AS4C64M8D1-5TIN [ALSC]

Fully synchronous operation;
AS4C64M8D1-5TIN
型号: AS4C64M8D1-5TIN
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

Fully synchronous operation

文件: 总64页 (文件大小:1754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS4C64M8D1  
Revision History AS4C64M8D1 -  
Revision Details  
Date  
Rev 1.0  
Rev 2.0  
Preliminary datasheet  
Typing error data rate 800bps/pin to 400bps/pin page 1  
February 2014  
October 2014  
Confidential  
0
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
512M (64M x 8 bit) DDR Synchronous DRAM (SDRAM)  
Confidential  
Features  
(Rev. 2.0, Oct. /2014)  
Overview  
The 512Mb DDR SDRAM is a high-speed CMOS  
double data rate synchronous DRAM containing 512  
Mbits. It is internally configured as a quad 16M x 8-bit  
DRAM with a synchronous interface (all signals are  
registered on the positive edge of the clock signal, CK).  
Fast clock rate: 200MHz  
Differential Clock CK &  
CK  
Bi-directional DQS  
DLL enable/disable by EMRS  
Fully synchronous operation  
CK  
Data outputs occur at both rising edges of CK and  
.
Read and write accesses to the SDRAM are burst  
oriented; accesses start at a selected location and  
continue for a programmed number of locations in a  
programmed sequence. Accesses begin with the  
registration of a BankActivate command which is then  
followed by a Read or Write command. The DDR  
SDRAM provides programmable Read or Write burst  
lengths of 2, 4, or 8. An auto precharge function may  
be enabled to provide a self-timed row precharge that  
is initiated at the end of the burst sequence. The  
refresh functions, either Auto or Self Refresh are easy  
to use. In addition, The DDR SDRAM features  
programmable DLL option. By having a programmable  
mode register and extended mode register, the system  
can choose the most suitable modes to maximize its  
performance. These devices are well suited for  
applications requiring high memory bandwidth, result in  
a device particularly well suited to high performance  
main memory and graphics applications.  
Internal pipeline architecture  
Four internal banks, 16M x 8-bit for each bank  
Programmable Mode and Extended Mode registers  
- CAS Latency: 2, 2.5, 3  
- Burst length: 2, 4, 8  
- Burst Type: Sequential & Interleaved  
Individual byte write mask control  
DM Write Latency = 0  
Auto Refresh and Self Refresh  
8192 refresh cycles / 64ms  
Precharge & active power down  
Operating temperature range: T = 0 ~ 70°C  
A
±
= 2.5V 0.2V  
DD & DDQ  
Power supplies: V  
V
Interface: SSTL_2 I/O Interface  
Package: 66 Pin TSOP II, 0.65mm pin pitch  
Package: 60-Ball, 8x13x1.2 mm (max) TFBGA  
- All parts ROHS Compliant  
Table 1. Ordering Information  
Part Number  
AS4C64M8D1-5TCN  
AS4C64M8D1-5TIN  
AS4C64M8D1-5BCN  
AS4C64M8D1-5BIN  
Clock Frequency  
200MHz  
Data Rate  
Power Supply  
Package  
400Mbps/pin  
400Mbps/pin  
400Mbps/pin  
400Mbps/pin  
66pin TSOP II  
66 pin TSOP II  
60 ball TFBGA  
60 ball TFBGA  
VDD 2.5V, VDDQ 1.8V  
VDD 2.5V, VDDQ 1.8V  
VDD 2.5V, VDDQ 1.8V  
VDD 2.5V, VDDQ 1.8V  
200MHz  
200MHz  
200MHz  
T: indicated 66 pin TSOP II B: indicates 60-ball 8 x 10 x 1.2mm (max) TFBGA package  
C: indicates commercial temperature  
I: indicates industrial temperature  
N: indicates Pb and Halogen Free - ROHS Compliant  
Table 2. Speed Grade Information  
Speed Grade  
Clock Frequency  
CAS Latency  
t
(ns)  
t
(ns)  
RCD  
RP  
DDR1-400  
200 MHz  
2.5  
15  
15  
Confidential  
1
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 1. Pin Assignment (Top View)  
Figure 1.1 Ball Assignment (Top View)  
1
2
3
7
8
9
VSS  
DQ7  
VSSQ  
NC  
VDD  
DQ0  
VDDQ  
NC  
1
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSSQ  
DQ7  
VSS  
VDD  
DQ0  
VDDQ  
2
A
B
C
D
3
NC  
NC  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
DQ6  
DQ5  
DQ4  
DQS  
DM  
DQ1  
DQ2  
DQ3  
NC  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VDD  
NC  
NC  
NC  
NC  
NC  
4
DQ6  
VDDQ  
NC  
DQ1  
VSSQ  
NC  
5
6
NC  
7
DQ5  
VSSQ  
NC  
DQ2  
VDDQ  
NC  
8
NC  
E
F
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
VREF  
NC  
DQ3  
VSSQ  
NC  
DQ4  
VDDQ  
NC  
G
CK  
CK  
WE  
CAS  
CS  
A12  
CKE  
RAS  
H
NC  
NC  
VSSQ  
DQS  
NC  
VREF  
VSS  
DM  
VDDQ  
NC  
A11  
A8  
A9  
A7  
A5  
BA1  
A0  
BA0  
A10  
A1  
J
K
L
NC  
VDD  
NC  
A6  
A2  
NC  
A4  
VSS  
VDD  
A3  
M
CK  
WE  
CAS  
RAS  
CS  
CK  
CKE  
NC  
NC  
A12  
A11  
A9  
BA0  
BA1  
A10/AP  
A0  
A8  
A7  
A1  
A6  
A2  
A5  
A3  
A4  
VDD  
VSS  
Confidential  
2
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 2. Block Diagram  
CK  
DLL  
CLOCK  
BUFFER  
CK  
CKE  
16M x 8  
CELL ARRAY  
(BANK #0)  
CS  
RAS  
CAS  
WE  
CONTROL  
SIGNAL  
GENERATOR  
Column Decoder  
COMMAND  
DECODER  
16M x 8  
CELL ARRAY  
(BANK #1)  
COLUMN  
COUNTER  
A10/AP  
A0  
MODE  
REGISTER  
Column Decoder  
ADDRESS  
BUFFER  
A9  
A11  
A12  
BA0  
BA1  
16M x 8  
CELL ARRAY  
(BANK #2)  
REFRESH  
COUNTER  
Column Decoder  
DATA  
STROBE  
BUFFER  
DQS  
DQ  
Buffer  
DQ0 ~ 7  
16M x 8  
CELL ARRAY  
(BANK #3)  
DM  
Column Decoder  
Confidential  
3
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Pin Descriptions  
Table 2. Pin Details  
Symbol  
CK,  
Type  
Description  
are differential clock inputs. All address and control  
Input  
Differential Clock: CK and  
CK  
CK  
input signals are sampled on the crossing of the positive edge of CK and negative  
edge of . Input and output data is referenced to the crossing of CK and (both  
CK  
directions of the crossing)  
CK  
CKE  
Input  
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK signal. If CKE  
goes low synchronously with clock, the internal clock is suspended from the next clock  
cycle and the state of output and burst address is frozen as long as the CKE remains  
low. When all banks are in the idle state, deactivating the clock controls the entry to  
the Power Down and Self Refresh modes.  
BA0, BA1  
A0-A12  
Input  
Input  
Bank Activate: BA0 and BA1 define to which bank the BankActivate, Read, Write, or  
BankPrecharge command is being applied.  
Address Inputs: A0-A12 are sampled during the BankActivate command (row  
address A0-A12) and Read/Write command (column address A0-A9, A11 with A10  
defining Auto Precharge).  
Input  
Input  
Chip Select:  
enables (sampled LOW) and disables (sampled HIGH) the  
CS  
command decoder. All commands are masked when  
CS  
is sampled HIGH.  
CS  
CS  
provides for external bank selection on systems with multiple banks. It is considered  
part of the command code.  
Row Address Strobe: The  
signal defines the operation commands in  
RAS  
signals and is latched at the positive edges of CK.  
RAS  
conjunction with the  
and  
WE  
CAS  
are asserted "LOW" and  
When  
and  
is asserted "HIGH," either the  
CAS  
RAS  
CS  
BankActivate command or the Precharge command is selected by the  
signal.  
WE  
is asserted "HIGH," the BankActivate command is selected and the  
When the  
WE  
bank designated by BA is turned on to the active state. When the  
is asserted  
WE  
"LOW," the Precharge command is selected and the bank designated by BA is  
switched to the idle state after the precharge operation.  
Input  
Input  
Column Address Strobe: The  
signal defines the operation commands in  
CAS  
signals and is latched at the positive edges of CK.  
is asserted "LOW," the column access is started  
CAS  
WE  
conjunction with the  
and  
RAS  
WE  
CS  
When  
RAS  
by asserting  
is held "HIGH" and  
"LOW." Then, the Read or Write command is selected by asserting  
CAS  
"HIGH" or “LOW”.  
WE  
Write Enable: The  
signal defines the operation commands in conjunction with  
WE  
signals and is latched at the positive edges of CK. The  
the  
and  
input  
WE  
RAS  
CAS  
is used to select the BankActivate or Precharge command and Read or Write  
command.  
DQS  
DM  
Input /  
Output  
Input  
Data Strobe: Output with read data, input with write data. Edge--aligned with read  
data, centered in write data. Used to capture write data.  
Data Input Mask: Input data is masked when DM is sampled HIGH during a write  
cycle.  
DQ0 DQ7 Input /  
Data Bus: Data Input/output.  
Output  
VDD  
VSS  
Supply  
Supply  
±
Power Supply: 2.5V 0.2V  
Ground  
Confidential  
4
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
VDDQ  
VSSQ  
VREF  
NC  
Supply  
Supply  
Supply  
-
±
DQ Power: 2.5V 0.2V. Provide isolated power to DQs for improved noise immunity.  
DQ Ground: Provide isolated ground to DQs for improved noise immunity.  
SSTL_2 reference Voltage  
No Connect: These pins should be left unconnected.  
Confidential  
5
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Operation Mode  
Fully synchronous operations are performed to latch the commands at the positive edges of CK. Table 3  
shows the truth table for the operation commands.  
Table 3. Truth Table (Note (1), (2))  
Command  
BankActivate  
State  
Idle(3)  
Any  
CKEn-1 CKEn DM BA0,1 A10 A0-9, 11-12  
CS RAS CAS  
WE  
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
V
V
X
V
V
V
V
Row address  
L
L
L
L
L
L
L
L
L
L
L
H
L
L
H
L
H
L
H
L
H
L
H
L
X
X
L
L
H
H
H
L
BankPrecharge  
PrechargeAll  
L
H
L
X
X
Any  
L
L
Active(3)  
Active(3)  
Active(3)  
Active(3)  
Idle  
H
H
H
H
L
L
Column  
address  
(A0 ~ A9)  
Write  
Write and AutoPrecharge  
Read  
H
L
L
L
Column  
address  
(A0 ~ A9)  
L
H
H
L
Read and Autoprecharge  
Mode Register Set  
Extended MRS  
No-Operation  
H
L
OP code  
L
Idle  
OP code  
L
L
L
Any  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
H
X
L
H
H
X
L
H
L
Active(4)  
Burst Stop  
Device Deselect  
AutoRefresh  
Any  
X
H
H
X
H
X
H
X
H
X
V
X
H
X
X
Idle  
SelfRefresh Entry  
SelfRefresh Exit  
Idle  
L
L
Idle  
H
X
H
X
H
X
H
X
V
X
H
X
X
X
H
X
H
X
H
X
V
X
H
X
X
(SelfRefresh)  
Precharge Power Down Mode  
Entry  
Idle  
H
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Precharge Power Down Mode  
Exit  
Any  
(PowerDown)  
Active Power Down Mode Entry  
Active Power Down Mode Exit  
Active  
H
L
Any  
H
(PowerDown)  
Data Input Mask Disable  
Data Input Mask Enable  
Active  
Active  
H
H
X
X
L
X
X
X
X
X
X
H
Note: 1. V=Valid data, X=Don't Care, L=Low level, H=High level  
2. CKEn signal is input level when commands are provided.  
CKEn-1 signal is input level one clock cycle before the commands are provided.  
3. These are states of bank designated by BA signal.  
4. Device state is 2, 4, and 8 burst operation.  
Confidential  
6
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Mode Register Set (MRS)  
The Mode Register stores the data for controlling various operating modes of a DDR SDRAM. It programs CAS  
Latency, Burst Type, and Burst Length to make the DDR SDRAM useful for a variety of applications. The default  
value of the Mode Register is not defined; therefore the Mode Register must be written by the user. Values  
stored in the register will be retained until the register is reprogrammed. The Mode Register is written by  
asserting Low on  
,
,
,
, BA1 and BA0 (the device should have all banks idle with no bursts in  
CS RAS CAS WE  
progress prior to writing into the mode register, and CKE should be High). The state of address pins A0~A12  
and BA0, BA1 in the same cycle in which and are asserted Low is written into the Mode  
,
,
CS RAS CAS  
WE  
Register. A minimum of two clock cycles, tMRD, are required to complete the write operation in the Mode  
Register. The Mode Register is divided into various fields depending on functionality. The Burst Length uses  
A0~A2, Burst Type uses A3, and CAS Latency (read latency from column address) uses A4~A6. A logic 0  
should be programmed to all the undefined addresses to ensure future compatibility. Reserved states should not  
be used to avoid unknown device operation or incompatibility with future versions. Refer to the table for specific  
codes for various burst lengths, burst types and CAS latencies.  
Table 4. Mode Register Bitmap  
BA1 BA0 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
Address Field  
Mode Register  
0
0
RFU must be set to 0”  
T.M.  
CAS Latency  
Burst Length  
A8 A7 Test Mode  
A6 A5 A4 CAS Latency A3 Burst Type A2 A1 A0 Burst Length  
0
1
0 Normal mode  
DLL Reset  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
2
0
1
Sequential  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
2
0
4
3
8
BA0 Mode  
Reserved  
Reserved  
2.5  
Reserved  
Reserved  
Reserved  
Reserved  
0
1
MRS  
EMRS  
Reserved  
Burst Length Field (A2~A0)  
This field specifies the data length of column access using the A2~A0 pins and selects the Burst Length to be 2, 4,  
8.  
Table 5. Burst Length  
A2  
0
A1  
0
A0  
0
Burst Length  
Reserved  
2
0
0
1
0
1
0
4
0
1
1
8
1
0
0
Reserved  
Reserved  
Reserved  
Reserved  
1
0
1
1
1
0
1
1
1
Confidential  
7
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Addressing Mode Select Field (A3)  
The Addressing Mode can be one of two modes, either Interleave Mode or Sequential Mode. Both Sequential  
Mode and Interleave Mode support burst length of 2, 4 and 8.  
Table 6. Addressing Mode  
A3  
0
Addressing Mode  
Sequential  
1
Interleave  
Burst Definition, Addressing Sequence of Sequential and Interleave Mode  
Table 7. Burst Address ordering  
Start Address  
Burst Length  
Sequential  
Interleave  
A2  
X
X
X
X
X
X
0
A1  
X
X
0
0
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0, 1  
1, 0  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
0, 1  
1, 0  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
2
4
8
1
0
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
0
0
0
1
0
1
1
0
1
0
1
1
1
1
CAS Latency Field (A6~A4)  
This field specifies the number of clock cycles from the assertion of the Read command to the first read data.  
The minimum whole value of CAS Latency depends on the frequency of CK. The minimum whole value  
satisfying the following formula must be programmed into this field.  
tCAC(min) CAS Latency X tCK  
Table 8. CAS Latency  
A6  
0
A5  
0
A4  
0
CAS Latency  
Reserved  
Reserved  
2 clocks  
0
0
1
0
1
0
0
1
1
3 clocks  
1
0
0
Reserved  
Reserved  
2.5 clocks  
Reserved  
1
0
1
1
1
0
1
1
1
Test Mode field (A8~A7)  
These two bits are used to enter the test mode and must be programmed to "00" in normal operation.  
Table 9. Test Mode  
A8  
0
A7  
0
Test Mode  
Normal mode  
DLL Reset  
1
0
Confidential  
8
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
( BA0, BA1)  
Table 10. MRS/EMRS  
BA1  
RFU  
RFU  
BA0  
0
A12 ~ A0  
MRS Cycle  
1
Extended Functions (EMRS)  
Extended Mode Register Set (EMRS)  
The Extended Mode Register Set stores the data for enabling or disabling DLL and selecting output driver  
strength. The default value of the extended mode register is not defined, therefore must be written after power  
up for proper operation. The Extended Mode Register is written by asserting Low on CS  
BA1 and BA0 (the device should have all banks idle with no bursts in progress prior to writing into the mode  
register, and CKE should be High). The state of A0 ~ A12, BA0 and BA1 is written in the mode register in the  
same cycle asCS  
RAS CAS, and WE going low. The DDR SDRAM should be in all bank precharge with  
RAS CAS  
WE  
, , , ,  
,
,
CKE already high prior to writing into the extended mode register. A1 is used for setting driver strength to normal,  
or weak. Two clock cycles are required to complete the write operation in the extended mode register. The  
mode register contents can be changed using the same command and clock cycle requirements during  
operation as long as all banks are in the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used  
for EMRS. Refer to the table for specific codes.  
Table 11. Extended Mode Register Bitmap  
BA1 BA0 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Field  
0
1
RFU must be set to 0”  
DS0 DLL Extend Mode Register  
BA0  
0
Mode  
MRS  
A1  
0
Drive Strength  
Full  
A0  
0
DLL  
Enable  
Disable  
1
EMRS  
1
Weak  
1
Confidential  
9
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Table 12. Absolute Maximum Rating  
Symbol  
VIN, VOUT  
VDD, VDDQ  
TA  
Item  
Rating  
Unit  
V
Input, Output Voltage  
Power Supply Voltage  
Ambient Temperature  
Storage Temperature  
Soldering Temperature  
Power Dissipation  
- 0.5~ VDDQ + 0.5  
- 1~3.6  
0~70  
- 55~150  
260  
V
C
°
TSTG  
C
°
C
°
TSOLDER  
PD  
1
W
IOS  
Short Circuit Output Current  
50  
mA  
Note1: Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to  
the device.  
Note2: These voltages are relative to Vss  
Table 13. Recommended D.C. Operating Conditions  
(TA = 0 ~ 70 C)  
Min.  
Symbol  
VDD  
Parameter  
Power Supply Voltage  
Max.  
2.7  
Unit  
V
2.3  
VDDQ  
VREF  
Power Supply Voltage (for I/O Buffer)  
Input Reference Voltage  
2.3  
2.7  
V
0.49 x VDDQ  
VREF + 0.15  
-0.3  
0.51 x VDDQ  
VDDQ + 0.3  
VREF 0.15  
V
VIH (DC) Input High Voltage (DC)  
V
Input Low Voltage (DC)  
Termination Voltage  
VIL (DC)  
V
VTT  
VREF - 0.04  
-0.3  
VREF + 0.04  
VDDQ + 0.3  
V
V
VIN (DC)  
Input Voltage Level, CK and  
inputs  
CK  
VID (DC)  
0.36  
VDDQ + 0.6  
V
Input Different Voltage, CK and  
Input leakage current  
inputs  
CK  
II  
-2  
-5  
2
5
-
A  
A  
IOZ  
IOH  
IOL  
Output leakage current  
Output High current (VOUT = 1.95V)  
Output Low current (VOUT = 0.35V)  
-16.2  
16.2  
mA  
mA  
-
Note : All voltages are referenced to VSS.  
Table 14. Capacitance  
(VDD = 2.5V, f = 1MHz, TA = 25 C)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
CIN1  
Input Capacitance (CK,  
)
2
3
CK  
CIN2  
CI/O  
Input Capacitance (All other input-only pins)  
DQ, DQS, DM Input/Output Capacitance  
2
4
3
5
pF  
pF  
Note: These parameters are guaranteed by design, periodically sampled and are not 100% tested  
Confidential  
10  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Table 15. D.C. Characteristics  
(VDD = 2.5V 0.2V, TA = 0 ~ 70 C)  
-5  
Parameter & Test Condition  
Symbol  
Unit  
Max.  
OPERATING CURRENT:  
One bank; Active-Precharge; t =t (min); t =t (min); DQ,DM  
and DQS inputs changing once per clock cycle; Address and control  
inputs changing once every two clock cycles.  
RC RC  
CK CK  
IDD0  
80  
mA  
OPERATING CURRENT:  
IDD1  
90  
5
mA  
mA  
One bank; BL=4; reads - Refer to the following page for detailed test  
conditions  
PRECHARGE POWER-DOWN STANDBY CURRENT:  
IDD2P  
All banks idle; power-down mode; t =t (min); CKE = LOW  
CK CK  
PRECHARGE FLOATING STANDBY CURRENT:  
CS = HIGH; all banks idle; CKE = HIGH; t =t (min); address and  
CK CK  
IDD2F  
35  
mA  
other control inputs changing once per clock cycle; V = V  
for  
IN  
REF  
DQ, DQS and DM  
PRECHARGE QUIET STANDBY CURRENT:  
CS =HIGH; all banks idle; CKE =HIGH; t =t (min) address and  
CK CK  
IDD2Q  
IDD3P  
IDD3N  
35  
20  
65  
mA  
mA  
mA  
other control inputs stable at ≥ V (min) or V (max); V = V  
REF  
IH  
IL  
IN  
for DQ, DQS and DM  
ACTIVE POWER-DOWN STANDBY CURRENT : one bank active;  
power-down mode; CKE=LOW; t =t (min)  
CK CK  
ACTIVE STANDBY CURRENT :  
=HIGH;CKE=HIGH; one bank  
CS  
active ; t =t (max);t =t (min);Address and control inputs  
RC RC  
CK CK  
changing once per clock cycle; DQ,DQS,and DM inputs changing  
twice per clock cycle  
OPERATING CURRENT BURST READ : BL=2; READS;  
Continuous burst; one bank active; Address and control inputs  
IDD4R  
IDD4W  
130  
130  
mA  
mA  
changing once per clock cycle; t =t (min); lout=0mA;50% of data  
CK CK  
changing on every transfer  
OPERATING CURRENT BURST Write : BL=2; WRITES;  
Continuous Burst ;one bank active; address and control inputs  
changing once per clock cycle; t =t (min); DQ,DQS,and DM  
CK CK  
changing twice per clock cycle; 50% of data changing on every  
transfer  
AUTO REFRESH CURRENT : t =t  
(min); t =t (min)  
IDD5  
IDD6  
140  
6
mA  
mA  
RC RFC  
CK CK  
SELF REFRESH CURRENT: Self Refresh Mode ; CKE  
0.2V;t =t (min)  
CK CK  
BURST OPERATING CURRENT 4 bank operation:  
Four bank interleaving READs; BL=4;with Auto Precharge;  
=t (min); t =t (min); Address and control inputs change only  
IDD7  
210  
mA  
t
RC RC  
CK CK  
during Active, READ , or WRITE command  
Confidential  
11  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Table 16. Electrical Characteristics and Recommended A.C.Operating Condition  
(VDD = 2.5V ± 0.2V, TA = 0 ~ 70 C)  
-5  
Symbol  
Parameter  
Unit Note  
Min.  
7.5  
6
Max.  
12  
CL = 2  
CL = 2.5  
CL = 3  
ns  
ns  
ns  
tCK  
tCK  
tCK  
Clock cycle time  
12  
5
12  
tCH  
tCL  
Clock high level width  
Clock low level width  
0.45  
0.45  
0.55  
0.55  
tCLMIN or  
tCHMIN  
tHP  
Clock half period  
-
ns  
2
tHZ  
tLZ  
Data-out-high impedance time from CK,  
Data-out-low impedance time from CK,  
-
0.7  
0.7  
0.6  
0.7  
ns  
ns  
ns  
ns  
3
3
CK  
CK  
-0.7  
-0.6  
-0.7  
tDQSCK DQS-out access time from CK,  
CK  
tAC  
Output access time from CK,  
CK  
tDQSQ  
tRPRE  
tRPST  
tDQSS  
DQS-DQ Skew  
Read preamble  
Read postamble  
CK to valid DQS-in  
-
0.9  
0.4  
0.72  
0
0.4  
ns  
tCK  
tCK  
tCK  
ns  
tCK  
tCK  
tCK  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
ns  
s  
tCK  
ns  
ns  
ns  
ns  
ns  
tCK  
tCK  
1.1  
0.6  
1.25  
tWPRES DQS-in setup time  
-
4
5
tWPRE  
tWPST  
tDQSH  
tDQSL  
tIS  
DQS Write preamble  
0.25  
0.4  
0.35  
0.35  
0.7  
0.7  
0.4  
0.4  
tHP - tQHS  
55  
-
DQS write postamble  
0.6  
DQS in high level pulse width  
DQS in low level pulse width  
-
-
Address and Control input setup time  
Address and Control input hold time  
DQ & DM setup time to DQS  
DQ & DM hold time to DQS  
DQ/DQS output hold time from DQS  
Row cycle time  
-
6
6
tIH  
-
tDS  
-
tDH  
-
tQH  
-
tRC  
-
tRFC  
tRAS  
tRCD  
tRP  
Refresh row cycle time  
70  
-
Row active time  
40  
70K  
Active to Read or Write delay  
Row precharge time  
15  
-
15  
-
tRRD  
tWR  
Row active to Row active delay  
Write recovery time  
10  
-
15  
-
tWTR  
tMRD  
tREFI  
tXSRD  
tXSNR  
tDAL  
tDIPW  
tIPW  
tQHS  
tDSS  
tDSH  
Internal Write to Read Command Delay  
Mode register set cycle time  
Average Periodic Refresh interval  
Self refresh exit to read command delay  
2
-
10  
-
-
7.8  
7
200  
75  
-
Self refresh exit to non-read command delay  
-
Auto Precharge write recovery + precharge time tWR+tRP  
-
DQ and DM input pulse width  
Control and Address input pulse width  
Data Hold Skew Factor  
1.75  
2.2  
-
-
-
0.5  
-
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
0.2  
0.2  
-
Confidential  
12  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Table 17. Recommended A.C. Operating Conditions  
(VDD = 2.5V ± 0.2V, TA = 0 ~ 70 C)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
V
VIH (AC) Input High Voltage (AC)  
VIL (AC) Input Low Voltage (AC)  
VREF + 0.31  
-
-
VREF 0.31  
V
VID (AC)  
VIX (AC)  
V
Input Different Voltage, CK and  
inputs  
0.7  
VDDQ + 0.6  
CK  
V
Input Crossing Point Voltage, CK and  
inputs  
0.5 x VDDQ-0.2  
0.5 x VDDQ+0.2  
CK  
Note:  
1) Enables on-chip refresh and address counters.  
2) Min(tCL, tCH) refers to the smaller of the actual clock low time and actual clock high time as provided to the  
device.  
3) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters  
are not referenced to a specific voltage level, but specify when the device output is no longer driving(HZ), or  
begins driving(LZ).  
4) The specific requirement is that DQS be valid (High, Low, or at some point on a valid transition) on or before  
this CLK edge. A valid transition is defined as monotonic, and meeting the input slew rate specifications of  
the device. When no writes were previously in progress on the bus, DQS will be transitioning from High-Z to  
logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to  
LOW at this time, depending on tDQSS  
.
5) The maximum limit for this parameter is not a device limit. The device will operate with a greater value for  
this parameter, but system performance (bus turnaround) will degrade accordingly.  
1.0V/ns.  
6) For command/address and CK &  
slew rate  
CK  
7) A maximum of eight AUTO REFRESH commands can be posted to any given DDR SDRAM device.  
8) Power-up sequence is described in Note 10  
9) A.C. Test Conditions  
Table 18. SSTL _2 Interface  
Reference Level of Output Signals (VREF  
)
0.5 x VDDQ  
Reference to the Test Load  
VREF+0.31 V / VREF-0.31 V  
1 V/ns  
Output Load  
Input Signal Levels  
Input Signals Slew Rate  
Reference Level of Input Signals  
0.5 x VDDQ  
Confidential  
13  
Rev.2.0  
Oct . /2014  
AS4C64M8D1  
Figure 3. SSTL_2 A.C. Test Load  
0.5 * VDDQ  
50Ω  
DQ, DQS  
Z0=50Ω  
30pF  
10) Power up Sequence  
Power up must be performed in the following sequence.  
1) Apply power to VDD before or at the same time as VDDQ, VTT and VREF when all input signals are held  
"NOP" state and maintain CKE “LOW”.  
2) Start clock and maintain stable condition for minimum 200s.  
3) Issue a NOPcommand and keep CKE “HIGH”  
4) Issue a Precharge Allcommand.  
5) Issue EMRS enable DLL.  
6) Issue MRS reset DLL. (An additional 200 clock cycles are required to lock the DLL).  
7) Precharge all banks of the device.  
8) Issue two or more Auto Refresh commands.  
9) Issue MRS with A8 to low to initialize the mode register.  
Confidential  
14  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Timing Waveforms  
Figure 4. Activating a Specific Row in a Specific Bank  
CK  
CK  
CKE  
HIGH  
CS  
RAS  
CAS  
WE  
RA  
BA  
Address  
BA0,1  
RA=Row Address  
BA=Bank Address  
Don’t Care  
Confidential  
15  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 5. tRCD and tRRD Definition  
CK  
CK  
RD/WR  
COMMAND  
ACT  
Row  
NOP  
NOP  
NOP  
NOP  
NOP  
ACT  
Row  
Col  
Address  
Bank A  
Bank B  
Bank B  
BA0,BA1  
tRRD  
tRCD  
Don’t Care  
Figure 6. READ Command  
CK  
CK  
CKE  
HIGH  
CS  
RAS  
CAS  
WE  
CA  
Address  
A10  
EN AP  
DIS AP  
BA  
BA0,1  
CA=Column Address  
BA=Bank Address  
EN AP=Enable Autoprecharge  
DIS AP=Disable Autoprecharge  
Don’t Care  
Confidential  
16  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 7. Read Burst Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=2  
DQS  
DQ  
DO  
n
DO n=Data Out from column n  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Don’t Care  
Read Burst Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n
DO n=Data Out from column n  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order following DO n  
Don’t Care  
Oct /2014  
Confidential  
17  
Rev.2.0  
AS4C64M8D1  
Read Burst Required CAS Latencies (CL=3)  
CK  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
Bank A,  
Col n  
CL=3  
DQS  
DQ  
DO  
n
DO n=Data Out from column n  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Don’t Care  
Confidential  
18  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 8. Consecutive Read Bursts Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
CL=2  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first)  
3 subsequent elements of Data Out appear in the programmed order following DO n  
3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o  
Read commands shown must be to the same device  
Don’t Care  
Confidential  
19  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Consecutive Read Bursts Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first)  
3 subsequent elements of Data Out appear in the programmed order following DO n  
3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o  
Read commands shown must be to the same device  
Don’t Care  
Confidential  
20  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Consecutive Read Bursts Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col o  
CL=3  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first)  
3 subsequent elements of Data Out appear in the programmed order following DO n  
3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o  
Read commands shown must be to the same device  
Don’t Care  
Confidential  
21  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 9. Non-Consecutive Read Bursts Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
READ  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
CL=2  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order following DO n  
(and following DO o)  
Don’t Care  
Non-Consecutive Read Bursts Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order following DO n  
(and following DO o)  
Don’t Care  
Oct. /2014  
Confidential  
22  
Rev.2.0  
AS4C64M8D1  
Non-Consecutive Read Bursts Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col o  
CL=3  
DQS  
DQ  
DO  
n
DO  
o
DO n (or o)=Data Out from column n (or column o)  
Burst Length=4  
3 subsequent elements of Data Out appear in the programmed order following DO n  
(and following DO o)  
Don’t Care  
Confidential  
23  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 10. Random Read Accesses Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col p  
Bank,  
Col q  
Bank,  
Col n  
CL=2  
DQS  
DQ  
DO  
q
DO  
n'  
DO  
o
DO  
o'  
DO  
n
DO  
p
DO  
p'  
DO n, etc. =Data Out from column n, etc.  
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order  
Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted  
Reads are to active rows in any banks  
Don’t Care  
Confidential  
24  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Random Read Accesses Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col p  
Bank,  
Col q  
Bank,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n'  
DO  
o
DO  
o'  
DO  
n
DO  
p
DO  
p'  
DO n, etc. =Data Out from column n, etc.  
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order  
Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted  
Reads are to active rows in any banks  
Don’t Care  
Random Read Accesses Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col q  
Bank,  
Col n  
Bank,  
Col p  
CL=3  
DQS  
DQ  
DO  
n'  
DO  
o
DO  
o'  
DO  
n
DO  
p
DO n, etc. =Data Out from column n, etc.  
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order  
Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted  
Reads are to active rows in any banks  
Don’t Care  
Oct. /2014  
Confidential  
25  
Rev.2.0  
AS4C64M8D1  
Figure 11. Terminating a Read Burst Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
BST  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=2  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are bursts of 8 terminated after 4 data elements  
3 subsequent elements of Data Out appear in the programmed order following DO n  
Don’t Care  
Terminating a Read Burst Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
BST  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=2.5  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are bursts of 8 terminated after 4 data elements  
3 subsequent elements of Data Out appear in the programmed order following DO n  
Don’t Care  
Oct. /2014  
Confidential  
26  
Rev.2.0  
AS4C64M8D1  
Terminating a Read Burst Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
BST  
NOP  
NOP  
NOP  
Bank A,  
Col n  
CL=3  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are bursts of 8 terminated after 4 data elements  
3 subsequent elements of Data Out appear in the programmed order following DO n  
Don’t Care  
Confidential  
27  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 12. Read to Write Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
READ  
BST  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
tDQSS  
min  
CL=2  
DQS  
DQ  
DO  
n
DI  
o
DM  
DO n (or o)= Data Out from column n (or column o)  
Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST  
command shown can be NOP)  
1 subsequent element of Data Out appears in the programmed order following DO n  
Data in elements are applied following DI o in the programmed order  
Don’t Care  
Confidential  
28  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Read to Write Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
WRITE  
READ  
BST  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
ADDRESS  
CL=2.5  
tDQSS  
min  
DQS  
DQ  
DO  
n
DI  
o
DM  
DO n (or o)= Data Out from column n (or column o)  
Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST  
command shown can be NOP)  
1 subsequent element of Data Out appears in the programmed order following DO n  
Data in elements are applied following DI o in the programmed order  
Don’t Care  
Confidential  
29  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Read to Write Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
WRITE  
READ  
BST  
NOP  
NOP  
NOP  
Bank,  
Col o  
Bank,  
Col n  
ADDRESS  
tDQSS  
min  
CL=3  
DQS  
DQ  
DO  
n
DI  
o
DM  
DO n (or o)= Data Out from column n (or column o)  
Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST  
command shown can be NOP)  
1 subsequent element of Data Out appears in the programmed order following DO n  
Data in elements are applied following DI o in the programmed order  
Don’t Care  
Confidential  
30  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 13. Read to Precharge Required CAS Latencies (CL=2)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
tRP  
Bank A,  
Col n  
Bank  
(a or all)  
Bank A,  
Row  
CL=2  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Precharge may be applied at (BL/2) tCK after the READ command  
Note that Precharge may not be issued before tRAS ns after the ACTIVE  
command for applicable banks  
The Active command may be applied if tRC has been met  
Don’t Care  
Confidential  
31  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Read to Precharge Required CAS Latencies (CL=2.5)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
tRP  
Bank  
(a or all)  
Bank A,  
Col n  
Bank A,  
Row  
CL=2.5  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Precharge may be applied at (BL/2) tCK after the READ command  
Note that Precharge may not be issued before tRAS ns after the ACTIVE  
command for applicable banks  
The Active command may be applied if tRC has been met  
Don’t Care  
Confidential  
32  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Read to Precharge Required CAS Latencies (CL=3)  
CK  
CK  
COMMAND  
ADDRESS  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
tRP  
Bank A,  
Col n  
Bank  
(a or all)  
Bank A,  
Row  
CL=3  
DQS  
DQ  
DO  
n
DO n = Data Out from column n  
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8  
3 subsequent elements of Data Out appear in the programmed order  
following DO n  
Precharge may be applied at (BL/2) tCK after the READ command  
Note that Precharge may not be issued before tRAS ns after the ACTIVE  
command for applicable banks  
The Active command may be applied if tRC has been met  
Don’t Care  
Confidential  
33  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 14. Write Command  
CK  
CK  
CKE  
CS  
HIGH  
RAS  
CAS  
WE  
CA  
Address  
EN AP  
DIS AP  
A10  
BA  
BA0,1  
CA=Column Address  
BA=Bank Address  
EN AP=Enable Autoprecharge  
DIS AP=Disable Autoprecharge  
Don’t Care  
Confidential  
34  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 15. Write Max DQSS  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
Bank A,  
Col n  
tDQSS  
max  
DQS  
DQ  
DI  
n
DM  
DI n = Data In for column n  
3 subsequent elements of Data In are applied in the programmed  
order following DI n  
A non-interrupted burst of 4 is shown  
A10 is LOW with the WRITE command (AUTO PRECHARGE  
disabled)  
Don’t Care  
Confidential  
35  
Rev.2.0  
Oct /2014  
AS4C64M8D1  
Figure 16. Write Min DQSS  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
Bank A,  
Col n  
tDQSS  
min  
DQS  
DQ  
DI  
n
DM  
DI n = Data In for column n  
3 subsequent elements of Data In are applied in the programmed  
order following DI n  
A non-interrupted burst of 4 is shown  
A10 is LOW with the WRITE command (AUTO PRECHARGE  
disabled)  
Don’t Care  
Confidential  
36  
Rev.2.0  
Oct /2014  
AS4C64M8D1  
Figure 17. Write Burst Nom, Min, and Max tDQSS  
T4  
T8  
T9  
T10  
T11  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank ,  
Col n  
tDQSS (nom)  
DQS  
DQ  
DI  
n
DM  
tDQSS (min)  
DQS  
DQ  
DI  
n
DM  
tDQSS (max)  
DQS  
DI  
n
DQ  
DM  
DI n = Data In for column n  
3 subsequent elements of Data are applied in the programmed order following DI n  
A non-interrupted burst of 4 is shown  
A10 is LOW with the WRITE command (AUTO PRECHARGE disabled)  
Don’t Care  
Confidential  
37  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 18. Write to Write Max tDQSS  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
WRITE  
NOP  
NOP  
NOP  
NOP  
Bank ,  
Col o  
Bank ,  
Col n  
tDQSS (max)  
DQS  
DQ  
DI  
n
DI  
o
DM  
DI n , etc. = Data In for column n,etc.  
3 subsequent elements of Data In are applied in the programmed order following DI n  
3 subsequent elements of Data In are applied in the programmed order following DI o  
Non-interrupted bursts of 4 are shown  
Don’t Care  
Confidential  
38  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 19. Write to Write Max tDQSS, Non Consecutive  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
WRITE  
NOP  
NOP  
NOP  
NOP  
Bank  
Col n  
Bank  
Col o  
tDQSS (max)  
DQS  
DQ  
DI  
n
DI  
o
DM  
DI n, etc. = Data In for column n, etc.  
3 subsequent elements of Data In are applied in the programmed order following DI n  
3 subsequent elements of Data In are applied in the programmed order following DI o  
Non-interrupted bursts of 4 are shown  
Don’t Care  
Confidential  
39  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 20. Random Write Cycles Max tDQSS  
T8  
T9  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
Bank  
Col r  
Bank  
Col n  
Bank  
Col o  
Bank  
Col p  
Bank  
Col q  
tDQSS (max)  
DQS  
DQ  
DI  
n
DI  
n'  
DI  
o
DI  
o'  
DI  
p'  
DI  
p
DI  
q'  
DI  
q
DM  
DI n, etc. = Data In for column n, etc.  
n', etc. = the next Data In following DI n, etc. according to the programmed burst order  
Programmed Burst Length 2, 4, or 8 in cases shown  
If burst of 4 or 8, the burst would be truncated  
Each WRITE command may be to any bank and may be to the same or different devices  
Don’t Care  
Confidential  
40  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 21. Write to Read Max tDQSS Non Interrupting  
T12  
T8  
T9  
T10 T11  
NOP  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
WRITE  
READ  
NOP  
NOP  
NOP  
NOP  
tWTR  
Bank  
Col o  
Bank  
Col n  
ADDRESS  
CL=3  
tDQSS (max)  
DQS  
DQ  
DI  
n
DM  
DI n, etc. = Data In for column n, etc.  
1 subsequent elements of Data In are applied in the programmed order following DI n  
A non-interrupted burst of 2 is shown  
tWTR is referenced from the first positive CK edge after the last Data In Pair  
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
The READ and WRITE commands are to the same devices but not necessarily to the same bank  
Don’t Care  
Confidential  
41  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 22. Write to Read Max tDQSS Interrupting  
T4  
T8  
T9  
T10  
T11  
T12  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
READ  
NOP  
NOP  
NOP  
NOP  
tWTR  
Bank  
Col o  
Bank  
Col n  
CL=3  
tDQSS (max)  
DQS  
DQ  
DI  
n
DM  
DI n, etc. = Data In for column n, etc.  
1 subsequent elements of Data In are applied in the programmed order following DI n  
An interrupted burst of 8 is shown, 2 data elements are written  
tWTR is referenced from the first positive CK edge after the last Data In Pair  
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
The READ and WRITE commands are to the same devices but not necessarily to the same bank  
Don’t Care  
Confidential  
42  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 23. Write to Read Max tDQSS, ODD Number of Data, Interrupting  
T8  
T9  
T10  
T11  
T12  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
WRITE  
READ  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
tWTR  
Bank  
Col o  
Bank  
Col n  
CL=3  
tDQSS (max)  
DQS  
DQ  
DI  
n
DM  
DI n = Data In for column n  
An interrupted burst of 8 is shown, 1 data elements are written  
tWTR is referenced from the first positive CK edge after the last Data In Pair (not the last desired  
Data In element)  
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
The READ and WRITE commands are to the same devices but not necessarily to the same bank  
Don’t Care  
Confidential  
43  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 24. Write to Precharge Max tDQSS, NON- Interrupting  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
PRE  
NOP  
tWR  
Bank a,  
Col n  
Bank  
(a or al)  
tRP  
tDQSS (max)  
DQS  
DQ  
DI  
n
DM  
DI n = Data In for column n  
1 subsequent elements of Data In are applied in the programmed order following DI n  
A non-interrupted burst of 2 is shown  
tWR is referenced from the first positive CK edge after the last Data In Pair  
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
Don’t Care  
Confidential  
44  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 25. Write to Precharge Max tDQSS, Interrupting  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
PRE  
NOP  
NOP  
NOP  
tWR  
Bank a,  
Col n  
Bank  
(a or all)  
tRP  
tDQSS (max)  
*2  
DQS  
DQ  
DI  
n
DM  
*1  
*1  
*1  
*1  
DI n = Data In for column n  
An interrupted burst of 4 or 8 is shown, 2 data elements are written  
tWR is referenced from the first positive CK edge after the last Data In Pair  
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
*1 = can be don't care for programmed burst length of 4  
*2 = for programmed burst length of 4, DQS becomes don't care at this point  
Don’t Care  
Confidential  
45  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 26. Write to Precharge Max tDQSS ODD Number of Data Interrupting  
T8  
T9  
T10  
T11  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
CK  
CK  
COMMAND  
ADDRESS  
WRITE  
NOP  
NOP  
NOP  
NOP  
PRE  
tWR  
Bank a,  
Col n  
Bank  
(a or all)  
tRP  
tDQSS (max)  
*2  
DQS  
DQ  
DI  
n
DM  
*1  
*1  
*1  
*1  
DI n = Data In for column n  
An interrupted burst of 4 or 8 is shown, 1 data element is written  
tWR is referenced from the first positive CK edge after the last Data In Pair  
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)  
*1 = can be don't care for programmed burst length of 4  
*2 = for programmed burst length of 4, DQS becomes don't care at this point  
Don’t Care  
Confidential  
46  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 27. Precharge Command  
CK  
CK  
CKE  
CS  
HIGH  
RAS  
CAS  
WE  
A0-A9,  
A11,A12  
ALL BANKS  
A10  
ONE BANK  
BA  
BA0,1  
BA= Bank Address (if A10 is  
LOW, otherwise don't care)  
Don’t Care  
Confidential  
47  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 28. Power-Down  
Tn+3 Tn+4 Tn+5 Tn+6  
T4  
T0  
T1  
T2  
T3  
Tn Tn+1 Tn+2  
CK  
CK  
tIS  
tIS  
CKE  
VALID  
VALID  
COMMAND  
NOP  
NOP  
Exit power-down  
mode  
Enter power-down  
mode  
No column access  
in progress  
Don’t Care  
Figure 29. Clock Frequency Change in Precharge  
Ty+1  
Ty+3  
Ty+4  
T0  
T1  
T2  
T4  
Tx  
Tx+1  
Ty  
Ty+2  
Tz  
CK  
CK  
DLL  
RESET  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
CMD  
CKE  
tIS  
Frequency Change  
Occurs here  
tRP  
Stable new clock  
Before power down  
exit  
Minmum 2 clocks  
Required before  
Changing frequency  
200 Clocks  
Confidential  
48  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 30. Data input (Write) Timing  
tDQSH  
tDQSL  
DQS  
DQ  
tDS  
DI  
n
tDH  
tDS  
DM  
tDH  
DI n = Data In for column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data In are applied in the programmed order  
following DI n  
Don’t Care  
Figure 31. Data Output (Read) Timing  
tCL  
tCH  
CK  
CK  
DQS  
DQ  
tDQSQ  
max  
tDQSQ  
max  
tQH  
tQH  
Burst Length = 4 in the case shown  
Confidential  
49  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 32. Initialize and Mode Register Sets  
VDD  
VDDQ  
tVDT>=0  
VTT  
(system*)  
VREF  
tCK  
tCH tCL  
CK  
CK  
tIS tIH  
CKE  
tIS tIH  
MRS  
ACT  
AR  
AR  
MRS  
PRE  
PRE  
EMRS  
NOP  
COMMAND  
DM  
tIS tIH  
A0-A9,  
A11,A12  
CODE  
CODE  
CODE  
CODE  
CODE  
RA  
RA  
BA  
ALL BANKS  
tIS tIH  
ALL BANKS  
A10  
CODE  
tIS tIH  
t
IS tIH  
tIS tIH  
BA0=H  
BA1=L  
BA0=L  
BA1=L  
BA0=L  
BA1=L  
BA0,BA1  
High-Z  
DQS  
DQ  
High-Z  
**tMRD  
**tMRD  
tRP  
200 cycles of CK**  
tRFC  
tRFC  
**tMRD  
T=200µs  
Extended mode  
Register set  
Load Mode  
Register,  
(with A8=L)  
Power-up:  
VDD and  
CLK stable  
Load Mode  
Register,  
Reset DLL (with A8=H)  
*=VTT is not applied directly to the device, however tVTD must be greater than or equal to zero to avoid device latch-up  
**=tMRD is required before any command can be applied, and 200 cycles of CK are required before any executable command can be applied  
The two Auto Refresh commands may be moved to follow the first MRS but precede the second PRECHARGE ALL command  
Don’t Care  
Confidential  
50  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 33. Power Down Mode  
tCK  
tCH  
tCL  
CK  
CK  
tIS tIH  
tIS  
tIS  
CKE  
tIS tIH  
VALID*  
VALID  
VALID  
COMMAND  
NOP  
NOP  
tIS tIH  
VALID  
ADDR  
DQS  
DQ  
DM  
Enter  
power-down mode  
Exit  
power-down mode  
No column accesses are allowed to be in progress at the time Power-Down is entered  
*=If this command is a PRECHARGE ALL (or if the device is already in the idle state) then the Power-Down  
mode shown is Precharge Power Down. If this command is an ACTIVE (or if at least one row is already active)  
then the Power-Down mode shown is active Power Down.  
Don’t Care  
Confidential  
51  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 34. Auto Refresh Mode  
tCK  
tCH tCL  
CK  
CK  
tIS  
tIH  
CKE  
VALID  
VALID  
tIS tIH  
NOP  
ACT  
RA  
AR  
NOP  
AR  
NOP  
NOP  
PRE  
NOP  
NOP  
COMMAND  
A0-A9  
A11,A12  
A10  
RA  
RA  
BA  
ALL BANKS  
ONE BANKS  
tIS tIH  
*Bank(s)  
BA0,BA1  
DQS  
DQ  
DM  
tRFC  
tRP  
tRFC  
* = Don't Care, if A10 is HIGH at this point; A10 must be HIGH if more than one bank is active (i.e., must precharge all active banks)  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH  
NOP commands are shown for ease of illustration; other valid commands may be possible after tRFC  
DM, DQ and DQS signals are all Don't Care/High-Z for operations shown  
Don’t Care  
Confidential  
52  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 35. Self Refresh Mode  
tCK  
Clock must be stable before  
Exiting Self Refresh mode  
tCH  
tCL  
CK  
CK  
tIS tIH  
tIS  
tIS  
CKE  
tIS tIH  
NOP  
VALID  
COMMAND  
NOP  
AR  
tIS tIH  
VALID  
ADDR  
DQS  
DQ  
DM  
tXSNR/  
tXSRD**  
Exit Self Refresh  
mode  
tRP*  
Enter Self Refresh  
mode  
* = Device must be in the All banks idlestate prior to entering Self Refresh mode  
** = tXSNR is required before any non-READ command can be applied, and tXSRD (200 cycles of CK) is  
required before a READ command can be applied.  
Don’t Care  
Confidential  
53  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 36. Read without Auto Precharge  
tCK  
tCH tCL  
CK  
CK  
tIH  
tIS  
tIH  
CKE  
VALID  
NOP  
VALID  
NOP  
VALID  
NOP  
tIS tIH  
NOP  
NOP  
ACT  
RA  
NOP  
READ  
PRE  
NOP  
COMMAND  
A0-A9  
tIS tIH  
Col n  
RA  
RA  
A11,A12  
A10  
tIS tIH  
ALL BANKS  
ONE BANKS  
DIS AP  
tIS tIH  
Bank X  
Bank X  
*Bank X  
BA0,BA1  
CL=3  
tRP  
DM  
Case 1:  
tAC/tDQSCK=min  
tDQSCK  
tRPST  
min  
tRPRE  
DQS  
DQ  
tLZ  
min  
DO  
n
tLZ  
tAC  
min  
min  
Case 2:  
tAC/tDQSCK=max  
tDQSCK  
tRPST  
max  
tRPRE  
DQS  
tLZ  
tHZ  
max  
max  
DO  
DQ  
n
tLZ  
tAC  
max  
max  
DO n = Data Out from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DO n  
DIS AP = Disable Autoprecharge  
* =Don't Care, if A10 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks  
Don’t Care  
Oct. /2014  
Confidential  
54  
Rev.2.0  
AS4C64M8D1  
Figure 37. Read with Auto Precharge  
tCK  
tCH tCL  
CK  
CK  
tIH  
tIS  
tIH  
CKE  
VALID  
NOP  
VALID  
NOP  
VALID  
NOP  
tIS tIH  
NOP  
NOP  
ACT  
RA  
NOP  
READ  
NOP  
NOP  
COMMAND  
A0-A9  
tIS tIH  
Col n  
A11,A12  
A10  
RA  
RA  
EN AP  
tIS tIH  
tIS  
tIH  
Bank X  
Bank X  
BA0,BA1  
CL=3  
tRP  
DM  
Case 1:  
tAC/tDQSCK=min  
tDQSCK  
tRPST  
min  
tRPRE  
DQS  
DQ  
tLZ  
min  
DO  
n
tLZ  
tAC  
min  
min  
Case 2:  
tAC/tDQSCK=max  
tDQSCK  
tRPST  
max  
tRPRE  
DQS  
tLZ  
tHZ  
max  
max  
DO  
n
DQ  
tLZ  
tAC  
max  
max  
DO n = Data Out from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DO n  
EN AP = Enable Autoprecharge  
ACT = ACTIVE, RA = Row Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
The READ command may not be issued until tRAP has been satisfied. If Fast Autoprecharge is supported, tRAP = tRCD, else the READ  
may not be issued prior to tRASmin (BL*tCK/2)  
Don’t Care  
Confidential  
55  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 38. Bank Read Access  
tCK  
tCH tCL  
CK  
CK  
tIS tIH  
CKE  
tIS tIH  
NOP  
ACT  
NOP  
NOP  
NOP  
NOP  
READ  
Col n  
PRE  
NOP  
NOP  
ACT  
COMMAND  
A0-A9  
tIS tIH  
RA  
RA  
RA  
A11,A12  
RA  
RA  
tIS tIH  
ALL BANKS  
ONE BANKS  
A10  
RA  
DIS AP  
tIS  
tIH  
Bank X  
Bank X  
Bank X  
*Bank X  
BA0,BA1  
tRC  
tRAS  
CL=3  
tRCD  
tRP  
DM  
Case 1:  
tAC/tDQSCK=min  
tDQSCK  
min  
tRPST  
tRPRE  
DQS  
DQ  
tLZ  
DO  
n
min  
tLZ  
tAC  
min  
min  
Case 2:  
tAC/tDQSCK=max  
tDQSCK  
max  
tRPST  
tRPRE  
DQS  
tHZ  
max  
tLZ  
max  
DO  
n
DQ  
tLZ  
tAC  
max  
max  
DO n = Data Out from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DO n  
DIS AP = Disable Autoprecharge  
* = Don't Care, if A10 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Note that tRCD > tRCD MIN so that the same timing applies if Autoprecharge is enabled (in which case tRAS  
would be limiting)  
Don’t Care  
Confidential  
56  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 39. Write without Auto Precharge  
tCK  
tCH tCL  
CK  
CK  
tIH  
tIS  
tIH  
CKE  
VALID  
tIS tIH  
WRITE  
NOP  
NOP  
PRE  
NOP  
NOP  
ACT  
RA  
NOP  
NOP  
NOP  
COMMAND  
A0-A9  
tIS tIH  
Col n  
A11,A12  
A10  
RA  
RA  
BA  
tIS tIH  
ALL BANKS  
ONE BANKS  
DIS AP  
tIS tIH  
Bank X  
*Bank X  
BA0,BA1  
Case 1:  
tRP  
tDSH  
tDQSH  
tDSH  
tDQSS  
tWR  
tDQSS=min  
tWPST  
DQS  
tDQSL  
tWPRES  
tWPRE  
DI  
n
DQ  
DM  
tDSS  
tDQSH  
tDSS  
tWPST  
Case 2:  
tDQSS=max  
tDQSS  
DQS  
tWPRES  
tDQSL  
tWPRE  
DI  
n
DQ  
DM  
DI n = Data In from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data In are provided in the programmed order following DI n  
DIS AP = Disable Autoprecharge  
*=Don't Care, if A10 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the +  
25% window of the corresponding positive clock edge  
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks  
Don’t Care  
Oct. /2014  
Confidential  
57  
Rev.2.0  
AS4C64M8D1  
Figure 40. Write with Auto Precharge  
tCK  
tCH tCL  
CK  
CK  
tIS  
tIH  
CKE  
VALID  
NOP  
VALID  
NOP  
VALID  
tIS tIH  
ACT  
RA  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
A0-A9  
tIS tIH  
Col n  
A11,A12  
RA  
DIS AP  
RA  
BA  
A10  
tIS  
tIH  
Bank X  
BA0,BA1  
tDAL  
Case 1:  
tDQSS=min  
tDSH  
tDQSH  
tDSH  
tDQSS  
tWPST  
DQS  
tWPRES  
tWPRE  
tDQSL  
DI  
n
DQ  
DM  
tDSS  
tDQSH  
tDSS  
Case 2:  
tDQSS=max  
tDQSS  
tWPST  
DQS  
tWPRES  
tDQSL  
tWPRE  
DI  
n
DQ  
DM  
DI n = Data In from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DI n  
EN AP = Enable Autoprecharge  
ACT = ACTIVE, RA = Row Address, BA = Bank Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the + 25%  
window of the corresponding positive clock edge  
Don’t Care  
Confidential  
58  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 41. Bank Write Access  
tCK  
tCH tCL  
CK  
CK  
tIS  
tIH  
CKE  
tIS tIH  
WRITE  
Col n  
NOP  
NOP  
PRE  
NOP  
NOP  
NOP  
ACT  
NOP  
NOP  
COMMAND  
A0-A9  
tIS tIH  
RA  
RA  
RA  
A11,A12  
tIS tIH  
ALL BANKS  
A10  
DIS AP  
ONE BANK  
*Bank X  
tIS tIH  
Bank X  
Bank X  
BA0,BA1  
tRAS  
tRCD  
tWR  
Case 1:  
tDQSS=min  
tDSH  
tDQSH  
tDSH  
tWPST  
tDQSS  
DQS  
tWPRES  
tWPRE  
tDQSL  
DI  
n
DQ  
DM  
tDSS  
Case 2:  
tDSS  
tWPST  
tDQSH  
tDQSS=max  
tDQSS  
DQS  
tWPRES  
tDQSL  
tWPRE  
DI  
n
DQ  
DM  
DI n = Data In from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data Out are provided in the programmed order following DI n  
DIS AP = Disable Autoprecharge  
*=Don't Care, if A10 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the + 25%  
window of the corresponding positive clock edge  
Don’t Care  
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks  
Confidential  
59  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 42. Write DM Operation  
tCK  
tCH tCL  
CK  
CK  
tIS  
tIH  
CKE  
VALID  
tIS tIH  
WRITE  
NOP  
NOP  
PRE  
NOP  
NOP  
ACT  
RA  
NOP  
NOP  
NOP  
COMMAND  
A0-A9  
tIS tIH  
Col n  
A11,A12  
A10  
RA  
RA  
BA  
tIS tIH  
ALL BANKS  
ONE BANKS  
DIS AP  
tIS tIH  
Bank X  
BA0,BA1  
Case 1:  
*Bank X  
tRP  
tDSH  
tDQSH  
tDSH  
tDQSS  
tDQSS=min  
tWR  
tWPST  
DQS  
tDQSL  
tWPRES  
tWPRE  
DI  
n
DQ  
DM  
tDSS  
tDQSH  
tDSS  
tWPST  
Case 2:  
tDQSS=max  
tDQSS  
DQS  
tWPRES  
tDQSL  
tWPRE  
DI  
n
DQ  
DM  
DI n = Data In from column n  
Burst Length = 4 in the case shown  
3 subsequent elements of Data In are provided in the programmed order following DI n  
DIS AP = Disable Autoprecharge  
*=Don't Care, if A10 is HIGH at this point  
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address  
NOP commands are shown for ease of illustration; other commands may be valid at these times  
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the + 25%  
window of the corresponding positive clock edge  
Don’t Care  
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks  
Confidential  
60  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 43. 66 Pin TSOP II Package Outline Drawing Information  
Units: mm  
D
C
θ
b
S
e
F
(TYP)  
Dimension in mm  
Dimension in inch  
Symbol  
Min  
Nom  
Max  
Min  
Nom  
Max  
---  
---  
1.2  
---  
---  
0.047  
0.008  
0.043  
0.018  
---  
A
A1  
A2  
b
e
C
D
E
HE  
L
L1  
F
0.05  
0.9  
---  
0.2  
0.002  
0.035  
0.009  
---  
---  
1.0  
1.1  
0.039  
---  
0.22  
---  
---  
0.45  
---  
0.65  
0.125  
22.22  
10.16  
11.76  
0.5  
0.026  
0.005  
0.875  
0.4  
0.095  
22.09  
10.03  
11.56  
0.40  
---  
0.21  
22.35  
10.29  
11.96  
0.6  
0.004  
0.87  
0.395  
0.455  
0.016  
---  
0.008  
0.88  
0.405  
0.471  
0.024  
---  
0.463  
0.02  
0.032  
0.01  
---  
0.8  
---  
---  
0.25  
---  
---  
---  
---  
°
°
°
°
8
θ
0
8
0
S
---  
---  
0.71  
---  
---  
---  
---  
0.028  
---  
---  
y
0.10  
0.004  
Confidential  
61  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Figure 44. BGA 60ball package Outline Drawing Information  
Pin A1 index  
Top View  
Side View  
Bottom View  
DETAIL : "A"  
Dimension (inch)  
Nom  
Dimension (mm)  
Symbol  
Min  
--  
Max  
0.047  
0.016  
0.031  
0.009  
0.319  
0.516  
--  
Min  
--  
Nom  
--  
Max  
1.20  
0.40  
0.8  
0.23  
8.10  
13.10  
--  
A
A1  
A2  
A3  
D
--  
0.012  
--  
0.014  
--  
0.30  
--  
0.35  
--  
0.005  
0.311  
0.508  
--  
0.007  
0.315  
0.512  
0.252  
0.433  
0.039  
0.031  
0.018  
0.126  
0.031  
0.02  
0.13  
7.90  
12.90  
--  
0.18  
8.00  
13.00  
6.40  
11.00  
1.00  
0.80  
0.45  
3.20  
0.80  
0.50  
--  
E
D1  
E1  
e1  
e2  
b
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.016  
--  
0.020  
--  
0.40  
--  
0.50  
--  
F
SD  
SE  
D2  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.081  
--  
2.05  
Confidential  
62  
Rev.2.0  
Oct. /2014  
AS4C64M8D1  
Alliance Memory Inc. 551 Taylor Way, San Carlos, CA 94070  
TEL: (650) 610-6800 FAX: (650) 620-9211  
Alliance Memory Inc. reserves the right to change products or specification without notice.  
Confidential  
63  
Rev.2.0  
Oct. /2014  

相关型号:

AS4C64M8D2

Fully synchronous operation
ALSC

AS4C64M8D2-25BCN

Fully synchronous operation
ALSC

AS4C64M8D2-25BIN

Fully synchronous operation
ALSC

AS4C8M16D1

Fully synchronous operation
ALSC

AS4C8M16D1-5BCN

Internal pipeline architecture
ALSC

AS4C8M16D1-5BIN

60-ball FBGA PACKAGE
ALSC

AS4C8M16D1-5TCN

Fully synchronous operation
ALSC

AS4C8M16D1-5TIN

Fully synchronous operation
ALSC

AS4C8M16D1A-5TCN

Fully synchronous operation
ALSC

AS4C8M16D1A-5TIN

Fully synchronous operation
ALSC

AS4C8M16S

Programmable Mode registers
ALSC

AS4C8M16S-6BIN

Programmable Mode registers
ALSC