfevdfe!qbhf.tj{f!dpogjhvsbujpo/  
O puf!3;!Uftu!!n vtu!!cf!u!jfe!up!W T T !ps!W T T R !jo!!opsn bm!!pqfsbujpot/  
5
Pin Names  
CLK, CLK  
CKE  
Differential Clock Input  
Clock Enable  
BA0, BA1  
Bank Select  
DQ0–DQ31  
Data Input/Output  
Data Mask  
CS  
Chip Select  
DM0, DM1, DM3,  
DM3  
RAS  
Row Address Strobe  
Column Address Strobe  
Write Enable  
VDD  
VSS  
Power (1.7V - 1.95V)  
Ground  
CAS  
WE  
VDDQ  
VSSQ  
NC  
Power for I/O’s (1.7V - 1.95V)  
Ground for I/O’s  
No Connect  
DQS0, DQS1,  
DQS2, DQS3  
Data Strobe (Bidirectional)  
A0–A13  
Address Inputs  
Confidential  
-4-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Signal Pin Description  
Pin  
Type  
Signal Polarity  
Function  
CLK  
CLK  
Input  
Pulse  
Positive  
Edge  
The system clock input. All inputs except DQs and DMs are sampled on the rising edge  
of CLK.  
CKE  
Input  
Input  
Level Active High Activates the CLK signal when high and deactivates the CLK signal when low, thereby  
initiates either the Power Down mode, Suspend mode, or the Self Refresh mode.  
CS  
Pulse Active Low CS enables the command decoder when low and disables the command decoder when  
high. When the command decoder is disabled, new commands are ignored but previous  
operations continue.  
RAS, CAS Input  
WE  
Pulse Active Low When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the  
command to be executed by the SDRAM.  
A0 - A13  
Input  
Level  
During a Bank Activate command cycle, A0-A12 defines the row address (RA0-RA12)  
and A0-A13 defines the row address (RA0-RA13) for 32Mx32 reduced page size when  
sampled at the rising clock edge.  
During a Read or Write command cycle, A0-A9 defines the column address (CA0-CA9)  
and A0-A8 defines tthe column address (CA0-CA8) for 32Mx32 reduced page size when  
sampled at the rising clock edge.  
In addition to the column address, A10 is used to invoke autoprecharge operation at the  
end of the burst read or write cycle. If A10 is high, autoprecharge is selected and BA0,  
BA1 defines the bank to be precharged. If A10 is low, autoprecharge is disabled.  
During a Precharge command cycle, A10(=AP) is used in conjunction with BA0 and BA1  
to control which bank(s) to precharge. If A10 is high, all four banks will be precharged  
simultaneously regardless of state of BA0 and BA1.  
DQx  
Input/  
Level  
Level  
Level  
Data Input/Output pins operate in the same manner as conventional DRAMs.  
Output  
BA0,  
BA1  
Input  
Selects which bank is to be active.  
LDQS,  
UDQS  
Input/  
Data Input/Output are synchronous edges of the DQS. LDQS for DQ0-DQ7, UDQS for  
DQ8-DQ15 in 32Mx16. DQS0 for DQ0-DQ7, DQS1 for DQ8-DQ15, and DQS2 for DQ16-  
DQ23, DQS3 for DQ24-DQ31 in 16Mx32. Active on both edges for data input/output.  
Center aligned to input data and edge aligned to output data.  
Output  
(DQS0~3)  
UDM,  
LDM  
Input  
Pulse Active High In Write mode, DQM has a latency of zero and operates as a word mask by allowing input  
data to be written if it is low but blocks the write operation if is high. If it’s high, LDM cor-  
responds to DQ0-DQ7, and UDM corresponds to data on DQ8-DQ15 in 32Mx16. DM0  
corresponds to DQ0-DQ7, DM1 corresponds to data on DQ8-DQ15, DM2 corresponds  
to DQ16-DQ23, and DM3 corresponds to data on DQ24-DQ31 in 16Mx32.  
(DM0~3)  
VDD, VSS Supply  
Power and ground for the input buffers and the core logic.  
VDDQ  
VSSQ  
Supply  
Isolated power supply and ground for the output buffers to provide improved noise  
immunity.  
NC  
Input  
No connect.  
Confidential  
-5-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Mode Register Set  
The mode register stores the data for controlling the various operating modes of the mobile DDR, includes CAS latency, addressing  
mode, burst length, test mode, and various vendor specific options. The default value of the mode register is not defined.  
Therefore the mode register must be written after power up to operate the mobile DDR. The device should be activated with the  
CKE already high prior to writing into the Mode Register. The Mode Register is written by using the MRS command. The state of the  
address signals registered in the same cycle as MRS command is written in the mode register. The value can be changed as long as  
all banks are in the idle state.  
The mode register is divided into various fields depending on functionality. The burst length uses A2.. A0, CAS latency (read latency  
from column address) uses A6.. A4. BA0 must be set to low for normal operation.  
A9.. AꢀꢁꢂLVꢂreserved for future use.  
BA1 selects Extended Mode Register Setup operation when set to 1. Refer to the table for specific codes for various burst length,  
addressing modes and CAS latencies.  
Mode Register Bitmap  
$ꢀꢁꢃ$ꢀꢄꢅ$ꢆ3ꢇ  
Address Bus  
BA1  
BA0  
A9  
0
A8  
0
A7  
0
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
0
0
CAS Latency  
Burst Length  
Mode Register  
0
Register  
Mode  
Burst Type  
A3  
Access  
BA1  
Accessed Register  
Type  
0
1
Mode Register  
0
1
Sequential  
Interleaved  
Extend. Mode Reg.  
CAS Latency  
A6  
A5  
A4  
Latency  
2
3
0
0
1
1
0
1
Burst Length  
Length  
A2  
A1  
A0  
Sequential  
Interleave  
0
0
0
0
1
1
1
0
1
2
4
8
2
4
8
ꢀꢂ  
ꢀꢂ  
Confidential  
-6-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
EMRS  
The Extended Mode Register is responsible for setting the Drive strength options and Partial array Self Refresh. The  
EMRS can be programmed by performing a normal Mode Register Setup operation and setting the BA1=1 and BA0=0.  
In order to save power consumption, the mobile DDR Sdram has five (PASR) options: Full array, 1/2, 1/4 ,3/4 of Full  
Array. Additionally, the device has internal temperature sensor to control self refresh cycle atuomatically according to  
the two temperature range; Max. 45 deg C, and Max. 85 deg C. This is the device internal Temperature Compensated  
Self Refresh(TCSR). The device has four drive strength options: Full, 1/2, 1/4, 3/4.  
Extended Mode Register Set  
Address Bus  
BA1  
1
BA0  
0
A9  
A8  
A7  
A6  
A5  
A4  
0
A3  
0
A2  
A1  
A0  
$ꢀꢁꢃ$ꢀꢄꢅ$ꢆ3ꢇ  
PASR  
0
DS  
Mode Register  
Extended Mode  
Register Access  
BA0  
Accessed Register  
BA1  
Drive Strength  
0
1
0
0
Mode Register  
A6  
A5  
Drive Strength  
,QWHUQDOꢂ7&65  
Extend. Mode Reg.  
6HOIꢂ5HIUHVKꢂF\FOHꢂLVꢂFRQWUꢃ  
ROOHGꢂDXWRPDWLFDOO\ꢂE\ꢂLQWHU  
QDOꢂWHPSHUDWXUHꢂVHQVRUꢂ  
DQGꢂFRQWUROꢂFLUFXLWꢂDFFRUGLQJꢂ  
WRꢂWKHꢂWZRꢂWHPSHUDWXUHꢈ  
0
0
1
1
0
1
0
1
Full  
1/2  
1/4  
ꢃꢄꢅ  
All other Reserved  
Partial Array Self Refresh  
Size of Refreshed Area  
A2  
A1  
A0  
0
0
0
0
0
1
0
1
0
Full Array  
1/2 of Full Array (Banks 0, 1)  
1/4 of Full Array (Bank 0)  
Reserved  
0
1
1
1
0
0
1
0
1
Reserved  
1/8 of Full Array (BA1=BA0=A11=0)  
1/16 of Full Array (BA1=BA0=A11=A10=0)  
Reserved  
1
1
1
1
0
1
Confidential  
-7-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Signal and Timing Description  
General Description  
The 1Gbit mobile DDR is a 128M byte mobile DDR SDRAM. It consists of four banks. Each bank is organized as 8192  
rows x 1024 columns x 32 bits.  
Read and Write accesses are burst oriented. Accesses begin with the registration of an Activate command, which is  
then followed by a Read or Write command. The address bits registered coincident with the Activate command are used  
to select the bank and the row to be accessed. BA1 and BA0 select the bank, address bits A13.. A0 select the row.  
Address bits A9.. A0 registered coincident with the Read or Write command are used to select the starting column loca-  
tion for the burst access.  
The regular Single Data Rate SDRAM read and write cycles only use the rising edge of the external clock input. For the  
mobile SDRAM the special signals DQSx (Data Strobe) are used to mark the data valid window. During read bursts, the  
data valid window coincides with the high or low level of the DQSx signals. During write bursts, the DQSx signal marks  
the center of the valid data window. Data is available at every rising and falling edge of DQSx, therefore the data transfer  
rate is doubled.  
For Read accesses, the DQSx signals are aligned to the clock signal CLK.  
Special Signal Description  
Clock Signal  
The mobile DDR operates with a differential clock (CLK and CLK) input. CLK is used to latch the address and command  
signals. Data input and DMx signals are latched with DQSx. The minimum and maximum clock cycle time is defined by  
t
.
CK  
The minimum and maximum clock duty cycle are specified using the minimum clock high time t  
and the minimum  
CH  
clock low time t respectively.  
CL  
Command Inputs and Addresses  
Like single data rate SDRAMs, each combination of RAS, CAS and WE input in conjunction with CS input at a rising  
edge of the clock determines a mobile DDR command.  
Command and Address Signal Timing  
VIH  
CLK, CLK#  
VIL  
tIS  
VIH  
VTT  
VIL  
Address,  
CS#, RAS#,  
CAS#, WE#,  
CKE  
Valid  
Valid  
tIH  
Confidential  
-8-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Data Strobe and Data Mask  
Operation at Burst Reads  
The Data Strobes provide a 3-state output signal to the receiver circuits of the controller during a read burst. The data  
strobe signal goes 1 clock cycle low before data is driven by the mobile DDR and then toggles low to high and high to low  
till the end of the burst. CAS latency is specified to the first low to high transition. The edges of the Output Data signals  
and the edges of the data strobe signals during a read are nominally coincident with edges of the input clock.  
The tolerance of these edges is specified by the parameters t  
and t  
and is referenced to the crossing point of  
DQSCK  
AC  
timing parameter describes the skew between the data strobe edge and the output  
the CLK and /CLK signal. The t  
data edge.  
DQSQ  
The following table summarizes the mapping of LDQS, UDQS(DQS0 ~ DQS3) and LDM, UDM(DM0 ~ DM3) signals to  
the data bus.  
Mapping of DQS0~DQS3 and DM0~DM3  
Data strobe signal  
LDQS, DQS0  
UDQS, DQS1  
DQS2  
Data mask signal  
LDM, DM0  
UDM, DM1  
DM2  
Controlled data bus  
DQ7 .. DQ0  
DQ8 .. DQ15  
DQ16 .. DQ23  
DQ24 .. DQ31  
DQS3  
DM3  
The minimum time during which the output data is valid is critical for the receiving device. This also applies to the Data  
Strobe DQS during a read since it is tightly coupled to the output data. The parameters t and t define the mini-  
QH  
DQSQ  
mum output data valid window. Prior to a burst of read data, given that the device is not currently in burst read mode,  
the data strobe signals transit from Hi-Z to a valid logic low. This is referred to as the data strobe “read preamble” t  
.
RPRE  
This transition happens one clock prior to the first edge of valid data.  
Once the burst of read data is concluded, given that no subsequent burst read operation is initiated, the data strobe sig-  
nals transit from a valid logic low to Hi-Z. This is referred to as the data strobe “read postamble” t  
.
RPST  
Confidential  
-9-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Data Output Timing - t  
and t  
DQSCK  
AC  
T0  
T1  
T2  
T3  
T3n  
T4  
T4n  
T5  
T5n  
T2n  
T6  
CK#  
CK  
NOP1  
CL = 3  
NOP1  
NOP1  
NOP1  
NOP1  
NOP1  
Command  
READ  
tHZ  
tDQSCK  
tDQSCK  
tLZ  
tRPRE  
tRPST  
DQS or LDQS/UDQS 2  
t
LZ  
All DQ values, collectively3  
T3  
T4  
T5  
T2  
T2n  
T3n  
T5n  
T4n  
4
tAC  
tAC  
4
tHZ  
Don’t Care  
1. Commands other than NOP can be valid during this cycle.  
Notes:  
tDQSQ  
2. DQ transitioning after DQS transitions define  
window.  
tDQSQ  
t
3. All DQ must transition by  
tAC  
after DQS transitions, regardless of  
AC  
.
4.  
is the DQ output window relative to CK and is the long-term component of DQ skew.  
Confidential  
-10-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Operation at Burst Write  
During a write burst, control of the data strobe is driven by the memory controller. The LDQS, UDQS signals are centered with respect  
to data and data mask. The tolerance of the data and data mask edges versus the data strobe edges during writes are specified by the  
setup and hold time parameters of data (t  
same cycle when the corresponding LDM, UDM signal is high (i.e. the LDM,UDM mask to write latency is zero.)  
& t  
) and data mask (t ). The input data is masked in the  
& t  
QDQSS QDQSH  
DMDQSS DMDQSH  
LDQS, UDQS, LDM, and UDM Timing at Write  
VIH  
VTT  
VIL  
LDQS,  
UDQS  
tDMDQSS  
tDMDQSS  
VIH  
VTT  
VIL  
LDM,  
UDM  
tDMDQSH  
tDMDQSH  
tQDQSH  
tQDQSH  
VIH  
VTT  
VIL  
Q
+3  
Q
Q+1  
Q+2  
tQDQSS  
Q+4  
DQx  
tQDQSS  
Input Data masked  
Prior to a burst of write data, given that the controller is not currently in burst write mode, the data strobe signal LDQS, UDQS changes  
from Hi-Z to a valid logic low. This is referred to as the data strobe Write Preamble. Once the burst of write data is concluded, given no  
subsequent burst write operation is initiated, the data strobe signal LDQS,UDQS transits from a valid logic low to Hi-Z. This is referred  
the data strobe Write Postamble, t  
write latency). This is different than the single data rate SDRAM where data is written in the same cycle as the Write command is issued.  
. For mobile DRR data is written with a delay which is defined by the parameter t  
WPST  
DQSS,  
DQS Pre/Postamble at Write  
VIH  
CLK,  
/CLK  
VIL  
WR  
tDQSS  
tWPST  
tWPREH  
VIH  
VTT  
VIL  
LDQS,  
UDQS  
"Preamble"  
tWPRES  
"Postamble"  
VIH  
VTT  
VIL  
Q
Q+1  
Q+2  
Q+3  
DQx  
Confidential  
-11-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Power-Up Sequence  
The following sequence is highly recommended for Power-Up :  
1. Apply power and start clock. Maintain CKE and the other pins are in NOP conditions at the input  
2. Apply V before or at the same time as V , apply V before or at the same time as V  
, V  
REF TT  
DD  
DDQ DDQ  
3. Start clock, maintain stable conditions for 200 us  
4. Apply NOP and set CKE to high  
5. Apply All Bank Precharge command  
6. Issue Auto Refresh command twice and must satisfy minimum t  
7. Issue MRS (Mode Register Set command)  
RFC  
8. Issue a EMRS (Extended Mode Register Set command), not necessary  
Power Up Sequence  
Clock  
AREF  
NOP  
AREF  
NOP  
PREA  
MRS  
EMRS  
ACT  
Command  
t
t
t
MRD  
t
t
RFC  
200 us  
MRD  
RFC  
RP  
Mode Register Set Timing  
The mobile DDR should be act ivated with CKE already high prior to writing into the mode register. Two clock cycles are required  
complete the write operation in the mode register. The mode register contents can be changed using the same com mand and clock cycle  
ong as all banks are in the idle state.  
requirements during operation as l  
Mode Register Set Timing  
Clk  
any  
Comm.  
PREA  
NOP  
MRS  
NOP  
NOP  
NOP  
Command  
t
t
MRD  
RP  
Confidential  
-12-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Bank Activation Command (ACT)  
The Bank Activation command is initiated by issuing an ACT command at the rising edge of the clock. The mobile DDR has 4  
independent banks which are selected by the two Bank select Addresses (BA0, BA1). The Bank Activation command must be applied  
before any Read or Write operation can be executed. The delay from the Bank Activation command to the first read or write command  
must meet or exceed the minimum of RAS to CAS delay time (t  
min. for read commands and t  
min. for write commands).  
RCDRD  
RCDWR  
Once a bank has been activated, it must be precharged before another Bank Activate command can be applied to the same bank. The  
minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice versa) is the Bank to Bank activation  
delay time (t  
RRD  
min).  
Activate to Read or Write Command Timing (one bank)  
Clk  
READ  
or  
WRITE  
ACT  
Command  
PRE  
NOP  
ACT  
t
RCDRD for read  
t
RCDWR for write  
Bank A  
Row Add.  
Bank A  
Col. Add.  
Bank A  
Row Add.  
Bank A  
Addresses  
t
RC  
Activate Bank A to Activate Bank B Timing  
Clk  
ACT  
Command  
NOP  
ACT  
Bank A  
Row Add.  
Bank B  
Row Add.  
Addresses  
t
RRD  
Confidential  
-13-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Precharge Command  
This command is used to precharge or close a bank that has been activated. Precharge is initiated by issuing a Precharge command at  
the rising edge of the clock. The Precharge command can be used to precharge each bank respectively or all banks simultaneously.  
The Bank addresses BA0 and BA1 select the bank to be precharged. After a Precharge command, the analog delay t  
until a new Activate command can be initiated to the same bank.  
has to be met  
RP  
Table  
Precharge Control  
A10/AP  
BA1  
0
BA0  
0
Precharged  
0
0
0
0
1
Bank  
Bank  
A Only  
B Only  
0
1
1
0
Bank C Only  
Bank D Only  
All Banks  
1
1
X
X
Precharge Command Timing  
Clk  
ACT  
NOP  
PRE  
NOP  
ACT  
Command  
Addresses  
Bank A  
Row Add  
Bank A  
Row Add  
Bank A  
tRAS  
tRP  
tRC  
Confidential  
-14-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Self Refresh  
The Self Refresh mode can be used to retain the data in the mobile DDR if the chip is powered down. To set the mobile DDR into a  
ode,  
Refreshing m  
Self  
a Self Refresh command must be issued and CKE held low at the rising edge of the clock. Once the Self  
Refresh  
command is initiated, CKE must stay low to keep the device in Self Refresh mode. During the Self Refresh mode, all of the external control  
signals are disabled except CKE. The clock is internally disabled during Self Refresh operation to reduce power. An internal timing  
generator guarantees the self refreshing of the memory content.  
Self Refresh timing  
Clk  
Any  
Comm.  
NOP  
DESEL  
NOP  
DESEL  
NOP  
Command  
CKE  
REFX  
REFS  
Confidential  
-15-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Auto Refresh  
The auto refresh function is initiated by issuing an Auto Refresh command at the rising edge of the clock. All banks must be precharged  
and idle before the Auto Refresh command is applied. No control of the external address pins is required once this cycle has started. All  
necessary addresses are generated in the device itself. When the refresh cycle has completed, all banks will be in the idle state. A delay  
between the Auto Refresh command and the next Activate Command or subsequent Auto Refresh Command must be greater than or  
equal to the t RFC(min).  
Autorefresh timing  
Clk  
PRE-  
CHARGE  
AUTO  
REFRESH  
NOP  
Command  
NOP  
Command  
CKE  
Command is  
AUTOREFRESH  
or ACT  
t
t
RFC  
RP  
Power Down Mode  
The Power Down Mode is entered when CKE is set low and exited when CKE is set high. The CKE signal is sampled at the rising edge  
of the clock. Once the Power Down Mode is initiated, all of the receiver circuits except CLK and the CKE circuits are gated off to reduce  
power consumption. All banks can be set to idle state or stay activate during Power Down Mode, but burst activity may not be performed.  
After exiting from Power Down Mode, at least one clock cycle of command delay must be inserted before starting a new command.  
During Power Down Mode, refresh operations cannot be performed; therefore, the device cannot remain in Power Down Mode longer  
than the refresh period (t  
) of the device.  
REF  
Power Down Mode timing  
Clk  
Any  
Command  
NOP  
DESEL  
NOP  
DESEL  
PRE  
NOP  
NOP  
Command  
CKE  
Power Down  
Mode entry  
Power Down  
Mode exit  
Confidential  
-16-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Deep Power Down Mode  
The Deep Power Down mode is an unique function with very low standby currents. All internal volatge generators inside  
the mobile DDR are stopped and all memory data is lost in this mode. To enter the Deep Power Down mode all banks  
must be precharged.  
Deep Power Down Mode Entry  
CLK  
CKE  
CS  
WE  
CAS  
RAS  
Addr.  
DQM  
DQ  
input  
DQ  
output  
High-Z  
t RP  
Precharge Command  
Deep Power Down Entry  
Deep Power Down Mode  
Normal Mode  
DP1.vsd  
The deep power down mode has to be maintained for a minimum of 100µs.  
Confidential  
-17-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Deep Power Down Exit  
The deep power down mode is exited by asserting CKE high.  
After the exit, the following sequence is needed to enter a new command :  
1. Maintain NOP input conditions for a minimum of 200 us  
2. Issue precharge commands for all banks of the device  
3. Issue two or more auto refresh commands and satisfy minimum t  
RFC  
4. Issue a mode register set command to initialize the mode register  
5. Issue an extended mode register set command to initialize the extende mode register  
CLK  
CK E  
CS  
RAS  
CAS  
WE  
200  
s
tRP  
tRC  
Deep Power Down  
exit  
All banks  
precharge  
Auto  
refresh  
Auto  
refresh  
Mode  
Register Mode  
Set  
Extended  
New  
Command  
Register Accepted  
Set  
Here  
Confidential  
-18-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Burst Mode Operation  
Burst mode operation is used to provide a constant flow of data to the memory (write cycle) or from the memory (read cycle). The burst  
length is programmable and set by address bits A0 - A3 during the Mode Register Setup command. The burst length controls the number  
of words that will be output after a read command or the number of words to be input after a write command. One word is 32 bits wide.  
The sequential burst length can be set to 2, 4 or 8 data words.  
Burst Mode and Sequence  
Starting Column Address  
Order of Access within a Burst  
Type = Sequential  
Burst Length  
2
A2  
A1  
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 - 1  
1 - 0  
0
0
1
1
0
0
1
1
0
0
1
1
0 - 1 - 2 - 3  
1 - 2 - 3 - 0  
4
2 - 3 - 0 - 1  
3 - 0 - 1 - 2  
0
0
0
0
1
1
1
1
0 - 1 - 2 - 3 - 4 - 5 - 6 - 7  
1 - 2 - 3 - 4 - 5 - 6 - 7 - 0  
2 - 3 - 4 - 5 - 6 - 7 - 0 - 1  
3 - 4 - 5 - 6 - 7 - 0 - 1 - 2  
4 - 5 - 6 - 7 - 0 - 1 - 2 - 3  
5 - 6 - 7 - 0 - 1 - 2 - 3 - 4  
6 - 7 - 0 - 1 - 2 - 3 - 4 - 5  
7 - 0 - 1 - 2 - 3 - 4 - 5 - 6  
8
Note: standard interleaved burst mode also available but not specified here.  
Confidential  
-19-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Burst Read Operation: (READ)  
The Burst Read operation is initiated by issuing a READ command at the rising edge of the clock after t  
from the bank activation.  
RCD  
The address inputs (A8.. A0) determine the starting address for the burst. The burst length (2, 4 or 8) must be defined in the Mode  
Register. The first data after the READ command is available depending on the CAS latency. The subsequent data is clocked out on  
the rising and falling edge of LDQS, UDQS until the burst is completed. The LDQS, UDQS signals are generated by the mobile DDR  
during the Burst Read Operation.  
Burst Read Operation  
/CLK  
CLK  
Read  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
CL = 2  
Burst length = 4  
Read  
Postamble  
LDQS,  
UDQS  
Read  
Preamble  
CAS latency = 2  
DQx  
D-out D-out  
D-out D-out  
2
3
0
1
CL = 3  
Read  
Postamble  
LDQS,  
UDQS  
Read  
Preamble  
CAS latency = 3  
DQx  
D-out D-out  
D-out D-out  
2
3
0
1
Confidential  
-20-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Burst Write Operation (WRITE)  
The Burst Write is initiated by issuing a WRITE command at the rising edge of the clock. The address inputs (A8 .. A0) determine  
starting column address. Data for the first burst write cycle must be applied on the DQ pins on the first rise edge of LDQS, UDQS follow  
WRITE command. The time between the WRITE command and the first corresponding edge of the data strobe is t  
. The remaining  
DQSS  
data inputs must be supplied on each subsequent rising and falling edge of the data strobe until the burst length is completed. When the  
burst has been finished, any additional data supplied to the DQ pins will be ignored.  
Burst Write Operation  
/CLK  
CLK  
COMMAND  
WRITE  
NOP  
NOP  
NOP  
tDQSS  
tWPST  
LDQS,  
UDQS  
tWPRES  
tWPREH  
Data-in  
0
Data-in  
1
Data-in  
2
Data-in  
3
DQx  
Burst length = 4  
Confidential  
-21-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Burst Stop Command (BST)  
A Burst Stop is initiated by issuing a BURST STOP command at the rising edge of the clock. The Burst Stop Command  
has the fewest restrictions, making it the easiest method to terminate a burst operation before it has been completed.  
When the Burst Stop Command is issued during a burst read cycle, read data and LDQS, UDQS go to a high-Z state  
after a delay which is equal to the CAS latency set in the Mode Register. The Burst Stop latency is equal to the CAS  
latency CL.The Burst Stop command is not supported during a write burst operation. Burst Stop is also illegal during  
Read with Auto-Precharge.  
Burst Stop for Read  
/CLK  
CLK  
READ  
BST  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
CL = 2  
Burst St  
op Latency = 2  
LDQS,  
UDQS  
CAS latency = 2  
DQx  
D-out D-out  
0
1
CL = 3  
Burst Stop Latency = 3  
LDQS,  
UDQS  
CAS latency = 3  
DQx  
D-out D-out  
0
1
Confidential  
-22-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Data Mask (LDM, UDM) Function  
The mobile DDR has a Data Mask function that can be used only during write cycles. When the Data Mask is activated, active high  
during burst write, the write operation is masked immediately. The LDM, UDM to data-mask latency zero. LDM and UDM can be issued  
at the rising or negative edge of Data Strobe.  
Data Mask Timing  
/CLK  
CLK  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
LDQS,  
UDQS  
D-in  
0
D-in  
2
D-in  
3
D-in  
4
D-in  
5
D-in  
6
D-in  
1
D-in  
7
DQx  
LDM,  
UDM  
Burst length = 8  
Data is masked out  
Confidential  
-23-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Read Concurrent Auto Precharge  
Burst length = 4  
CAS latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
/CLK  
CLK  
BANK A  
ACTIVATE  
READ A  
+ AP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t RCD(min)  
t RAS(min)  
t RP  
Begin of  
Auto Precharge  
BL / 2  
LDQS,  
UDQS  
CL = 3  
D-out  
0
D-out  
3
D-out D-out  
DQx  
1
2
Concurrent Read Auto Precharge Support  
For same Bank  
For different Bank  
Asserted  
Command  
T4  
NO  
T5  
NO  
T6  
NO  
NO  
NO  
NO  
T4  
T5  
T6  
READ  
NO  
NO  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
READ+AP  
ACTIVATE  
PRECHARGE  
YES  
NO  
YES  
NO  
YES  
YES  
YES  
YES  
Note: This table is for the case of Burst Length = 4, CAS Latency =3 and t  
=2 clocks  
WR  
When READ with Auto Precharge is asserted, new commands can be asserted at T4,T5 and T6 as shown in Table  
An Interrupt of a running READ burst with Auto Precharge i.e. at T4 and T5 to the same bank with another READ+AP command is  
allowed, it will extend the begin of the internal Precharge operation to the last READ+AP command.  
Interrupts of a running READ burst with Auto Precharge i.e. at T4 are not allowed when doing concurrent command to another active  
bank. ACTIVATE or PRECHARGE commands to another bank are always possible while a READ with Auto Precharge operation is in  
progress.  
Confidential  
-24-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Write with Autoprecharge (WRITEA)  
If A8 is high when a Write command is issued, the Write with Auto-Precharge function is performed. The internal precharge begins after  
the write recovery time t and t (min) are satisfied.  
WR  
RAS  
If a Write with Auto Precharge command is initiated, the mobile DDR  
edge of CLK after the last valid edge of DQS (completion of the burst) plus the write recovery time t  
automatically enters the precharge operation at the first rising  
. Once the precharge operation  
WR  
has started, the bank cannot be reactivated and the new command can not be asserted until the Precharge time (t ) has been satisfied.  
RP  
(min) has not been satisfied yet, an internal interlock will delay the precharge operation until it is satisfied.  
If t  
RAS  
Write Burst with Auto Precharge  
Burst length = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
/CLK  
CLK  
BANK A  
ACTIVATE  
WRITE A  
+ AP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t RAS(min)  
t WR  
t RP  
BL / 2  
Begin of  
Auto Precharge  
LDQS,  
UDQS  
D-in  
0
D-in  
2
D-in  
3
D-in  
1
DQx  
Note: t  
starts at the first rising edge of clock after the last valid edge of the 4 DQSx.  
WR  
Table  
Concurrent Write Auto Precharge Support  
For same Bank  
For different Bank  
Asserted  
Command  
T3  
NO  
YES  
NO  
NO  
NO  
NO  
T4  
T5  
T6  
T7  
T8  
T3  
NO  
T4  
T5  
T6  
T7  
WRITE  
WRITE+AP  
READ  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
YES  
YES  
NO  
YES  
YES  
NO  
YES  
YES  
NO  
YES  
YES  
YES  
YES  
YES  
YES  
NO  
NO  
READ+AP  
ACTIVATE  
PRECHARGE  
NO  
NO  
NO  
NO  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
When Write with Auto Precharge is asserted, new commands can be asserted at T3.. T8 as shown in Table .  
An Interrupt of a running WRITE burst with Auto Precharge i.e. at T3 to the same bank with another WRITE+AP command is allowed  
as long as the burst is running, it will extend the begin of the internal Precharge operation to the last WRITE+AP command.  
Interrupts of a running WRITE burst with Auto Precharge i.e. at T3 are not allowed when doing concurrent WRITE s to another active  
bank. Consecutive WRITE or WRITE+AP bursts (T4.. T7) to other open banks are possible. ACTIVATE or PRECHARGE commands to  
another bank are always possible while a WRITE with Auto Precharge operation is in progress.  
Confidential  
-25-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Write interrupted by Read  
/CLK  
CLK  
Write  
tDQSS(min)  
NOP  
NOP  
Read  
NOP  
NOP  
NOP  
Command  
Last valid  
data  
tWTR  
CL = 3  
LDQS  
UDQS  
D-in  
0
D-in  
1
D-in  
2
D-in  
3
D-in  
4
D-in  
5
D-out  
0
D-out  
1
DQx  
LDM  
UDM  
Data is masked  
by Read  
Data must be  
masked  
Burst length = 8  
CL = 3  
Confidential  
-26-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Write Interrupted by a Precharge  
A Burst Write operation can be interrupted before completion of the burst by a Precharge of the same bank. Random column access is  
allowed. A Write Recovery time (t ) is required from the last data to Precharge command. When Precharge command is asserted,  
WR  
any residual data from the burst write cycle must be masked by LDM., UDM.  
Write interrupted by Precharge  
/CLK  
CLK  
Write  
bank A  
Write  
bank B  
NOP  
NOP  
NOP  
tWR  
PRE  
NOP  
NOP  
Command  
tDQSSmin  
tDQSSmin  
Last valid  
data  
LDQS  
UDQS  
D-in  
0
D-in  
1
D-in  
2
D-in  
3
D-in  
4
D-in  
5
D-in  
0
D-in  
1
DQx  
LDM  
UDM  
Data must be  
masked  
Data is masked  
by Precharge  
Burst length = 8  
Confidential  
-27-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Command Table  
Table Command Overview  
CKE  
n-1  
CKE  
n
A0-9  
A11,12  
Operation  
Code  
CS# RAS# CAS# WE#  
BA0  
BA1  
A10  
DESEL  
NOP  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
L
X
H
L
X
H
L
X
X
X
X
X
X
X
X
Device Deselect  
No operation  
Mode Register Setup  
Extended Mode Register Setup  
Bank Activate  
MRS  
0
0
OPCODE  
OPCODE  
EMRS  
ACT  
L
L
L
0
1
L
H
L
H
H
H
L
BA  
BA  
BA  
BA  
BA  
X
BA  
BA  
BA  
BA  
BA  
X
Row Address  
Read  
READ  
READA  
WRITE  
H
H
H
H
H
L
L
H
L
Col.  
Col.  
Col.  
Col.  
X
Read with Auto Precharge  
Write Command  
L
L
Write Command with Auto Precharge WRITEA  
L
L
H
X
L
Burst Stop  
BST  
H
H
H
L
L
Precharge Single Bank  
Precharge All Banks  
Autorefresh  
PRE  
L
BA  
X
BA  
X
X
PREAL  
REF  
L
L
H
X
X
X
L
H
H
X
X
X
Self Refresh Entry  
REFX  
L
L
X
X
X
L
L
H
H
H
L
X
H
X
H
X
H
X
X
X
X
X
X
X
X
Self Refresh Exit  
SREFEX  
PWDNEN  
PWDNEX  
Idle  
H
H
L
L
H
L
X
H
X
H
X
H
X
X
X
X
X
X
X
X
Power Down Mode Entry (Note 1)  
Power Down Mode Exit  
H
L
X
valid  
X
valid  
X
valid  
L
H
X
X
X
X
Deep Power Down Mode Entry  
Deep Power Down Mode Exit  
H
L
L
L
H
X
H
X
L
X
X
X
X
X
X
X
X
Deep pow-  
er down  
H
X
X
Note: 1: The Power Down Mode Entry command is illegal during Burst Read or Burst Write operations.  
Confidential  
-28-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Function Truth Table I  
Current  
State  
Command  
DESEL  
Address  
Action  
Notes  
X
X
X
NOP  
3
3
3
1
1
NOP  
BST  
NOP  
NOP  
READ / READA  
WRITE / WRITEA  
ACT  
BA,CA,A10  
ILLEGAL  
IDLE  
BA,CA,A10  
ILLEGAL  
BA, RA  
Bank Active  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA, A10  
NOP  
X
AUTO-Refresh or Self-Refresh  
4
Op-Code  
Mode Register Set or Extended Mode Register Set  
X
NOP  
NOP  
X
NOP  
BST  
X
NOP  
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A10  
Begin Read, Determine Auto Precharge  
Begin Write, Determine Auto Precharge  
ILLEGAL  
9
9
ROW  
ACTIVE  
BA, CA, A10  
BA, RA  
1, 5  
6
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA, A10  
Precharge / Precharge All  
ILLEGAL  
X
OP-Code  
ILLEGAL  
X
X
X
Continue burst to end  
Continue burst to end  
Terminate Burst  
NOP  
BST  
Terminate burst, Begin New Read, Determine Auto-  
Prechgarge  
READ / READA  
BA, CA, A10  
7
READ  
WRITE / WRITEA  
ACT  
BA, CA, A10  
BA, RA  
BA ,A10  
X
ILLEGAL  
2, 7  
1
ILLEGAL  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
Terminate Burst / Precharge  
ILLEGAL  
Op-Code  
X
ILLEGAL  
Continue burst to end, Precharge  
NOP  
X
Continue burst to end, Precharge  
BST  
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA ,A10  
X
READ with  
Auto  
Precharge  
1
1
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
Op-Code  
Confidential  
-29-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Function Truth Table I  
Current  
State  
Command  
DESEL  
Address  
Action  
Notes  
X
X
X
Continue burst to end  
Continue burst to end  
ILLEGAL  
NOP  
BST  
Terminate Burst, Begin Read, Determine Auto-  
Precharge.  
READ / READA  
BA, CA, A10  
7, 8  
2, 7  
WRITE  
Terminate Burst, Begin new Write, Determine Auto-  
Precharge  
WRITE / WRITEA  
BA, CA, A10  
BA, RA  
ACT  
ILLEGAL  
1
8
,
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA A10  
Terminate Burst , Precharge  
X
ILLEGAL  
OP-Code  
ILLEGAL  
X
Continue burst to end, Precharge  
NOP  
X
Continue burst to end, Precharge  
BST  
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A10  
BA, CA, A10  
BA, RA  
WRITE with  
Auto  
Precharge  
1
1
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA, A  
X
10  
OP-Code  
X
NOP ( Row Active after t  
NOP ( Row Active after t  
NOP ( Row Active after t  
ILLEGAL  
)
)
)
RCD  
RCD  
RCD  
NOP  
X
BST  
X
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A10  
BA, CA, A10  
BA, RA  
1, 9  
1, 9  
1, 5  
1, 6  
ROW  
ACTIVATING  
ILLEGAL  
ILLEGAL  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA, A  
X
ILLEGAL  
10  
ILLEGAL  
OP-Code  
ILLEGAL  
X
NOP ( Row Idle after t  
NOP ( Row Idle after t  
NOP ( Row Idle after t  
ILLEGAL  
)
)
)
RP  
RP  
RP  
NOP  
X
BST  
X
READ / READA  
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
X
1
1
1
PRECHARGE WRITE / WRITEA  
ACT  
ILLEGAL  
ILLEGAL  
PRE / PREAL  
NOP ( Row Idle after t  
ILLEGAL  
)
1
RP  
AREF / SREF  
MRS / EMRS  
OP-Code  
ILLEGAL  
Confidential  
-30-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Function Truth Table I  
Current  
State  
Command  
DESEL  
Address  
Action  
Notes  
X
X
X
NOP (Row Active after t  
NOP (Row Active after t  
NOP (Row Active after t  
)
)
)
WR  
WR  
WR  
NOP  
BST  
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A10  
Begin Read, Determine Auto-Prechgarge  
2
WRITE  
RECOVERING  
BA, CA, A10  
Begin Write, Determine Auto-Prechgarge  
BA, RA  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
2
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA ,A10  
1, 10  
X
OP-Code  
X
NOP (Precharge after t  
NOP (Precharge after t  
NOP (Precharge after t  
ILLEGAL  
)
)
)
WR  
WR  
WR  
NOP  
X
BST  
X
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A10  
1, 2  
1
WRITE  
RECOVERING  
with AUTO-  
BA, CA, A10  
ILLEGAL  
PRECHARGE  
BA, RA  
ILLEGAL  
1
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA ,A10  
ILLEGAL  
1
X
ILLEGAL  
OP-Code  
ILLEGAL  
X
NOP (Idle after t  
NOP (Idle after t  
NOP (Idle after t  
ILLEGAL  
)
)
)
RC  
RC  
RC  
NOP  
X
BST  
X
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA ,A10  
X
REFRESH  
ILLEGAL  
ILLEGAL  
11  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
ILLEGAL  
ILLEGAL  
OP-Code  
X
ILLEGAL  
NOP (Idle after two clocks)  
NOP (Idle after two clocks)  
NOP (Idle after two clocks)  
ILLEGAL  
NOP  
X
BST  
X
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA ,A10  
X
(EXTENDED)  
MODE  
REGISTER  
SET  
ILLEGAL  
ILLEGAL  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
ILLEGAL  
ILLEGAL  
OP-Code  
ILLEGAL  
Confidential  
-31-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Note: All entries assume the CKE was High during the preceding clock cycle  
Note: 1. Illegal to bank specified states; function may be legal in the bank indicated by BAx, depending on the state of that bank  
Note: 2. Must satisfy bus contention, bus turn around, write recovery requirements.  
Note: 3. If both banks are idle, and CKE is inactive, the device will enter Power Down Mode. All input buffers except CKE, CLK and  
CLK# will be disabled.  
Note: 4. If both banks are idle, and CKE is deactivated coincidentally with an AutoRefresh command, the device will enter SelfRefresh  
Mode. All input buffers except CKE will be disabled.  
Note: 5. Illegal, if t  
Note: 6. Illegal, if t  
Note: 7. Must satisfy burst interrupt condition.  
is not satisfied.  
is not satisfied.  
RRD  
RAS  
Note: 8. Must mask two preceding data bits with the DM pin.  
Note: 9. Illegal, if t  
Note: 10. Illegal, if t  
Note: 11. Illegal, if t  
is not satisfied.  
is not satisfied.  
is not satisfied.  
RCD  
WR  
RC  
Abbreviations:  
H
High Level  
L
Low Level  
X
Don't Care  
V
Valid Data Input  
Row Address  
Bank Address  
Precharge All  
No Operation  
Column Address  
Address Line x  
RA  
BA  
PA  
NOP  
CA  
Ax  
Confidential  
-32-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
FUNCTION TRUTH TABLE for CKE  
Current  
State  
CKE  
n-1  
CKE  
n
CS# RAS# CAS# WE#  
Address  
Action  
Self Refresh Entry  
Notes  
H
L
L
H
H
H
H
H
L
L
H
L
L
L
H
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
X
H
H
H
L
X
H
H
H
L
Exit Self-Refresh  
Exit Self-Refresh  
ILLEGAL  
L
SELF  
REFRESH  
L
L
L
L
X
X
X
X
X
X
X
H
X
H
L
ILLEGAL  
L
L
ILLEGAL  
L
X
X
X
X
X
L
X
X
X
X
X
L
X
X
X
X
X
L
NOP ( Maintain Self Refresh)  
INVALID  
H
L
X
H
L
POWER  
DOWN  
Exit Power Down ( Idle after t  
)
1
PDEX  
L
NOP ( Maintain Power Down)  
Refer to Function Truth Table  
Enter Self Refresh  
H
H
H
H
H
H
H
L
H
L
2
3
2
2
2
2
2
L
H
L
X
H
H
H
L
X
H
H
L
Enter Power-Down  
Enter Power-Down  
ILLEGAL  
ALL  
BANKS  
IDLE  
L
L
L
L
L
X
X
X
X
ILLEGAL  
L
L
X
X
X
ILLEGAL  
X
H
X
X
X
X
X
X
Refer to Power Down in this table  
Refer to Funtion Truth Table  
All other states  
H
Note: 1. CKE low-to-high transition re-enables inputs asynchronously. A minimum setup time to CLK must be satisfied before any  
commands other than EXIT are executed.  
Note: 2. Power Down can be entered when all banks are idle (banks can be active or precharged)  
Note: 3. Self Refresh can be entered only from the Precharge / Idle state.  
Abbreviations:  
H
High Level  
L
Low Level  
X
Don't Care  
V
Valid Data Input  
Row Address  
Bank Address  
Precharge All  
No Operation  
Column Address  
RA  
BA  
PA  
NOP  
CA  
Confidential  
-33-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Mobile DDR SDRAM  
operation State Diagram  
DEEP  
POWER  
DOWN  
ACT :  
Active  
DPDSX  
Power  
applied  
ON  
POWER  
BST :  
Burst  
PCG.  
ALL  
BANKS  
CKEL :  
Enter Power-  
Down  
DPDS  
CKEH :  
Exit Power-Down  
(E)MRS  
SET  
SELF  
REFRESH  
DPDS :  
Enter Deep  
Power-Down  
MRS,  
EMRS  
REFS  
DPDSX :  
Exit Deep Power-  
DownEMRS  
REFSX  
IDLE  
ALL BANK  
PCG.  
CKEL  
CKEH  
EMRS :  
Ext. Mode Reg.  
Set  
REFA  
PCG.  
POWER  
DOWN  
AUTO  
REFRESH  
MRS :  
Mode Register Set  
ACT  
PRE :  
Precharge  
ACTIVE  
POWER  
DOWN  
BURST  
STOP  
CKEL  
PREALL :  
Precharge All  
Banks  
CKEH  
ROW  
ACTIVE  
BST  
REFA :  
Auto Refresh  
WRITE  
READ  
REFS :  
Enter Self Refresh  
WRITE  
READ  
REFSX :  
Exit Self Refresh  
WRITE  
READ  
READ  
READ :  
Read w/o Auto  
Precharge  
WRITEA  
READA  
WRITEA  
READA  
READA :  
Read with Auto  
Precharge  
READ A  
WRITE A  
PRE  
PRE  
PRE  
WRITE :  
Write w/o Auto  
Precharge  
WRITEA :  
Write with Auto  
Precharge  
Precharge  
ALL  
COMMAND Input  
AUTOMATIC  
Sequence  
Confidential  
-34-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
IDD Max Specifications and Conditions  
Version  
Conditions  
Symbol  
-5  
Unit  
Operating current - One bank Active-Precharge; tRC = tRC (min); tCK = tCK (min);  
CKE = High; CS = High between valid command; Address inputs are switching every  
2 clock cycles; Data bus inputs are stable  
IDD0  
100.0  
mA  
Precharge power-down standby current; All banks idle; CKE = Low; CS = High;  
IDD2P  
IDD2PS  
IDD2N  
600  
600  
18.0  
14.0  
5.0  
uA  
uA  
tCK = tCK (min); Address and control inputs are switching; Data bus inputs are stable  
Precharge power-down standby current; Clock stopped; All banks idle; CKE = Low;  
CS = High; CK = Low; CK# = High; Address and control inputs are switching;  
Data bus inputs are stable  
Precharge nonpower-down standby current; All banks idle; CKE = High; CS = High;  
mA  
mA  
mA  
mA  
mA  
mA  
tCK = tCK (min); Address and control inputs are switching; Data bus inputs are stable  
Precharge nonpower-down standby current; Clock stopped; All banks idle;  
CKE = High; CS = High; CK = Low; CK# = High; Address and control inputs are switching; IDD2NS  
Data bus inputs are stable  
Active power-down standby current; One bank active; CKE = Low; CS = High;  
IDD3P  
tCK = tCK (min); Address and control inputs are switching; Data bus inputs are stable  
Active power-down standby current; Clock stopped; One bank active; CKE =Low;  
CS = High; CK = Low; CK# = High; Address and control inputs are switching;  
Data bus inputs are stable  
IDD3PS  
IDD3N  
5.0  
Active nonpower-down standby current; One bank active; CKE = High; CS = High;  
20.0  
16.0  
tCK = tCK (min); Address and control inputs are switching; Data bus inputs are stable  
Active nonpower-down standby current; Clock stopped; One bank active; CKE = High;  
CS = High; CK = Low; CK# = High; Address and control inputs are switching;  
Data bus inputs are stable  
IDD3NS  
Operating current - burst read; One bank active; Burst length = 4; tCK = tCK (min);  
Continuous Read burst; Address inputs are switching every 2 clock cycles;  
50% of data changing at every burst; lout = 0 m A  
IDD4R  
IDD4W  
150.0  
150.0  
mA  
mA  
Operating current - burst write; One bank active; Burst length = 4; tCK = tCK (min);  
Continuous Write burst; Address inputs are switching every 2 clock cycles;  
50% of data changing at every burst  
Auto refresh current; Burst refresh; CKE = High; Address and  
tRFC = 110ns  
tRFC = tREFI  
IDD5  
100.0  
15.0  
mA  
mA  
control inputs are switching; Data bus inputs are stable  
IDD5A  
Deep Power Down Current; Address and control inputs are stable;  
IDD8  
10.0  
uA  
Data bus inputs are stable  
Confidential  
-35-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Partial Array Self Refresh Current (PASR)  
Extended Mode  
Parameter & Test Condition  
Symb.  
max.  
Unit  
Note  
Register A[2:0]  
Tcase [oC]  
Self Refresh Current  
Self Refresh Mode  
CKE=Low, tck=min,  
85oC max.  
45oC max.  
85oC max.  
45oC max.  
85oC max.  
45oC max.  
ICC6  
ICC6  
ICC6  
ICC6  
ICC6  
ICC6  
1200  
500  
900  
300  
760  
220  
uA  
uA  
uA  
uA  
uA  
uA  
full array activations, all banks  
Self Refresh Current  
Self Refresh Mode  
CKE=Low, tck=min,  
1/2 array activations  
Self Refresh Current  
Self Refresh Mode  
CKE=Low, tck=min,  
1/4 array activation  
Confidential  
-36-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Absolute Maximum Ratings  
Parameter  
Voltage on any pin relative to VSS  
Voltage on VDD supply relative to VSS  
Storage temperature  
Symbol  
VIN, VOUT  
VDD, VDDQ  
TSTG  
Value  
-0.5 ~ 2.7  
-0.5 ~ 2.7  
-55 ~ +150  
1.0  
Unit  
V
V
°C  
W
Power dissipation  
PD  
Short circuit current  
IOS  
50  
mA  
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
Capacitance (V = 1.8V, T = 25°C, f = 1MHz)  
DD  
A
Parameter  
Symbol  
CIN1  
Min  
1.5  
1.5  
3.0  
3.0  
Max  
3.0  
Unit  
Input capacitance (A0~A12, BA0~BA1,CKE, CS, RAS, CAS, WE )  
Input capacitance ( CK, CK,)  
pF  
pF  
pF  
pF  
CIN2  
3.0  
Data & DQS input/output capacitance (DQ0~DQ15  
)
COUT  
CIN3  
5.0  
Input capacitance (DMs)  
5.0  
Confidential  
-37-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Power & DC Operating Conditions (LVCMOS In/Out)  
Recommended operating conditions ( Voltage referenced to VSS= 0V )  
Parameter  
Symbol  
VDD  
VDDQ  
VIH  
Min  
1.7  
Typ  
Max  
1.95  
Unit  
V
Device Supply voltage  
1.8  
Output Supply voltage  
Input logic high voltage  
Input logic low voltage  
Input Leakage current  
Output Leakage current  
1.7  
1.8  
1.95  
V
0.7*VDDQ  
-0.3  
-
-
-
-
VDDQ+0.30  
0.3*VDDQ  
2
V
VIL  
V
II  
-2  
uA  
uA  
IOZ  
-5  
5
AC Input Operating Conditions  
Recommended operating conditions ( Voltage referenced to VSS= 0V, VDD= 1.7V-1.9V )  
Parameter  
Symbol  
VIH  
Min  
VCCQ*0.8  
-0.3  
Typ  
Max  
Unit  
V
Input High (Logic 1) Voltage; DQ  
Input Low (Logic 0) Voltage; DQ  
-
-
-
VCCQ+0.3  
0.2* VDDQ  
0.6*VDDQ  
VIL  
V
Clock Input Crossing Point Voltage; CK and CK  
VIX  
0.4*VDDQ  
V
AC Operating Test Conditions  
Recommended operating conditions ( Voltage referenced to VSS= 0V, VDD= 1.7V-1.9V )  
Parameter  
Value  
0.8*VDDQ / 0.2*VDDQ  
0.5*VDDQ  
Unit  
V
AC input levels (Vih/Vil)  
Input timing measurement reference level  
Input signal minimum slew rate  
V
1.0  
V/ns  
V
Output timing measurement reference level  
Output load condition  
0.5*VDDQ  
See below figures  
1.8V  
Vtt=0.5 x VDDQ  
13.9K  
V
OH (DC) = 0.9 x VDDQ, IOH = -0.1mA  
OL (DC) = 0.1 x VDDQ, IOL = 0.1mA  
Output  
50  
V
30pF  
10.6K  
Output  
Z0=50  
30pF  
DC Output Load Circuit  
AC Output Load Circuit  
Confidential  
-38-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
AC Timing Parameters & Specification  
AC CHARACTERISTICS  
-5  
SYMBOL MIN MAX  
PARAMETER  
UNITS NOTES  
Output data access time from CK/CK  
CK high-level width  
tAC  
tCH  
2
0.45  
0.45  
5
5
ns  
tCK  
tCK  
ns  
3
0.55  
0.55  
-
CK low-level width  
tCL  
Clock cycle time  
CL = 3  
tCK (3)  
tDH  
1
DQ and DM input hold time relative to DQS  
DQ and DM input setup time relative to DQS  
DQ and DM input pulse width (for each input)  
Access window of DQS from CK/CK  
DQS input high pulse width  
0.4  
0.4  
1.4  
2
ns  
5,6  
5,6  
tDS  
ns  
tDIPW  
tDQSCK  
tDQSH  
tDQSL  
ns  
5
ns  
0.4  
0.4  
0.6  
0.6  
tCK  
tCK  
DQS input low pulse width  
DQS-DQ skew, DQS to last DQ valid,  
per group, per access  
tDQSQ  
tDQSS  
tHP  
0.4  
ns  
tCK  
ns  
1
Write command to first DQS latching  
transition  
0.75  
1.25  
Half clock period  
tCH,  
tCL  
Data-out high-impedance window  
from CK/CK  
tHZ  
0.4  
1
0.6  
tCK  
ns  
Data-out low-impedance window  
from CK/CK  
tLZ  
Address and control input hold time  
Address and control input setup time  
tIH  
tIS  
0.9  
0.9  
ns  
ns  
1
1
LOAD MODE REGISTER command  
cycle time  
tMRD  
tQH  
2
tCK  
ns  
DQ-DQS hold, DQS to first DQ to go  
non-valid, per access  
tHP  
-tQHS  
Data hold skew factor  
tQHS  
tRAS  
0.5  
ns  
ns  
ACTIVE to PRECHARGE command  
40  
15  
70K  
ACTIVE to READ with Auto precharge  
command  
tRAP  
tRC  
ns  
ns  
ACTIVE to ACTIVE/AUTO REFRESH  
command period  
55  
AUTO REFRESH command period  
ACTIVE to READ or WRITE delay  
PRECHARGE command period  
tRFC  
tRCD  
tRP  
72  
15  
15  
ns  
ns  
ns  
Confidential  
-39-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
AC CHARACTERISTICS  
PARAMETER  
-5  
SYMBOL MIN MAX  
UNITS NOTES  
DQS read preamble  
tRPRE  
tRPST  
tRRD  
0.9  
0.4  
10  
1.1  
0.6  
tCK  
tCK  
ns  
DQS read postamble  
ACTIVE bank A to ACTIVE bank B command  
DQS write preamble  
tWPRE  
tWPRES  
tWPST  
tWR  
0.25  
0
tCK  
ns  
DQS write preamble setup time  
DQS write postamble  
4
0.4  
15  
0.6  
7.8  
tCK  
ns  
Write recovery time  
Internal WRITE to READ command  
delay  
tWTR  
tREFI  
tPDEX  
2
tCK  
us  
Average periodic refresh interval  
Power down exit time  
1*tCK  
+tIS  
ns  
Confidential  
-40-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
1. Input Setup/Hold Slew Rate Derating  
Input Setup/Hold Slew Rate  
tIS  
(ps)  
0
tIH  
(ps)  
0
(V/ns)  
1.0  
0.8  
+50  
+100  
+50  
+100  
0.6  
This derating table is used to increase tIS/tIH in the case where the input slew rate is below 1.0V/ns.  
2. Minimum 3CLK of tDAL(= tWR + tRP) is required because it need minimum 2CLK for tWR and minimum 1CLK for tRP.  
3. tAC(min) value is measured at the high Vdd(1.95V) and cold temperature(-25 C).  
tAC (max) value is measured at the low Vdd(1.7V) and hot temperature(85 C).  
tAC is measured in the device with half driver strength and under the AC output load condition.  
4. The specific requirement is that DQS be valid(High or Low) on or before this CK edge. The case shown(DQS going from  
High_Z to logic Low) applies when no writes were previously in progress on the bus. If a previous write was in progress,  
DQS could be High at this time, depending on tDQSS.  
5. I/O Setup/Hold Slew Rate Derating  
I/O Setup/Hold Slew Rate  
tDS  
(ps)  
0
tDH  
(ps)  
0
(V/ns)  
1.0  
0.8  
+75  
+150  
+75  
+150  
0.6  
This derating table is used to increase tDS/tDH in the case where the I/O slew rate is below 1.0V/ns.  
6. I/O Delta Rise/Fall Rate(1/slew-rate) Derating  
Delta Rise/Fall Rate  
tDS  
(ps)  
tDH  
(ps)  
0
(ns/V)  
0
0
0.25  
0.5  
+50  
+100  
+50  
+100  
This derating table is used to increase tDS/tDH in the case where the DQ and DQS slew rates differ. The Delta Rise/Fall Rate  
is calculated as 1/SlewRate1-1/SlewRate2. For example, if slew rate 1 = 1.0V/ns and slew rate 2 =0.8V/ns, then the Delta Rise/Fall  
Rate =-0.25ns/V.  
Confidential  
-41-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
Package Diagram  
32Mx32 90-BALL 0.8mm pitch BGA  
Confidential  
-42-  
Rev.1.0 Sep.2014  
AS4C32M32MD1  
PART NUMBERING SYSTEM  
AS4C  
32M32MD1  
5
B
C/I  
N
C=Commercial  
32M32=32Mx32  
MD1=MobileDDR1  
Indicates Pb and  
Halogen Free  
(-25¡ C8C)*  
DRAM  
5=200MHz  
B = FBGA  
I=Industrial  
(-40¡ C8C)  
* Extended temperature  
Alliance Memory, Inc.  
511 Taylor Way,  
San Carlos, CA 94070  
Tel: 650-610-6800  
Fax: 650-620-9211  
www.alliancememory.com  
Copyright © Alliance Memory  
All Rights Reserved  
© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are  
trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their  
respective companies. Alliance reserves the right to make changes to this document and its products at any time  
without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data  
contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right  
to change or correct this data at any time, without notice. If the product described herein is under development,  
significant changes to these specifications are possible. The information in this product data sheet is intended to be  
general descriptive information for potential customers and users, and is not intended to operate as, or provide, any  
guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of  
the application or use of any product described herein, and disclaims any express or implied warranties related to the  
sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose,  
merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms  
and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively  
according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a  
license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of  
Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting  
systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the  
inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such  
use and agrees to indemnify Alliance against all claims arising from such use.  
Confidential  
-43-  
Rev.1.0 Sep.2014  

相关型号:

AS4C32M32MD1-5BIN

Automatic and Controlled Precharge Command
ALSC

AS4C32M8SA-6TIN

32M x 8 bit Synchronous DRAM (SDRAM)
ALSC

AS4C32M8SA-7TCN

32M x 8 bit Synchronous DRAM (SDRAM)
ALSC

AS4C4024883C

1 MEG x 1 DRAM
AUSTIN

AS4C4067883C

64K x 4 DRAM
AUSTIN

AS4C4067C-10/883C

Fast Page DRAM, 64KX4, 100ns, CMOS, CDIP18, 0.300 INCH, CERAMIC, DIP-18
MICROSS

AS4C4067C-12/883C

Fast Page DRAM, 64KX4, 120ns, CMOS, CDIP18, 0.300 INCH, CERAMIC, DIP-18
MICROSS

AS4C4067C-15/883C

Fast Page DRAM, 64KX4, 150ns, CMOS, CDIP18, 0.300 INCH, CERAMIC, DIP-18
MICROSS

AS4C4067EA-10/883C

Fast Page DRAM, 64KX4, 100ns, CMOS, CQCC18, CERAMIC, LCC-18
MICROSS

AS4C4067EA-12/883C

Fast Page DRAM, 64KX4, 120ns, CMOS, CQCC18, CERAMIC, LCC-18
MICROSS

AS4C4067EA-15/883C

Fast Page DRAM, 64KX4, 150ns, CMOS, CQCC18, CERAMIC, LCC-18
MICROSS

AS4C4067EC-10/883C

Fast Page DRAM, 64KX4, 100ns, CMOS, CQCC18, CERAMIC, LCC-18
MICROSS