AS4LC1M16S0 [ALSC]

3.3V 2M × 8/1M × 16 CMOS synchronous DRAM; 3.3V 2M × 8 / 1M × 16的CMOS同步DRAM
AS4LC1M16S0
型号: AS4LC1M16S0
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

3.3V 2M × 8/1M × 16 CMOS synchronous DRAM
3.3V 2M × 8 / 1M × 16的CMOS同步DRAM

动态存储器
文件: 总29页 (文件大小:720K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS4LC2M8S1  
AS4LC2M8S0  
AS4LC1M16S1  
AS4LC1M16S0  
May 2001  
Preliminary  
®
3.3V 2M × 8/1M × 16 CMOS synchronous DRAM  
Features  
• Organization  
- 1,048,576 words × 8 bits × 2 banks (2M × 8)  
11 row, 9 column address  
- 524,288 words × 16 bits × 2 banks (1M × 16)  
11 row, 8 column address  
• All signals referenced to positive edge of clock, fully  
synchronous  
• Dual internal banks controlled by A11 (bank select)  
• High speed  
- 143/125/100 MHz  
- 7/8/10 ns clock access time  
• Low power consumption  
- Active: 576 mW max  
- Standby: 7.2 mW max, CMOS I/O  
• 2048 refresh cycles, 32 ms refresh interval  
• 4096 refresh cycles, 64 ms refresh interval  
• Auto refresh and self refresh  
• PC100 functionality  
• Automatic and direct precharge including concurrent  
autoprecharge  
• Burst read, write/Single write  
• Random column address assertion in every cycle, pipelined  
operation  
• LVTTL compatible I/O  
• 3.3V power supply  
• JEDEC standard package, pinout and function  
- 400 mil, 44-pin TSOP 2 (2M × 8)  
- 400 mil, 50-pin TSOP 2 (1M × 16)  
• Read/write data masking  
• Programmable burst length (1/2/4/8/ full page)  
• Programmable burst sequence (sequential/interleaved)  
• Programmable CAS latency (1/2/3)  
Pin arrangement  
Pin designation  
TSOP 2  
50  
TSOP 2  
Pin(s)  
Description  
V
V
SS  
V
V
SS  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
CC  
1
CC  
DQ0  
DQ1  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DQ15  
DQ14  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
DQ0  
DQ7  
2
DQM (2M × 8)  
UDQM/LDQM (1M × 16)  
V
V
3
SSQ  
SSQ  
Output disable/write mask  
V
V
SSQ  
SSQ  
DQ6  
4
DQ1  
DQ13  
V
V
DQ2  
DQ3  
5
CCQ  
CCQ  
DQ12  
RA0 – 10  
Address inputs CA0 – 7 (×16)  
CA0 – 8 (×8)  
DQ2  
DQ5  
6
V
V
V
V
CCQ  
DQ4  
DQ5  
CCQ  
7
SSQ  
SSQ  
A0 to A10  
A11  
DQ11  
DQ10  
DQ3  
DQ4  
8
V
V
CCQ  
NC  
9
CCQ  
V
V
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
SSQ  
SSQ  
DQ6  
DQ7  
DQ9  
DQ8  
NC  
WE  
CAS  
NC  
DQM  
CLK  
Bank address (BA)  
V
V
CCQ  
CCQ  
DQ0 to DQ7 (2M × 8)  
DQ0 to DQ15 (1M × 16)  
LDQM  
Input/output  
NC  
UDQM  
CLK  
CKE  
NC  
A9  
A8  
A7  
A6  
A5  
RAS  
CS  
A11  
A10  
A0  
A1  
A2  
A3  
CKE  
NC  
A9  
A8  
A7  
A6  
A5  
A4  
WE  
CAS  
RAS  
CS  
A11  
A10  
A0  
A1  
A2  
A3  
RAS  
CAS  
Row address strobe  
Column address strobe  
Write enable  
WE  
V
V
CC  
SS  
CS  
Chip select  
23  
24  
25  
28  
27  
26  
A4  
VCC, VCCQ  
VSS, VSSQ  
CLK  
Power (3.3V 0.3V)  
Ground  
V
V
CC  
SS  
LEGEND  
2M × 8  
1M × 16  
512K × 16 × 2 banks  
2K/4K  
Configuration  
Refresh Count  
Row Address  
Bank Address  
Column Address  
1M × 8 × 2 banks  
2K/4K  
Clock input  
(A0 – A10)  
2 (BA)  
512 (A0 – A8)  
(A0 – A10)  
2 (BA)  
256 (A0 – A7)  
CKE  
Clock enable  
Selection guide  
Symbol  
fMax  
tAC  
–7  
143  
5.5  
2
–8  
125  
6
–10  
100  
6
Unit  
MHz  
ns  
Bus frequency (CL = 3)  
Maximum clock access time (CL = 3)  
Minimum input setup time  
Minimum input hold time  
tS  
2
2
ns  
tH  
1.0  
70  
1.0  
80  
1.0  
80  
ns  
Row cycle time (CL = 3, BL = 1)  
tRC  
ns  
Maximum operating current ([×16], RD or  
ICC1  
130  
1
100  
1
100  
mA  
mA  
WR, CL = 3), BL = 2  
Maximum CMOS standby current, self refresh  
ICC6  
1
5/21/01; v.1.1  
Alliance Semiconductor  
P. 1 of 29  
Copyright ©Alliance Semiconductor. All rights reserved.  
AS4LC2M8S1  
AS4LC1M16S1  
®
Functional description  
The AS4LC2M8S1, AS4LC2M8S0, and AS4LC1M16S1, AS4LC1M16S0 are high-performance 16-megabit CMOS Synchronous Dynamic  
Random Access Memory (SDRAM) devices organized as 1,048,576 words × 8 bits × 2 banks (2048 rows × 512 columns) and 524,288  
words × 16 bits × 2 banks (2048 rows × 256 columns), respectively. Very high bandwidth is achieved using a pipelined architecture where  
all inputs and outputs are referenced to the rising edge of a common clock. Programmable burst mode can be used to read up to a full page  
of data (512 bytes for 2M × 8 and 256 bytes for 1M × 16) without selecting a new column address.  
The operational advantages of an SDRAM are as follows: (1) the ability to synchronously output data at a high clock frequency with  
automatic increments of column-address (burst access); (2) bank-interleaving, which hides precharge time and attains seamless operation;  
and (3) the capability to change column-address randomly on every clock cycle during burst access.  
This SDRAM product also features a programmable mode register, allowing users to select read latency as well as burst length and type  
(sequential or interleaved). Lower latency improves first data access in terms of CLK cycles, while higher latency improves maximum  
frequency of operation. This feature enables flexible performance optimization for a variety of applications.  
SDRAM commands and functions are decoded from control inputs. Basic commands are as follows:  
• Mode register set  
• Deactivate bank  
• Select column; read  
• Self-refresh  
• Deactivate all banks  
• Select row; activate bank  
• CBR refresh  
• Select column; write  
• Deselect; power down  
• Auto precharge with read/write  
Both devices are available in 400-mil plastic TSOP type 2 package. The AS4LC2M8S1/ AS4LC2M8S0 have 44 pins, and the AS4LC1M16S1/  
AS4LC1M16S0 have 50 pins. All devices operate with a power supply of 3.3V 0.3V. Multiple power and ground pins are provided for low  
switching noise and EMI. Inputs and outputs are LVTTL compatible.  
Logic block diagram  
CLK  
Clock generator  
CKE  
A11  
Bank select  
A[10:0]  
Row  
address  
buffer  
Bank A†  
16 (2048  
512K  
512K  
×
×
×
256  
256  
×
×
16)  
16)  
Mode register  
Refresh  
counter  
Bank B†  
16 (2048  
×
Sense amplifier  
DQMU/DQML  
CS  
Column decoder and  
latch circuit  
Column  
address  
buffer  
RAS  
CAS  
Data control circuit  
DQ  
Burst  
counter  
WE  
† For AS4LC2M8S1/AS4LC2M8S0, Banks A and B will read 1M × 8 (2048 × 512 × 8).  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 2 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Pin descriptions  
Pin  
Name  
Description  
CLK  
System clock  
All operations synchronized to rising edge of CLK.  
Controls CLK input. If CKE is high, the next CLK rising edge is valid.  
If CKE is low, the internal clock is suspended from the next clock  
cycle and the burst address and output states are frozen. If both banks  
are idle and CKE goes low, the SDRAM will enter power down mode  
from the next clock cycle. When in power down mode and CKE is  
low, no input commands will be acknowledged. To exit power down  
mode, raise CKE high before the rising edge of CLK.  
CKE  
Clock enable  
Enables or disables device operation by masking or enabling all inputs  
except CLK, CKE, UDQM/LDQM (×16), DQM (×8).  
CS  
Chip select  
Address  
Row and column addresses are multiplexed. Row address: A0~A10.  
Column address (2M × 8): A0~A8. Column address (1M × 16):  
A0~A7.  
A0~A10  
Memory cell array is organized in 2 banks. A11 selects which internal  
bank will be active. A11 is latched during bank activate, read, write,  
mode register set, and precharge operations. Asserting A11 low  
selects Bank A; A11 high selects Bank B.  
A11  
Bank select  
RAS  
CAS  
WE  
Row address strobe  
Column address strobe  
Write enable  
Command inputs.  
RAS, CAS, and WE, along with CS, define the command being  
entered.  
Controls I/O buffers. When DQM is high, output buffers are disabled  
during a read operation and input data is masked during a write  
operation. DQM latency is 2 clocks for Read and 0 clocks for Write.  
For ×16, LDQM controls the lower byte (DQ0 – 7) and UDQM  
controls the upper byte (DQ8 – 15). UDQM and LDQM are  
considered to be in the same state when referred to jointly as DQM.  
×8: DQM  
×16: UDQM, LDQM  
Output disable/ write mask  
DQ0~DQ15  
VCC/VSS  
Data input/output  
Data inputs/outputs are multiplexed.  
Power supply/ground  
Power and ground for core logic and input buffers.  
VCCQ/VSSQ  
Data output power/ground Power and ground for data output buffers.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 3 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Operating modes  
Command  
CKEn-1 CKEn  
CS  
L
RAS  
L
CAS  
L
WE DQM A11  
A10 A9–A0 Note  
Mode register set  
H
H
H
X
H
L
L
X
X
X
X
X
X
Op code  
1,2  
3
Auto refresh  
L
L
L
H
H
H
X
X
X
X
X
Entry  
Exit  
L
L
L
3
Self  
refresh  
L
H
X
H
X
3
L
H
X
X
H
L
3
Bank activate  
H
H
L
H
H
V*  
V
row address  
Auto precharge disable  
Auto precharge enable  
Auto precharge disable  
Auto precharge enable  
L
H
L
4
4,5  
4
column  
address  
Read  
L
H
L
H
X
column  
address  
Write  
H
H
H
X
X
X
L
L
L
H
H
L
L
L
L
L
X
X
X
V
H
4,5  
6
Burst stop  
Precharge  
H
H
X
Selected bank  
Both banks  
V
X
L
X
H
H
L
X
V
X
X
H
X
H
X
X
H
X
V
X
X
H
X
H
X
X
H
X
V
X
X
H
X
H
X
X
H
X
X
X
X
X
X
X
V
X
X
Entry  
Exit  
H
L
L
H
L
Clock suspend or  
active power down  
X
X
H
L
Entry  
H
Precharge power  
down mode  
X
H
L
Exit  
L
H
X
X
DQM  
H
H
X
H
L
X
X
X
7
No operation command  
X
* V = Valid.  
1
OP= operation code.  
A0~A11 see page 5.  
2
3
MRS can be issued only when both banks are precharged and no data burst is ongoing. A new command can be issued 2 clock cycles after MRS.  
Auto refresh functions similarly to CBR DRAM refresh. However, precharge is automatic.  
Auto/self refresh can only be issued after both banks are precharged.  
4
5
A11: bank select address. If low during read, write, row active and precharge, bank A is selected.  
If high during those states, bank B is selected. Both banks are selected and A11 is ignored if A10 is high during row precharge.  
A new read/write/deac command to the same bank cannot be issued during a burst read/write with auto precharge.  
A new row active command can be issued after t from the end of the burst.  
RP  
6
7
Burst stop command valid at every burst length except full-page burst.  
DQM sampled at positive edge of CLK. Data-in may be masked at every CLK (Write DQM latency is 0).  
Data-out mask is active 2 CLK cycles after issuance. (Read DQM latency is 2).  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 4 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Mode register fields  
Register programmed with MRS  
Address  
Function  
A11~A10 A9  
RFU†  
WBL  
A8  
A7  
A6  
A5  
CAS latency  
A4  
A3  
BT  
A2  
A1  
A0  
TM  
Burst length  
RFU = 0 during MRS cycle.  
Write burst length  
Burst type  
A9  
Length  
A3  
0
1
Type  
Sequential  
Interleaved  
Programmed  
burst length  
0
1
Single burst  
Test mode  
A8 A7  
Type  
Mode register set  
Reserved  
0
0
1
1
0
1
0
1
Reserved  
Reserved  
CAS latency  
Burst length  
A6 A5  
A4  
0
1
0
1
Latency  
Reserved  
A2  
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
BT = 0  
BT = 1  
0
0
0
0
1
0
0
1
1
X
1
2
4
8
1
2
4
8
1
2
3
X
Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Full page Reserved  
Burst sequence (burst length = 4)  
Initial address  
A1  
0
0
1
1
A0  
0
1
0
1
Sequential  
Interleave  
0
1
2
3
1
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
0
1
3
2
1
0
2
3
0
Burst sequence (burst length = 8)  
Initial address  
A2  
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
Sequential  
Interleave  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
0
3
2
5
4
7
6
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
2
3
4
5
6
7
0
3
4
5
6
7
0
1
1
2
3
4
5
6
7
5/21/01; v.1.1  
Alliance Semiconductor  
P. 5 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Recommended operating conditions  
Parameter  
Symbol  
VCC,VCCQ  
GND  
VIH  
Min  
3.0  
0.0  
2.0  
–0.3†  
2.4  
Nominal  
Max  
3.6  
Unit  
V
Notes  
3.3  
0.0  
Supply voltage  
Input voltage  
0.0  
V
VCC + 0.3  
0.8  
V
8
8
VIL  
V
VOH  
V
Output voltage‡  
VOL  
0.4  
V
Ambient operating temperature  
TA  
0
70  
°C  
V
Min = –1.5V for pulse widths less than 5 ns.  
IL  
I
= –2mA, and I = 2mA.  
OH  
OL  
Recommended operating conditions apply throughout this document unless otherwise specified.  
Absolute maximum ratings  
Parameter  
Symbol  
VIN,VOUT  
VCC,VCCQ  
TSTG  
Min  
–1.0  
–1.0  
–55  
Max  
Unit  
V
Notes  
Input voltage  
+4.6  
+4.6  
+150  
1
Power supply voltage  
V
Storage temperature (plastic)  
Power dissipation  
°C  
W
PD  
Short circuit output current  
IOUT  
50  
mA  
Note: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect reliability.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 6 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
DC electrical characteristics  
–7  
–8  
–10  
Parameter  
Symbol  
IIL  
Test conditions  
0V VIN VCC,  
Pins not under test = 0V  
Min Max Min Max Min Max Unit Notes  
Input leakage current  
–5 +5 –5 +5 –5 +5 µA  
Output leakage  
current  
IOL  
DOUT disabled, 0V VOUT VCCQ  
–10 +10 –10 +10 –10 +10 µA  
1,3,  
Operating current  
(one bank active)  
tRC min, IO = 0mA,  
ICC1  
CL =3  
140  
100  
100 mA  
burst length = 1  
4,5  
Precharge standby  
current (power  
down mode)  
ICC2P  
CKE VIL(max), tCK = 15 ns  
CKE and CLK VIL(max), tCK = ∞  
CS VIH(min), CKE VIH(min),  
2.0  
2.0  
2.0  
2.0  
2.0 mA  
2.0 mA  
ICC2PS  
ICC2N  
t
CK = 15 ns; input signals changed  
30  
30  
30 mA 1,2,3  
Precharge standby  
current (non-power-  
down mode)  
once during 30 ns  
CLK VIL(max), CKE VIH(min),  
CK = ; input signals stable  
ICC2NS  
6
6
6
mA 1,2,3  
t
Active standby  
current (power-  
down mode)  
ICC3P  
CKE VIL(max), tCK = 15 ns  
CLK, CKE VIL(max), tCK = ∞  
2
2
2
2
2
2
mA 1,2,3  
mA 1,2,3  
ICC3PS  
CKE VIH(min), CS VIH(min),  
CK = 15 ns; input signals changed  
once during 30 ns  
Active standby  
ICC3N  
t
35  
35  
35 mA 1,2,3  
current (non-power-  
down mode, one  
bank active)  
CKE VIH(min), CLK VIL(max),  
ICC3NS  
10  
10  
10 mA 1,2,3  
t
CK = ; input signals stable  
IO = 0 mA  
Page burst  
All banks activated  
CL =3  
CL =2  
140  
125  
130  
115  
120  
1,2,  
Operating current  
(burst mode)  
100  
70  
ICC4  
mA  
3,5  
CL =1  
80  
70  
90  
t
CCD = tCCD(min)  
1,2,  
3,5  
Refresh current  
ICC5  
ICC6  
tRC tRC(min)  
100  
80 mA  
2
1
2
1
2
1
mA  
mA 15  
Self refresh current  
CKE 0.2 V  
CL = CAS latency.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 7 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
AC parameters common to all waveforms  
–7  
–8  
–10  
CAS  
Sym  
Parameter  
latency Min  
Max  
5.5  
8.5  
18  
1
Min  
Max  
6
Min  
Max  
6
Unit  
ns  
Notes  
6
3
2
1
2
0
tAC CLK to valid output delay  
7
6
ns  
6,8  
6,8  
7
22  
1
22  
1
ns  
tAH Address hold time  
tAS Address setup time  
tBDL Last data-in to burst stop  
ns  
2
2
ns  
7
0
0
tCK  
9
Read/write command to  
tCCD  
1
1
1
1
1
1
tCK  
tCK  
9
9
read/write command  
Last data-in to new  
tCDL  
column address delay  
tCH CLK high-level width  
2.75  
7
3
8
3
ns  
ns  
ns  
ns  
7
3
2
1
1000  
1000  
1000  
1000  
1000  
1000  
10  
12  
25  
1000  
1000  
1000  
10  
10  
10  
tCK CLK cycle time  
8.7  
20  
10  
25  
CKE to CLOCK disable or  
tCKED  
1
1
1
tCK  
power-down entry mode  
tCKH CKE hold time  
tCKS CKE setup time  
tCL CLK low-level width  
1
2
1
2
3
1
2
ns  
ns  
ns  
2.75  
3.5  
7
CS, RAS, CAS, WE, DQM  
hold time  
tCMH  
1
2
1
2
1
2
ns  
ns  
CS, RAS, CAS, WE, DQM  
setup time  
tCMS  
3
2
1
5
5
4
1
2
1
5
5
4
1
2
1
5
5
4
1
2
1
tCK  
tCK  
tCK  
ns  
5,11  
5,11  
5,11  
Data-in to ACTIVE  
command  
tDAL  
tDH Data in hold time  
tDPL Data in to PRECHARGE  
tDQD DQM to input data delay  
tCK  
tCK  
12  
9
DQM to data mask during  
writes  
tDQM  
0
0
0
tCK  
9
9
DQM to data high Z  
tDQZ  
2
2
0
2
2
0
2
2
0
tCK  
ns  
during reads  
tDS Data in setup time  
Write command to input  
data delay  
tDWD  
tCK  
9
3
2
1
5.5  
8.5  
18  
6
9
9
9
ns  
ns  
ns  
13  
13  
13  
Data-out high-impedance  
time  
tHZ  
22  
22  
Data-out low-impedance  
time  
tLZ  
1
1
1
ns  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 8 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
–7  
–8  
–10  
CAS  
Sym  
Parameter  
latency Min  
Max  
Min  
2
Max  
Min  
2
Max  
Unit  
tCK  
Notes  
5
Load mode register to  
active/refresh command  
tMRD  
2
3
2
1
2
2
2
2.5  
2.5  
2.5  
3
3
3
ns  
ns  
ns  
6
6
6
Output data hold time @  
30 pF  
tOH  
CKE to CLOCK enable or  
power-down exit mode  
tPED  
1
1
1
tCK  
Active to precharge  
command  
tRAS  
42 120,000  
48  
120,000  
50  
120,000 ns  
tRC Active command period  
tRCAR Auto refresh period  
70  
70  
80  
80  
80  
80  
ns  
ns  
8
8
Active to read or write  
delay  
tRCD  
3
3
3
3
tCK  
ms  
Refresh period—2048  
rows  
tREF  
64  
64  
64  
3
2
1
3
2
1
3
2
1
3
2
1
tCK  
tCK  
tCK  
9
9
9
Data-out high Z from  
tROH precharge/burst stop  
command  
Precharge command  
period  
tRP  
3
3
3
3
tCK  
ns  
8
Active Bank A to Active  
tRRD  
14  
16  
20  
Bank B command  
tT Transition time  
0.3  
2
1.0  
0.3  
2
1.0  
0.3  
2
1.0  
ns  
tWR WRITE recovery time  
tCK  
Exit SELF REFRESH to  
tXSR  
70  
80  
80  
ns  
20  
ACTIVE command  
Notes  
1
2
3
4
5
6
7
8
I
is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.  
DD  
Other input signals are allowed to transition no more than once in any two-clock period and are otherwise at valid V or V levels.  
IH  
IL  
Address transitions average one transition every two-clock period.  
The I current will decrease as the CAS-latency is reduced. This is due to the fact that the maximum cycle rate is slower as the CAS-latency is reduced.  
DD  
t
= 7 ns for –7, 8 ns for –8, and 10 ns for –10.  
CK  
If clock t > 1 ns, (t – 0.5)ns should be added to the parameter.  
r
r/2  
If clock (t and t ) > 1 ns, [(t + t )/2 – 1] ns should be added to the parameter.  
r
f
r
f
V
V
overshoot: V  
= V  
+ 2V for a pulse width 3 ns, and the pulse width cannot be greater than one third of the cycle rate. V undershoot:  
IH  
IH(max)  
DDQ  
IL  
= –2V for a pulse width 3 ns and the pulse width cannot be greater than one third of the cycle rate.  
IL(min)  
9
Required clocks are specified by JEDEC functionalisty and are not dependent on any timing parameter.  
10 The clock frequency must remain constant during access or precharge states (READ, WRITE, including t and PRECHARGE commands). CKE may be  
WR  
used to reduce the data rate.  
11 Timing actually specified t plus t ; clock(s) specified as a reference only at minimum cycle rate.  
WR  
RP  
12 Timing actually specified by t  
.
WR  
13  
t
defines the time at which the output achieves the open circuit condition; it is not a reference to V or V . The last valid data element will meet t  
HZ OH OL OH  
before going to HIGH-Z.  
14 CLK must be toggled a minimum of two times during this period.  
15 Enables on-chip refresh and address counters.  
16 All voltages referenced to V .  
SS  
17 The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range (0° C T 70° C) is  
A
endured.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 9 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
18 A proper power-up initialization sequence (as described on page 10) is needed before proper device operation is ensured. (V and V  
must be  
DD  
DDQ  
powered up simultaneously. V and V must be at the same potential.)Two AUTOREFRESH command wake-ups should be repeated any time the t  
SS  
SSQ  
REF  
refresh requirement is exceeded.  
19 AC characteristics assume t = 1 ns.  
T
20 In addition to meeting the transition rate specification, the clock and CKE must transit between V and V (or between V and V ) in a monotonic  
IH  
IL  
IL  
IH  
manner.  
21 AC timing and I tests have V = 0V and V = 3.0 V with timing referenced to 1.4V crossover point.  
DD  
IL  
IH  
22  
I
specifications are tested after the device is properly initialized.  
DD  
23 Minimum clock cycles = (minimum time/clock cycle time) rounded up.  
Device operation  
Command  
Power up  
Pin settings  
Description  
The following sequence is recommended prior to normal operation.  
1
Apply power, start clock, and assert CKE and DQM high. All other  
signals are NOP.  
After power-up, pause for a minimum of 200µs. CKE/DQM =  
high; all others NOP.  
2
3
4
5
Precharge both banks.  
Perform Mode Register Set command to initialize mode register.  
Perform a minimum of 8 auto refresh cycles to stabilize internal  
circuitry.  
(Steps 4 and 5 may be interchanged.)  
The mode register stores the user selected opcode for the SDRAM  
operating modes. The CAS latency, burst length, burst type, test mode  
and other vendor specific functions are selected/programmed during  
CS = RAS = CAS = WE = low; the Mode Register Set command cycle. The default setting of the mode  
Mode register set  
A0~A11 = opcode  
register is not defined after power-up. Therefore, it is recommended  
that the power-up and mode register set cycle be executed prior to  
normal SDRAM operation. Refer to the Mode Register Set table and  
timing for details.  
The SDRAM performs a “no operation” (NOP) when RAS, CAS, and  
WE = high. Since the NOP performs no operation, it may be used as a  
wait state in performing normal SDRAM functions. The SDRAM is  
deselected when CS is high. CS high disables the command decoder  
such that RAS, CAS, WE and address inputs are ignored. Device  
deselection is also considered a NOP.  
Device deselect and  
no operation  
CS = high, or  
RAS, CAS, WE = high  
The SDRAM is configured with two internal banks. Use the Bank  
Activate command to select a row in one of the two idle banks. Initiate  
a read or write operation after tRCD(min) from the time of bank  
activation.  
CS = RAS = low; CAS = WE =  
high; A0~A10 = row address;  
A11 = bank select  
Bank activation  
Use the Burst Read command to access a consecutive burst of data from  
an active row in an active bank. Burst read can be initiated on any  
column address of an active row. The burst length, sequence and  
latency are determined by the mode register setting. The first output  
data appears after the CAS latency from the read command. The output  
goes into a high impedance state at the end of the burst (BL = 1,2,4,8)  
unless a new burst read is initiated to form a gapless output data  
stream. A full-page burst does not terminate automatically at the end of  
the burst. Terminate the burst with a burst stop command, precharge  
command to the same bank or another burst read/write  
CS = CAS = A10 = low; RAS =  
WE = high; A11 = bank select,  
A0~A8 = column address; (A9  
= don’t care for 2M × 8; A8,  
A9 = don’t care for 1M × 16)  
Burst read  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 10 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Command  
Burst write  
Pin settings  
Description  
Use the Burst Write command to write data into the SDRAM on  
consecutive clock cycles to adjacent column addresses. The burst  
length and addressing mode is determined by the mode register  
opcode. Input the initial write address in the same clock cycle as the  
Burst Write command. Burst terminate behavior for write is the same  
as that for read. Terminate the burst with a burst stop command,  
precharge command to the same bank or another burst read/write.  
DQM can also be used to mask the input data.  
CS = CAS = WE = A10 = low;  
RAS = high; A0~A9 = column  
address; (A9 = don’t care for  
2M × 8; A8, A9 = don’t care  
for 1M × 16)  
Use DQM to mask input and output data. It disables the output buffers  
in a read operation and masks input data in a write operation. The  
output data is invalid 2 clocks after DQM assertion (2 clock latency).  
Input data is masked on the same clock as DQM assertion (0 clock  
latency).  
UDQM/LDQM (×16)  
DQM (×8) operation  
CS = WE = low; RAS = CAS = Use burst stop to terminate burst operation. This command may be  
Burst stop  
high  
used to terminate all legal burst lengths.  
The Bank Precharge command precharges the bank specified by A11.  
CS = A10 = RAS = WE = low; The precharged bank is switched from active to idle state and is ready  
CAS = high; A11 = bank to be activated again. Assert the precharge command after tRAS(min) of  
Bank precharge  
select; A0~A9 = don’t care the bank activate command in the specified bank. The precharge  
operation requires a time of tRP(min) to complete.  
CS = RAS = WE = low; CAS =  
The Precharge All command precharges both banks simultaneously.  
A10 = high; A11, A0~A9 =  
Precharge all  
Both banks are switched to the idle state on precharge completion.  
don’t care  
During auto precharge, the SDRAM adjusts internal timing to satisfy  
t
RAS(min) and tRP for the programmed CAS latency and burst length.  
Write: CS = CAS = WE = low ;  
Read: CS = CAS = low;  
Couple the auto precharge with a burst read/write operation by  
asserting A10 to a high state at the same time the burst read/write  
commands are issued. At auto precharge completion, the specified  
bank is switched from active to idle state. Note that no new commands  
(RD/WR/DEAC) can be issued to the same bank until the specified  
bank achieves the idle state. Auto precharge does not work with full-  
page burst.  
A10 = high; A11 = bank select  
A0~A9 = column address;  
;
Auto precharge  
(A9 = don’t care for 2M × 8; A8,  
A9 = don’t care for 1M × 16)  
When CKE is low, the internal clock is frozen or suspended from the  
next clock cycle and the state of the output and burst address are  
frozen. If both banks are idle and CKE goes low, the SDRAM enters  
power down mode at the next clock cycle. When in power down  
mode, no input commands are acknowledged as long as CKE remains  
low. To exit power down mode, raise CKE high before the rising edge  
of CLK.  
Clocksuspend/power  
down mode entry  
CKE = low  
CKE = high  
Resume internal clock operation by asserting CKE high before the  
rising edge of CLK. Subsequent commands can be issued one clock  
cycle after the end of the Exit command.  
Clocksuspend/power  
down mode exit  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 11 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Command  
Pin settings  
Description  
SDRAM storage cells must be refreshed every 64 ms to maintain data  
integrity. Use the auto refresh command to accomplish the refreshing  
of all rows in both banks of the SDRAM. The row address is provided  
CS = RAS = CAS = low; WE = by an internal counter which increments automatically. Auto refresh  
CKE = high; A0~A11 = don’t can only be asserted when both banks are idle and the device is not in  
Auto refresh  
care  
the power down mode. The time required to complete the auto refresh  
operation is tRC(min). Use NOPs in the interim until the auto refresh  
operation is complete. Both banks will be in the idle state after this  
operation.  
Self refresh is another mode for refreshing SDRAM cells. In this mode,  
refresh address and timing are provided internally. Self refresh entry is  
allowed only when both banks are idle. The internal clock and all input  
CS = RAS = CAS = CKE = low; buffers with the exception of CKE are disabled in this mode. Exit self  
WE = high; A0~A11 = don’t refresh by restarting the external clock and then asserting CKE high.  
Self refresh  
care  
NOPs must follow for a time of tRC(min) for the SDRAM to reach the  
idle state where normal operation is allowed. If burst auto refresh is  
used in normal operation, burst 2048 auto refresh cycles immediately  
after exiting self refresh.  
Initialize and load mode register  
T0  
T1  
Tn  
Tm  
Tp+1  
Tp+2  
Tp+3  
t
CL  
t
CK  
CLK  
t
CH  
t
t
CKH  
CKS  
CKE  
t
t
CMH  
CMS  
PRECHARGE  
ALL  
LOAD MODE  
REGISTER  
COMMAND  
NOP  
AUTO REFRESH  
AUTO REFRESH  
NOP  
ACTIVE  
NOP NOP  
NOP NOP  
*
DQM  
t
t
AS  
AH  
A10=HIGH  
ADDRESS  
DQ  
CODE  
BANK ROW  
High Z  
T=200µs  
(min)  
t
t
t
RP  
MRD  
RCAR  
(8 AUTO REFRESH  
CYCLES)  
†ƒ  
Power up:  
and  
Precharge  
all banks.  
Program Mode Register  
V
AUTO REFRESH  
DD  
CLK stable.  
* DQM represents DQML and DQMH. DQML controls the lower byte, and DQMH controls the upper byte.  
† The Mode Register may be loaded prior to the auto refresh cycles if desired.  
ƒ Outputs are guaranteed High-Z after command is issued.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 12 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
*
Read—DQM operation  
T0  
*†ƒ T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
t
CL  
CK  
CL  
CLK  
t
CH  
t
t
CKH  
CKS  
CKE  
t
t
CMH  
CMS  
ACTIVE  
NOP  
COMMAND  
DQMƒ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
t
t
CMH  
CMS  
t
DQZ  
t
t
AH  
AS  
Column m  
3
ROW  
A0–A9  
(A0-A7)  
ROW  
ENABLE AUTOPRECHARGE  
t
t
t
AS  
AH  
A10  
BA  
ROW  
DISABLE AUTOPRECHARGE  
BANK  
t
AS  
AH  
BANK  
*†ƒ  
t
AC  
t
t
*†ƒ  
*†ƒ  
OH  
t
t
t
OH  
AC  
AC  
OH  
D
D
D
OUT m  
OUT m+3  
DQ  
OUT m+2  
t
t
t
LZ  
LZ  
HZ  
t
HZ  
t
CAS latency  
RCD  
* For this example, the burst length = 4, and the CAS latency = 2.  
† A8 and A9 = “Don’t care.”  
ƒ DQM represents DQML and DQMH. DQML controls the lower byte, and DQMH controls the upper byte.  
*
Write—DQM operation  
T0  
*†ƒ T1  
T2  
T3  
T4  
T5  
T6  
T7  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS CKH  
CKE  
t
t
CMH  
CMS  
ACTIVE  
COMMAND  
DQMƒ  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
t
t
CMH  
CMS  
t
t
t
AS  
AH  
Column m  
ROW  
A0–A9  
(A0-A7)  
t
t
AS  
AH  
ENABLE AUTOPRECHARGE  
A10  
BA  
ROW  
DISABLE AUTOPRECHARGE  
BANK  
t
AS  
AH  
BANK  
t
t
t
t
t
DH  
t
DS  
DS  
DS  
DH  
DH  
D
m
DQ  
D
IN  
m+2  
D
m+3  
IN  
IN  
t
RCD  
*
ƒ
For this example, the burst length = 4.  
A8 and A9 = “Don’t care.”  
DQM represents DQML and DQMH. DQML controls the lower byte, and DQMH controls the upper byte.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 13 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Write—full-page burst  
Tn+3  
T0  
T1  
T2  
T3  
T4  
T5  
Tn+1  
Tn+2  
*†ƒ  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS CKH  
t
t
CMH  
CMS  
ACTIVE  
COMMAND  
DQM†  
NOP  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
BURST TERM  
t
CMH  
CMS  
t
t
AH  
AS  
Column m  
*
ROW  
A0–A9  
(A0-A7)  
t
t
t
AS  
AH  
A10  
BA  
ROW  
t
AS  
AH  
BANK  
BANK  
t
t
t
t
t
t
DH  
t
t
t
DS  
DH  
t
DS  
DS  
DH  
DS  
t
t
DH  
DS  
DH  
DH  
DS  
D
D
D
DQ  
IN m+2  
D
D
IN m+255  
IN m+1  
IN m  
IN m+3  
t
RCD  
256 locations within same row  
Full page completed  
Full-page burst does not  
self terminate. Can use  
ƒ
BURST TERMINATE command.  
*
ƒ
A8 and A9 = Don’t care.  
DQM represents DQML and DQMH. DQML controls the lower byte, and DQMH controls the upper byte.  
Page left open; no t  
.
RP  
*
Read—full-page burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Tn+1  
Tn+2  
Tn+3  
Tn+4  
t
CL  
t
CK  
CLK  
CKE  
t
CH  
t
t
CMS CMH  
t
t
CMS CMH  
BURST  
TERM  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
DQM†  
t
t
AH  
AS  
COLUMN m  
ROW  
A0–A9  
A10  
(A0-A7)  
t
AS  
t
AH  
ROW  
t
t
AH  
AS  
BA  
BANK  
BANK  
*†ƒ  
*†ƒ  
*†ƒ  
*†ƒ  
*†ƒ  
t
t
t
t
AC  
*†ƒ  
AC  
OH  
t
AC  
AC  
AC  
OH  
t
AC  
OH  
t
t
t
OH  
D
OUT m+1  
t
t
t
OH  
OUT m  
OH  
D
D
D
D
D
DQ  
OUT  
m
OUT m+2  
OUT m+255  
OUT m+1  
256 locations within same row  
*†ƒ  
t
HZ  
t
LZ  
t
Full-page burst does not self-terminate.  
Can use BURST TERMINATE command.  
CAS Latency  
Full page completed  
**  
RCD  
*
ƒ
For this example, the CAS latency = 2.  
A8 and A9 = “Don’t care.”  
DQM represents DQML and DQMH. DQML controls the lower byte, and DQMH controls the upper byte.  
**  
Page left open; no t .  
RP  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 14 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Mode register set command waveform  
CLK  
PRE  
MRS  
ACT  
CMD  
t
t
(min)  
MRD  
RP  
Or Auto Refresh  
RSC  
t
MRS can be issued only when both banks are idle.  
Precharge waveforms  
Precharge can be asserted after tRAS (min). The selected bank will enter the idle state after tRP. The earliest assertion of the precharge  
command without losing any burst data is show below.  
(normal write; BL = 4)  
CLK  
CMD  
WE  
PRE  
DQ  
D
D
0
D
D
3
2
1
(normal read; BL = 4)  
CLK  
CMD  
DQ(CL1)  
DQ(CL2)  
DQ(CL3)  
Read data  
PRE  
Q
Q
Q
Q
3
0
1
2
Q
Q
Q
Q
3
0
1
2
Q
Q
Q
Q
3
0
1
2
Auto precharge waveforms  
A10 controls the selection of auto precharge during the read or write command cycle.  
(write with auto precharge; BL = 4)  
CLK  
CMD  
WE  
DQ  
D
D
D
D
3
0
1
2
Auto precharge starts*  
(read with auto precharge; BL = 4)  
CLK  
CMD  
Read data  
DQ(CL1)  
DQ(CL2)  
DQ(CL3)  
Q
Q
Q
Q
3
0
1
2
Q
Q
Q
Q
3
0
1
2
Q
Q
Q
Q
3
0
1
2
Auto precharge starts*  
*The row active command of the precharge bank can be issued after tRP from this point. The new read/write command of another activated bank can be  
issued from this point. At burst read/write with auto precharge, CAS interrupt of the same/another bank is illegal.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 15 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
DQM waveforms:  
read (CL = 3, BL = 4)  
CLK  
Read data  
CMD  
DQM  
t
t
DQZ  
DQ(CL = 3)  
DQ(CL = 2)  
Q
Q
2
0
Q
Q
Q
3
0
1
DQZ  
DQM waveforms:  
write(BL =4)  
CLK  
Write data  
CMD  
Ext D  
D
0
D
D
D
D
1
2
3
IN  
DQM  
D
0
Data written  
3
D ignored  
1
D ignored  
2
Concurrent Auto-P Waveforms  
According to Intel™s specification, auto-p burst interruption is allowed by another burst provided that the interrupting burst is in a  
different bank than the ongoing burst.  
(A) RD-P interrupted by RD in another bank  
(CL = 3, BL = 4)  
CLK  
RD-P(A)  
RD (B)  
CMD  
DQ  
A
A
B
B
B
B
3
0
1
0
1
2
t
RP(A)  
Bank A precharge starts  
(B) RD-P interrupted by WR in another bank  
(CL = 3, BL = 8)  
CLK  
RD-P (A)  
WR (B)  
CMD  
DQM  
DQ  
QA  
QA  
DN  
D
D
D
(B7)  
0
1
(B0)  
(B1)  
(B2)  
t
RP  
Bank A precharge starts  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 16 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
(C) WR-P interrupted by RD in another bank  
(CL = 2, BL = 4)  
CLK  
WRP (A)  
RD (B)  
CMD  
DQ  
D
D
Q
Q
Q
Q
B3  
(A1)  
(A0)  
B0  
B1  
B2  
t
RP  
Bank A precharge starts  
(D) WR-P Interrupted by WR in another bank  
(CL = 3, BL = 4)  
CLK  
Bank A precharge starts  
WRP (A)  
WR (B)  
CMD  
D
D
A1  
DQ  
D
D
D
D
D
B3  
A0  
A2  
B0  
B1  
B2  
Clock suspension read waveforms  
CLK external  
(BL = 8)  
CLK internal  
CKE  
DQM  
Q
Q
2
Q
Q
Q
6
Q
7
DQ  
1
3
4
OPEN  
OPEN  
CLK external  
CLK internal  
CKE  
DQM  
DQ  
Q
1
Q
Q
Q
Q
2
3
4
6
t
t
PED  
CKED  
CLK external  
CLK internal  
CKE  
DQM  
DQ  
Q
Q
Q
3
Q
Q
6
Q
1
2
4
5
5/21/01; v.1.1  
Alliance Semiconductor  
P. 17 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Clock suspension write waveforms  
CLK external  
CLK internal  
CKE  
t
CKH  
t
CKS  
DQM  
DQ  
D1  
D2  
D3  
D6  
D5  
DQM Mask  
CKE Mask  
CLK external  
CLK internal  
CKE  
DQM  
D6  
DQ  
D1  
D2  
D5  
D3  
DQM Mask  
CKE Mask  
CLK external  
CLK internal  
CKE  
t
t
CMS  
CMH  
DQM  
DQ  
D4  
D5  
D6  
D1  
D2  
D3  
CKE Mask  
Read/write interrupt timing  
read interrupted by read (BL = 4)  
CLK  
t
t
CMH  
CMS  
CMD  
ADD  
Read data  
Read data  
A
B
DQ (CL1)  
DQ (CL2)  
DQ (CL3)  
QA0  
QB0  
QA0  
QB1  
QB2  
QB3  
QB0  
QA0  
QB1  
QB2  
QB1  
QB3  
QB2  
QB0  
QB3  
t
CCD  
t
= CAS to CAS delay (= 1 CLK).  
CCD  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 18 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
write interrupted by write (BL = 4)  
t
CK  
t
CL  
t
CH  
CLK  
CMD  
ADD  
DQ  
t
CCD  
Write data  
Write data  
A
B
0
0
0
DA  
DB  
DB  
DB  
DB  
3
0
1
2
t
CDL  
t
DS  
t
DH  
t
t
= CAS to CAS delay (= 1 CLK).  
= last address in to new column addres delay (= 1 CLK).  
CCD  
CDL  
write interrupted by read (BL = 4)  
CLK  
t
CCD  
CMD  
ADD  
Write data  
A
Read data  
B
DQ (CL1)  
DQ (CL2)  
DQ (CL3)  
DA  
QB  
QB  
QB  
QB  
0
0
1
2
3
QB  
QB  
QB  
QB  
3
DA  
DA  
0
1
2
0
QB  
QB  
QB  
QB  
3
0
0
1
2
t
CDL  
t
t
= CAS to CAS delay (= 1 CLK).  
= last address in to new column addres delay (= 1 CLK).  
CCD  
CDL  
Interrupting RD/WR can be for either the same or different banks.  
read interrupted by write (CL = 1, BL = 4)  
CLK  
CMD1  
Read data  
Write data  
DQM1  
DQ1  
D
D
D
D
3
0
1
2
t
LZ  
t
HZ  
CMD2  
DQM2  
DQ2  
Read data  
Write data  
D
D
D
D
3
0
1
2
CMD3  
DQM3  
DQ3  
Read data  
Write data  
Q
Q
D
D
D
D
3
0
1
0
1
2
To prevent bus contention, maintain a gap between data in and data out.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 19 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
read interrupted by write (CL = 2, BL = 4)  
CLK  
CMD1  
DQM1  
DQ1  
Read data  
Read data  
Write data  
D
D
D
D
3
0
1
2
CMD2  
DQM2  
Write data  
DQ2  
D
D
D
D
3
0
1
2
CMD3  
DQM3  
Read data  
Read data  
Write data  
DQ3  
CMD4  
DQM4  
D
D
D
D
3
0
1
2
Write data  
DQ4  
Q
D
0
D
D
D
3
0
1
2
To prevent bus contention, maintain a gap between data in and data out.  
read interrupted by write (CL = 3, BL = 4)  
t
CCD  
CLK  
CMD1  
DQM1  
Read data  
Write data  
DQ1  
D
D
D
D
3
0
1
2
CMD2  
DQM2  
Read data  
Read data  
Write data  
DQ2  
CMD3  
DQM3  
D
D
D
D
D
D
0
1
2
3
Write data  
DQ3  
CMD4  
DQM4  
DQ4  
D
D
3
0
1
2
Read data  
Write data  
D
D
D
D
3
0
1
2
To prevent bus contention, maintain a gap between data in and data out.  
Burst termination  
Burst operations may be terminated with a Read, Write, Burst Stop, or Precharge command. When Burst Stop is asserted during the read  
cycle, burst read data is terminated and the data bus goes to High Z after CAS latency. When Burst Stop is asserted during the write cycle,  
burst write data is terminated and the databus goes to High Z simultaneously.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 20 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Burst stop command waveform  
readcycle  
t
T
CLK  
CMD  
Read data  
Burst stop  
t
OH  
DQ (CL = 1)  
DQ (CL = 2)  
DQ (CL = 3)  
Q
Q
Q
2
0
1
Q
Q
Q
0
1
0
2
Q
Q
Q
2
1
write cycle (BL = 8)  
CLK  
CMD  
Write data  
Burst stop  
DQ  
(CL = 1,2,3)  
D
D
D
D
3
Q
1
2
Precharge termination  
A Precharge command terminates a burst read/write operation during the read cycle. The same bank can be activated after meeting tRP. If an  
RD-burst is terminated, o/p will go to High Z after the number of cycles = CAS latency.  
read cycle (CL = 1)  
CLK  
CMD  
Read data  
PRE  
ACT  
DQ  
Q
Q
Q
Q
3
0
1
2
t
RP  
read cycle (CL = 2)  
tRP  
CLK  
CMD  
DQ  
Read data  
PRE  
ACT  
Q
Q
Q
Q
3
0
1
2
t
(CL = 2)  
ROH  
read cycle (CL = 3)  
t
RP  
CLK  
CMD  
Read data  
PRE  
ACT  
DQ  
Q
Q
Q
Q
3
0
1
2
t
ROH (CL = 3)  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 21 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
writecycle  
t
WR  
CLK  
CMD  
Write data  
PRE  
ACT  
DQ  
D
D
D
Q
D
0
1
2
3
4
t
RP  
Write recovery  
(BL = 4)  
t
DPL  
CLK  
t
RP  
CMD  
Write data  
PRE  
ACT  
t
DAL  
DQ  
D
D
D
D
0
3
1
2
This precharge is implicit in case of Auto-P Write.  
Auto refresh waveform  
CLK  
t
t
t
RP  
RC  
RC  
CS  
RAS  
CAS  
WE  
A10  
A0–A9  
DQM  
CKE  
DQ  
Precharge both banks Auto refresh  
Auto refresh  
Auto refresh  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 22 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Self refresh waveform  
CLK  
CS  
RAS  
CAS  
WE  
A11  
A0–A10  
DQM  
CKE  
DQ  
t
RC  
Self refresh  
cycle  
Precharge both banks  
Arbitrary cycle  
Self refresh exit  
Self refresh entry  
Clock stable before  
self refresh exit  
Power down mode waveform  
(CL = 3)  
CLK  
CS  
RAS  
CAS  
WE  
A11  
A10  
RA  
RA  
RA  
RA  
a
a
a
A0–A9  
DQM  
CA  
CA  
a
a
x
CKE  
DQ  
Active standby  
Precharge standby  
Power down mode  
Data burst  
Bank activate  
NOP  
NOP Bank activate  
Power down mode exit  
Power down mode  
Power down mode entry  
Power down mode exit  
Power down mode entry  
Enter power down mode by pulling CKE low.  
All input/output buffers (except CKE buffer) are turned off in power down mode.  
When CKE goes high, command input must be equal to no operation at next CLK rising edge.  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 23 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Read/write waveform  
(BL = 8, CL = 3)  
CLK  
t
RAS  
CS  
RAS  
CAS  
WE  
A11  
t
RCD  
A10  
RA  
RA  
RA  
RA  
b
a
A0–A9  
DQM  
CA  
CA  
a
b
a
b
CKE  
DQ  
t
RP  
A
A
A
A
A
A
A
A
A
A
A
A
b5  
a0  
a1  
a2  
a3  
a4  
a5  
b0  
b1  
b2  
b3  
b4  
D
Write  
D
D
D
D
D
Q
Q
Q
Q
Q
Q
Bank activate  
Bank activate  
Read  
Precharge  
Burst read/single write waveform  
(BL = 4, CL = 3)  
CLK  
CS  
RAS  
CAS  
WE  
A11  
A10  
RA  
RA  
a
A9  
DQM  
CKE  
CA  
CA  
CA  
CA  
d
a
a
b
c
DQ  
A
A
A
A
A
A
A
A
A
A
d3  
a0  
a1  
a2  
a3  
b
c
d0  
d1  
d2  
Single  
Write  
Q
Q
Q
Q
Activate  
Q
Q
Q
Q
Read  
Read  
D
D
5/21/01; v.1.1  
Alliance Semiconductor  
P. 24 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Interleaved bank read waveform  
(BL = 4, CL = 3)  
CLK  
t
t
t
CCD  
CCD  
CCD  
CS  
RAS  
CAS  
WE  
t
RAS  
A11  
t
t
RCD  
RCD  
A10  
A0–A9  
DQM  
CKE  
RA  
RB  
a
a
CA  
CB  
b
RA  
CA RB  
CA  
c
CB  
b
a
a
a
a
t
RAS  
DQ  
QB  
QB  
QB QB  
QA  
QA QA QA QB  
QB QA QA QA  
QA QA QA  
b0  
b1 b2 b3  
a0  
a1  
a2  
a3  
a0  
a1  
b0  
b1  
b2  
c0  
c1  
c2  
Read  
Read  
Precharge  
Bank A:  
Bank B:  
Active  
Read  
Active  
Read  
Read  
Precharge  
Interleaved bank read waveform  
(BL = 4, CL = 3, Autoprecharge)  
CLK  
CS  
t
RC  
t
RC  
RAS  
t
t
t
RP  
t
RAS  
RAS  
RP  
t
t
RP  
RAS  
CAS  
WE  
A11  
t
t
t
RCD  
RCD  
RCD  
A10  
A9  
RA  
RA  
RB  
RB  
RA  
RA  
RB  
RB  
a
b
c
d
CB  
CA  
c
CA  
b
a
a
b
c
d
DQM  
CKE  
t
t
RRD  
t
RRD  
RRD  
DQ  
QA  
QA  
QA QA  
QB  
QB  
QB  
QB  
QA  
QA  
QA  
QA  
c2 c3  
a0  
a1  
a2  
a3  
b0  
b1  
b2  
b3  
c0  
c1  
Active  
Read  
Read  
AP  
Bank A:  
Bank B:  
Active Read  
AP  
Active  
AP  
Active  
AP = internal precharge begins  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 25 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Interleaved bank read waveform  
(BL = 8, CL = 3)  
CLK  
CS  
t
RC  
RAS  
t
t
RP  
RAS  
t
t
RAS  
RP  
CAS  
WE  
A11  
t
t
t
RCD  
RCD  
RCD  
A10  
A9  
RB  
RB  
RA  
RA  
RA  
RA  
a
b
c
CB  
CA  
QB  
CA  
b
b
c
c
a
a
DQM  
CKE  
DQ  
QA  
QA  
QA QA  
QA  
QA  
QA  
QB  
QB  
QB  
QB  
QB  
QA  
QA  
c1  
a0  
a1  
a2  
a3  
a4  
a5  
a6  
b0 b1  
b4  
b5  
b6  
b7  
c0  
Active  
Read  
Bank A: Active  
Bank B:  
Precharge  
Read  
Precharge  
Active  
Read  
Precharge  
Interleaved bank read waveform  
(BL = 8, CL = 3, Autoprecharge)  
CLK  
CS  
t
RC  
RAS  
t
t
RP  
RAS  
t
RAS  
CAS  
WE  
A11  
t
t
t
RCD  
RCD  
RCD  
RA  
RB  
RA  
c
a
b
A10  
A9  
RA  
RA  
CA  
RB  
CA  
CA  
a
a
b
b
c
c
DQM  
CKE  
DQ  
QA  
QA  
QA  
QA  
QA  
QA QA  
QA  
QB  
QB  
QB  
QB  
QB  
QA  
QA  
c0  
a0  
a1  
a2  
a3  
a4  
a5  
a6  
a7  
b0  
b1  
b4  
b5  
b6  
c0  
t
t
RRD  
RRD  
Bank A Active  
Bank B  
Read  
AP  
Read  
Active  
Read  
Active  
AP  
AP = internal precharge begins  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 26 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Interleaved bank write waveform  
(BL = 8)  
CLK  
CS  
tRC  
RAS  
t
t
RP  
RAS  
t
RAS  
CAS  
t
t
t
RCD  
RCD  
RCD  
WE  
A11  
A10  
A9  
RA  
RA  
RB  
RB  
RA  
c
a
b
b
CA  
CA  
RA  
CA  
c
a
a
b
c
DQM  
CKE  
DQ  
DA  
DA  
DA  
DA  
DA  
DA  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DA  
DA  
DA  
c2  
a0  
a1  
a4  
a5  
a6  
a7  
b0  
b1  
b2  
b3  
b4  
b5  
b6  
b7  
c0  
c1  
Bank A Active  
Bank B  
Precharge  
Active  
Write  
Precharge  
Write  
Active  
Write  
Interleaved bank write  
(BL = 8, Autoprecharge)  
CLK  
CS  
t
RC  
RAS  
t
t
RAS  
RP  
t
RAS  
CAS  
WE  
t
t
t
RCD  
RCD  
RCD  
A11  
A10  
A9  
RA  
RA  
RB  
RB  
RA  
c
a
b
RA  
CA  
CA  
CA  
c
c
a
a
b
b
DQM  
CKE  
DQ  
DB  
DA  
DA  
DA  
a4  
DA  
DA  
DA  
DB  
DB  
DB  
DB DB  
DB DB  
DA  
DA  
DA  
c2  
b2  
a0  
a1  
a5  
a6  
a7  
b0  
b1  
b3  
b4  
b5  
b6  
b7  
c0  
c1  
Write  
AP Bank B  
AP Bank A  
Bank A Active  
Bank B  
Write  
Active  
Active  
Write  
AP = internal precharge begins  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 27 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Package dimensions  
c
50 4948474645 444342 414039383736 35343332 313029282726  
44-pin TSOP 2  
Min Max  
(mm) (mm) (mm) (mm)  
50-pin TSOP 2  
Min  
Max  
A
A1  
A2  
b
1.2  
1.2  
TSOP 2  
E H  
e
0.05  
0.95  
0.30  
0.05  
0.95  
0.30  
0.12  
1.05  
0.45  
1.05  
0.45  
0.21  
1 2 3 4 5 6 7 8 9 10111213 14 1516171819 202122232425  
c
0.127 (typical)  
18.28 18.54  
10.03 10.29  
11.56 11.96  
0.80 (typical)  
D
D
E
20.85 21.05  
10.03 10.29  
11.56 11.96  
0.80 (typical)  
l
He  
e
A
2
A
l
0.40  
0.60  
0.40  
0.60  
0–5°  
A
1
b
e
AC test conditions  
+1.5V  
- Output reference levels = 1.4V  
- Input rise and fall times: 2 ns  
50  
D
OUT  
C
= 50 pF  
LOAD  
Figure A: Equivalent output load  
Symbol  
Capacitance 15  
ƒ = 1 MHz, T = 25° C, V = 3.3V  
a CC  
Parameter  
Signals  
Max  
Unit  
CIN1  
CIN2  
A0 to A11  
4
pF  
Input capacitance  
I/O capacitance  
DQM, RAS, CAS, WE, CS, CLK, CKE,  
4
pF  
DQ0 to DQ7 (2M × 8)  
DQ0 to DQ15 (1M × 16)  
CI/O  
5
pF  
Ordering information  
Package \1/ frequency  
TSOP 2, 400 mil, 44-pin  
TSOP 2, 400 mil, 44-pin  
TSOP 2, 400 mil, 50-pin  
TSOP 2, 400 mil, 50-pin  
–7 ns  
AS4LC2M8S1-7TC  
–8 ns  
–10 ns  
AS4LC2M8S1-8TC  
AS4LC2M8S0-8TC  
AS4LC1M16S1-8TC  
AS4LC1M16S0-8TC  
AS4LC2M8S1-10TC  
AS4LC2M8S0-10TC  
AS4LC1M16S1-10TC  
AS4LC1M16S0-10TC  
AS4LC2M8S0-7TC  
AS4LC1M16S1-7TC  
AS4LC1M16S0-7TC  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 28 of 29  
AS4LC2M8S1  
AS4LC1M16S1  
®
Part numbering system  
AS4  
LC  
XXX  
SX  
–XX  
T
C
Package (device  
dependent):  
TSOP 2 400 mil, 44 pin  
TSOP 2 400 mil, 50 pin  
Commercial  
temperature  
range: 0° C to  
70° C  
Device number  
DRAM prefix 3.3V CMOS for synchronous  
DRAM  
S1 = 2K refresh  
S0 = 4K refresh  
1/frequency  
5/21/01; v.1.1  
Alliance Semiconductor  
P. 29 of 29  
© Copyright Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be  
the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may  
appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the  
product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential  
customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of  
any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose,  
merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made  
exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights, mask works rights, trademarks, or any other  
intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected  
to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all  
claims arising from such use.  

相关型号:

AS4LC1M16S0-10TC

3.3V 2M × 8/1M × 16 CMOS synchronous DRAM
ALSC
ETC

AS4LC1M16S0-7TC

3.3V 2M × 8/1M × 16 CMOS synchronous DRAM
ALSC

AS4LC1M16S0-8TC

3.3V 2M × 8/1M × 16 CMOS synchronous DRAM
ALSC

AS4LC1M16S1

3.3V 2M × 8/1M × 16 CMOS synchronous DRAM
ALSC

AS4LC1M16S1-10TC

3.3V 2M x 8/1M x 16 CMOS synchronous DRAM
ALSC

AS4LC1M16S1-12TC

3.3V 2M x 8/1M x 16 CMOS synchronous DRAM
ALSC

AS4LC1M16S1-7TC

3.3V 2M × 8/1M × 16 CMOS synchronous DRAM
ALSC

AS4LC1M16S1-8TC

3.3V 2M x 8/1M x 16 CMOS synchronous DRAM
ALSC