AS4C4M32D1A-5BCN [ALSC]

DLL aligns DQ and DQS transitions;
AS4C4M32D1A-5BCN
型号: AS4C4M32D1A-5BCN
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

DLL aligns DQ and DQS transitions

文件: 总64页 (文件大小:2373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Revision History  
128Mb AS4C4M32D1A - 144 ball FBGA PACKAGE  
Revision Details  
Date  
Rev 1.0  
Preliminary datasheet  
May. 2016  
Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070 TEL: (650) 610-6800 FAX: (650) 620-9211  
Alliance Memory Inc. reserves the right to change products or specification without notice  
Confidential  
- 1/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Overview  
Features  
Fast clock rate: 200 MHz  
Differential Clock CK &  
The 128Mb DDR SDRAM is a high-speed CMOS  
double data rate synchronous DRAM containing 128  
Mbits. It is internally configured as a quad 1M x 32  
DRAM with a synchronous interface (all signals are  
registered on the positive edge of the clock signal, CK).  
input  
CK  
4 Bi-directional DQS. Data transactions on both  
edges of DQS (1DQS / Byte)  
Data outputs occur at both rising edges of CK and  
.
CK  
DLL aligns DQ and DQS transitions  
Edge aligned data & DQS output  
Center aligned data & DQS inpu  
Read and write accesses to the SDRAM are burst  
oriented; accesses start at a selected location and  
continue for a programmed number of locations in a  
programmed sequence. Accesses begin with the  
registration of a BankActivate command, which is then  
followed by a Read or Write command. The device  
provides programmable Read or Write burst lengths of  
2, 4, 8. An auto precharge function may be enabled to  
provide a self-timed row precharge that is initiated at the  
end of the burst sequence. The refresh functions, either  
Auto or Self Refresh are easy to use. In addition, 128Mb  
DDR SDRAM features programmable DLL option. By  
having a programmable mode register and extended  
mode register, the system can choose the most suitable  
modes to maximize its performance. These devices are  
well suited for applications requiring high memory  
bandwidth; result in a device particularly well suited to  
high performance main memory and graphics  
4 internal banks, 1M x 32-bit for each bank  
Programmable mode and extended mode registers  
- CAS Latency: 2, 2.5, 3  
- Burst length: 2, 4, 8  
- Burst Type: Sequential & Interleave  
All inputs except DQ’s & DM are at the positive  
edge of the system clock  
4 individual DM control for write masking only  
Auto Refresh and Self Refresh  
4096 refresh cycles / 64ms  
Operating Temperature:  
- Industrial -40 C~85 C  
°
°
applications.  
Commercial 0°C to 70°C  
-
Power supplies: V  
V
= 2.5V ± 0.2V  
DD & DDQ  
Interface: SSTL_2 I/O compatible  
144-ball 12 x 12 x 1.4mm LFBGA package  
-Pb and Halogen Free  
Tableꢀ1.ꢀOrderingꢀInformationꢀ  
PartꢀNumberꢀ  
ꢀꢀAS4C4M32D1A-5BCNꢀ  
AS4C4M32D1A-5BINꢀ  
Orgꢀ  
Temperatureꢀ  
MaxClockꢀ(MHz)ꢀ  
Packageꢀ  
4Mx32ꢀ  
4Mx32ꢀ  
Commercialꢀꢀ0°Cꢀtoꢀ70°Cꢀ  
Industrialꢀ-40°Cꢀtoꢀ85°Cꢀ  
200ꢀ  
200ꢀ  
144-ballꢀFBGAꢀ  
144-ballꢀFBGAꢀ  
Tableꢀ2.ꢀSpeedꢀGradeꢀInformationꢀ  
SpeedꢀGradeꢀ  
ClockꢀFrequencyꢀ  
CASꢀLatencyꢀ  
tRCDꢀ(ns)ꢀ  
tRPꢀ(ns)ꢀ  
DDR1-400ꢀ  
200MHzꢀ  
3ꢀ  
15ꢀ  
15ꢀ  
Confidential  
- 2/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 1. Pin Assignment (LFBGA 144Ball Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
DQS0  
DM0  
VSSQ  
DQ3  
DQ2  
DQ0  
DQ31  
DQ29  
DQ28  
VSSQ  
DM3  
DQS3  
A
B
C
D
E
F
DQ4  
DQ6  
VDDQ  
DQ5  
NC  
VDDQ  
VSSQ  
VSS  
DQ1  
VSSQ  
VSSQ  
VSS  
VSS  
VSS  
VSS  
VSS  
A10  
VDDQ VDDQ  
DQ30  
VSSQ  
VSSQ  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VDDQ  
VSSQ  
VSS  
NC  
VDDQ  
DQ26  
VDDQ  
DQ15  
DQ13  
DM1  
DQ11  
DQ9  
DQ27  
DQ25  
DQ24  
DQ14  
DQ12  
DQS1  
DQ10  
DQ8  
VSSQ  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
A11  
A3  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
A9  
VSSQ  
VDD  
DQ7  
VDDQ  
DQ16  
DQ18  
DM2  
DQ20  
DQ23  
WE  
DQ17  
DQ19  
DQS2  
DQ21  
DQ22  
CAS  
RAS  
CS  
VDDQ VSSQ  
VDDQ VSSQ  
VSSQ VDDQ  
VSSQ VDDQ  
NC  
VSSQ  
VSSQ  
NC  
G
H
J
VDDQ VSSQ  
VDDQ VSSQ  
VSSQ VDDQ  
VSSQ VDDQ  
VDD  
NC  
VSS  
BA1  
A0  
VSS  
NC  
A7  
VDD  
CK  
NC  
NC  
K
L
NC  
A2  
A5  
CK  
NC  
NC  
BA0  
A1  
A4  
A6  
A8  
CKE  
VREF  
M
Confidential  
- 3/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Table 3. Pin Assignment by Name (LFBGA 144Ball)  
Symbol Location Symbol Location Symbol Location Symbol Location Symbol Location Symbol Location Symbol Location Symbol Location  
A0  
A1  
A2  
A3  
M4  
M5  
L5  
DQ6  
DQ7  
DQ8  
DQ9  
C1  
D1  
DQ24 D12  
DQ25 C12  
CK  
L10 VDDQ B6  
L11 VDDQ B7  
VSS  
VSS  
VSS  
VSS  
E5  
E6  
E7  
E8  
VSS  
VSS  
VSS  
VSS  
J7  
J8  
VSSQ G4  
VSSQ G9  
CK  
J12 DQ26 C11  
J11 DQ27 B12  
CKE M11 VDDQ B9  
K4 VSSQ H4  
K9 VSSQ H9  
M6  
M1 VDDQ B11  
CS  
A4  
A5  
M7 DQ10 H12 DQ28  
L8 DQ11 H11 DQ29  
A9  
A8  
L1 VDDQ D2  
VSS  
VSS  
VSS  
F5  
F6  
VSSQ A3 VSSQ  
VSSQ A10 VSSQ  
J4  
J9  
B3  
RAS  
K1 VDDQ D11  
CAS  
A6  
A7  
M8 DQ12 F12 DQ30  
M9 DQ13 F11 DQ31  
B8  
A7  
K2 VDDQ E3  
F7  
F8  
VSSQ C3  
VSSQ C4  
NC  
WE  
VREF M12 VDDQ E10  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B10  
G3  
G10  
K8  
K11  
K12  
L2  
L3  
L9  
L12  
M2  
A8/AP M10 DQ14 E12 DQS0 A1  
A9  
VDD  
DQ15 E11 DQS1 G12 VDD  
C6 VDDQ F3  
C7 VDDQ F10  
D3 VDDQ H3  
D10 VDDQ H10  
G5 VSSQ C5  
G6 VSSQ C8  
G7 VSSQ C9  
G8 VSSQ C10  
H5 VSSQ D5  
H6 VSSQ D8  
H7 VSSQ E4  
H8 VSSQ E9  
L7  
K5  
L6  
A6  
B5  
A5  
A4  
B1  
C2  
A10  
A11  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
E2  
E1  
F2  
F1  
H2  
H1  
J1  
DQS2 G1  
DQS3 A12  
DM0  
VDD  
VDD  
VDD  
A2  
K3 VDDQ  
J3  
DM1 G11 VDD  
K6 VDDQ J10  
DM2  
DM3  
BA0  
BA1  
G2  
A11  
VDD  
VDD  
K7  
K10  
VSS  
VSS  
VSS  
VSS  
D4  
D6  
D7  
D9  
M3 VDDQ B2  
L4 VDDQ B4  
J5  
J6  
VSSQ F4  
VSSQ F9  
J2  
Confidential  
- 4/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 2. Block Diagram  
CK  
DLL  
CLOCK  
BUFFER  
CK  
CKE  
4096 x 256 x 32  
CELL ARRAY  
(BANK #0)  
Column Decoder  
CS  
CONTROL  
SIGNAL  
GENERATOR  
COMMAND  
DECODER  
RAS  
CAS  
WE  
4096 x 256 x 32  
CELL ARRAY  
(BANK #1)  
COLUMN  
COUNTER  
A8/AP  
MODE  
REGISTER  
Column Decoder  
ADDRESS  
BUFFER  
A0  
A9  
A10  
A11  
BA0  
BA1  
4096 x 256 x 32  
CELL ARRAY  
(BANK #2)  
REFRESH  
COUNTER  
Column Decoder  
DATA  
STROBE  
BUFFER  
DQS0~3  
DQ0  
DQ  
Buffer  
4096 x 256 x 32  
CELL ARRAY  
(BANK #3)  
DQ31  
Column Decoder  
DM0~3  
Confidential  
- 5/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Pin Descriptions  
Table 4. Pin Details  
Symbol  
CK,  
Type  
Description  
are driven by the system clock. All SDRAM input  
Input  
CK  
Differential Clock: CK,  
CK  
commands are sampled on the positive edge of CK. Both CK and  
internal burst counter and controls the output registers.  
increment the  
CK  
CKE  
Input Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK signal. If CKE  
goes low synchronously with clock, the internal clock is suspended from the next  
clock cycle and the state of output and burst address is frozen as long as the CKE  
remains low. When all banks are in the idle state, deactivating the clock controls the  
entry to the Power Down and Self Refresh modes.  
BA0, BA1  
A0-A11  
Input Bank Activate: BA0 and BA1 define to which bank the BankActivate, Read, Write, or  
BankPrecharge command is being applied. They also define which Mode Register or  
Extended Mode Register is loaded during a Mode Register Set command.  
Input Address Inputs: A0-A11 are sampled during the Bank Activate command (row  
address A0-A11) and Read/Write command (column address A0-A7 with A8 defining  
Auto Precharge) to select one location out of the 1M available in the respective bank.  
During a Precharge command, A8 is sampled to determine if all banks are to be  
precharged (A8 = HIGH). The address inputs also provide the op-code during a Mode  
Register Set or Extended Mode Register Set command.  
Input  
Chip Select:  
enables (sampled LOW) and disables (sampled HIGH) the  
CS  
CS  
command decoder. All commands are masked when  
is sampled HIGH.  
CS  
CS  
provides for external bank selection on systems with multiple banks. It is considered  
part of the command code.  
Input  
Row Address Strobe: The  
signal defines the operation commands in  
RAS  
RAS  
and /WE signals and is latched at the positive edges of CK.  
conjunction with the  
CAS  
are asserted "LOW" and  
When  
and  
is asserted "HIGH" either the  
CAS  
CS  
RAS  
BankActivate command or the Precharge command is selected by the  
signal.  
WE  
When the  
is asserted "HIGH," the BankActivate command is selected and the  
WE  
bank designated by BA is turned on to the active state. When the  
is asserted  
WE  
"LOW," the Precharge command is selected and the bank designated by BA is  
switched to the idle state after the precharge operation.  
Input  
Input  
Column Address Strobe: The  
signal defines the operation commands in  
CAS  
CAS  
and /WE signals and is latched at the positive edges of CK.  
conjunction with the  
RAS  
When /RAS is held "HIGH" and  
is asserted "LOW" the column access is started  
CS  
by asserting  
"LOW" Then, the Read or Write command is selected by asserting  
CAS  
"HIGH " or “LOW".  
WE  
Write Enable: The  
signal defines the operation commands in conjunction with  
WE  
WE  
signals and is latched at the positive edges of CK. The  
CAS  
the  
and  
input  
WE  
RAS  
is used to select the BankActivate or Precharge command and Read or Write  
command.  
DQS0-DQS3 Input / Bidirectional Data Strobe: The DQSx signals are mapped to the following data  
bytes: DQS0 to DQ0-DQ7, DQS1 to DQ8-DQ15, DQS2 to DQ16-DQ23, and DQS3 to  
DQ24-DQ31.  
Output  
DM0 - DM3  
Input Data Input Mask: DM0-DM3 are byte specific. Input data is masked when DM is  
sampled HIGH during a write cycle. DM3 masks DQ31-DQ24, DM2 masks DQ23-  
DQ16, DM1 masks DQ15-DQ8, and DM0 masks DQ7-DQ0.  
DQ0 - DQ31 Input / Data I/O: The DQ0-DQ31 input and output data are synchronized with positive and  
Output negative edges of DQS0~DQS3. The I/Os are byte-maskable during Writes.  
Power Supply: Power for the input buffers and core logic.  
VDD  
VSS  
Supply  
Supply  
.
Ground: Ground for the input buffers and core logic  
VDDQ  
Supply DQ Power: Provide isolated power to DQs for improved noise immunity.  
Confidential  
- 6/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
VSSQ  
VREF  
NC  
Supply DQ Ground: Provide isolated ground to DQs for improved noise immunity.  
Supply Reference Voltage for Inputs: +0.5 x VDDQ  
No Connect: No internal connection, these pins suggest to be left unconnected.  
-
Confidential  
- 7/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Operation Mode  
Table 5 shows the truth table for the operation commands.  
Table 5. Truth Table (Note (1), (2))  
Command  
BankActivate  
State  
CKEn-1 CKEn DM BA1 BA0 A8 A11-A9, A7-0  
CS RAS CAS  
WE  
H
L
Idle(3)  
Any  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
H
L
X
X
X
V
V
X
X
X
X
X
X
X
X
X
V
V
X
V
V
V
V
L
V
V
X
V
V
V
V
L
Row Address  
L
L
L
L
L
L
L
L
L
L
H
L
L
L
H
L
H
L
H
L
X
X
L
L
H
H
H
L
BankPrecharge  
Precharge All  
L
H
L
X
X
Any  
L
L
Write  
Active(3)  
Active(3)  
Active(3)  
Active(3)  
Idle  
H
H
H
H
L
L
Column  
Address  
Write and AutoPrecharge  
Read  
H
L
L
L
L
H
H
L
A0~A7  
Read and Autoprecharge  
Mode Register Set  
Extended Mode Register Set  
No-Operation  
H
L
L
OP code  
Idle  
L
H
X
X
X
X
X
L
L
L
Any  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
X
H
L
H
X
H
L
H
X
L
Device Deselect  
Burst Stop  
Any  
Active(4)  
AutoRefresh  
Idle  
H
H
X
H
X
H
X
H
X
X
SelfRefresh Entry  
Idle  
L
L
X
H
X
H
X
H
X
X
X
H
X
H
X
H
X
X
Idle  
SelfRefresh Exit  
L
H
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
(Self Refresh)  
Power Down Mode Entry  
Power Down Mode Exit  
Idle/Active(5)  
Any  
(Power Down)  
Active  
H
Data Mask Enable(6)  
Data Mask Disable  
H
H
X
X
H
L
X
X
X
X
X
X
X
X
Active  
Note: 1. V = Valid data, X = Don't Care, L = Low level, H = High level  
2. CKEn signal is input level when commands are provided.  
CKEn-1 signal is input level one clock cycle before the commands are provided.  
3. These are states of bank designated by BA0, BA1signals.  
4. Read burst stop with BST command for all burst types.  
5. Power Down Mode can not enter in the burst operation.  
When this command is asserted in the burst cycle, device state is clock suspend mode.  
6. DM0 – DM3 can be enabled respectively.  
Confidential  
- 8/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Mode Register Set (MRS)  
The Mode Register stores the data for controlling various operating modes of a DDR SDRAM. It programs  
CAS Latency, Burst Type, and Burst Length to make the DDR SDRAM useful for a variety of applications. The  
default value of the Mode Register is not defined; therefore the Mode Register must be written by the user.  
Values stored in the register will be retained until the register is reprogrammed. The Mode Register is written by  
asserting Low on  
,
,
,
, BA1 and BA0 (the device should have all banks idle with no bursts in  
WE  
CS RAS CAS  
progress prior to writing into the mode register, and CKE should be High). The state of address pins A0~A11 and  
BA0, BA1 in the same cycle in which and are asserted Low is written into the Mode  
,
,
WE  
CS RAS CAS  
Register. A minimum of two clock cycles, tMRD, are required to complete the write operation in the Mode  
Register. The Mode Register is divided into various fields depending on functionality. The Burst Length uses  
A0~A2, Burst Type uses A3, and CAS Latency (read latency from column address) uses A4~A6. A logic 0 should  
be programmed to all the undefined addresses to ensure future compatibility. Reserved states should not be  
used to avoid unknown device operation or incompatibility with future versions. Refer to the table for specific  
codes for various burst lengths, burst types and CAS latencies.  
Table 6. Mode Register Bitmap  
BA1 BA0 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0 Address Field  
0
0
0
T.M.  
CAS Latency  
Burst Length  
Mode Register  
Burst Length  
Reserved  
2
A8 A7  
Test Mode  
Normal mode  
DLL Reset  
A6 A5 A4 CAS Latency A3 Burst Type A2 A1 A0  
Reserved  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
Sequential  
Interleave  
X
4
Test mode  
3
8
Reserved  
Reserved  
2.5  
Reserved  
Reserved  
Reserved  
Reserved  
BA0 Mode  
0
1
MRS  
EMRS  
Reserved  
Burst Length Field (A2~A0)  
This field specifies the data length of column access using the A2~A0 pins and selects the Burst Length to be  
2, 4, and 8.  
Table 7. Burst Length  
A2  
0
A1  
0
A0  
0
Burst Length  
Reserved  
2
0
0
1
0
1
0
4
0
1
1
8
1
0
0
Reserved  
Reserved  
Reserved  
Reserved  
1
0
1
1
1
0
1
1
1
Confidential  
- 9/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Addressing Mode Select Field (A3)  
The Addressing Mode can be one of two modes, either Interleave Mode or Sequential Mode. Both Sequential  
Mode and Interleave Mode support burst length of 2, 4, and 8.  
Table 8. Addressing Mode  
A3  
0
Addressing Mode  
Sequential  
1
Interleave  
Burst Definition, Addressing Sequence of Sequential and Interleave Mode  
Table 9. Burst Address ordering  
Start Address  
Burst  
Length  
Sequential  
Interleave  
A2  
A1  
X
X
0
A0  
X
X
X
X
X
X
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0, 1  
1, 0  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
0, 1  
1, 0  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
2
4
0
1
1
0
0
1
1
0
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
8
0
1
1
CAS Latency Field (A6~A4)  
This field specifies the number of clock cycles from the assertion of the Read command to the first read data.  
The minimum whole value of CAS Latency depends on the frequency of CK. The minimum whole value  
satisfying the following formula must be programmed into this field. tCAC (min) CAS Latency X tCK  
Table 10. CAS Latency  
A6  
0
A5  
0
A4  
0
CAS Latency  
Reserved  
Reserved  
2 clocks  
0
0
1
0
1
0
0
1
1
3 clocks  
1
0
0
Reserved  
Reserved  
2.5 clocks  
Reserved  
1
0
1
1
1
0
1
1
1
Confidential  
- 10/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Test Mode Field (A8~A7)  
These two bits are used to enter the test mode and must be programmed to "00" in normal operation.  
Table 11. Test Mode  
A8  
0
A7  
0
Test Mode  
Normal mode  
DLL Reset  
1
0
X
1
Test mode  
(BA0, BA1)  
Table 12. MRS/EMRS  
BA1  
RFU  
RFU  
BA0  
0
A11 ~ A0  
MRS Cycle  
1
Extended Functions (EMRS)  
Extended Mode Register Set (EMRS)  
The Extended Mode Register Set stores the data for enabling or disabling DLL and selecting output driver  
strength. The default value of the extended mode register is not defined, therefore must be written after power up  
for proper operation. The extended mode register is written by asserting low on  
,
,
, and WE . (the  
CS RAS CAS  
device should have all banks idle with no bursts in progress prior to writing into the mode register, and CKE  
should be High)The state of A0 ~ A11 and BA1 are written in the mode register in the same cycle  
as  
,
,
, and WE going low. The DDR SDRAM should be in all bank precharge with CKE already high  
CK RAS CAS  
prior to writing into the extended mode register. A1 is used for setting driver strength. Two clock cycles are  
required to complete the write operation in the extended mode register. The mode register contents can be  
changed using the same command and clock cycle requirements during operation as long as all banks are in the  
idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. Refer to the table for specific  
codes.  
Table 13. Extended Mode Register Bitmap  
BA1 BA0 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 Address Field  
0
1
RFU must be set to “0”  
DS DLL Extended Mode Register  
A0  
DLL  
BA0  
0
Mode  
MRS  
A1  
0
Drive Strength  
Full  
0
1
Enable  
Disable  
1
EMRS  
1
Reserved  
Confidential  
- 11/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Table 14. Absolute Maximum Rating  
Rating  
Symbol  
Item  
Unit  
Note  
-5  
- 0.5 ~ VDDQ+0.5  
-1 ~ 3.6  
0~70  
VIN, VOUT  
VDD, VDDQ  
V
V
1,2  
1,2  
1
Input, Output Voltage  
Power Supply Voltage  
Ambient Temperature  
Commercial  
Industrial  
C
°
C
°
C
°
C
°
TA  
-40~85  
- 55~150  
260  
1
TSTG  
TSOLDER  
PD  
1
Storage Temperature  
1
Soldering Temperature (10s)  
Power Dissipation  
2.0  
W
1
IOS  
50  
mA  
1
Short Circuit Output Current  
Note1: Stress greater than those listed under “Absolute Maximum Ratings” may cause permanent damage of the  
devices  
Note2: These voltages are relative to Vss  
Table 15. Recommended D.C. Operating Conditions  
°
(SSTL_2 In/Out, TA = -40 ~ 85 C)  
Symbol  
Parameter  
Power Supply Voltage  
Min.  
Max.  
Unit  
Note  
VDD  
2.3  
2.7  
V
1
VDDQ  
2.3  
2.7  
V
1
Power Supply Voltage(for I/O )  
VREF  
VTT  
0.49 x VDDQ  
VREF – 0.04  
VREF + 0.15  
VSSQ - 0.3  
- 2  
0.51 x VDDQ  
VREF + 0.04  
VDDQ + 0.3  
VREF- 0.15  
2
V
V
Input Reference Voltage  
Termination Voltage  
Input High Voltage  
VIH(DC)  
VIL(DC)  
IIL  
V
V
Input Low Voltage  
µA  
µA  
mA  
mA  
Input Leakage Current  
Output Leakage Current  
Output High Current  
Output Low Current  
IOZ  
- 5  
5
IOH  
IOL  
-16.2  
16.2  
-
-
V
= 1.95V  
= 0.35V  
OH  
V
OL  
Table 16. Capacitance  
°
(VDD = 2.5V, f = 1MHz, TA = 25 C)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Input Capacitance (CK,  
)
CIN1  
1.5  
2.5  
pF  
CK  
CIN2  
CI/O  
Input Capacitance (All other input-only pins)  
1.5  
3.5  
2.5  
4.5  
pF  
pF  
DM, DQ, DQS Input/Output Capacitance  
Note: These parameters are guaranteed by design, periodically sampled and are not 100% tested.  
Table 17. Decoupling Capacitance Guide Line  
Symbol  
Parameter  
Value  
Unit  
µF  
CDC1 Decouping Capacitance between VDD and VSS  
CDC2 Decouping Capacitance between VDDQ and VSSQ  
0.1+0.01  
0.1+0.01  
µF  
Confidential  
- 12/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Table 18. D.C. Characteristics  
±
°
(VDD=2.5V 0.2V, TA =-40~85 C)  
Parameter & Test Condition  
OPERATING CURRENT: One bank; Active-Precharge; t =t (min);  
-5  
Symbol  
Unit  
Max.  
RC RC  
210  
mA  
t
=t (min); DQ, DM and DQS inputs changing once per clock cycle;  
CK CK  
IDD0  
Address and control inputs changing once every two clock cycles.  
OPERATING CURRENT : One bank; Active-Read-Precharge; BL=4;  
240  
75  
t
=t (min); t =t (min); lout=0mA; Address and control inputs  
CK CK  
RC RC  
IDD1  
mA  
mA  
changing once per clock cycle  
PRECHARGE POWER-DOWN STANDBY CURRENT: All banks idle;  
power-down mode; t =t (min); CKE=LOW  
IDD2P  
CK CK  
IDLE STANDBY CURRENT : CKE = HIGH;  
=HIGH(DESELECT); All  
CS  
100  
75  
IDD2N  
IDD3P  
IDD3N  
mA  
mA  
mA  
banks idle; t =t (min); Address and control inputs changing once per  
CK CK  
clock cycle; V =V  
for DQ, DQS and DM  
REF  
IN  
ACTIVE POWER-DOWN STANDBY CURRENT : one bank active; power-  
down mode; CKE=LOW; t =t (min)  
CK CK  
ACTIVE STANDBY CURRENT :  
=HIGH;CKE=HIGH; one bank active ;  
CS  
=t (max);t =t (min);Address and control inputs changing once per  
220  
t
RC RC  
CK CK  
clock cycle; DQ,DQS,and DM inputs changing twice per clock cycle  
OPERATING CURRENT BURST READ : BL=2; READs; Continuous burst;  
420  
420  
one bank active; Address and control inputs changing once per clock cycle;  
IDD4R  
IDD4W  
mA  
mA  
t
=t (min); lout=0mA;50% of data changing on every transfer  
CK CK  
OPERATING CURRENT BURST Write : BL=2; WRITES; Continuous  
Burst ;one bank active; address and control inputs changing once per clock  
cycle; t =t (min); DQ,DQS,and DM changing twice per clock cycle; 50%  
CK CK  
of data changing on every transfer  
AUTO REFRESH CURRENT :  
300  
6
IDD5  
IDD6  
mA  
mA  
t
=t  
(min); t =t (min)  
RC RFC CK CK  
SELF REFRESH CURRENT:  
Self Refresh Mode ; CKE 0.2V;t =t (min)  
CK CK  
BURST OPERATING CURRENT 4 bank operation:  
Four bank interleaving READs; BL=4;with Auto Precharge; t =t (min);  
RC RC  
570  
IDD7  
mA  
t
=t (min); Address and control inputs change only during Active,  
CK CK  
READ , or WRITE command  
Note:  
1. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage of the  
device.  
2. All voltages are referenced to VSS.  
3. These parameters depend on the cycle rate and these values are measured by the cycle rate under the  
minimum value of tCK and tRC. Input signals are changed one time during tCK.  
4. Power-up sequence is described in later page.  
Confidential  
- 13/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Table 19. Electrical Characteristics and Recommended A.C. Operating Conditions  
(VDD = 2.5V ± 0.2V, TA = -40~85 °C)  
-5  
Symbol  
Parameter  
Unit  
Min.  
7.5  
6
Max.  
12  
CL = 2  
CL = 2.5  
CL = 3  
ns  
ns  
ns  
tCK  
tCK  
tCK  
Clock cycle time  
12  
5
7.5  
tCH  
tCL  
tDQSCK  
tAC  
Clock high level width  
Clock low level width  
0.45  
0.45  
0.55  
0.55  
DQS-out access time from CK,  
Output access time from CK,  
-0.6  
-0.7  
0.6  
0.7  
ns  
ns  
CK  
CK  
tDQSQ  
tRPRE  
tRPST  
tDQSS  
DQS-DQ Skew  
Read preamble  
Read postamble  
CK to valid DQS-in  
-
0.4  
ns  
tCK  
tCK  
tCK  
ns  
tCK  
tCK  
tCK  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
µs  
ns  
ns  
0.9  
1.1  
0.4  
0.6  
0.72  
1.25  
tWPRES DQS-in setup time  
0
-
tWPRE  
tWPST  
tDQSH  
tDQSL  
tIS  
DQS Write preamble  
0.25  
-
DQS write postamble  
0.4  
0.6  
DQS in high level pulse width  
DQS in low level pulse width  
0.4  
-
0.4  
-
Address and Control input setup time  
Address and Control input hold time  
DQ & DM setup time to DQS  
DQ & DM hold time to DQS  
Clock half period  
0.7  
-
tIH  
0.7  
-
tDS  
0.4  
-
tDH  
0.4  
-
tHP  
tCLMIN or tCHMIN  
-
tQH  
DQ/DQS output hold time from DQS  
Row cycle time  
tHP - tQHS  
-
tRC  
55  
-
tRFC  
tRAS  
tRCD  
tRP  
Refresh row cycle time  
70  
-
Row active time  
40  
100K  
Active to Read or Write delay  
Row precharge time  
15  
-
15  
-
tRRD  
tWR  
Row active to Row active delay  
Write recovery time  
2
3
-
-
tMRD  
tDAL  
tXSRD  
tPDEX  
tREFI  
tIPW  
tDIPW  
Mode register set cycle time  
Auto precharge write recovery + Precharge time  
Self refresh exit to read command delay  
Power down exit time  
2
-
tWR + tRP  
200  
tCK + tIS  
-
-
-
-
Average Refresh interval time  
Control and Address input pulse width  
DQ & DM input pulse width (for each input)  
15.6  
2.2  
-
-
1.75  
Data-out high-impedance window from CK/  
tHZ  
tLZ  
-
0.7  
0.7  
ns  
ns  
CK  
Data-out low-impedance window from CK/  
-0.7  
CK  
tQHS  
Data Hold Skew Factor  
-
0.5  
ns  
ns  
DVW  
Output data valid window  
tQH - tDQSQ  
-
-
-
-
-
tXSNR  
tCCD  
tDSS  
tDSH  
Exit Self-Refresh to non-Read command  
CAS# to CAS# Delay time  
75  
1
ns  
tCK  
tCK  
tCK  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
0.2  
0.2  
Confidential  
- 14/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Table 20. Recommended A.C. Operating Conditions  
°
±
(TA = -40~85 C, VDD=2.5V 0.2V)  
-5  
Parameter  
Input High Voltage (AC)  
Symbol  
Unit  
Min.  
+ 0.31  
Max.  
VIH (AC)  
VIL (AC)  
V
-
V
V
REF  
Input Low Voltage (AC)  
-
V
– 0.31  
REF  
Input Different Voltage, CK and  
inputs  
VID (AC)  
inputs  
VIX (AC)  
0.7  
V
0.6  
V
V
DDQ +  
CK  
Input Crossing Point Voltage, CK and  
0.5*V  
-0.2  
0.5*V  
+0.2  
DDQ  
DDQ  
CK  
Note:  
1. All voltages are referenced to VSS  
.
2. These parameters depend on the cycle rate and these values are measured by the cycle rate under the  
minimum value of tCK and tRC. Input signals are changed one time during tCK  
3. Power-up sequence is described in Note 5.  
4. A.C. Test Conditions  
.
Table 21. SSTL_2 Interface  
Reference Level of Output Signals (VREF  
Output Load  
)
0.5 * V  
DDQ  
Reference to the Test Load  
VREF+0.31 V / VREF-0.31 V  
1 V/ns  
Input Signal Levels  
Input Signals Slew Rate  
Reference Level of Input Signals  
0.5 * V  
DDQ  
Figure 3. SSTL_2 A.C. Test Load  
0.5 * VDDQ  
50Ω  
DQ, DQS  
Z0=50Ω  
30pF  
Confidential  
- 15/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
5. Power up Sequence  
Power up must be performed in the following sequence.  
1) Apply power to VDD before or at the same time as VDDQ, VTT and VREF when all input signals are held  
"NOP" state and maintain CKE “LOW”.  
2) Start clock and maintain stable condition for minimum 200us.  
3) Issue a “NOP” command and keep CKE “HIGH”  
4) Issue a “Precharge All” command.  
5) Issue EMRS – enable DLL.  
6) Issue MRS – reset DLL. (An additional 200 clock cycles are required to lock the DLL).  
7) Precharge all banks of the device.  
8) Issue two or more Auto Refresh commands.  
9) Issue MRS – with A8 to low to initialize the mode register.  
Confidential  
- 16/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Timing Waveforms  
Figure 4. Activating a Specific Row in a Specific Bank  
CK  
CK  
CKE  
HIGH  
CS  
RAS  
CAS  
WE  
RA  
BA  
Address  
BA0,1  
RA=Row Address  
BA=Bank Address  
Don’t Care  
Confidential  
- 17/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 5. tRCD and tRRD Definition  
CK  
CK  
RD/WR  
COMMAND  
ACT  
Row  
NOP  
NOP  
NOP  
NOP  
NOP  
ACT  
Row  
Col  
Address  
Bank A  
Bank B  
Bank B  
BA0,BA1  
tRRD  
tRCD  
Don’t Care  
Figure 6. READ Command  
CK  
CK  
CKE  
HIGH  
CS  
RAS  
CAS  
WE  
CA  
A0 ~ A7  
A8  
EN AP  
DIS AP  
BA  
BA0,1  
CA=Column Address  
BA=Bank Address  
EN AP=Enable Autoprecharge  
DIS AP=Disable Autoprecharge  
Don’t Care  
Confidential  
- 18/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 7. Read Burst Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=2  
DQS  
DQ  
DO  
n
DO n=Data Out from column n  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Don’t Care  
Read Burst Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n
DO n=Data Out from column n  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order following DO n  
Don’t Care  
Confidential  
- 19/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Read Burst Required CAS Latencies (CL=3)  
CK  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
Bank A,  
Col n  
CL=3  
DQS  
DQ  
DO  
n
DO n=Data Out from column n  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Don’t Care  
Confidential  
- 20/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 8. Consecutive Read Bursts Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
CL=2  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first)  
3 subsequent elements of Data Out appear in the programmed order following DO n  
3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o  
Read commands shown must be to the same device  
Don’t Care  
Confidential  
- 21/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Consecutive Read Bursts Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first)  
3 subsequent elements of Data Out appear in the programmed order following DO n  
3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o  
Read commands shown must be to the same device  
Don’t Care  
Confidential  
- 22/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Consecutive Read Bursts Required CAS Latencies (CL=3)  
CK  
CK  
READ  
NOP  
READ  
COMMAND  
ADDRESS  
NOP  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col o  
CL=3  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first)  
3 subsequent elements of Data Out appear in the programmed order following DO n  
3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o  
Read commands shown must be to the same device  
Don’t Care  
Confidential  
- 23/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 9. Non-Consecutive Read Bursts Required CAS Latencies (CL=2)  
CK  
CK  
READ  
NOP  
NOP  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
CL=2  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order following DO n  
(and following DO o)  
Don’t Care  
Non-Consecutive Read Bursts Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order following DO n  
(and following DO o)  
Don’t Care  
Confidential  
- 24/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Non-Consecutive Read Bursts Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col o  
CL=3  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order following DO n  
(and following DO o)  
Don’t Care  
Confidential  
- 25/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 10. Random Read Accesses Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col p  
Bank,  
Col q  
Bank,  
Col n  
CL=2  
DQS  
DQ  
DO  
q
DO  
n'  
DO  
o
DO  
o'  
DO  
n
DO  
p
DO  
p'  
DO n, etc. =Data Out from column n, etc.  
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order  
Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted  
Reads are to active rows in any banks  
Don’t Care  
Random Read Accesses Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col p  
Bank,  
Col q  
Bank,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n'  
DO  
o
DO  
o'  
DO  
n
DO  
p
DO  
p'  
DO n, etc. =Data Out from column n, etc.  
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order  
Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted  
Reads are to active rows in any banks  
Don’t Care  
Confidential  
- 26/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Random Read Accesses Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col q  
Bank,  
Col n  
Bank,  
Col p  
CL=3  
DQS  
DQ  
DO  
n'  
DO  
o
DO  
o'  
DO  
n
DO  
p
DO n, etc. =Data Out from column n, etc.  
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order  
Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted  
Reads are to active rows in any banks  
Don’t Care  
Confidential  
- 27/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 11. Terminating a Read Burst Required CAS Latencies (CL=2)  
CK  
CK  
READ  
NOP  
BST  
COMMAND  
ADDRESS  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=2  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are bursts of 8 terminated after 4 data elements  
3 subsequent elements of Data Out appear in the programmed order following DO n  
Don’t Care  
Terminating a Read Burst Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
BST  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are bursts of 8 terminated after 4 data elements  
3 subsequent elements of Data Out appear in the programmed order following DO n  
Don’t Care  
Confidential  
- 28/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Terminating a Read Burst Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
BST  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=3  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are bursts of 8 terminated after 4 data elements  
3 subsequent elements of Data Out appear in the programmed order following DO n  
Don’t Care  
Confidential  
- 29/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 12. Read to Write Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
READ  
BST  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
tDQSS  
min  
CL=2  
DQS  
DQ  
DO  
n
DI  
o
DM  
DO n (or o)= Data Out from column n (or column o)  
Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST  
command shown can be NOP)  
1 subsequent element of Data Out appears in the programmed order following DO n  
Data in elements are applied following DI o in the programmed order  
Don’t Care  
Confidential  
- 30/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Read to Write Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
WRITE  
READ  
BST  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
ADDRESS  
CL=2.5  
tDQSS  
min  
DQS  
DQ  
DO  
n
DI  
o
DM  
DO n (or o)= Data Out from column n (or column o)  
Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST  
command shown can be NOP)  
1 subsequent element of Data Out appears in the programmed order following DO n  
Data in elements are applied following DI o in the programmed order  
Don’t Care  
Confidential  
- 31/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Read to Write Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
WRITE  
READ  
BST  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
ADDRESS  
tDQSS  
min  
CL=3  
DQS  
DQ  
DO  
n
DI  
o
DM  
DO n (or o)= Data Out from column n (or column o)  
Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST  
command shown can be NOP)  
1 subsequent element of Data Out appears in the programmed order following DO n  
Data in elements are applied following DI o in the programmed order  
Don’t Care  
Confidential  
- 32/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 13. Read to Precharge Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
tRP  
Bank A,  
Col n  
Bank  
(a or all)  
Bank A,  
Row  
CL=2  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Precharge may be applied at (BL/2) tCK after the READ command  
Note that Precharge may not be issued before tRAS ns after the ACTIVE  
command for applicable banks  
The Active command may be applied if tRC has been met  
Don’t Care  
Confidential  
- 33/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Read to Precharge Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
tRP  
Bank  
(a or all)  
Bank A,  
Col n  
Bank A,  
Row  
CL=2.5  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Precharge may be applied at (BL/2) tCK after the READ command  
Note that Precharge may not be issued before tRAS ns after the ACTIVE  
command for applicable banks  
The Active command may be applied if tRC has been met  
Don’t Care  
Confidential  
- 34/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Read to Precharge Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
tRP  
Bank A,  
Col n  
Bank  
(a or all)  
Bank A,  
Row  
CL=3  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Precharge may be applied at (BL/2) tCK after the READ command  
Note that Precharge may not be issued before tRAS ns after the ACTIVE  
command for applicable banks  
The Active command may be applied if tRC has been met  
Don’t Care  
Confidential  
- 35/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 14. Write Command  
CK  
CK  
CKE  
HIGH  
CS  
RAS  
CAS  
WE  
CA  
A0 ~ A7  
A8  
EN AP  
DIS AP  
BA  
BA0,1  
CA=Column Address  
BA=Bank Address  
EN AP=Enable Autoprecharge  
DIS AP=Disable Autoprecharge  
Don’t Care  
Confidential  
- 36/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 15. Write Max DQSS  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
Bank A,  
Col n  
tDQSS  
max  
DQS  
DQ  
DI  
n
DM  
DI n = Data In for column n  
3 subsequent elements of Data In are applied in the programmed  
order following DI n  
A non-interrupted burst of 4 is shown  
A8 is LOW with the WRITE command (AUTO PRECHARGE  
disabled)  
Don’t Care  
Confidential  
- 37/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 16. Write Min DQSS  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
Bank A,  
Col n  
tDQSS  
min  
DQS  
DQ  
DI  
n
DM  
DI n = Data In for column n  
3 subsequent elements of Data In are applied in the programmed  
order following DI n  
A non-interrupted burst of 4 is shown  
A8 is LOW with the WRITE command (AUTO PRECHARGE  
disabled)  
Don’t Care  
Confidential  
- 38/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 17. Write Burst Nom, Min, and Max tDQSS  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank ,  
Col n  
tDQSS (nom)  
DQS  
DQ  
DI  
n
DM  
tDQSS (min)  
DQS  
DQ  
DI  
n
DM  
tDQSS (max)  
DQS  
DI  
n
DQ  
DM  
DI n = Data In for column n  
3 subsequent elements of Data are applied in the programmed order following DI n  
A non-interrupted burst of 4 is shown  
A8 is LOW with the WRITE command (AUTO PRECHARGE disabled)  
DM=DM0 ~ DM3  
Don’t Care  
Confidential  
- 39/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 18. Write to Write Max tDQSS  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
WRITE  
NOP  
NOP  
NOP  
NOP  
Bank ,  
Col o  
Bank ,  
Col n  
tDQSS (max)  
DQS  
DQ  
DI  
n
DI  
o
DM  
DI n , etc. = Data In for column n,etc.  
3 subsequent elements of Data In are applied in the programmed order following DI n  
3 subsequent elements of Data In are applied in the programmed order following DI o  
Non-interrupted bursts of 4 are shown  
DM= DM0 ~ DM3  
Don’t Care  
Confidential  
- 40/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 19. Write to Write Max tDQSS, Non Consecutive  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
WRITE  
NOP  
NOP  
NOP  
NOP  
Bank  
Col n  
Bank  
Col o  
tDQSS (max)  
DQS  
DQ  
DI  
n
DI  
o
DM  
DI n, etc. = Data In for column n, etc.  
3 subsequent elements of Data In are applied in the programmed order following DI n  
3 subsequent elements of Data In are applied in the programmed order following DI o  
Non-interrupted bursts of 4 are shown  
DM= DM0 ~ DM3  
Don’t Care  
Confidential  
- 41/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 20. Random Write Cycles Max tDQSS  
T8  
T9  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
Bank  
Col r  
Bank  
Col n  
Bank  
Col o  
Bank  
Col p  
Bank  
Col q  
tDQSS (max)  
DQS  
DQ  
DI  
n
DI  
n'  
DI  
o
DI  
o'  
DI  
p'  
DI  
p
DI  
q'  
DI  
q
DM  
DI n, etc. = Data In for column n, etc.  
n', etc. = the next Data In following DI n, etc. according to the programmed burst order  
Programmed Burst Length 2, 4, or 8 in cases shown  
If burst of 4 or 8, the burst would be truncated  
Each WRITE command may be to any bank and may be to the same or different devices  
DM= DM0 ~ DM3  
Don’t Care  
Confidential  
- 42/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 21. Write to Read Max tDQSS Non Interrupting  
T12  
T8  
T9  
T10 T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
WRITE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
tWTR  
Bank  
Col o  
Bank  
Col n  
ADDRESS  
CL=3  
tDQSS (max)  
DQS  
DQ  
DI  
n
DM  
DI n, etc. = Data In for column n, etc.  
1 subsequent elements of Data In are applied in the programmed order following DI n  
A non-interrupted burst of 2 is shown  
tWTR is referenced from the first positive CK edge after the last Data In Pair  
A8 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
The READ and WRITE commands are to the same devices but not necessarily to the same bank  
DM= DM0 ~ DM3  
Don’t Care  
Confidential  
- 43/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 22. Write to Read Max tDQSS Interrupting  
T8  
T9  
T10  
T11  
T12  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
READ  
NOP  
NOP  
NOP  
NOP  
tWTR  
Bank  
Col o  
Bank  
Col n  
CL=3  
tDQSS (max)  
DQS  
DQ  
DI  
n
DM  
DI n, etc. = Data In for column n, etc.  
1 subsequent elements of Data In are applied in the programmed order following DI n  
An interrupted burst of 8 is shown, 2 data elements are written  
tWTR is referenced from the first positive CK edge after the last Data In Pair  
A8 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
The READ and WRITE commands are to the same devices but not necessarily to the same bank  
DM= DM0 ~ DM3  
Don’t Care  
Confidential  
- 44/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 23. Write to Read Max tDQSS, ODD Number of Data, Interrupting  
T4  
T8  
T9  
T10  
T11  
T12  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
WRITE  
READ  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
tWTR  
Bank  
Col o  
Bank  
Col n  
CL=3  
tDQSS (max)  
DQS  
DQ  
DI  
n
DM  
DI n = Data In for column n  
An interrupted burst of 8 is shown, 1 data elements are written  
tWTR is referenced from the first positive CK edge after the last Data In Pair (not the last desired  
Data In element)  
A8 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
The READ and WRITE commands are to the same devices but not necessarily to the same bank  
DM= DM0 ~ DM3  
Don’t Care  
Confidential  
- 45/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 24. Write to Precharge Max tDQSS, NON- Interrupting  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
PRE  
NOP  
tWR  
Bank a,  
Col n  
Bank  
(a or al)  
tRP  
tDQSS (max)  
DQS  
DQ  
DI  
n
DM  
DI n = Data In for column n  
1 subsequent elements of Data In are applied in the programmed order following DI n  
A non-interrupted burst of 2 is shown  
tWR is referenced from the first positive CK edge after the last Data In Pair  
A8 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
DM= DM0 ~ DM3  
Don’t Care  
Confidential  
- 46/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 25. Write to Precharge Max tDQSS, Interrupting  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
PRE  
NOP  
NOP  
NOP  
tWR  
Bank a,  
Col n  
Bank  
(a or all)  
tRP  
tDQSS (max)  
*2  
DQS  
DQ  
DI  
n
DM  
*1  
*1  
*1  
*1  
DI n = Data In for column n  
An interrupted burst of 4 or 8 is shown, 2 data elements are written  
tWR is referenced from the first positive CK edge after the last Data In Pair  
A8 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
*1 = can be don't care for programmed burst length of 4  
*2 = for programmed burst length of 4, DQS becomes don't care at this point  
DM= DM0 ~ DM3  
Don’t Care  
Confidential  
- 47/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 26. Write to Precharge Max tDQSS ODD Number of Data Interrupting  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
NOP  
PRE  
tWR  
Bank a,  
Col n  
Bank  
(a or all)  
tRP  
tDQSS (max)  
*2  
DQS  
DQ  
DI  
n
DM  
*1  
*1  
*1  
*1  
DI n = Data In for column n  
An interrupted burst of 4 or 8 is shown, 1 data element is written  
tWR is referenced from the first positive CK edge after the last Data In Pair  
A8 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
*1 = can be don't care for programmed burst length of 4  
*2 = for programmed burst length of 4, DQS becomes don't care at this point  
DM= DM0 ~ DM3  
Don’t Care  
Confidential  
- 48/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 27. Precharge Command  
CK  
CK  
CKE  
HIGH  
CS  
RAS  
CAS  
WE  
A0-A7,  
A9-A11  
ALL BANKS  
A8  
ONE BANK  
BA  
BA0,1  
BA= Bank Address (if A8 is LOW,  
otherwise don't care)  
Don’t Care  
Confidential  
- 49/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 28. Power-Down  
Tn+3 Tn+4 Tn+5 Tn+6  
T4  
T0  
T1  
T2  
T3  
Tn Tn+1 Tn+2  
CK  
CK  
tIS  
tIS  
CKE  
VALID  
VALID  
COMMAND  
NOP  
NOP  
Exit power-down  
mode  
Enter power-down  
mode  
No column access  
in progress  
Don’t Care  
Figure 29. Clock Frequency Change in Precharge  
Ty+1  
Ty+3  
Ty+4  
T0  
T1  
T2  
T4  
Tx  
Tx+1  
Ty  
Ty+2  
Tz  
CK  
CK  
DLL  
RESET  
NOP NOP  
NOP  
NOP  
NOP  
Valid  
CMD  
CKE  
tIS  
Frequency Change  
Occurs here  
tRP  
Minmum 2 clocks  
Required before  
200 Clocks  
Stable new clock  
Before power down exit  
Changing frequency  
Confidential  
- 50/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 30. Data input (Write) Timing  
tDQSH  
tDQSL  
DQS  
DQ  
tDS  
DI  
n
tDH  
tDS  
DM  
tDH  
DI n = Data In for column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data In are applied in the programmed order  
following DI n  
Don’t Care  
Figure 31. Data Output (Read) Timing  
tCL  
tCH  
CK  
CK  
DQS  
DQ  
tDQSQ  
max  
tDQSQ  
max  
tQH  
tQH  
Burst Length = 4 in the case shown  
Confidential  
- 51/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 32. Initialize and Mode Register Sets  
VDD  
VDDQ  
tVDT>=0  
VTT  
(system*)  
tCK  
VREF  
tCH tCL  
CK  
CK  
tIS tIH  
LVCMOS LOW LEVEL  
CKE  
tIS tIH  
EMRS  
AR  
MRS  
COMMAND  
DM  
NOP  
PRE  
MRS  
PRE  
AR  
ACT  
tIS tIH  
A0-A7,  
A9-A11  
CODE  
CODE  
CODE  
CODE  
CODE  
RA  
RA  
BA  
tIS tIH  
ALL BANKS  
ALL BANKS  
CODE  
A8  
tIS tIH  
tIS tIH  
tIS tIH  
BA0=H  
BA1=L  
BA0=L  
BA1=L  
BA0=L  
BA1=L  
BA0,BA1  
High-Z  
DQS  
DQ  
High-Z  
**tMRD  
**tMRD  
tRFC  
tRFC  
**tMRD  
tRP  
200 cycles of CK**  
T=200µs  
Extended mode  
Register set  
Load Mode  
Register,  
(with A8=L)  
Power-up:  
Load Mode  
VDD and  
Register,  
CLK stable  
Reset DLL (with A8=H)  
Don’t Care  
*=VTT is not applied directly to the device, however tVTD must be greater than or equal to zero to avoid device latch-up.  
** = tMRD is required before any command can be applied, and 200 cycles of CK are required before any executable  
command can be applied the two auto Refresh commands may be moved to follow the first MRS but precede the second  
PRECHARGE ALL command.  
Confidential  
- 52/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 33. Power Down Mode  
tCK  
tCH  
tCL  
CK  
CK  
tIS tIH  
tIS  
tIS  
CKE  
tIS tIH  
VALID*  
VALID  
COMMAND  
NOP  
NOP  
tIS tIH  
VALID  
VALID  
ADDR  
DQS  
DQ  
DM  
Enter  
power-down mode  
Exit  
power-down mode  
No column accesses are allowed to be in progress at the time Power-Down is entered  
*=If this command is a PRECHARGE ALL (or if the device is already in the idle state) then the Power-Down  
mode shown is Precharge Power Down. If this command is an ACTIVE (or if at least one row is already active)  
then the Power-Down mode shown is active Power Down.  
Don’t Care  
Confidential  
- 53/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 34. Auto Refresh Mode  
tCK  
tCH tCL  
CK  
CK  
tIS  
tIH  
CKE  
VALID  
VALID  
tIS tIH  
NOP  
ACT  
RA  
AR  
NOP  
AR  
NOP  
NOP  
PRE  
NOP  
NOP  
COMMAND  
A0-A7  
A9-A11  
RA  
RA  
BA  
ALL BANKS  
A8  
ONE BANKS  
tIS tIH  
*Bank(s)  
BA0,BA1  
DQS  
DQ  
DM  
tRFC  
tRP  
tRFC  
* = Don't Care, if A8 is HIGH at this point; A8 must be HIGH if more than one bank is active (i.e., must precharge all active banks)  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH  
NOP commands are shown for ease of illustration; other valid commands may be possible after tRFC  
DM, DQ and DQS signals are all Don't Care/High-Z for operations shown  
Don’t Care  
Confidential  
- 54/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 35. Self Refresh Mode  
tCK  
Clock must be stable before  
Exiting Self Refresh mode  
tCH  
tCL  
CK  
CK  
tIS tIH  
tIS  
tIS  
CKE  
tIS tIH  
NOP  
VALID  
COMMAND  
NOP  
AR  
tIS tIH  
VALID  
ADDR  
DQS  
DQ  
DM  
tXSNR/  
tXSRD**  
tRP*  
Enter Self Refresh  
mode  
Exit Self Refresh  
mode  
* = Device must be in the All banks idlestate prior to entering Self Refresh mode  
** = tXSNR is required before any non-READ command can be applied, and tXSRD (200 cycles of CK) is  
required before a READ command can be applied.  
Don’t Care  
Confidential  
- 55/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 36. Read without Auto Precharge  
tCK  
tCH tCL  
CK  
CK  
tIH  
tIS  
tIH  
CKE  
VALID  
NOP  
VALID  
NOP  
VALID  
NOP  
tIS tIH  
NOP  
NOP  
NOP  
ACT  
RA  
READ  
PRE  
NOP  
COMMAND  
ADDRESS  
tIS tIH  
Col n  
tIS tIH  
ALL BANKS  
ONE BANKS  
A8  
RA  
DIS AP  
tIS tIH  
Bank X  
*Bank X  
Bank X  
BA0,BA1  
CL=3  
tRP  
DM  
Case 1:  
tAC/tDQSCK=min  
tDQSCK  
tRPST  
min  
tRPRE  
DQS  
DQ  
tLZ  
min  
DO  
n
tLZ  
tAC  
min  
min  
Case 2:  
AC/tDQSCK=max  
tDQSCK  
t
tRPST  
max  
tRPRE  
DQS  
DQ  
tLZ  
tHZ  
max  
max  
DO  
n
tLZ  
tAC  
max  
max  
DO n = Data Out from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DO n  
DIS AP = Disable Autoprecharge  
* =Don't Care, if A8 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks  
Don’t Care  
Confidential  
- 56/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 37. Read with Auto Precharge  
tCK  
tCH tCL  
CK  
CK  
tIH  
tIS  
tIH  
CKE  
VALID  
NOP  
VALID  
NOP  
VALID  
NOP  
tIS tIH  
NOP  
NOP  
ACT  
RA  
NOP  
READ  
NOP  
NOP  
COMMAND  
A0-A7  
tIS tIH  
Col n  
A9-A11  
A8  
RA  
RA  
EN AP  
tIS tIH  
tIS  
tIH  
Bank X  
Bank X  
BA0,BA1  
CL=3  
tRP  
DM  
Case 1:  
t
AC/tDQSCK=min  
tDQSCK  
tRPST  
min  
tRPRE  
DQS  
DQ  
tLZ  
min  
DO  
n
tLZ  
tAC  
min  
min  
Case 2:  
AC/tDQSCK=max  
tDQSCK  
max  
t
tRPST  
tRPRE  
DQS  
DQ  
tLZ  
tHZ  
max  
max  
DO  
n
tLZ  
tAC  
max  
max  
DO n = Data Out from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DO n  
EN AP = Enable Autoprecharge  
ACT = ACTIVE, RA = Row Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
The READ command may not be issued until tRAP has been satisfied. If Fast Autoprecharge is supported, tRAP = tRCD, else the READ  
may not be issued prior to tRASmin (BL*tCK/2)  
Don’t Care  
Confidential  
- 57/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 38. Bank Read Access  
tCK  
tCH tCL  
CK  
CK  
tIS tIH  
CKE  
tIS tIH  
NOP  
ACT  
NOP  
NOP  
NOP  
NOP  
READ  
Col n  
PRE  
NOP  
NOP  
ACT  
COMMAND  
A0-A7  
tIS tIH  
RA  
RA  
RA  
A9-A11  
RA  
RA  
tIS tIH  
ALL BANKS  
ONE BANKS  
A8  
RA  
DIS AP  
tIS  
tIH  
Bank X  
Bank X  
Bank X  
*Bank X  
BA0,BA1  
tRC  
tRAS  
CL=3  
tRCD  
tRP  
DM  
Case 1:  
tDQSCK  
min  
t
AC/tDQSCK=min  
tRPST  
tRPRE  
DQS  
tLZ  
DO  
n
min  
DQ  
tLZ  
tAC  
min  
min  
Case 2:  
tDQSCK  
max  
t
AC/tDQSCK=max  
tRPST  
tRPRE  
DQS  
tHZ  
max  
tLZ  
max  
DO  
n
DQ  
tLZ  
tAC  
max  
max  
DO n = Data Out from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DO n  
DIS AP = Disable Autoprecharge  
* = Don't Care, if A8 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Note that tRCD > tRCD MIN so that the same timing applies if Autoprecharge is enabled (in which case tRAS  
would be limiting)  
Don’t Care  
Confidential  
- 58/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 39. Write without Auto Precharge  
tCK  
tCH tCL  
CK  
CK  
tIH  
tIS  
tIH  
CKE  
VALID  
tIS tIH  
WRITE  
NOP  
NOP  
PRE  
NOP  
NOP  
ACT  
RA  
NOP  
NOP  
NOP  
COMMAND  
A0-A7  
tIS tIH  
Col n  
A9-A11  
A8  
RA  
RA  
BA  
tIS tIH  
ALL BANKS  
ONE BANKS  
DIS AP  
tIS tIH  
Bank X  
*Bank X  
BA0,BA1  
Case 1:  
tRP  
tDSH  
tDSH  
tDQSS  
tWR  
tDQSS=min  
tDQSH  
tWPST  
DQS  
tDQSL  
tWPRES  
tWPRE  
DI  
n
DQ  
DM  
tDSS  
tDQSH  
tDSS  
tWPST  
Case 2:  
tDQSS=max  
tDQSS  
DQS  
tWPRES  
tDQSL  
tWPRE  
DI  
n
DQ  
DM  
DI n = Data In from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data In are provided in the programmed order following DI n  
DIS AP = Disable Autoprecharge  
*=Don't Care, if A8 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the +  
25% window of the corresponding positive clock edge  
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks  
Don’t Care  
Confidential  
- 59/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 40. Write with Auto Precharge  
tCK  
tCH tCL  
CK  
CK  
tIS  
tIH  
CKE  
VALID  
NOP  
VALID  
NOP  
VALID  
NOP  
tIS tIH  
WRITE  
NOP  
NOP  
ACT  
RA  
NOP  
NOP  
NOP  
COMMAND  
A0-A7  
tIS tIH  
Col n  
A9-A11  
RA  
DIS AP  
RA  
BA  
A8  
tIS  
tIH  
Bank X  
BA0,BA1  
tDAL  
Case 1:  
tDSH  
tDSH  
tDQSS  
tDQSS=min  
tDQSH  
tWPST  
DQS  
tWPRES  
tWPRE  
tDQSL  
DI  
n
DQ  
DM  
tDSS  
tDQSH  
tDSS  
Case 2:  
tDQSS=max  
tDQSS  
tWPST  
DQS  
tWPRES  
tDQSL  
tWPRE  
DI  
n
DQ  
DM  
DI n = Data In from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DI n  
EN AP = Enable Autoprecharge  
ACT = ACTIVE, RA = Row Address, BA = Bank Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the + 25%  
window of the corresponding positive clock edge  
Don’t Care  
Confidential  
- 60/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 41. Bank Write Access  
tCK  
tCH tCL  
CK  
CK  
tIS  
tIH  
CKE  
tIS tIH  
WRITE  
Col n  
NOP  
NOP  
PRE  
NOP  
NOP  
NOP  
ACT  
NOP  
NOP  
COMMAND  
A0-A7  
tIS tIH  
RA  
RA  
RA  
A9-A11  
tIS tIH  
ALL BANKS  
A8  
DIS AP  
ONE BANK  
*Bank X  
tIS tIH  
Bank X  
Bank X  
BA0,BA1  
tRAS  
tRCD  
tWR  
Case 1:  
tDSH  
tDQSH  
tDSH  
tWPST  
t
DQSS=min  
tDQSS  
DQS  
tWPRES  
tWPRE  
tDQSL  
DI  
n
DQ  
DM  
tDSS  
Case 2:  
tDSS  
tWPST  
tDQSH  
t
DQSS=max  
tDQSS  
DQS  
tWPRES  
tDQSL  
tWPRE  
DI  
n
DQ  
DM  
DI n = Data In from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DI n  
DIS AP = Disable Autoprecharge  
*=Don't Care, if A8 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the + 25%  
window of the corresponding positive clock edge  
Don’t Care  
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks  
Confidential  
- 61/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 42. Write DM Operation  
tCK  
tCH tCL  
CK  
CK  
tIS  
tIH  
CKE  
VALID  
tIS tIH  
WRITE  
NOP  
NOP  
PRE  
NOP  
NOP  
ACT  
RA  
NOP  
NOP  
NOP  
COMMAND  
A0-A7  
tIS tIH  
Col n  
A9-A11  
A8  
RA  
RA  
BA  
tIS tIH  
ALL BANKS  
ONE BANKS  
DIS AP  
tIS tIH  
Bank X  
BA0,BA1  
Case 1:  
*Bank X  
tRP  
tDSH  
tDSH  
tDQSS  
tDQSS=min  
tWR  
tDQSH  
tWPST  
DQS  
tDQSL  
tWPRES  
tWPRE  
DI  
n
DQ  
DM  
tDSS  
tDQSH  
tDSS  
tWPST  
Case 2:  
tDQSS=max  
tDQSS  
DQS  
tWPRES  
tDQSL  
tWPRE  
DI  
n
DQ  
DM  
DI n = Data In from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data In are provided in the programmed order following DI n  
DIS AP = Disable Autoprecharge  
*=Don't Care, if A8 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the + 25%  
window of the corresponding positive clock edge  
Don’t Care  
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks  
Confidential  
- 62/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
Figure 43. 144 ball LFBGA Package Outline Drawing Information  
Units: mm  
PIN #1  
Top View  
Side View  
Bottom View  
"A"  
DETAIL : "A"  
Dimension in inch  
Dimension in mm  
Symbol  
Min  
--  
Nom Max  
-- 0.055  
Min  
--  
Nom Max  
-- 1.40  
A
A1  
A2  
D
0.012 0.014 0.016 0.30 0.35 0.40  
0.036 0.038 0.040 0.91 0.96 1.01  
0.469 0.472 0.476 11.90 12.00 12.10  
0.469 0.472 0.476 11.90 12.00 12.10  
E
D1  
E1  
e
--  
--  
--  
0.346  
0.346  
0.031  
--  
--  
--  
--  
--  
--  
8.80  
8.80  
0.80  
--  
--  
--  
b
0.016 0.018 0.020 0.40 0.45 0.50  
Confidential  
- 63/64 -  
Rev.1.0 May 2016  
AS4C4M32D1A-5BIN  
AS4C4M32D1A-5BCN  
PART NUMBERING SYSTEM  
AS4Cꢀ  
4M32D1Aꢀ  
5ꢀ  
Bꢀ  
C/Iꢀ  
Nꢀ  
C=ꢀCommercialꢀ  
(0°ꢀC~70°ꢀC)ꢀ  
I=ꢀIndustrialꢀ  
(-40°ꢀC~85°ꢀC)ꢀ  
4M32=4Mx32ꢀ  
D1=DDR1ꢀ  
A=ꢀAꢀdieꢀversionꢀ  
IndicatesꢀPbꢀandꢀ  
HalogenꢀFreeꢀ  
DRAMꢀ  
5=200MHzꢀ  
Bꢀ=ꢀFBGAꢀ  
Alliance Memory, Inc.  
511 Taylor Way,  
San Carlos, CA 94070  
Tel: 650-610-6800  
Fax: 650-620-9211  
www.alliancememory.com  
Copyright © Alliance Memory  
All Rights Reserved  
© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are  
trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their  
respective companies. Alliance reserves the right to make changes to this document and its products at any time  
without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data  
contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right  
to change or correct this data at any time, without notice. If the product described herein is under development,  
significant changes to these specifications are possible. The information in this product data sheet is intended to be  
general descriptive information for potential customers and users, and is not intended to operate as, or provide, any  
guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of  
the application or use of any product described herein, and disclaims any express or implied warranties related to the  
sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose,  
merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms  
and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively  
according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a  
license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of  
Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting  
systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the  
inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such  
use and agrees to indemnify Alliance against all claims arising from such use.  
Confidential  
- 64/64 -  
Rev.1.0 May 2016  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY