AS4C4M32SA-7TCN [ALSC]

4M x 32bit -AS4C4M32SA - 86-pin TSOP II PACKAGE;
AS4C4M32SA-7TCN
型号: AS4C4M32SA-7TCN
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

4M x 32bit -AS4C4M32SA - 86-pin TSOP II PACKAGE

动态存储器 光电二极管 内存集成电路
文件: 总47页 (文件大小:1959K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Revision History  
4M x 32bit -AS4C4M32SA - 86-pin TSOP II PACKAGE  
Revision Details  
Date  
Rev 1.0  
Preliminary datasheet  
Sep. 2015  
Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070 TEL: (650) 610-6800 FAX: (650) 620-9211  
Alliance Memory Inc. reserves the right to change products or specification without notice  
Confidential  
-1/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Overview  
Features  
The 128Mb SDRAM is a high-speed CMOS  
synchronous DRAM containing 134,217,728 Mbits. It  
is internally configured as a quad 1M x 32 DRAM  
Fast access time from clock: 5.4/5.4 ns  
with  
a synchronous interface (all signals are  
Fast clock rate: 166/143 MHz  
Fully synchronous operation  
Internal pipelined architecture  
Four internal banks (1M x 32-bit x 4bank)  
Programmable Mode  
registered on the positive edge of the clock signal,  
CLK). Each of the 1M x 32 bit banks is organized as  
4096 rows by 256 columns by 32 bits. Read and  
write accesses to the SDRAM are burst oriented;  
accesses start at a selected location and continue for  
a programmed number of locations in a programmed  
sequence. Accesses begin with the registration of a  
BankActivate command which is then followed by a  
Read or Write command.  
- CAS Latency: 2 or 3  
The SDRAM provides for programmable Read or  
Write burst lengths of 1, 2, 4, 8, or full page, with a  
burst termination option. An auto precharge function  
may be enabled to provide a self-timed row  
precharge that is initiated at the end of the burst  
sequence. The refresh functions, either Auto or Self  
Refresh are easy to use. By having a programmable  
mode register, the system can choose the most  
suitable modes to maximize its performance. These  
devices are well suited for applications requiring  
high memory bandwidth.  
- Burst Length: 1, 2, 4, 8, or full page  
- Burst Type: Sequential & Interleaved  
- Burst-Read-Single-Write  
Burst stop function  
Individual byte controlled by DQM0-3  
Auto Refresh and Self Refresh  
4096 refresh cycles/64ms  
Single 3.3V ±0.3V power supply  
Operating Temperature  
- Commercial (0°C~+70°C)  
- Industrial (-40°C~+85°C)  
Interface: LVTTL  
Package:  
- 86-pin 400 mil plastic TSOP II package (Pb free and Halogen free)  
Table 1. Ordering Information  
Org  
Temperature  
Max Clock (MHz)  
166 MHz  
Product part No  
Package  
AS4C4M32SA-6TIN  
Industrial -40°C to +85°C  
86-pin TSOP II  
4M x 32  
4M x 32  
4M x 32  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Commercial 0°C to +70°C  
Commercial 0°C to +70°C  
166 MHz  
86-pin TSOP II  
86-pin TSOP II  
143 MHz  
Confidential  
-2/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 1. Pin Assignment  
(Top View)  
VDD  
DQ0  
1
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
VSS  
DQ15  
2
VSSQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ1  
3
4
DQ2  
5
VSSQ  
DQ3  
6
7
DQ4  
8
VDDQ  
DQ5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
DQ6  
VSSQ  
DQ7  
VDDQ  
DQ8  
NC  
NC  
VDD  
DQM0  
WE#  
CAS#  
RAS#  
CS#  
VSS  
DQM1  
NC  
NC  
CLK  
CKE  
A9  
A11  
BA0  
A8  
BA1  
A7  
A10/AP  
A0  
A6  
A5  
A1  
A4  
A2  
A3  
DQM2  
VDD  
DQM3  
VSS  
NC  
NC  
DQ16  
VSSQ  
DQ17  
DQ18  
DQ31  
VDDQ  
DQ30  
DQ29  
VSSQ  
DQ28  
DQ27  
VDDQ  
DQ26  
DQ25  
VSSQ  
DQ24  
VSS  
VDDQ  
DQ19  
DQ20  
VSSQ  
DQ21  
DQ22  
VDDQ  
DQ23  
VDD  
Confidential  
-3/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 2. Block Diagram  
4096 x 256 x 32  
CELL ARRAY  
(BANK #0)  
CLOCK  
BUFFER  
CLK  
CKE  
Column Decoder  
CS#  
DQ0  
DQ Buffer  
RAS#  
CAS#  
WE#  
COMMAND  
DECODER  
DQ31  
CONTROL  
SIGNAL  
GENERATOR  
DQM0~3  
4096 x 256 x 32  
CELL ARRAY  
(BANK #1)  
COLUMN  
COUNTER  
A10/AP  
Column Decoder  
MODE  
REGISTER  
A0  
ADDRESS  
BUFFER  
4096 x256 x 32  
CELL ARRAY  
(BANK #2)  
A9  
A11  
BA0  
BA1  
Column Decoder  
REFRESH  
COUNTER  
4096 x 256 x 32  
CELL ARRAY  
(BANK #3)  
Column Decoder  
Confidential  
-4/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Pin Descriptions  
Table 2. Pin Details  
Symbol  
Type  
Description  
CLK  
Input  
Clock: CLK is driven by the system clock. All SDRAM input signals are sampled on  
the positive edge of CLK. CLK also increments the internal burst counter and  
controls the output registers.  
CKE  
Input  
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal. If CKE  
goes low synchronously with clock(set-up and hold time same as other inputs), the  
internal clock is suspended from the next clock cycle and the state of output and  
burst address is frozen as long as the CKE remains low. When all banks are in the  
idle state, deactivating the clock controls the entry to the Power Down and Self  
Refresh modes. CKE is synchronous except after the device enters Power Down  
and Self Refresh modes, where CKE becomes asynchronous until exiting the same  
mode. The input buffers, including CLK, are disabled during Power Down and Self  
Refresh modes, providing low standby power.  
BA0, BA1  
A0-A11  
Input  
Input  
Bank Activate: BA0 and BA1 defines to which bank the BankActivate, Read, Write,  
or BankPrecharge command is being applied. The bank address BA0 and BA1 is  
used latched in mode register set.  
Address Inputs: A0-A11 are sampled during the BankActivate command (row  
address A0-A11) and Read/Write command (column address A0-A7 with A10  
defining Auto Precharge) to select one location out of the 1M available in the  
respective bank. During a Precharge command, A10 is sampled to determine if all  
banks are to be precharged (A10 = HIGH). The address inputs also provide the op-  
code during a Mode Register Set or Special Mode Register Set command.  
CS#  
Input  
Input  
Chip Select: CS# enables (sampled LOW) and disables (sampled HIGH) the  
command decoder. All commands are masked when CS# is sampled HIGH. CS#  
provides for external bank selection on systems with multiple banks. It is considered  
part of the command code.  
RAS#  
Row Address Strobe: The RAS# signal defines the operation commands in  
conjunction with the CAS# and WE# signals and is latched at the positive edges of  
CLK. When RAS# and CS# are asserted "LOW" and CAS# is asserted "HIGH,"  
either the BankActivate command or the Precharge command is selected by the  
WE# signal. When the WE# is asserted "HIGH," the BankActivate command is  
selected and the bank designated by BA is turned on to the active state. When the  
WE# is asserted "LOW," the Precharge command is selected and the bank  
designated by BA is switched to the idle state after the precharge operation.  
CAS#  
WE#  
Input  
Column Address Strobe: The CAS# signal defines the operation commands in  
conjunction with the RAS# and WE# signals and is latched at the positive edges of  
CLK. When RAS# is held "HIGH" and CS# is asserted "LOW," the column access is  
started by asserting CAS# "LOW." Then, the Read or Write command is selected by  
asserting WE# "LOW" or "HIGH."  
Input  
Input  
Write Enable: The WE# signal defines the operation commands in conjunction with  
the RAS# and CAS# signals and is latched at the positive edges of CLK. The WE#  
input is used to select the BankActivate or Precharge command and Read or Write  
command.  
DQM0-  
DQM3  
Data Input/Output Mask: Data Input Mask: DQM0-DQM3 are byte specific. Input  
data is masked when DQM is sampled HIGH during a write cycle. DQM3 masks  
DQ31-DQ24, DQM2 masks DQ23-DQ16, DQM1 masks DQ15-DQ8, and DQM0  
masks DQ7-DQ0.  
DQ0-  
DQ31  
Input/ Data I/O: The DQ0-31 input and output data are synchronized with the positive  
Output edges of CLK. The I/Os are byte-maskable during Reads and Writes.  
Confidential  
-5/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
NC  
VDDQ  
VSSQ  
VDD  
-
No Connect: These pins should be left unconnected.  
Supply DQ Power: Provide isolated power to DQs for improved noise immunity.  
Supply DQ Ground: Provide isolated ground to DQs for improved noise immunity.  
Supply  
±
Power Supply: 3.3V 0.3V.  
VSS  
Supply Ground  
Confidential  
-6/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Operation Mode  
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.  
Table 3 shows the truth table for the operation commands.  
Table 3. Truth Table (Note (1), (2))  
Command  
State CKEn-1 CKEn DQM(6) BA0,1 A10 A11, A9-0 CS# RAS# CAS# WE#  
Idle(3)  
H
H
H
H
H
X
X
X
X
X
X
X
X
V
V
V
V
X
V
V
Row address  
L
L
L
L
L
L
L
H
H
H
L
H
L
L
L
L
BankActivate  
BankPrecharge  
PrechargeAll  
Any  
L
H
L
X
X
Any  
L
Active(3)  
Active(3)  
H
H
Write  
Column  
address  
(A0 ~ A7)  
Write and AutoPrecharge  
H
L
Active(3)  
Active(3)  
H
H
X
X
V
V
V
V
L
L
L
H
H
L
L
H
H
Read  
Column  
address  
(A0 ~ A7)  
Read and Autoprecharge  
H
Mode Register Set  
No-Operation  
Idle  
Any  
H
H
H
H
H
H
L
X
X
X
X
H
L
X
X
X
X
X
X
X
OP code  
L
L
L
H
H
X
L
L
H
H
X
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Active(4)  
L
Burst Stop  
Device Deselect  
AutoRefresh  
Any  
H
L
X
H
H
X
H
X
V
X
H
X
X
H
X
X
Idle  
SelfRefresh Entry  
SelfRefresh Exit  
Idle  
L
L
L
Idle  
H
H
L
X
H
X
V
X
H
X
X
H
X
X
X
H
X
V
X
H
X
X
H
X
X
(SelfRefresh)  
Clock Suspend Mode Entry  
Power Down Mode Entry  
Active  
Any(5)  
Active  
H
H
L
L
X
X
X
X
X
X
X
X
H
L
H
L
Clock Suspend Mode Exit  
Power Down Mode Exit  
L
L
H
H
X
X
X
X
X
X
X
X
X
H
L
Any  
(PowerDown)  
Data Write/Output Enable  
Data Mask/Output Disable  
Active  
Active  
H
H
X
X
L
X
X
X
X
X
X
X
X
H
Note: 1. V = Valid, X = Don't care, L = Logic low, H = Logic high  
2. CKEn signal is input level when commands are provided.  
CKEn-1 signal is input level one clock cycle before the commands are provided.  
3. These are states of bank designated by BA signal.  
4. Device state is 1, 2, 4, 8, and full page burst operation.  
5. Power Down Mode can not enter in the burst operation.  
When this command is asserted in the burst cycle, device state is clock suspend mode.  
6. DQM0-3  
Confidential  
-7/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Commands  
1
BankActivate  
(RAS# = "L", CAS# = "H", WE# = "H", BA 0,1= Bank, A0-A11 = Row Address)  
The BankActivate command activates the idle bank designated by the BA0,1 (Bank Activate)  
signal. By latching the row address on A0 to A11 at the time of this command, the selected row  
access is initiated. The read or write operation in the same bank can occur after a time delay of  
tRCD(min.) from the time of bank activation. A subsequent BankActivate command to a different row  
in the same bank can only be issued after the previous active row has been precharged (refer to the  
following figure). The minimum time interval between successive BankActivate commands to the  
same bank is defined by tRC(min.). The SDRAM has four internal banks on the same chip and shares  
part of the internal circuitry to reduce chip area; therefore it restricts the back-to-back activation of  
the two banks. tRRD(min.) specifies the minimum time required between activating different banks.  
After this command is used, the Write command performs the no mask write operation.  
Figure 3. BankActivate Command Cycle  
(Burst Length = n)  
T0  
T1  
T2  
T3  
Tn+3 Tn+4  
Tn+5  
Tn+6  
CLK  
Bank A  
Bank A  
Bank B  
Bank A  
ADDRESS  
Row Addr.  
Col Addr.  
Row Addr.  
Row Addr.  
RAS# - CAS# delay(tRCD  
)
RAS# - RAS# delay time(tRRD)  
Bank A  
Activate  
Bank B  
Activate  
Bank A  
Activate  
R/W A with  
AutoPrecharge  
NOP  
NOP  
NOP  
NOP  
COMMAND  
RAS# - Cycle time(tRC  
)
AutoPrecharge  
Begin  
Don’t Care  
2
BankPrecharge command  
(RAS# = "L", CAS# = "H", WE# = "L", BA0, 1 = Bank, A10 = "L", A0-A9, A11 = Don't care)  
The BankPrecharge command precharges the bank designated by BA0, 1 signal. The  
precharged bank is switched from the active state to the idle state. This command can be asserted  
anytime after tRAS(min.) is satisfied from the BankActivate command in the desired bank. The  
maximum time any bank can be active is specified by tRAS(max.). Therefore, the precharge function  
must be performed in any active bank within tRAS(max.). At the end of precharge, the precharged  
bank is still in the idle state and is ready to be activated again.  
3
4
PrechargeAll command  
(RAS# = "L", CAS# = "H", WE# = "L", BA0,1 = Don’t care, A10 = "H", A0-A9, A11 = Don't care)  
The PrechargeAll command precharges all the four banks simultaneously and can be issued  
even if all banks are not in the active state. All banks are then switched to the idle state.  
Read command  
(RAS# = "H", CAS# = "L", WE# = "H", BA0, 1 = Bank, A10 = "L", A0-A7 = Column Address)  
The Read command is used to read a burst of data on consecutive clock cycles from an active  
row in an active bank. The bank must be active for at least tRCD(min.) before the Read command is  
issued. During read bursts, the valid data-out element from the starting column address will be  
available following the CAS latency after the issue of the Read command. Each subsequent data-out  
element will be valid by the next positive clock edge (refer to the following figure). The DQs go into  
high-impedance at the end of the burst unless other command is initiated. The burst length, burst  
sequence, and CAS latency are determined by the mode register which is already programmed. A  
full-page burst will continue until terminated (at the end of the page it will wrap to column 0 and  
continue).  
Confidential  
-8/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 4. Burst Read Operation  
(Burst Length = 4, CAS# Latency = 2, 3)  
T3 T4 T5 T6 T7 T8  
T0  
T1  
T2  
CLK  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS# latency=2  
tCK2, DQ  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
CAS# latency=3  
tCK3, DQ  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
The read data appears on the DQs subject to the values on the DQM inputs two clocks earlier (i.e.  
DQM latency is two clocks for output buffers). A read burst without the auto precharge function may  
be interrupted by a subsequent Read or Write command to the same bank or the other active bank  
before the end of the burst length. It may be interrupted by a BankPrecharge/ PrechargeAll  
command to the same bank too. The interrupt coming from the Read command can occur on any  
clock cycle following a previous Read command (refer to the following figure).  
Figure 5. Read Interrupted by a Read  
(Burst Length = 4, CAS# Latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
COMMAND  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ B  
CAS# latency=2  
tCK2, DQ  
DOUT A0  
DOUT B0  
DOUT A0  
DOUT B1  
DOUT B0  
DOUT B2 DOUT B3  
CAS# latency=3  
DOUT B1  
DOUT B2 DOUT B3  
tCK3, DQ  
The DQM inputs are used to avoid I/O contention on the DQ pins when the interrupt comes from  
a Write command. The DQMs must be asserted (HIGH) at least two clocks prior to the Write  
command to suppress data-out on the DQ pins. To guarantee the DQ pins against I/O contention, a  
single cycle with high-impedance on the DQ pins must occur between the last read data and the  
Write command (refer to the following figure). If the data output of the burst read occurs at the  
second clock of the burst write, the DQMs must be asserted (HIGH) at least one clock prior to the  
Write command to avoid internal bus contention.  
Confidential  
-9/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 6. Read to Write Interval  
(Burst Length 4, CAS# Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
DQM  
WRITE  
A
BANKA  
ACTIVATE  
NOP  
NOP  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS# latency=2  
DIN A0  
DIN A1  
DIN A2  
DIN A3  
tCK2, DQ  
Must be Hi-Z before  
the Write Command  
Figure 7. Read to Write Interval  
(Burst Length 4, CAS# Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
WRITE B  
DIN B0  
NOP  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS# latency=2  
tCK2, DQ  
DIN B1  
DIN B2  
DIN B3  
Must be Hi-Z before  
the Write Command  
Don’t Care  
Figure 8. Read to Write Interval  
(Burst Length  
4, CAS# Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
WRITE B  
DIN B0  
NOP  
NOP  
COMMAND  
CAS# Latency=3  
tCK3, DQ  
DOUT A0  
DIN B1  
DIN B2  
Must be Hi-Z before  
the Write Command  
Don’t Care  
A read burst without the auto precharge function may be interrupted by a BankPrecharge/  
PrechargeAll command to the same bank. The following figure shows the optimum time that  
BankPrecharge/ PrechargeAll command is issued in different CAS latency.  
Confidential  
-10/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 9. Read to Precharge  
(CAS# Latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Bank,  
Col A  
Bank  
Row  
Bank(s)  
ADDRESS  
tRP  
NOP  
Precharge  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
Activate  
COMMAND  
CAS# latency=2  
tCK2, DQ  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
CAS# latency=3  
tCK3, DQ  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
Don’t Care  
5
6
Read and AutoPrecharge command  
(RAS# = "H", CAS# = "L", WE# = "H", BA = Bank, A10 = "H", A0-A7 = Column Address)  
The Read and AutoPrecharge command automatically performs the precharge operation after the  
read operation. Once this command is given, any subsequent command cannot occur within a time  
delay of {tRP(min.) + burst length}. At full-page burst, only the read operation is performed in this  
command and the auto precharge function is ignored.  
Write command  
(RAS# = "H", CAS# = "L", WE# = "L", BA = Bank, A10 = "L", A0-A7 = Column Address)  
The Write command is used to write a burst of data on consecutive clock cycles from an active  
row in an active bank. The bank must be active for at least tRCD(min.) before the Write command is  
issued. During write bursts, the first valid data-in element will be registered coincident with the Write  
command. Subsequent data elements will be registered on each successive positive clock edge  
(refer to the following figure). The DQs remain with high-impedance at the end of the burst unless  
another command is initiated. The burst length and burst sequence are determined by the mode  
register, which is already programmed. A full-page burst will continue until terminated (at the end of  
the page it will wrap to column 0 and continue).  
Figure 10. Burst Write Operation  
(Burst Length = 4)  
T3 T4 T5  
T0  
T1  
T2  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DQ  
DIN A1  
DIN A2  
DIN A3  
The first data element and the write  
are registered on the same clock edge  
Don’t Care  
A write burst without the AutoPrecharge function may be interrupted by a subsequent Write,  
BankPrecharge/PrechargeAll, or Read command before the end of the burst length. An interrupt  
coming from Write command can occur on any clock cycle following the previous Write command  
(refer to the following figure).  
Confidential  
-11/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 11. Write Interrupted by a Write  
(Burst Length = 4)  
T4 T5 T6  
T0  
T1  
T2  
T3  
T7  
T8  
CLK  
WRITE A WRITE B  
COMMAND  
DQ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DIN A0  
DIN B0  
DIN B1  
DIN B2  
DIN B3  
The Read command that interrupts a write burst without auto precharge function should be  
issued one cycle after the clock edge in which the last data-in element is registered. In order to avoid  
data contention, input data must be removed from the DQs at least one clock cycle before the first  
read data appears on the outputs (refer to the following figure). Once the Read command is  
registered, the data inputs will be ignored and writes will not be executed.  
Figure 12. Write Interrupted by a Read  
(Burst Length = 4, CAS# Latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
WRITE A  
DIN A0  
COMMAND  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ B  
NOP  
CAS# latency=2  
DOUT B0 DOUT B1 DOUT B2 DOUT B3  
tCK2, DQ  
CAS# latency=3  
tCK3, DQ  
DIN A0  
DOUT B0 DOUT B1 DOUT B2 DOUT B3  
Input data must be removed from the DQ at least one clock cycle before  
the Read data appears on the outputs to avoid data contention  
Don’t Care  
The BankPrecharge/PrechargeAll command that interrupts a write burst without the auto  
precharge function should be issued m cycles after the clock edge in which the last data-in element  
is registered, where m equals tWR/tCK rounded up to the next whole number. In addition, the DQM  
signals must be used to mask input data, starting with the clock edge following the last data-in  
element and ending with the clock edge on which the BankPrecharge/PrechargeAll command is  
entered (refer to the following figure).  
Confidential  
-12/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 13. Write to Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
DQM  
tRP  
Precharge  
BANK(S)  
NOP  
NOP  
WRITE  
Activate  
ROW  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
BANK  
COL n  
tWR  
DIN  
N+1  
DIN  
N
DQ  
Don’t Care  
Note: The DQMs can remain low in this example if the length of the write burst is 1 or 2.  
7
Write and AutoPrecharge command  
(RAS# = "H", CAS# = "L", WE# = "L", BA = Bank, A10 = "H", A0-A7 = Column Address)  
The Write and AutoPrecharge command performs the precharge operation automatically after the  
write operation. Once this command is given, any subsequent command can not occur within a time  
delay of {(burst length -1) + tWR + tRP(min.)}. At full-page burst, only the write operation is performed  
in this command and the auto precharge function is ignored.  
Figure 14. Burst Write with Auto-Precharge  
(Burst Length = 2)  
T5 T6 T7  
T0  
T1  
T2  
T3  
T4  
T8  
T9  
CLK  
Bank A  
Activate  
Bank A  
Activate  
WRITE A  
Auto Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tDAL  
DIN A0  
DIN A1  
DQ  
tDAL=tWR+tRP  
Begin AutoPrecharge  
Bank can be reactivated at  
completion of tDAL  
8
Mode Register Set command (RAS# = "L", CAS# = "L", WE# = "L", A0-A11 = Register Data)  
The mode register stores the data for controlling the various operating modes of SDRAM. The  
Mode Register Set command programs the values of CAS latency, Addressing Mode and Burst  
Length in the Mode register to make SDRAM useful for a variety of different applications. The default  
values of the Mode Register after power-up are undefined; therefore this command must be issued  
at the power-up sequence. The state of pins A0~A9 and A11 in the same cycle is the data written to  
the mode register. Two clock cycles are required to complete the write in the mode register (refer to  
the following figure). The contents of the mode register can be changed using the same command  
and the clock cycle requirements during operation as long as all banks are in the idle state.  
Confidential  
-13/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Table 4. Mode Register Bitmap  
BA1 BA0 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
0
0
0
0
W.B.L  
TM  
CAS Latency  
Burst Length  
A9 Write Burst Length  
A8  
0
1
A7 Test Mode  
A3 Burst Type  
0
1
Burst  
Single Bit  
0
0
1
Normal  
Reserved  
Reserved  
0
1
Sequential  
Interleave  
0
A6  
0
0
0
0
A5  
0
0
1
1
A4  
0
1
0
1
CAS Latency  
Reserved  
Reserved  
2 clocks  
3 clocks  
Reserved  
A2  
0
0
0
0
A1  
0
0
1
1
A0  
Burst Length  
0
1
0
1
1
1
2
4
8
1
0
0
1
1
Full Page (Sequential)  
All other Reserved  
All other Reserved  
Note: Column address is repeated until terminated in Full Page Mode  
Figure 15. Mode Register Set Cycle  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CLK  
CKE  
tMRD  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
Address Key  
A0-A9,  
A11  
DQM  
DQ  
tRP  
Hi-Z  
PrechargeAll  
Mode Register  
Set Command  
Any  
Command  
Don’t Care  
Confidential  
-14/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Burst Definition, Addressing Sequence of Sequential and Interleave Mode  
Table 5. Burst Definition  
Start Address  
Burst Length  
Sequential  
Interleave  
A2  
X
X
X
X
X
X
0
0
0
0
1
A1  
X
X
0
0
1
1
0
0
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0, 1  
1, 0  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
0, 1  
1, 0  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
2
4
3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
n, n+1, n+2, n+3, 255, 0,  
1, 2, n-1, n, …  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
1
0
0
1
8
1
1
1
1
Full page location = 0-255  
Not Support  
9
No-Operation command (RAS# = "H", CAS# = "H", WE# = "H")  
The No-Operation command is used to perform a NOP to the SDRAM which is selected (CS# is  
Low). This prevents unwanted commands from being registered during idle or wait states.  
10 Burst Stop command (RAS# = "H", CAS# = "H", WE# = "L")  
The Burst Stop command is used to terminate either fixed-length or full-page bursts. This  
command is only effective in a read/write burst without the auto precharge function. The terminated  
read burst ends after a delay equal to the CAS latency (refer to the following figure). The termination  
of a write burst is shown in the following figure.  
Figure 16. Termination of a Burst Read Operation  
(Burst Length 4, CAS# Latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Stop  
COMMAND  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
The burst ends after a delay equal to the CAS# latency  
CAS# latency=2  
tCK2, DQ  
DOUT A0  
DOUT A1  
DOUT A0  
DOUT A2  
DOUT A1  
DOUT A3  
DOUT A2  
CAS# latency=3  
tCK3, DQ  
DOUT A3  
Confidential  
-15/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 17. Termination of a Burst Write Operation  
(Burst Length = X)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Stop  
WRITE A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DIN A1 DIN A2  
DQ  
Don’t Care  
11 Device Deselect command (CS# = "H")  
The Device Deselect command disables the command decoder so that the RAS#, CAS#, WE#  
and Address inputs are ignored, regardless of whether the CLK is enabled. This command is similar  
to the No Operation command.  
12 AutoRefresh command  
(RAS# = "L", CAS# = "L", WE# = "H",CKE = "H", BA0,1 = “Don‘t care, A0-A11 = Don't care)  
The AutoRefresh command is used during normal operation of the SDRAM and is analogous to  
CAS#-before-RAS# (CBR) Refresh in conventional DRAMs. This command is non-persistent, so it  
must be issued each time a refresh is required. The addressing is generated by the internal refresh  
controller. This makes the address bits a "don't care" during an AutoRefresh command. The internal  
refresh counter increments automatically on every auto refresh cycle to all of the rows. The refresh  
operation must be performed 4096 times within 64ms. The time required to complete the auto  
refresh operation is specified by tRC(min.). To provide the AutoRefresh command, all banks need to  
be in the idle state and the device must not be in power down mode (CKE is high in the previous  
cycle). This command must be followed by NOPs until the auto refresh operation is completed. The  
precharge time requirement, tRP(min), must be met before successive auto refresh operations are  
performed.  
13 SelfRefresh Entry command  
(RAS# = "L", CAS# = "L", WE# = "H", CKE = "L", A0-A11 = Don't care)  
The SelfRefresh is another refresh mode available in the SDRAM. It is the preferred refresh  
mode for data retention and low power operation. Once the SelfRefresh command is registered, all  
the inputs to the SDRAM become "don't care" with the exception of CKE, which must remain LOW.  
The refresh addressing and timing is internally generated to reduce power consumption. The  
SDRAM may remain in SelfRefresh mode for an indefinite period. The SelfRefresh mode is exited by  
restarting the external clock and then asserting HIGH on CKE (SelfRefresh Exit command).  
14 SelfRefresh Exit command  
(CKE = "H", CS# = "H" or CKE = "H", RAS# = "H", CAS# = "H", WE# = "H")  
This command is used to exit from the SelfRefresh mode. Once this command is registered, NOP  
or Device Deselect commands must be issued for tRC(min.) because time is required for the  
completion of any bank currently being internally refreshed. If auto refresh cycles in bursts are  
performed during normal operation, a burst of 4096 auto refresh cycles should be completed just  
prior to entering and just after exiting the SelfRefresh mode.  
15 Clock Suspend Mode Entry / PowerDown Mode Entry command (CKE = "L")  
When the SDRAM is operating the burst cycle, the internal CLK is suspended (masked) from the  
subsequent cycle by issuing this command (asserting CKE "LOW"). The device operation is held  
intact while CLK is suspended. On the other hand, when all banks are in the idle state, this command  
performs entry into the PowerDown mode. All input and output buffers (except the CKE buffer) are  
turned off in the PowerDown mode. The device may not remain in the Clock Suspend or PowerDown  
state longer than the refresh period (64ms) since the command does not perform any refresh  
operations.  
Confidential  
-16/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
16 Clock Suspend Mode Exit / PowerDown Mode Exit command  
When the internal CLK has been suspended, the operation of the internal CLK is reinitiated from  
the subsequent cycle by providing this command (asserting CKE "HIGH", the command should be  
NOP or deselect). When the device is in the PowerDown mode, the device exits this mode and all  
disabled buffers are turned on to the active state. tXSR(min.) is required when the device exits from  
the PowerDown mode. Any subsequent commands can be issued after one clock cycle from the end  
of this command.  
17 Data Write / Output Enable, Data Mask / Output Disable command (DQM = "L", "H")  
During a write cycle, the DQM signal functions as a Data Mask and can control every word of the  
input data. During a read cycle, the DQM functions as the controller of output buffers. DQM is also  
used for device selection, byte selection and bus control in a memory system.  
Confidential  
-17/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Table 6. Absolute Maximum Rating  
Symbol  
Item  
Input, Output Voltage  
Values  
Unit Note  
VIN, VOUT  
-1.0 ~ 4.6  
V
VDD, VDDQ  
-1.0 ~ 4.6  
0 ~ 70  
-40 ~ 85  
-55 ~ 150  
1.1  
V
°C  
°C  
°C  
W
Power Supply Voltage  
Commercial  
Industrial  
Ambient Temperature  
TA  
TSTG  
PD  
Storage Temperature  
Power Dissipation  
IOS  
50  
mA  
Short Circuit Output Current  
Note: Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to  
the device.  
±
Table 7. Recommended D.C. Operating Conditions  
(VDD = 3.3V 0.3V, TA = -40~85°C)  
Symbol  
VDD  
Parameter/ Condition  
DRAM Core Supply Voltage  
Min.  
3.0  
3.0  
2
Typ.  
3.3  
3.3  
-
Max.  
3.6  
Unit Note  
V
V
V
V
2
2
2
2
VDDQ  
VIH  
I/O Supply Voltage  
3.6  
Input High Level Voltage  
Input Low Level Voltage  
Input Leakage Current  
V
+0.3  
DDQ  
-
VIL  
-0.3  
0.8  
IIL  
-
-
-10  
-10  
10  
10  
µA  
µA  
( 0V VIN VDD, All other pins not under test = 0V )  
Output Leakage Current  
IOZ  
(Output Disable, 0V VIN VDDQ )  
-
-
VOH  
VOL  
Output High Level Voltage ( IOUT = -2mA )  
Output Low Level Voltage ( IOUT = 2mA )  
2.4  
-
-
V
V
0.4  
Table 8. Capacitance  
(VDD = 3.3V, f = 1MHz, TA = 25°C)  
Parameter  
Symbol  
Min.  
Max.  
5.5  
Unit  
pF  
CI  
Input Capacitance  
Input/Output Capacitance  
3.5  
5.5  
7.5  
CI/O  
pF  
Note: These parameters are periodically sampled and are not 100% tested.  
Confidential  
-18/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
±
Table 9. D.C. Characteristics  
(VDD = 3.3V 0.3V, TA = -40~85°C)  
-6  
Max.  
-7  
-5  
Unit Note  
Description/Test condition  
Symbol  
IDD1  
Operating Current  
RC tRC(min), Outputs Open, One bank active  
Precharge Standby Current in power down mode  
tCK = 15ns, CKE VIL(max)  
3
200  
3
160  
3
140  
3
t
IDD2P  
Precharge Standby Current in power down mode  
tCK = , CKE VIL(max)  
IDD2PS  
3
3
3
Precharge Standby Current in non-power down mode  
tCK = 15ns, CS# VIH(min), CKE VIH  
Input signals are changed every 2clks  
Precharge Standby Current in non-power down mode  
tCK = , CLK VIL(max), CKE VIH  
Active Standby Current in non-power down mode  
tCK = 15ns, CKE VIH(min), CS# VIH(min)  
Input signals are changed every 2clks  
Active Standby Current in non-power down mode  
CKE VIH(min), CLK VIL(max), tCK = ∞  
Operating Current (Burst mode)  
IDD2N  
50  
30  
50  
30  
50  
30  
IDD2NS  
IDD3N  
IDD3NS  
IDD4  
mA  
60  
60  
60  
50  
240  
300  
3
50  
200  
260  
3
50  
170  
230  
3
3, 4  
3
tCK =tCK(min), Outputs Open, Multi-bank interleave  
Refresh Current  
IDD5  
t
RC tRC(min)  
Self Refresh Current  
CKE 0.2V ; for other inputs VIH VDD - 0.2V, VIL 0.2V  
IDD6  
Confidential  
-19/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Table 10. Electrical Characteristics and Recommended A.C. Operating Conditions  
±
(VDD = 3.3V 0.3V, TA = -40~85°C) (Note: 5~8)  
-5  
-6  
-7  
Unit Note  
Symbol  
A.C. Parameter  
Min. Max. Min. Max. Min. Max.  
tRC  
Row cycle time (same bank)  
55  
15  
-
-
60  
18  
-
-
63  
21  
-
-
tRCD  
tRP  
RAS# to CAS# delay (same bank)  
Precharge to refresh / row activate  
command (same bank)  
15  
10  
40  
-
-
18  
12  
42  
-
-
21  
14  
42  
-
-
ns  
tRRD  
tRAS  
Row activate to row active delay  
(different banks)  
Row activate to precharge time  
(same bank)  
100K  
100K  
100K  
Write recovery time  
2
1
-
-
2
1
-
2
1
-
tWR  
tCK  
CAS# to CAS# Delay time  
-
-
9
tCCD  
CL* = 2  
-
-
10  
6
-
10  
7
-
Clock cycle time  
tCK  
CL* = 3  
5
-
-
-
tCH  
tCL  
Clock high time  
Clock low time  
2
-
2.5  
2.5  
-
-
2.5  
2.5  
-
-
ns  
10  
10  
2
-
-
6
-
6.5  
5.4  
-
CL* = 2  
CL* = 3  
-
-
Access time from CLK  
(positive edge)  
tAC  
-
5
-
-
5.4  
-
-
tOH  
tLZ  
tHZ  
tIS  
Data output hold time  
2
2.5  
1
2.5  
1
9
Data output low impedance  
1
-
-
-
ns  
Data output high impedance CL* = 3  
Data/Address/Control Input set-up time  
Data/Address/Control Input hold time  
PowerDown Exit Setup Time  
-
5
-
-
5.4  
-
-
5.4  
-
8
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
10  
10  
tIH  
-
-
-
ns  
ns  
tCK  
µs  
ns  
tIS+ CK  
t
-
-
tIS+ CK  
t
-
-
tIS+ CK  
t
-
-
tPDE  
tMRD  
tREFI  
tXSR  
2
-
2
-
2
-
Mode Register Set Command Cycle Time  
Refresh Interval Time  
15.6  
15.6  
15.6  
tRC+ IS  
t
-
tRC+ IS  
t
-
tRC+ IS  
t
-
Exit Self-Refresh to any Command  
*CL is CAS Latency.  
Note:  
1. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to  
the device.  
2. All voltages are referenced to VSS. VIH (Max) = 4.6V for pulse width  
3ns. VIL(Min) = -1.0V for pulse  
width  
3ns.  
3. These parameters depend on the cycle rate and these values are measured by the cycle rate under the  
minimum value of tCK and tRC. Input signals are changed one time during every 2 tCK.  
4. These parameters depend on the output loading. Specified values are obtained with the output open.  
5. Power-up sequence is described in Note 11.  
6. A.C. Test Conditions  
Confidential  
-20/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Table 11. LVTTL Interface  
Reference Level of Output Signals  
1.4V / 1.4V  
Output Load  
Reference to the Under Output Load (B)  
Input Signal Levels (VIH /VIL)  
2.4V / 0.4V  
1ns  
Transition Time (Rise and Fall) of Input Signals  
Reference Level of Input Signals  
1.4V  
1.4V  
3.3V  
50Ω  
1.2KΩ  
Output  
Output  
Z0=50Ω  
870Ω  
30pF  
30pF  
Figure 18.1 LVTTL D.C. Test Load (A)  
Figure 18.2 LVTTL A.C. Test Load (B)  
7. Transition times are measured between VIH and VIL. Transition (rise and fall) of input signals are in a fixed  
slope (1 ns).  
8. tHZ defines the time in which the outputs achieve the open circuit condition and are not at reference levels.  
9. If clock rising time is longer than 1 ns, (tR / 2 -0.5) ns should be added to the parameter.  
10. Assumed input rise and fall time tT (tR & tF ) = 1 ns  
If tR or tF is longer than 1 ns, transient time compensation should be considered, i.e., [(tr + tf)/2 - 1] ns  
should be added to the parameter.  
11. Power up Sequence  
Power up must be performed in the following sequence.  
1) Power must be applied to VDD and VDDQ (simultaneously) when CKE= “L”, DQM= “H” and all input  
signals are held "NOP" state.  
2) Start clock and maintain stable condition for minimum 200 µs, then bring CKE= “H” and, it is  
recommended that DQM is held "HIGH" (VDD levels) to ensure DQ output is in high impedance.  
3) All banks must be precharged.  
4) Mode Register Set command must be asserted to initialize the Mode register.  
5) A minimum of 2 Auto-Refresh dummy cycles must be required to stabilize the internal circuitry of the  
device.  
* The Auto Refresh command can be issue before or after Mode Register Set command  
Confidential  
-21/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Timing Waveforms  
Figure 19. AC Parameters for Write Timing  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCH  
tCL  
tIS  
tIS  
Begin Auto  
Precharge Bank A  
Begin Auto  
Precharge Bank B  
tIH  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
tIH  
RAx  
RBx  
RBx  
RAy  
RAy  
tIS  
A0-A9,  
A11  
RAx  
CAx  
CBx  
CAy  
DQM  
DQ  
tRCD  
tDAL  
tIS  
tRC  
tWR  
tIH  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
Bx2  
Bx3  
Ay0  
Ay1  
Ay2  
Ay3  
Write with  
Activate  
Command  
Bank A  
Write with  
Activate  
Auto Precharge Command  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Auto Precharge  
Command  
Bank B  
Command  
Bank A  
Bank B  
Don’t Care  
Confidential  
-22/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 20. AC Parameters for Read Timing  
(Burst Length=2, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16  
CLK  
CKE  
tCH tCL  
Begin Auto  
Precharge Bank B  
tIH  
tIS  
tIS  
tIH  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
tIH  
RAx  
RBx  
RBx  
RAy  
RAy  
tIS  
A0-A9,  
A11  
RAx  
CAx  
tRRD  
CBx  
tRAS  
tAC  
tRC  
DQM  
DQ  
tRCD  
tRP  
tHZ  
tLZ  
Hi-Z  
Bx0  
Bx1  
Ax0  
tOH  
Ax1  
tHZ  
Read with  
Auto Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Don’t Care  
Confidential  
-23/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 21. Auto Refresh  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAx  
A0-A9,  
A11  
RAx  
CAx  
tRC  
tRP  
tRC  
tRCD  
DQM  
DQ  
Ax0  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge All  
Command  
Auto Refresh  
Command  
Auto Refresh  
Command  
Don’t Care  
Confidential  
-24/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 22. Power on Sequence and Auto Refresh  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High Level  
Minimum for 2 Refresh Cycles are required  
Is reguired  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
Address Key  
A0-A9,  
A11  
DQM  
DQ  
tRP  
tMRD  
Hi-Z  
Precharge All  
Command  
Any  
Command  
1st Auto Refresh(*)  
Command  
2nd Auto Refresh(*)  
Command  
Inputs must be  
Mode Register  
Set Command  
Stable for  
200µs  
Don’t Care  
Note(*): The Auto Refresh command can be issue before or after Mode Register Set command  
Confidential  
-25/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 23. Self Refresh Entry & Exit Cycle  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19  
CLK  
CKE  
*Note 2  
*Note 8  
tXSR  
*Note 5  
*Note 1  
*Note 3,4  
tPDE  
tIS  
tIH  
*Note 6  
tIS  
*Note 7  
CS#  
RAS#  
CAS#  
WE#  
*Note 9  
BA0,1  
A10  
A0-A9,  
A11  
DQM  
DQ  
Hi-Z  
Hi-Z  
Self Refresh Exit  
Auto Refresh  
Self Refresh Entry  
Don’t Care  
Note: To Enter SelfRefresh Mode  
1. CS#, RAS# & CAS# with CKE should be low at the same clock cycle.  
2. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE.  
3. The device remains in SelfRefresh mode as long as CKE stays "low".  
4. Once the device enters SelfRefresh mode, minimum tRAS is required before exit from SelfRefresh.  
To Exit SelfRefresh Mode  
5. System clock restart and be stable before returning CKE high.  
6. Enable CKE and CKE should be set high for valid setup time and hold time.  
7. CS# starts from high.  
8. Minimum tXSR is required after CKE going high to complete SelfRefresh exit.  
9. 4096 cycles of burst AutoRefresh is required before SelfRefresh entry and after SelfRefresh exit if the  
system uses burst refresh.  
Confidential  
-26/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 24. Clock Suspension During Burst Read (Using CKE)  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAx  
A0-A9,  
A11  
RAx  
CAx  
DQM  
DQ  
tHZ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock Suspend  
3 Cycles  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Don’t Care  
Confidential  
-27/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 25. Clock Suspension During Burst Write (Using CKE)  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAx  
A0-A9,  
A11  
RAx  
CAx  
DQM  
DQ  
Hi-Z  
DAx0  
Write  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock Suspend  
3 Cycles  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Command  
Bank A  
Don’t Care  
Confidential  
-28/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 26. Power Down Mode and Clock Suspension  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tIH tIS  
tPDE  
Valid  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAx  
A0-A9,  
A11  
RAx  
CAx  
DQM  
DQ  
tHZ  
Ax3  
Hi-Z  
Ax0  
Ax1  
Ax2  
ACTIVE  
STANDBY  
PRECHARGE  
STANDBY  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Power Down  
Mode Exit  
Read  
Command  
Bank A  
Clock Suspension  
Start  
Clock Suspension  
End  
Any  
Command  
Power Down  
Mode Exit  
Power Down  
Mode Entry  
Power Down  
Mode Entry  
Don’t Care  
Confidential  
-29/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 27. Random Column Read (Page within same Bank)  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAw  
RAw  
RAz  
RAz  
A0-A9,  
A11  
CAw  
CAx  
CAy  
CAz  
DQM  
DQ  
Hi-Z  
Aw0  
Aw1  
Aw2 Aw3  
Read  
Ax0  
Ax1  
Ay0  
Ay1  
Ay2  
Ay3  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Command  
Bank A  
Don’t Care  
Confidential  
-30/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 28. Random Column Write (Page within same Bank)  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RBw  
RBw  
RBz  
RBz  
A0-A9,  
A11  
CBw  
CBx  
CBy  
CBz  
DQM  
DQ  
Hi-Z  
DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3  
DBz0 DBz1  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Don’t Care  
Confidential  
-31/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 29. Random Row Read (Interleaving Banks)  
(Burst Length=8, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RBx  
RAx  
RAx  
RBy  
RBy  
A0-A9,  
A11  
RBx  
CBx  
CAx  
CBy  
tAC  
tRCD  
tRP  
DQM  
DQ  
Hi-Z  
Bx0  
Bx1  
Bx2  
Bx3  
Bx4  
Bx5  
Bx6  
Bx7  
Ax0  
Ax1  
Ax2  
Ax3  
Ax4  
Ax5  
Ax6  
Ax7  
By0  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank A  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Don’t Care  
Confidential  
-32/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 30. Random Row Write (Interleaving Banks)  
(Burst Length=8)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAx  
RBx  
RBx  
RAy  
RAy  
A0-A9,  
A11  
RAx  
CAx  
CBx  
CAy  
tRCD  
tWR*  
tRP  
tWR*  
DQM  
DQ  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank B  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank A  
Don’t Care  
*tWR>tWR (min.)  
Confidential  
-33/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 31. Read and Write Cycle  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAx  
A0-A9,  
A11  
RAx  
CAx  
CAy  
CAz  
DQM  
DQ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
DAy0 DAy1  
DAy3  
Az0  
Az1  
Az3  
The Write Data  
The Read Data  
is Masked with a  
Two Clock  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Write  
Command  
Bank A  
is Masked with a  
Zero Clock  
Read  
Command  
Bank A  
Latency  
Latency  
Don’t Care  
Confidential  
-34/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 32. Interleaved Column Read Cycle  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAx  
RAx  
RBx  
RBx  
A0-A9,  
A11  
CAx  
CBx  
CBy  
CBz  
CAy  
tRCD  
DQM  
DQ  
tAC  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
By0  
By1  
Bz0  
Bz1  
Ay0  
Ay1  
Ay2  
Ay3  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Don’t Care  
Confidential  
-35/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 33. Interleaved Column Write Cycle  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAx  
RAx  
RBw  
A0-A9,  
A11  
CAx RBw  
CBw  
CBx  
CBy  
CAy  
CBz  
tWR  
tWR  
tRCD  
DQM  
DQ  
tRRD>tRRD (min)  
DAx0 DAx1 DAx2 DAx3 DBw0 DBw1 DBx0 DBx1 DBy0 DBy1 DAy0 DAy1 DBz0 DBz1 DBz2 DBz3  
Hi-Z  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank A  
Activate  
Precharge  
Command  
Bank B  
Command  
Bank A  
Don’t Care  
Confidential  
-36/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 34. Auto Precharge after Read Burst  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
Begin Auto  
Precharge  
Bank B  
Begin Auto  
Precharge  
Bank A  
High  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
A0-A9,  
A11  
RAx  
CAx  
CBx  
CAy  
tRP  
CBy  
DQM  
DQ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
Bx2  
Bx3  
Ay0  
Ay1  
Ay2  
Ay3  
By0  
By1  
By2  
Read with  
Auto Precharge  
Command  
Bank B  
Read with  
Auto Precharge  
Command  
Bank A  
Read with  
Auto Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Don’t Care  
Confidential  
-37/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 35. Auto Precharge after Write Burst  
(Burst Length=4)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
Begin Auto  
Precharge  
Bank B  
Begin Auto  
Precharge  
Bank A  
High  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
A0-A9,  
A11  
RAx  
CAx  
CBx  
CAy  
CBy  
tDAL  
DQM  
DQ  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DBx0 DBx1 DBx2 DBx3 DAy0 DAy1 DAy2 DAy3  
DBy0 DBy1 DBy2 DBy3  
Write with  
Auto Precharge  
Command  
Bank B  
Write with  
Auto Precharge  
Command  
Bank A  
Write with  
Auto Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Don’t Care  
Confidential  
-38/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 36. Full Page Read Cycle  
(Burst Length=Full Page, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
A0-A9,  
A11  
RAx  
CAx  
CBx  
tRP  
DQM  
DQ  
Hi-Z  
Ax  
Ax+1 Ax+2 Ax-2 Ax-1  
Ax  
Ax+1  
Bx  
Bx+1 Bx+2 Bx+3 Bx+4 Bx+5  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
The burst counter wraps  
from the highest order  
Burst Stop  
Command  
Don’t Care  
page address back to zero  
during this time interval  
Full Page burst operation does not  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address  
Confidential  
-39/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 37. Full Page Write Cycle  
(Burst Length=Full Page)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
A0-A9,  
A11  
RAx  
CAx  
CBx  
DQM  
DQ  
Data is ignored  
Hi-Z  
DAx  
DAx+1 DAx+2 DAx+3 DAx-1  
Activate  
DAx  
DAx+1  
DBx  
DBx+1 DBx+2 DBx+3 DBx+4 DBx+5  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval  
Burst Stop  
Command  
Full Page burst operation does not  
Don’t Care  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address  
Confidential  
-40/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 38. Byte Read and Write Operation  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
BA0, 1  
A10  
RAx  
A0-A9,  
A11  
RAx  
CAx  
CAy  
CAz  
DQM m  
DQM n  
DQ M  
Ax0  
Ax1  
Ax1  
Ax2  
Ax2  
DAy1 Day2  
Az1  
Az1  
Az2  
Az2  
Ax3  
DAy0 DAy1  
DAy3  
Az0  
Az3  
DQ N  
Upper Byte  
is masked  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Upper Byte  
is masked  
Lower Byte  
is masked  
Write  
Command  
Bank A  
Lower Byte  
is masked  
Lower Byte  
is masked  
Don’t Care  
Note : M represent DQ in the byte m; N represent DQ in the byte n.  
Confidential  
-41/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 39. Random Row Read (Interleaving Banks)  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0, 1  
A10  
RBw  
RBw  
RAx  
RAx  
RBx  
RBx  
A0-A9,  
A11  
CAx  
CBx  
CAy  
CBy  
CBz  
tRP  
DQM  
DQ  
tRRD  
tRCD  
Hi-Z  
Ax0  
Ax1  
Bx0  
Ay0  
Ay1  
By0  
By1  
By2  
By3  
Bz0  
Bz1  
Bz2  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command Bank B  
(Precharge Temination)  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Activate  
Command  
Bank B  
Read  
Read  
Command  
Bank A  
Command  
Bank A  
Don’t Care  
Confidential  
-42/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 40. Full Page Random Column Read  
(Burst Length=Full Page, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RBw  
RBw  
RAx  
RAx  
RBx  
RBx  
A0-A9,  
A11  
CAx  
CBx  
CAy  
CBy  
CAz  
CBz  
tRP  
DQM  
DQ  
tRRD  
tRCD  
Hi-Z  
Ax0  
Ax1  
Bx0  
Ay0  
Ay1  
By0  
By1  
Az0  
Az1  
Az2  
Bz0  
Bz1  
Bz2  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command Bank B  
(Precharge Temination)  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Activate  
Command  
Bank B  
Read  
Read  
Command  
Bank A  
Command  
Bank A  
Don’t Care  
Confidential  
-43/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 41. Full Page Random Column Write  
(Burst Length=Full Page)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RBw  
RBw  
RAx  
RAx  
RBx  
RBx  
A0-A9,  
A11  
CAx  
CBx  
CAy  
CBy  
CAz  
CBz  
tWR  
tRP  
DQM  
DQ  
tRRD  
tRCD  
DAx0 DAx1 DBx0 DAy0 DAy1 DBy0 DBy1 DAz0 DAz1 DAz2 DBz0 DBz1 DBz2  
Hi-Z  
Write  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command Bank B  
(Precharge Temination)  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank A  
Write  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Write  
Command  
Bank A  
Write Data  
are masked  
Command  
Bank A  
Don’t Care  
Confidential  
-44/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 42. Precharge Termination of a Burst  
(Burst Length=4, 8 or Full Page, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High  
CS#  
RAS#  
CAS#  
WE#  
BA0,1  
A10  
RAx  
RAy  
RAy  
RAz  
RAz  
A0-A9,  
A11  
RAx  
CAx  
CAy  
tWR  
tRP  
tRP  
DQM  
DQ  
DAx0 DAx1  
Ay0  
Ay1  
Ay2  
Precharge Termination  
of a Read Burst  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge Termination  
of a Write Burst  
Write Data are masked  
Don’t Care  
Confidential  
-45/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
Figure 43. 86 Pin TSOP II Package Outline Drawing Information  
86  
44  
θ°  
L
L1  
1
43  
D
L
L1  
e
y
B
S
Symbol  
Dimension in inch  
Dimension in mm  
Min  
Normal  
Max  
0.047  
0.008  
0.043  
0.011  
Min  
Normal  
Max  
1.20  
0.2  
1.1  
0.27  
A
A1  
A2  
B
0.002  
0.035  
0.007  
0.004  
0.039  
0.009  
0.005  
0.05  
0.9  
0.17  
0.10  
1
0.22  
0.127  
C
D
E
e
0.87  
0.395  
0.875  
0.400  
0.0197  
0.88  
0.405  
22.09  
10.03  
22.22  
10.16  
0.50  
22.35  
10.29  
HE  
L
L1  
0.455  
0.016  
0.463  
0.020  
0.0315  
0.024  
0.471  
0.024  
11.56  
0.40  
11.76  
0.50  
0.80  
0.61  
11.96  
0.60  
S
y
0.004  
0.10  
°
°
°
°
8
θ
0
8
0
Notes:  
1. Dimension D&E do not include interlead flash.  
2. Dimension B does not include dambar protrusion/intrusion.  
3. Dimension S includes end flash.  
4. Controlling dimension: mm  
Confidential  
-46/47-  
Rev.1.0 Sep.2015  
AS4C4M32SA-6TIN  
AS4C4M32SA-6TCN  
AS4C4M32SA-7TCN  
PART NUMBERING SYSTEM  
4M32SA  
C/I  
6/7  
T
N
AS4C  
C=Commercial  
(0°C - +70°C)  
I=Industrial  
6=166MHz  
7=143MHz  
Indicates Pb and  
Halogen Free  
128Mb=4Mx32  
DRAM  
T = TSOP II  
A die version  
(-40°C - +85°C)  
Alliance Memory, Inc.  
511 Taylor Way,  
San Carlos, CA 94070  
Tel: 650-610-6800  
Fax: 650-620-9211  
www.alliancememory.com  
Copyright © Alliance Memory  
All Rights Reserved  
© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are  
trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their  
respective companies. Alliance reserves the right to make changes to this document and its products at any time  
without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data  
contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right  
to change or correct this data at any time, without notice. If the product described herein is under development,  
significant changes to these specifications are possible. The information in this product data sheet is intended to be  
general descriptive information for potential customers and users, and is not intended to operate as, or provide, any  
guarantee or warranty to any user or customer. Alliance does not assume any responsibility or liability arising out of  
the application or use of any product described herein, and disclaims any express or implied warranties related to the  
sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose,  
merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms  
and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively  
according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a  
license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of  
Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting  
systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the  
inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such  
use and agrees to indemnify Alliance against all claims arising from such use.  
Confidential  
-47/47-  
Rev.1.0 Sep.2015  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY