EP1C20F144I6ES [ALTERA]

Cyclone FPGA Family Data Sheet; 气旋FPGA系列数据手册
EP1C20F144I6ES
型号: EP1C20F144I6ES
厂家: ALTERA CORPORATION    ALTERA CORPORATION
描述:

Cyclone FPGA Family Data Sheet
气旋FPGA系列数据手册

文件: 总104页 (文件大小:1353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Section I. Cyclone FPGA  
Family Data Sheet  
This section provides designers with the data sheet specifications for  
Cyclone® devices. The chapters contain feature definitions of the internal  
architecture, configuration and JTAG boundary-scan testing information,  
DC operating conditions, AC timing parameters, a reference to power  
consumption, and ordering information for Cyclone devices.  
This section contains the following chapters:  
Chapter 1. Introduction  
Chapter 2. Cyclone Architecture  
Chapter 3. Configuration & Testing  
Chapter 4. DC & Switching Characteristics  
Chapter 5. Reference & Ordering Information  
Refer to each chapter for its own specific revision history. For information  
on when each chapter was updated, refer to the Chapter Revision Dates  
section, which appears in the complete handbook.  
Revision History  
Altera Corporation  
Section I–1  
Preliminary  
Revision History  
Cyclone Device Handbook, Volume 1  
Section I–2  
Preliminary  
Altera Corporation  
1. Introduction  
C51001-1.4  
The Cyclone® field programmable gate array family is based on a 1.5-V,  
0.13-μm, all-layer copper SRAM process, with densities up to 20,060 logic  
elements (LEs) and up to 288 Kbits of RAM. With features like phase-  
locked loops (PLLs) for clocking and a dedicated double data rate (DDR)  
interface to meet DDR SDRAM and fast cycle RAM (FCRAM) memory  
requirements, Cyclone devices are a cost-effective solution for data-path  
applications. Cyclone devices support various I/O standards, including  
LVDS at data rates up to 640 megabits per second (Mbps), and 66- and  
33-MHz, 64- and 32-bit peripheral component interconnect (PCI), for  
interfacing with and supporting ASSP and ASIC devices. Altera also  
offers new low-cost serial configuration devices to configure Cyclone  
devices.  
Introduction  
The following shows the main sections in the Cyclone FPGA Family Data  
Sheet:  
Section  
Page  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Logic Array Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3  
Logic Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5  
MultiTrack Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12  
Embedded Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18  
Global Clock Network & Phase-Locked Loops. . . . . . . . . . . 2–29  
I/O Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–39  
Power Sequencing & Hot Socketing . . . . . . . . . . . . . . . . . . . . 2–55  
IEEE Std. 1149.1 (JTAG) Boundary Scan Support. . . . . . . . . . 3–1  
SignalTap II Embedded Logic Analyzer . . . . . . . . . . . . . . . . . 3–5  
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
Timing Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
Device Pin-Outs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
Altera Corporation  
January 2007  
1–1  
Preliminary  
Cyclone Device Handbook, Volume 1  
The Cyclone device family offers the following features:  
Features  
2,910 to 20,060 LEs, see Table 1–1  
Up to 294,912 RAM bits (36,864 bytes)  
Supports configuration through low-cost serial configuration device  
Support for LVTTL, LVCMOS, SSTL-2, and SSTL-3 I/O standards  
Support for 66- and 33-MHz, 64- and 32-bit PCI standard  
High-speed (640 Mbps) LVDS I/O support  
Low-speed (311 Mbps) LVDS I/O support  
311-Mbps RSDS I/O support  
Up to two PLLs per device provide clock multiplication and phase  
shifting  
Up to eight global clock lines with six clock resources available per  
logic array block (LAB) row  
Support for external memory, including DDR SDRAM (133 MHz),  
FCRAM, and single data rate (SDR) SDRAM  
Support for multiple intellectual property (IP) cores, including  
®
®
Altera MegaCore functions and Altera Megafunctions Partners  
SM  
Program (AMPP ) megafunctions.  
Table 1–1. Cyclone Device Features  
Feature  
EP1C3  
EP1C4  
EP1C6  
EP1C12  
EP1C20  
LEs  
2,910  
13  
4,000  
17  
5,980  
20  
12,060  
52  
20,060  
64  
M4K RAM blocks (128 × 36 bits)  
Total RAM bits  
59,904  
1
78,336  
2
92,160  
2
239,616  
2
294,912  
2
PLLs  
Maximum user I/O pins (1)  
104  
301  
185  
249  
301  
Note to Table 1–1:  
(1) This parameter includes global clock pins.  
1–2  
Preliminary  
Altera Corporation  
January 2007  
Features  
Cyclone devices are available in quad flat pack (QFP) and space-saving  
FineLine® BGA packages (see Table 1–2 through 1–3).  
Table 1–2. Cyclone Package Options & I/O Pin Counts  
100-Pin TQFP 144-Pin TQFP 240-PinPQFP  
256-Pin  
324-Pin  
400-Pin  
Device  
(1)  
(1), (2)  
(1)  
FineLine BGA FineLine BGA FineLine BGA  
EP1C3  
65  
104  
EP1C4  
EP1C6  
EP1C12  
EP1C20  
249  
301  
301  
98  
185  
173  
185  
185  
249  
233  
Notes to Table 1–2:  
(1) TQFP: thin quad flat pack.  
PQFP: plastic quad flat pack.  
(2) Cyclone devices support vertical migration within the same package (i.e., designers can migrate between the  
EP1C3 device in the 144-pin TQFP package and the EP1C6 device in the same package)  
Vertical migration means you can migrate a design from one device to  
another that has the same dedicated pins, JTAG pins, and power pins, and  
are subsets or supersets for a given package across device densities. The  
largest density in any package has the highest number of power pins; you  
must use the layout for the largest planned density in a package to  
provide the necessary power pins for migration.  
For I/O pin migration across densities, cross-reference the available I/O  
pins using the device pin-outs for all planned densities of a given package  
type to identify which I/O pins can be migrated. The Quartus® II  
software can automatically cross-reference and place all pins for you  
when given a device migration list. If one device has power or ground  
pins, but these same pins are user I/O on a different device that is in the  
migration path,the Quartus II software ensures the pins are not used as  
user I/O in the Quartus II software. Ensure that these pins are connected  
to the appropriate plane on the board. The Quartus II software reserves  
I/O pins as power pins as necessary for layout with the larger densities  
in the same package having more power pins.  
Altera Corporation  
January 2007  
1–3  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 1–3. Cyclone QFP & FineLine BGA Package Sizes  
256-Pin  
FineLine  
BGA  
324-Pin  
FineLine  
BGA  
400-Pin  
FineLine  
BGA  
100-Pin  
TQFP  
144-Pin  
TQFP  
240-Pin  
PQFP  
Dimension  
Pitch (mm)  
0.5  
256  
0.5  
484  
0.5  
1.0  
289  
1.0  
361  
1.0  
441  
Area (mm2)  
1,024  
Length × width  
(mm × mm)  
16 × 16  
22 × 22  
34.6 × 34.6  
17 × 17  
19 × 19  
21 × 21  
Table 1–4 shows the revision history for this document.  
Document  
Revision History  
Table 1–4. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
January 2007  
v1.4  
Added document revision history.  
Minor updates.  
Added 64-bit PCI support information.  
August 2005  
v1.3  
October 2003  
v1.2  
September  
2003 v1.1  
Updated LVDS data rates to 640 Mbps from 311 Mbps.  
Updated RSDS feature information.  
May 2003 v1.0 Added document to Cyclone Device Handbook.  
1–4  
Preliminary  
Altera Corporation  
January 2007  
2. Cyclone Architecture  
C51002-1.5  
Cyclone® devices contain a two-dimensional row- and column-based  
architecture to implement custom logic. Column and row interconnects  
of varying speeds provide signal interconnects between LABs and  
embedded memory blocks.  
Functional  
Description  
The logic array consists of LABs, with 10 LEs in each LAB. An LE is a  
small unit of logic providing efficient implementation of user logic  
functions. LABs are grouped into rows and columns across the device.  
Cyclone devices range between 2,910 to 20,060 LEs.  
M4K RAM blocks are true dual-port memory blocks with 4K bits of  
memory plus parity (4,608 bits). These blocks provide dedicated true  
dual-port, simple dual-port, or single-port memory up to 36-bits wide at  
up to 250 MHz. These blocks are grouped into columns across the device  
in between certain LABs. Cyclone devices offer between 60 to 288 Kbits of  
embedded RAM.  
Each Cyclone device I/O pin is fed by an I/O element (IOE) located at the  
ends of LAB rows and columns around the periphery of the device. I/O  
pins support various single-ended and differential I/O standards, such as  
the 66- and 33-MHz, 64- and 32-bit PCI standard and the LVDS I/O  
standard at up to 640 Mbps. Each IOE contains a bidirectional I/O buffer  
and three registers for registering input, output, and output-enable  
signals. Dual-purpose DQS, DQ, and DM pins along with delay chains  
(used to phase-align DDR signals) provide interface support with  
external memory devices such as DDR SDRAM, and FCRAM devices at  
up to 133 MHz (266 Mbps).  
Cyclone devices provide a global clock network and up to two PLLs. The  
global clock network consists of eight global clock lines that drive  
throughout the entire device. The global clock network can provide  
clocks for all resources within the device, such as IOEs, LEs, and memory  
blocks. The global clock lines can also be used for control signals. Cyclone  
PLLs provide general-purpose clocking with clock multiplication and  
phase shifting as well as external outputs for high-speed differential I/O  
support.  
Figure 2–1 shows a diagram of the Cyclone EP1C12 device.  
Altera Corporation  
January 2007  
2–1  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–1. Cyclone EP1C12 Device Block Diagram  
IOEs  
Logic Array  
PLL  
EP1C12 Device  
M4K Blocks  
The number of M4K RAM blocks, PLLs, rows, and columns vary per  
device. Table 2–1 lists the resources available in each Cyclone device.  
Table 2–1. Cyclone Device Resources  
M4K RAM  
Device  
PLLs  
LAB Columns LAB Rows  
Columns  
Blocks  
EP1C3  
EP1C4  
EP1C6  
EP1C12  
EP1C20  
1
1
1
2
2
13  
17  
20  
52  
64  
1
2
2
2
2
24  
26  
32  
48  
64  
13  
17  
20  
26  
32  
2–2  
Preliminary  
Altera Corporation  
January 2007  
Logic Array Blocks  
Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local  
interconnect, look-up table (LUT) chain, and register chain connection  
lines. The local interconnect transfers signals between LEs in the same  
LAB. LUT chain connections transfer the output of one LE's LUT to the  
adjacent LE for fast sequential LUT connections within the same LAB.  
Register chain connections transfer the output of one LE's register to the  
adjacent LE's register within an LAB. The Quartus® II Compiler places  
associated logic within an LAB or adjacent LABs, allowing the use of  
local, LUT chain, and register chain connections for performance and area  
efficiency. Figure 2–2 details the Cyclone LAB.  
Logic Array  
Blocks  
Figure 2–2. Cyclone LAB Structure  
Row Interconnect  
Column Interconnect  
Direct link  
interconnect from  
adjacent block  
Direct link  
interconnect from  
adjacent block  
Direct link  
Direct link  
interconnect to  
adjacent block  
interconnect to  
adjacent block  
LAB  
Local Interconnect  
LAB Interconnects  
The LAB local interconnect can drive LEs within the same LAB. The LAB  
local interconnect is driven by column and row interconnects and LE  
outputs within the same LAB. Neighboring LABs, PLLs, and M4K RAM  
blocks from the left and right can also drive an LAB's local interconnect  
through the direct link connection. The direct link connection feature  
minimizes the use of row and column interconnects, providing higher  
Altera Corporation  
January 2007  
2–3  
Preliminary  
Cyclone Device Handbook, Volume 1  
performance and flexibility. Each LE can drive 30 other LEs through fast  
local and direct link interconnects. Figure 2–3 shows the direct link  
connection.  
Figure 2–3. Direct Link Connection  
Direct link interconnect from  
left LAB, M4K memory  
block, PLL, or IOE output  
Direct link interconnect from  
right LAB, M4K memory  
block, PLL, or IOE output  
Direct link  
interconnect  
to right  
Direct link  
interconnect  
to left  
Local  
Interconnect  
LAB  
LAB Control Signals  
Each LAB contains dedicated logic for driving control signals to its LEs.  
The control signals include two clocks, two clock enables, two  
asynchronous clears, synchronous clear, asynchronous preset/load,  
synchronous load, and add/subtract control signals. This gives a  
maximum of 10 control signals at a time. Although synchronous load and  
clear signals are generally used when implementing counters, they can  
also be used with other functions.  
Each LAB can use two clocks and two clock enable signals. Each LAB's  
clock and clock enable signals are linked. For example, any LE in a  
particular LAB using the labclk1signal will also use labclkena1. If  
the LAB uses both the rising and falling edges of a clock, it also uses both  
LAB-wide clock signals. De-asserting the clock enable signal will turn off  
the LAB-wide clock.  
Each LAB can use two asynchronous clear signals and an asynchronous  
load/preset signal. The asynchronous load acts as a preset when the  
asynchronous load data input is tied high.  
2–4  
Preliminary  
Altera Corporation  
January 2007  
Logic Elements  
With the LAB-wide addnsubcontrol signal, a single LE can implement a  
one-bit adder and subtractor. This saves LE resources and improves  
performance for logic functions such as DSP correlators and signed  
multipliers that alternate between addition and subtraction depending  
on data.  
The LAB row clocks [5..0] and LAB local interconnect generate the LAB-  
wide control signals. The MultiTrackTM interconnect's inherent low skew  
allows clock and control signal distribution in addition to data. Figure 2–4  
shows the LAB control signal generation circuit.  
Figure 2–4. LAB-Wide Control Signals  
Dedicated  
LAB Row  
Clocks  
6
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
labclkena2  
labclkena1  
syncload  
labclr2  
addnsub  
Local  
Interconnect  
labclk1  
labclk2  
asyncload  
or labpre  
labclr1  
synclr  
The smallest unit of logic in the Cyclone architecture, the LE, is compact  
and provides advanced features with efficient logic utilization. Each LE  
contains a four-input LUT, which is a function generator that can  
implement any function of four variables. In addition, each LE contains a  
programmable register and carry chain with carry select capability. A  
single LE also supports dynamic single bit addition or subtraction mode  
selectable by an LAB-wide control signal. Each LE drives all types of  
interconnects: local, row, column, LUT chain, register chain, and direct  
link interconnects. See Figure 2–5.  
Logic Elements  
Altera Corporation  
January 2007  
2–5  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–5. Cyclone LE  
Register chain  
routing from  
previous LE  
LAB-wide  
Synchronous  
Load  
Register Bypass  
Packed  
LAB Carry-In  
Programmable  
Register  
LAB-wide  
Carry-In1  
addnsub  
Synchronous  
Clear  
Register Select  
Carry-In0  
LUT chain  
routing to next LE  
data1  
Row, column,  
and direct link  
routing  
PRN/ALD  
data2  
data3  
Synchronous  
Load and  
Clear Logic  
Look-Up  
Table  
(LUT)  
Carry  
Chain  
D
Q
ADATA  
data4  
ENA  
CLRN  
Row, column,  
and direct link  
routing  
labclr1  
labclr2  
Asynchronous  
Clear/Preset/  
Load Logic  
Local Routing  
labpre/aload  
Chip-Wide  
Reset  
Register chain  
output  
Clock &  
Clock Enable  
Select  
Register  
Feedback  
labclk1  
labclk2  
labclkena1  
labclkena2  
Carry-Out0  
Carry-Out1  
LAB Carry-Out  
Each LE's programmable register can be configured for D, T, JK, or SR  
operation. Each register has data, true asynchronous load data, clock,  
clock enable, clear, and asynchronous load/preset inputs. Global signals,  
general-purpose I/O pins, or any internal logic can drive the register's  
clock and clear control signals. Either general-purpose I/O pins or  
internal logic can drive the clock enable, preset, asynchronous load, and  
asynchronous data. The asynchronous load data input comes from the  
data3input of the LE. For combinatorial functions, the LUT output  
bypasses the register and drives directly to the LE outputs.  
Each LE has three outputs that drive the local, row, and column routing  
resources. The LUT or register output can drive these three outputs  
independently. Two LE outputs drive column or row and direct link  
routing connections and one drives local interconnect resources. This  
allows the LUT to drive one output while the register drives another  
output. This feature, called register packing, improves device utilization  
because the device can use the register and the LUT for unrelated  
2–6  
Preliminary  
Altera Corporation  
January 2007  
Logic Elements  
functions. Another special packing mode allows the register output to  
feed back into the LUT of the same LE so that the register is packed with  
its own fan-out LUT. This provides another mechanism for improved  
fitting. The LE can also drive out registered and unregistered versions of  
the LUT output.  
LUT Chain & Register Chain  
In addition to the three general routing outputs, the LEs within an LAB  
have LUT chain and register chain outputs. LUT chain connections allow  
LUTs within the same LAB to cascade together for wide input functions.  
Register chain outputs allow registers within the same LAB to cascade  
together. The register chain output allows an LAB to use LUTs for a single  
combinatorial function and the registers to be used for an unrelated shift  
register implementation. These resources speed up connections between  
LABs while saving local interconnect resources. “MultiTrack  
Interconnect” on page 2–12 for more information on LUT chain and  
register chain connections.  
addnsub Signal  
The LE's dynamic adder/subtractor feature saves logic resources by  
using one set of LEs to implement both an adder and a subtractor. This  
feature is controlled by the LAB-wide control signal addnsub. The  
addnsubsignal sets the LAB to perform either A + B or A B. The LUT  
computes addition; subtraction is computed by adding the two's  
complement of the intended subtractor. The LAB-wide signal converts to  
two's complement by inverting the B bits within the LAB and setting  
carry-in = 1 to add one to the least significant bit (LSB). The LSB of an  
adder/subtractor must be placed in the first LE of the LAB, where the  
LAB-wide addnsubsignal automatically sets the carry-in to 1. The  
Quartus II Compiler automatically places and uses the adder/subtractor  
feature when using adder/subtractor parameterized functions.  
LE Operating Modes  
The Cyclone LE can operate in one of the following modes:  
Normal mode  
Dynamic arithmetic mode  
Each mode uses LE resources differently. In each mode, eight available  
inputs to the LEthe four data inputs from the LAB local interconnect,  
carry-in0and carry-in1from the previous LE, the LAB carry-in  
from the previous carry-chain LAB, and the register chain connectionare  
directed to different destinations to implement the desired logic function.  
LAB-wide signals provide clock, asynchronous clear, asynchronous  
Altera Corporation  
January 2007  
2–7  
Preliminary  
Cyclone Device Handbook, Volume 1  
preset/load, synchronous clear, synchronous load, and clock enable  
control for the register. These LAB-wide signals are available in all LE  
modes. The addnsubcontrol signal is allowed in arithmetic mode.  
The Quartus II software, in conjunction with parameterized functions  
such as library of parameterized modules (LPM) functions, automatically  
chooses the appropriate mode for common functions such as counters,  
adders, subtractors, and arithmetic functions. If required, you can also  
create special-purpose functions that specify which LE operating mode to  
use for optimal performance.  
Normal Mode  
The normal mode is suitable for general logic applications and  
combinatorial functions. In normal mode, four data inputs from the LAB  
local interconnect are inputs to a four-input LUT (see Figure 2–6). The  
Quartus II Compiler automatically selects the carry-in or the data3  
signal as one of the inputs to the LUT. Each LE can use LUT chain  
connections to drive its combinatorial output directly to the next LE in the  
LAB. Asynchronous load data for the register comes from the data3  
input of the LE. LEs in normal mode support packed registers.  
Figure 2–6. LE in Normal Mode  
sload  
sclear  
aload  
(LAB Wide) (LAB Wide)  
(LAB Wide)  
Register chain  
connection  
addnsub (LAB Wide)  
ALD/PRE  
(1)  
Row, column, and  
direct link routing  
ADATA  
D
Q
data1  
data2  
Row, column, and  
direct link routing  
ENA  
CLRN  
data3  
cin (from cout  
of previous LE)  
4-Input  
LUT  
clock (LAB Wide)  
Local routing  
data4  
ena (LAB Wide)  
aclr (LAB Wide)  
LUT chain  
connection  
Register  
chain output  
Register Feedback  
Note to Figure 2–6:  
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.  
2–8  
Preliminary  
Altera Corporation  
January 2007  
Logic Elements  
Dynamic Arithmetic Mode  
The dynamic arithmetic mode is ideal for implementing adders, counters,  
accumulators, wide parity functions, and comparators. An LE in dynamic  
arithmetic mode uses four 2-input LUTs configurable as a dynamic  
adder/subtractor. The first two 2-input LUTs compute two summations  
based on a possible carry-in of 1 or 0; the other two LUTs generate carry  
outputs for the two chains of the carry select circuitry. As shown in  
Figure 2–7, the LAB carry-in signal selects either the carry-in0or  
carry-in1chain. The selected chain's logic level in turn determines  
which parallel sum is generated as a combinatorial or registered output.  
For example, when implementing an adder, the sum output is the  
selection of two possible calculated sums:  
data1 + data2 + carry-in0  
or  
data1 + data2 + carry-in1  
The other two LUTs use the data1and data2signals to generate two  
possible carry-out signalsone for a carry of 1 and the other for a carry of  
0. The carry-in0signal acts as the carry select for the carry-out0  
output and carry-in1acts as the carry select for the carry-out1  
output. LEs in arithmetic mode can drive out registered and unregistered  
versions of the LUT output.  
The dynamic arithmetic mode also offers clock enable, counter enable,  
synchronous up/down control, synchronous clear, synchronous load,  
and dynamic adder/subtractor options. The LAB local interconnect data  
inputs generate the counter enable and synchronous up/down control  
signals. The synchronous clear and synchronous load options are LAB-  
wide signals that affect all registers in the LAB. The Quartus II software  
automatically places any registers that are not used by the counter into  
other LABs. The addnsubLAB-wide signal controls whether the LE acts  
as an adder or subtractor.  
Altera Corporation  
January 2007  
2–9  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–7. LE in Dynamic Arithmetic Mode  
LAB Carry-In  
Carry-In0  
Carry-In1  
sload  
sclear  
aload  
(LAB Wide)  
(LAB Wide) (LAB Wide)  
Register chain  
connection  
addnsub  
(LAB Wide)  
(1)  
ALD/PRE  
data1  
data2  
data3  
LUT  
ADATA  
D
Row, column, and  
direct link routing  
Q
LUT  
LUT  
LUT  
Row, column, and  
direct link routing  
ENA  
CLRN  
clock (LAB Wide)  
ena (LAB Wide)  
aclr (LAB Wide)  
Local routing  
LUT chain  
connection  
Register  
chain output  
Register Feedback  
Carry-Out0 Carry-Out1  
Note to Figure 2–7:  
(1) The addnsubsignal is tied to the carry input for the first LE of a carry chain only.  
Carry-Select Chain  
The carry-select chain provides a very fast carry-select function between  
LEs in dynamic arithmetic mode. The carry-select chain uses the  
redundant carry calculation to increase the speed of carry functions. The  
LE is configured to calculate outputs for a possible carry-in of 0 and carry-  
in of 1 in parallel. The carry-in0and carry-in1signals from a lower-  
order bit feed forward into the higher-order bit via the parallel carry chain  
and feed into both the LUT and the next portion of the carry chain. Carry-  
select chains can begin in any LE within an LAB.  
The speed advantage of the carry-select chain is in the parallel pre-  
computation of carry chains. Since the LAB carry-in selects the  
precomputed carry chain, not every LE is in the critical path. Only the  
propagation delays between LAB carry-in generation (LE 5 and LE 10) are  
now part of the critical path. This feature allows the Cyclone architecture  
to implement high-speed counters, adders, multipliers, parity functions,  
and comparators of arbitrary width.  
2–10  
Preliminary  
Altera Corporation  
January 2007  
Logic Elements  
Figure 2–8 shows the carry-select circuitry in an LAB for a 10-bit full  
adder. One portion of the LUT generates the sum of two bits using the  
input signals and the appropriate carry-in bit; the sum is routed to the  
output of the LE. The register can be bypassed for simple adders or used  
for accumulator functions. Another portion of the LUT generates carry-  
out bits. An LAB-wide carry-in bit selects which chain is used for the  
addition of given inputs. The carry-in signal for each chain, carry-in0  
or carry-in1, selects the carry-out to carry forward to the carry-in  
signal of the next-higher-order bit. The final carry-out signal is routed to  
an LE, where it is fed to local, row, or column interconnects.  
Figure 2–8. Carry Select Chain  
LAB Carry-In  
0
1
LAB Carry-In  
Sum1  
A1  
B1  
LE1  
LE2  
LE3  
LE4  
LE5  
Carry-In0  
Carry-In1  
Sum2  
Sum3  
Sum4  
Sum5  
A2  
B2  
LUT  
LUT  
data1  
data2  
Sum  
A3  
B3  
A4  
B4  
LUT  
LUT  
A5  
B5  
0
1
Carry-Out0  
Carry-Out1  
Sum6  
Sum7  
Sum8  
Sum9  
Sum10  
A6  
B6  
LE6  
LE7  
LE8  
LE9  
A7  
B7  
A8  
B8  
A9  
B9  
A10  
B10  
LE10  
LAB Carry-Out  
Altera Corporation  
January 2007  
2–11  
Preliminary  
Cyclone Device Handbook, Volume 1  
The Quartus II Compiler automatically creates carry chain logic during  
design processing, or you can create it manually during design entry.  
Parameterized functions such as LPM functions automatically take  
advantage of carry chains for the appropriate functions.  
The Quartus II Compiler creates carry chains longer than 10 LEs by  
linking LABs together automatically. For enhanced fitting, a long carry  
chain runs vertically allowing fast horizontal connections to M4K  
memory blocks. A carry chain can continue as far as a full column.  
Clear & Preset Logic Control  
LAB-wide signals control the logic for the register's clear and preset  
signals. The LE directly supports an asynchronous clear and preset  
function. The register preset is achieved through the asynchronous load  
of a logic high. The direct asynchronous preset does not require a NOT-  
gate push-back technique. Cyclone devices support simultaneous preset/  
asynchronous load and clear signals. An asynchronous clear signal takes  
precedence if both signals are asserted simultaneously. Each LAB  
supports up to two clears and one preset signal.  
In addition to the clear and preset ports, Cyclone devices provide a chip-  
wide reset pin (DEV_CLRn) that resets all registers in the device. An  
option set before compilation in the Quartus II software controls this pin.  
This chip-wide reset overrides all other control signals.  
In the Cyclone architecture, connections between LEs, M4K memory  
blocks, and device I/O pins are provided by the MultiTrack interconnect  
structure with DirectDriveTM technology. The MultiTrack interconnect  
consists of continuous, performance-optimized routing lines of different  
speeds used for inter- and intra-design block connectivity. The Quartus II  
Compiler automatically places critical design paths on faster  
interconnects to improve design performance.  
MultiTrack  
Interconnect  
DirectDrive technology is a deterministic routing technology that ensures  
identical routing resource usage for any function regardless of placement  
within the device. The MultiTrack interconnect and DirectDrive  
technology simplify the integration stage of block-based designing by  
eliminating the re-optimization cycles that typically follow design  
changes and additions.  
The MultiTrack interconnect consists of row and column interconnects  
that span fixed distances. A routing structure with fixed length resources  
for all devices allows predictable and repeatable performance when  
2–12  
Preliminary  
Altera Corporation  
January 2007  
MultiTrack Interconnect  
migrating through different device densities. Dedicated row  
interconnects route signals to and from LABs, PLLs, and M4K memory  
blocks within the same row. These row resources include:  
Direct link interconnects between LABs and adjacent blocks  
R4 interconnects traversing four blocks to the right or left  
The direct link interconnect allows an LAB or M4K memory block to  
drive into the local interconnect of its left and right neighbors. Only one  
side of a PLL block interfaces with direct link and row interconnects. The  
direct link interconnect provides fast communication between adjacent  
LABs and/or blocks without using row interconnect resources.  
The R4 interconnects span four LABs, or two LABs and one M4K RAM  
block. These resources are used for fast row connections in a four-LAB  
region. Every LAB has its own set of R4 interconnects to drive either left  
or right. Figure 2–9 shows R4 interconnect connections from an LAB. R4  
interconnects can drive and be driven by M4K memory blocks, PLLs, and  
row IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive  
a given R4 interconnect. For R4 interconnects that drive to the right, the  
primary LAB and right neighbor can drive on to the interconnect. For R4  
interconnects that drive to the left, the primary LAB and its left neighbor  
can drive on to the interconnect. R4 interconnects can drive other R4  
interconnects to extend the range of LABs they can drive. R4  
interconnects can also drive C4 interconnects for connections from one  
row to another.  
Altera Corporation  
January 2007  
2–13  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–9. R4 Interconnect Connections  
Adjacent LAB can  
Drive onto Another  
LAB's R4 Interconnect  
R4 Interconnect  
Driving Right  
C4 Column Interconnects (1)  
R4 Interconnect  
Driving Left  
LAB  
Neighbor  
Primary  
LAB (2)  
LAB  
Neighbor  
Notes to Figure 2–9:  
(1) C4 interconnects can drive R4 interconnects.  
(2) This pattern is repeated for every LAB in the LAB row.  
The column interconnect operates similarly to the row interconnect. Each  
column of LABs is served by a dedicated column interconnect, which  
vertically routes signals to and from LABs, M4K memory blocks, and row  
and column IOEs. These column resources include:  
LUT chain interconnects within an LAB  
Register chain interconnects within an LAB  
C4 interconnects traversing a distance of four blocks in an up and  
down direction  
Cyclone devices include an enhanced interconnect structure within LABs  
for routing LE output to LE input connections faster using LUT chain  
connections and register chain connections. The LUT chain connection  
allows the combinatorial output of an LE to directly drive the fast input  
of the LE right below it, bypassing the local interconnect. These resources  
can be used as a high-speed connection for wide fan-in functions from LE  
1 to LE 10 in the same LAB. The register chain connection allows the  
register output of one LE to connect directly to the register input of the  
next LE in the LAB for fast shift registers. The Quartus II Compiler  
automatically takes advantage of these resources to improve utilization  
and performance. Figure 2–10 shows the LUT chain and register chain  
interconnects.  
2–14  
Preliminary  
Altera Corporation  
January 2007  
MultiTrack Interconnect  
Figure 2–10. LUT Chain & Register Chain Interconnects  
Local Interconnect  
Routing Among LEs  
in the LAB  
LE 1  
LUT Chain  
Routing to  
Adjacent LE  
Register Chain  
Routing to Adjacent  
LE's Register Input  
LE 2  
LE 3  
LE 4  
LE 5  
LE 6  
LE 7  
LE 8  
LE 9  
Local  
Interconnect  
LE 10  
The C4 interconnects span four LABs or M4K blocks up or down from a  
source LAB. Every LAB has its own set of C4 interconnects to drive either  
up or down. Figure 2–11 shows the C4 interconnect connections from an  
LAB in a column. The C4 interconnects can drive and be driven by all  
types of architecture blocks, including PLLs, M4K memory blocks, and  
column and row IOEs. For LAB interconnection, a primary LAB or its  
LAB neighbor can drive a given C4 interconnect. C4 interconnects can  
drive each other to extend their range as well as drive row interconnects  
for column-to-column connections.  
Altera Corporation  
January 2007  
2–15  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–11. C4 Interconnect Connections  
Note (1)  
C4 Interconnect  
Drives Local and R4  
Interconnects  
Up to Four Rows  
C4 Interconnect  
Driving Up  
LAB  
Row  
Interconnect  
Adjacent LAB can  
drive onto neighboring  
LAB's C4 interconnect  
Local  
Interconnect  
C4 Interconnect  
Driving Down  
Note to Figure 2–11:  
(1) Each C4 interconnect can drive either up or down four rows.  
2–16  
Preliminary  
Altera Corporation  
January 2007  
MultiTrack Interconnect  
All embedded blocks communicate with the logic array similar to LAB-  
to-LAB interfaces. Each block (i.e., M4K memory or PLL) connects to row  
and column interconnects and has local interconnect regions driven by  
row and column interconnects. These blocks also have direct link  
interconnects for fast connections to and from a neighboring LAB.  
Table 2–2 shows the Cyclone device's routing scheme.  
Table 2–2. Cyclone Device Routing Scheme  
Destination  
Source  
LUT Chain  
v
v
v
Register Chain  
Local Interconnect  
v
v
v
v
Direct Link  
Interconnect  
v
R4 Interconnect  
C4 Interconnect  
LE  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
M4K RAM Block  
PLL  
Column IOE  
Row IOE  
v
v
Altera Corporation  
January 2007  
2–17  
Preliminary  
Cyclone Device Handbook, Volume 1  
The Cyclone embedded memory consists of columns of M4K memory  
Embedded  
Memory  
blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while  
EP1C12 and EP1C20 devices have two columns (see Table 1–1 on  
page 1–2 for total RAM bits per density). Each M4K block can implement  
various types of memory with or without parity, including true dual-port,  
simple dual-port, and single-port RAM, ROM, and FIFO buffers. The  
M4K blocks support the following features:  
4,608 RAM bits  
250 MHz performance  
True dual-port memory  
Simple dual-port memory  
Single-port memory  
Byte enable  
Parity bits  
Shift register  
FIFO buffer  
ROM  
Mixed clock mode  
1
Violating the setup or hold time on the address registers could corrupt the  
memory contents. This applies to both read and write operations.  
Memory Modes  
The M4K memory blocks include input registers that synchronize writes  
and output registers to pipeline designs and improve system  
performance. M4K blocks offer a true dual-port mode to support any  
combination of two-port operations: two reads, two writes, or one read  
and one write at two different clock frequencies. Figure 2–12 shows true  
dual-port memory.  
Figure 2–12. True Dual-Port Memory Configuration  
A
B
dataA[]  
dataB[]  
addressA[]  
wrenA  
addressB[]  
wrenB  
clockA  
clockenA  
qA[]  
clockB  
clockenB  
qB[]  
aclrA  
aclrB  
2–18  
Preliminary  
Altera Corporation  
January 2007  
Embedded Memory  
In addition to true dual-port memory, the M4K memory blocks support  
simple dual-port and single-port RAM. Simple dual-port memory  
supports a simultaneous read and write. Single-port memory supports  
non-simultaneous reads and writes. Figure 2–13 shows these different  
M4K RAM memory port configurations.  
Figure 2–13. Simple Dual-Port & Single-Port Memory Configurations  
Simple Dual-Port Memory  
data[]  
rdaddress[]  
rden  
wraddress[]  
wren  
q[]  
inclock  
inclocken  
inaclr  
outclock  
outclocken  
outaclr  
Single-Port Memory (1)  
data[]  
address[]  
wren  
q[]  
outclock  
inclock  
inclocken  
inaclr  
outclocken  
outaclr  
Note to Figure 2–13:  
(1) Two single-port memory blocks can be implemented in a single M4K block as long  
as each of the two independent block sizes is equal to or less than half of the M4K  
block size.  
The memory blocks also enable mixed-width data ports for reading and  
writing to the RAM ports in dual-port RAM configuration. For example,  
the memory block can be written in ×1 mode at port A and read out in ×16  
mode from port B.  
The Cyclone memory architecture can implement fully synchronous  
RAM by registering both the input and output signals to the M4K RAM  
block. All M4K memory block inputs are registered, providing  
synchronous write cycles. In synchronous operation, the memory block  
generates its own self-timed strobe write enable (wren) signal derived  
from a global clock. In contrast, a circuit using asynchronous RAM must  
generate the RAM wrensignal while ensuring its data and address  
signals meet setup and hold time specifications relative to the wren  
Altera Corporation  
January 2007  
2–19  
Preliminary  
Cyclone Device Handbook, Volume 1  
signal. The output registers can be bypassed. Pseudo-asynchronous  
reading is possible in the simple dual-port mode of M4K blocks by  
clocking the read enable and read address registers on the negative clock  
edge and bypassing the output registers.  
When configured as RAM or ROM, you can use an initialization file to  
pre-load the memory contents.  
Two single-port memory blocks can be implemented in a single M4K  
block as long as each of the two independent block sizes is equal to or less  
than half of the M4K block size.  
The Quartus II software automatically implements larger memory by  
combining multiple M4K memory blocks. For example, two 256×16-bit  
RAM blocks can be combined to form a 256×32-bit RAM block. Memory  
performance does not degrade for memory blocks using the maximum  
number of words allowed. Logical memory blocks using less than the  
maximum number of words use physical blocks in parallel, eliminating  
any external control logic that would increase delays. To create a larger  
high-speed memory block, the Quartus II software automatically  
combines memory blocks with LE control logic.  
Parity Bit Support  
The M4K blocks support a parity bit for each byte. The parity bit, along  
with internal LE logic, can implement parity checking for error detection  
to ensure data integrity. You can also use parity-size data words to store  
user-specified control bits. Byte enables are also available for data input  
masking during write operations.  
Shift Register Support  
You can configure M4K memory blocks to implement shift registers for  
DSP applications such as pseudo-random number generators, multi-  
channel filtering, auto-correlation, and cross-correlation functions. These  
and other DSP applications require local data storage, traditionally  
implemented with standard flip-flops, which can quickly consume many  
logic cells and routing resources for large shift registers. A more efficient  
alternative is to use embedded memory as a shift register block, which  
saves logic cell and routing resources and provides a more efficient  
implementation with the dedicated circuitry.  
The size of a w × m × n shift register is determined by the input data width  
(w), the length of the taps (m), and the number of taps (n). The size of a  
w × m × n shift register must be less than or equal to the maximum number  
of memory bits in the M4K block (4,608 bits). The total number of shift  
2–20  
Preliminary  
Altera Corporation  
January 2007  
Embedded Memory  
register outputs (number of taps n × width w) must be less than the  
maximum data width of the M4K RAM block (×36). To create larger shift  
registers, multiple memory blocks are cascaded together.  
Data is written into each address location at the falling edge of the clock  
and read from the address at the rising edge of the clock. The shift register  
mode logic automatically controls the positive and negative edge  
clocking to shift the data in one clock cycle. Figure 2–14 shows the M4K  
memory block in the shift register mode.  
Figure 2–14. Shift Register Memory Configuration  
w × m × n Shift Register  
m-Bit Shift Register  
w
w
w
m-Bit Shift Register  
w
n Number  
of Taps  
m-Bit Shift Register  
w
w
w
m-Bit Shift Register  
w
Memory Configuration Sizes  
The memory address depths and output widths can be configured as  
4,096 × 1, 2,048 × 2, 1,024 × 4, 512 × 8 (or 512 × 9 bits), 256 × 16 (or 256 × 18  
bits), and 128 × 32 (or 128 × 36 bits). The 128 × 32- or 36-bit configuration  
Altera Corporation  
January 2007  
2–21  
Preliminary  
Cyclone Device Handbook, Volume 1  
is not available in the true dual-port mode. Mixed-width configurations  
are also possible, allowing different read and write widths. Tables 2–3  
and 2–4 summarize the possible M4K RAM block configurations.  
Table 2–3. M4K RAM Block Configurations (Simple Dual-Port)  
Write Port  
Read Port  
4K × 1  
4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 128 × 32 512 × 9 256 × 18 128 × 36  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
2K × 2  
1K × 4  
512 × 8  
256 × 16  
128 × 32  
512 × 9  
256 × 18  
128 × 36  
v
v
v
v
v
v
v
v
v
Table 2–4. M4K RAM Block Configurations (True Dual-Port)  
Port B  
Port A  
4K × 1  
v
2K × 2  
v
1K × 4  
v
512 × 8  
v
256 × 16  
v
512 × 9  
256 × 18  
4K × 1  
2K × 2  
v
v
v
v
v
1K × 4  
v
v
v
v
v
512 × 8  
256 × 16  
512 × 9  
256 × 18  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
When the M4K RAM block is configured as a shift register block, you can  
create a shift register up to 4,608 bits (w × m × n).  
2–22  
Preliminary  
Altera Corporation  
January 2007  
Embedded Memory  
Byte Enables  
M4K blocks support byte writes when the write port has a data width of  
16, 18, 32, or 36 bits. The byte enables allow the input data to be masked  
so the device can write to specific bytes. The unwritten bytes retain the  
previous written value. Table 2–5 summarizes the byte selection.  
Table 2–5. Byte Enable for M4K Blocks  
Notes (1), (2)  
byteena[3..0]  
datain × 18  
datain × 36  
[0] = 1  
[1] = 1  
[2] = 1  
[3] = 1  
[8..0]  
[8..0]  
[17..9]  
[17..9]  
[26..18]  
[35..27]  
Notes to Table 2–5:  
(1) Any combination of byte enables is possible.  
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in × 16 and  
× 32 modes.  
Control Signals & M4K Interface  
The M4K blocks allow for different clocks on their inputs and outputs.  
Either of the two clocks feeding the block can clock M4K block registers  
(renwe, address, byte enable, datain, and output registers). Only the  
output register can be bypassed. The six labclksignals or local  
interconnects can drive the control signals for the A and B ports of the  
M4K block. LEs can also control the clock_a, clock_b, renwe_a,  
renwe_b, clr_a, clr_b, clocken_a, and clocken_bsignals, as  
shown in Figure 2–15.  
The R4, C4, and direct link interconnects from adjacent LABs drive the  
M4K block local interconnect. The M4K blocks can communicate with  
LABs on either the left or right side through these row resources or with  
LAB columns on either the right or left with the column resources. Up to  
10 direct link input connections to the M4K block are possible from the  
left adjacent LABs and another 10 possible from the right adjacent LAB.  
M4K block outputs can also connect to left and right LABs through 10  
direct link interconnects each. Figure 2–16 shows the M4K block to logic  
array interface.  
Altera Corporation  
January 2007  
2–23  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–15. M4K RAM Block Control Signals  
Dedicated  
6
LAB Row  
Clocks  
Local  
Local  
Interconnect  
Interconnect  
Local  
Local  
Interconnect  
Interconnect  
Local  
Local  
Interconnect  
Interconnect  
Local  
Local  
Interconnect  
Interconnect  
alcr_a  
clocken_a  
renwe_b  
clock_b  
Local  
Local  
Interconnect  
Interconnect  
clock_a  
renwe_a  
alcr_b  
clocken_b  
Figure 2–16. M4K RAM Block LAB Row Interface  
C4 Interconnects  
R4 Interconnects  
10  
Direct link  
Direct link  
interconnect  
to adjacent LAB  
interconnect  
to adjacent LAB  
dataout  
M4K RAM  
Block  
Direct link  
Direct link  
interconnect  
interconnect  
from adjacent LAB  
from adjacent LAB  
Byte enable  
Clocks  
Control  
Signals  
address  
datain  
6
M4K RAM Block Local  
Interconnect Region  
LAB Row Clocks  
2–24  
Preliminary  
Altera Corporation  
January 2007  
Embedded Memory  
Independent Clock Mode  
The M4K memory blocks implement independent clock mode for true  
dual-port memory. In this mode, a separate clock is available for each port  
(ports A and B). Clock A controls all registers on the port A side, while  
clock B controls all registers on the port B side. Each port, A and B, also  
supports independent clock enables and asynchronous clear signals for  
port A and B registers. Figure 2–17 shows an M4K memory block in  
independent clock mode.  
Figure 2–17. Independent Clock Mode  
Notes (1), (2)  
6 LAB Row Clocks  
Memory Block  
256 ´ 16 (2)  
512 ´ 8  
1,024 ´ 4  
2,048 ´ 2  
A
B
6
6
dataA[ ]  
dataB[ ]  
Data In  
Q
Q
D
D
Q
Q
Data In  
ENA  
ENA  
4,096 ´ 1  
byteenaA[ ]  
byteenaB[ ]  
Byte Enable A  
D
D
Byte Enable B  
ENA  
ENA  
addressA[ ]  
addressB[ ]  
Address A  
Address B  
Q
Q
D
D
Q
Q
ENA  
ENA  
wrenA  
wrenB  
Write/Read  
Enable  
Write/Read  
Enable  
D
D
Write  
Pulse  
Generator  
Write  
Pulse  
Generator  
clkenA  
clockA  
clkenB  
clockB  
ENA  
ENA  
Data Out  
Data Out  
D
Q
Q
D
ENA  
ENA  
qA[ ] qB[ ]  
Notes to Figure 2–17:  
(1) All registers shown have asynchronous clear ports.  
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both  
read and write operations.  
Input/Output Clock Mode  
Input/output clock mode can be implemented for both the true and  
simple dual-port memory modes. On each of the two ports, A or B, one  
clock controls all registers for inputs into the memory block: data input,  
wren, and address. The other clock controls the block's data output  
registers. Each memory block port, A or B, also supports independent  
clock enables and asynchronous clear signals for input and output  
registers. Figures 2–18 and 2–19 show the memory block in input/output  
clock mode.  
Altera Corporation  
January 2007  
2–25  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–18. Input/Output Clock Mode in True Dual-Port Mode  
Note (1), (2)  
6 LAB Row Clocks  
6
6
Memory Block  
256 × 16 (2)  
512 × 8  
A
B
dataA[ ]  
dataB[ ]  
Data In  
Q
Q
Q
D
D
Q
Q
Q
Data In  
ENA  
ENA  
1,024 × 4  
2,048 × 2  
4,096 × 1  
byteenaA[ ]  
byteenaB[ ]  
Byte Enable A  
D
D
Byte Enable B  
ENA  
ENA  
addressA[ ]  
addressB[ ]  
Address A  
Address B  
D
D
ENA  
ENA  
wrenA  
wrenB  
Write/Read  
Enable  
Write/Read  
Enable  
Write  
Pulse  
Generator  
Write  
Pulse  
Generator  
Q
D
D
Q
clkenA  
clockA  
ENA  
ENA  
Data Out  
Data Out  
clkenB  
clockB  
D
Q
Q
D
ENA  
ENA  
qA[ ] qB[ ]  
Notes to Figure 2–18:  
(1) All registers shown have asynchronous clear ports.  
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both  
read and write operations.  
2–26  
Preliminary  
Altera Corporation  
January 2007  
Embedded Memory  
Figure 2–19. Input/Output Clock Mode in Simple Dual-Port Mode  
Notes (1), (2)  
6 LAB Row  
Clocks  
Memory Block  
6
256 ´ 16  
512 ´ 8  
1,024 ´ 4  
2,048 ´ 2  
4,096 ´ 1  
data[ ]  
address[ ]  
byteena[ ]  
D
ENA  
Q
Q
Q
Data In  
Read Address  
D
ENA  
To MultiTrack  
Interconnect  
Data Out  
D
Q
ENA  
Byte Enable  
D
ENA  
wraddress[ ]  
Write Address  
D
ENA  
Q
Q
rden  
Read Enable  
D
ENA  
wren  
outclken  
Write  
Pulse  
Generator  
D
ENA  
Q
Write Enable  
inclken  
inclock  
outclock  
Notes to Figure 2–19:  
(1) All registers shown except the rden register have asynchronous clear ports.  
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both  
read and write operations.  
Altera Corporation  
January 2007  
2–27  
Preliminary  
Cyclone Device Handbook, Volume 1  
Read/Write Clock Mode  
The M4K memory blocks implement read/write clock mode for simple  
dual-port memory. You can use up to two clocks in this mode. The write  
clock controls the block's data inputs, wraddress, and wren. The read  
clock controls the data output, rdaddress, and rden. The memory  
blocks support independent clock enables for each clock and  
asynchronous clear signals for the read- and write-side registers.  
Figure 2–20 shows a memory block in read/write clock mode.  
Figure 2–20. Read/Write Clock Mode in Simple Dual-Port Mode Notes (1), (2)  
6 LAB Row  
Clocks  
Memory Block  
256 × 16  
512 × 8  
6
1,024 × 4  
data[ ]  
D
ENA  
Q
Data In  
2,048 × 2  
4,096 × 1  
To MultiTrack  
Interconnect  
Data Out  
D
Q
ENA  
address[ ]  
Read Address  
D
Q
Q
Q
ENA  
wraddress[ ]  
Write Address  
Byte Enable  
Read Enable  
D
ENA  
byteena[ ]  
D
ENA  
rden  
D
Q
ENA  
wren  
rdclken  
Write  
Pulse  
Generator  
D
ENA  
Q
wrclken  
wrclock  
Write Enable  
rdclock  
Notes to Figure 2–20:  
(1) All registers shown except the rden register have asynchronous clear ports.  
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both  
read and write operations.  
2–28  
Preliminary  
Altera Corporation  
January 2007  
Global Clock Network & Phase-Locked Loops  
Single-Port Mode  
The M4K memory blocks also support single-port mode, used when  
simultaneous reads and writes are not required. See Figure 2–21. A single  
M4K memory block can support up to two single-port mode RAM blocks  
if each RAM block is less than or equal to 2K bits in size.  
Figure 2–21. Single-Port Mode  
Note (1)  
6 LAB Row  
Clocks  
RAM/ROM  
6
256 × 16  
512 × 8  
1,024 × 4  
data[ ]  
D
ENA  
Q
Data In  
2,048 × 2  
4,096 × 1  
To MultiTrack  
Interconnect  
Data Out  
D
Q
ENA  
address[ ]  
Address  
D
Q
ENA  
wren  
Write Enable  
outclken  
D
ENA  
Q
inclken  
inclock  
Write  
Pulse  
Generator  
outclock  
Note to Figure 2–21:  
(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both  
read and write operations.  
Cyclone devices provide a global clock network and up to two PLLs for a  
complete clock management solution.  
Global Clock  
Network &  
Phase-Locked  
Loops  
Global Clock Network  
There are four dedicated clock pins (CLK[3..0], two pins on the left side  
and two pins on the right side) that drive the global clock network, as  
shown in Figure 2–22. PLL outputs, logic array, and dual-purpose clock  
(DPCLK[7..0]) pins can also drive the global clock network.  
Altera Corporation  
January 2007  
2–29  
Preliminary  
Cyclone Device Handbook, Volume 1  
The eight global clock lines in the global clock network drive throughout  
the entire device. The global clock network can provide clocks for all  
resources within the device IOEs, LEs, and memory blocks. The global  
clock lines can also be used for control signals, such as clock enables and  
synchronous or asynchronous clears fed from the external pin, or DQS  
signals for DDR SDRAM or FCRAM interfaces. Internal logic can also  
drive the global clock network for internally generated global clocks and  
asynchronous clears, clock enables, or other control signals with large  
fanout. Figure 2–22 shows the various sources that drive the global clock  
network.  
Figure 2–22. Global Clock Generation  
Note (1)  
DPCLK2  
DPCLK3  
Cyclone Device  
Global Clock  
Network  
8
DPCLK1  
DPCLK4  
From logic  
array  
From logic  
array  
4
4
CLK0  
CLK2  
PLL2  
(2)  
PLL1  
2
CLK1 (3)  
CLK3 (3)  
4
4
2
DPCLK0  
DPCLK5  
DPCLK7  
DPCLK6  
Notes to Figure 2–22:  
(1) The EP1C3 device in the 100-pin TQFP package has five DPCLKpins (DPCLK2, DPCLK3, DPCLK4, DPCLK6, and  
DPCLK7).  
(2) EP1C3 devices only contain one PLL (PLL 1).  
(3) The EP1C3 device in the 100-pin TQFP package does not have dedicated clock pins CLK1and CLK3.  
2–30  
Preliminary  
Altera Corporation  
January 2007  
Global Clock Network & Phase-Locked Loops  
Dual-Purpose Clock Pins  
Each Cyclone device except the EP1C3 device has eight dual-purpose  
clock pins, DPCLK[7..0](two on each I/O bank). EP1C3 devices have  
five DPCLKpins in the 100-pin TQFP package. These dual-purpose pins  
can connect to the global clock network (see Figure 2–22) for high-fanout  
control signals such as clocks, asynchronous clears, presets, and clock  
enables, or protocol control signals such as TRDYand IRDYfor PCI, or  
DQS signals for external memory interfaces.  
Combined Resources  
Each Cyclone device contains eight distinct dedicated clocking resources.  
The device uses multiplexers with these clocks to form six-bit buses to  
drive LAB row clocks, column IOE clocks, or row IOE clocks. See  
Figure 2–23. Another multiplexer at the LAB level selects two of the six  
LAB row clocks to feed the LE registers within the LAB.  
Figure 2–23. Global Clock Network Multiplexers  
Column I/O Region  
IO_CLK]5..0]  
Global Clock  
Network  
Global Clocks [3..0]  
Dual-Purpose Clocks [7..0]  
Clock [7..0]  
LAB Row Clock [5..0]  
PLL Outputs [3..0]  
Core Logic [7..0]  
Row I/O Region  
IO_CLK[5..0]  
IOE clocks have row and column block regions. Six of the eight global  
clock resources feed to these row and column regions. Figure 2–24 shows  
the I/O clock regions.  
Altera Corporation  
January 2007  
2–31  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–24. I/O Clock Regions  
Column I/O Clock Region  
IO_CLK[5..0]  
6
I/O Clock Regions  
Cyclone Logic Array  
LAB Row Clocks  
labclk[5..0]  
LAB Row Clocks  
labclk[5..0]  
6
6
6
LAB Row Clocks  
labclk[5..0]  
LAB Row Clocks  
labclk[5..0]  
6
Global Clock  
Network  
8
Row  
I/O Regions  
LAB Row Clocks  
labclk[5..0]  
LAB Row Clocks  
labclk[5..0]  
6
6
I/O Clock Regions  
6
Column I/O Clock Region  
IO_CLK[5..0]  
PLLs  
Cyclone PLLs provide general-purpose clocking with clock  
multiplication and phase shifting as well as outputs for differential I/O  
support. Cyclone devices contain two PLLs, except for the EP1C3 device,  
which contains one PLL.  
2–32  
Preliminary  
Altera Corporation  
January 2007  
Global Clock Network & Phase-Locked Loops  
Table 2–6 shows the PLL features in Cyclone devices. Figure 2–25 shows  
a Cyclone PLL.  
Table 2–6. Cyclone PLL Features  
Feature  
PLL Support  
Clock multiplication and division  
Phase shift  
m/(n × post-scale counter) (1)  
Down to 125-ps increments (2), (3)  
Programmable duty cycle  
Number of internal clock outputs  
Number of external clock outputs  
Yes  
2
One differential or one single-ended (4)  
Notes to Table 2–6:  
(1) The m counter ranges from 2 to 32. The n counter and the post-scale counters  
range from 1 to 32.  
(2) The smallest phase shift is determined by the voltage-controlled oscillator (VCO)  
period divided by 8.  
(3) For degree increments, Cyclone devices can shift all output frequencies in  
increments of 45°. Smaller degree increments are possible depending on the  
frequency and divide parameters.  
(4) The EP1C3 device in the 100-pin TQFP package does not support external clock  
output. The EP1C6 device in the 144-pin TQFP package does not support external  
clock output from PLL2.  
Figure 2–25. Cyclone PLL  
Note (1)  
VCO Phase Selection  
Selectable at Each PLL  
Output Port  
Post-Scale  
Counters  
Global clock  
÷g0  
CLK0 or  
LVDSCLK1p (2)  
Charge  
Pump  
Loop  
Filter  
÷n  
Δt  
÷g1  
÷e  
PFD (3)  
VCO  
Global clock  
I/O buffer  
CLK1 or  
LVDSCLK1n (2)  
Δt  
÷m  
Notes to Figure 2–25:  
(1) The EP1C3 device in the 100-pin TQFP package does not support external outputs or LVDS inputs. The EP1C6  
device in the 144-pin TQFP package does not support external output from PLL2.  
(2) LVDS input is supported via the secondary function of the dedicated clock pins. For PLL 1, the CLK0pin’s secondary  
function is LVDSCLK1pand the CLK1pin’s secondary function is LVDSCLK1n. For PLL 2, the CLK2pin’s secondary  
function is LVDSCLK2pand the CLK3pin’s secondary function is LVDSCLK2n.  
(3) PFD: phase frequency detector.  
Altera Corporation  
January 2007  
2–33  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–26 shows the PLL global clock connections.  
Figure 2–26. Cyclone PLL Global Clock Connections  
G1  
G3  
G5  
G7  
G0  
G2  
G4  
G6  
g0  
g1  
e
g0  
g1  
e
CLK0  
CLK2  
PLL1  
PLL2  
CLK1 (1)  
CLK3 (2)  
PLL1_OUT (3), (4)  
PLL2_OUT (3), (4)  
Notes to Figure 2–26:  
(1) PLL 1 supports one single-ended or LVDS input via pins CLK0and CLK1.  
(2) PLL2 supports one single-ended or LVDS input via pins CLK2and CLK3.  
(3) PLL1_OUTand PLL2_OUTsupport single-ended or LVDS output. If external output is not required, these pins are  
available as regular user I/O pins.  
(4) The EP1C3 device in the 100-pin TQFP package does not support external clock output. The EP1C6 device in the  
144-pin TQFP package does not support external clock output from PLL2.  
Table 2–7 shows the global clock network sources available in Cyclone  
devices.  
Table 2–7. Global Clock Network Sources (Part 1 of 2)  
Source  
GCLK0 GCLK1 GCLK2 GCLK3 GCLK4 GCLK5 GCLK6 GCLK7  
PLL Counter  
Output  
PLL1 G0  
PLL1 G1  
PLL2 G0 (1)  
PLL2 G1 (1)  
CLK0  
v
v
v
v
v
v
v
v
v
v
v
v
v
Dedicated  
Clock Input  
Pins  
v
CLK1 (2)  
CLK2  
v
v
CLK3 (2)  
2–34  
Preliminary  
Altera Corporation  
January 2007  
Global Clock Network & Phase-Locked Loops  
Table 2–7. Global Clock Network Sources (Part 2 of 2)  
Source  
GCLK0 GCLK1 GCLK2 GCLK3 GCLK4 GCLK5 GCLK6 GCLK7  
Dual-Purpose DPCLK0 (3)  
v
Clock Pins  
DPCLK1 (3)  
v
DPCLK2  
DPCLK3  
DPCLK4  
DPCLK5 (3)  
DPCLK6  
DPCLK7  
v
v
v
v
v
v
Notes to Table 2–7:  
(1) EP1C3 devices only have one PLL (PLL 1).  
(2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1and CLK3.  
(3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5pins.  
Clock Multiplication & Division  
Cyclone PLLs provide clock synthesis for PLL output ports using  
m/(n × post scale counter) scaling factors. The input clock is divided by  
a pre-scale divider, n, and is then multiplied by the m feedback factor. The  
control loop drives the VCO to match fIN × (m/n). Each output port has  
a unique post-scale counter to divide down the high-frequency VCO. For  
multiple PLL outputs with different frequencies, the VCO is set to the  
least-common multiple of the output frequencies that meets its frequency  
specifications. Then, the post-scale dividers scale down the output  
frequency for each output port. For example, if the output frequencies  
required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the  
least-common multiple in the VCO's range).  
Each PLL has one pre-scale divider, n, that can range in value from 1 to  
32. Each PLL also has one multiply divider, m, that can range in value  
from 2 to 32. Global clock outputs have two post scale G dividers for  
global clock outputs, and external clock outputs have an E divider for  
external clock output, both ranging from 1 to 32. The Quartus II software  
automatically chooses the appropriate scaling factors according to the  
input frequency, multiplication, and division values entered.  
Altera Corporation  
January 2007  
2–35  
Preliminary  
Cyclone Device Handbook, Volume 1  
External Clock Inputs  
Each PLL supports single-ended or differential inputs for source-  
synchronous receivers or for general-purpose use. The dedicated clock  
pins (CLK[3..0]) feed the PLL inputs. These dual-purpose pins can also  
act as LVDS input pins. See Figure 2–25.  
Table 2–8 shows the I/O standards supported by PLL input and output  
pins.  
Table 2–8. PLL I/O Standards  
I/O Standard  
3.3-V LVTTL/LVCMOS  
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
3.3-V PCI  
CLK Input  
v
EXTCLK Output  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
LVDS  
v
SSTL-2 class I  
v
SSTL-2 class II  
SSTL-3 class I  
v
v
SSTL-3 class II  
Differential SSTL-2  
v
For more information on LVDS I/O support, see LVDS I/O Pins” on  
page 2–54.  
External Clock Outputs  
Each PLL supports one differential or one single-ended output for source-  
synchronous transmitters or for general-purpose external clocks. If the  
PLL does not use these PLL_OUTpins, the pins are available for use as  
general-purpose I/O pins. The PLL_OUTpins support all I/O standards  
shown in Table 2–8.  
The external clock outputs do not have their own VCC and ground voltage  
supplies. Therefore, to minimize jitter, do not place switching I/O pins  
next to these output pins. The EP1C3 device in the 100-pin TQFP package  
2–36  
Preliminary  
Altera Corporation  
January 2007  
Global Clock Network & Phase-Locked Loops  
does not have dedicated clock output pins. The EP1C6 device in the  
144-pin TQFP package only supports dedicated clock outputs from  
PLL 1.  
Clock Feedback  
Cyclone PLLs have three modes for multiplication and/or phase shifting:  
Zero delay buffer modeThe external clock output pin is phase-  
aligned with the clock input pin for zero delay.  
Normal modeIf the design uses an internal PLL clock output, the  
normal mode compensates for the internal clock delay from the input  
clock pin to the IOE registers. The external clock output pin is phase  
shifted with respect to the clock input pin if connected in this mode.  
You defines which internal clock output from the PLL should be  
phase-aligned to compensate for internal clock delay.  
No compensation modeIn this mode, the PLL will not compensate  
for any clock networks.  
Phase Shifting  
Cyclone PLLs have an advanced clock shift capability that enables  
programmable phase shifts. You can enter a phase shift (in degrees or  
time units) for each PLL clock output port or for all outputs together in  
one shift. You can perform phase shifting in time units with a resolution  
range of 125 to 250 ps. The finest resolution equals one eighth of the VCO  
period. The VCO period is a function of the frequency input and the  
multiplication and division factors. Each clock output counter can choose  
a different phase of the VCO period from up to eight taps. You can use this  
clock output counter along with an initial setting on the post-scale  
counter to achieve a phase-shift range for the entire period of the output  
clock. The phase tap feedback to the m counter can shift all outputs to a  
single phase. The Quartus II software automatically sets the phase taps  
and counter settings according to the phase shift entered.  
Lock Detect Signal  
The lock output indicates that there is a stable clock output signal in  
phase with the reference clock. Without any additional circuitry, the lock  
signal may toggle as the PLL begins tracking the reference clock.  
Therefore, you may need to gate the lock signal for use as a system-  
control signal. For correct operation of the lock circuit below  
–20 C, fIN/N > 200 MHz.  
Altera Corporation  
January 2007  
2–37  
Preliminary  
Cyclone Device Handbook, Volume 1  
Programmable Duty Cycle  
The programmable duty cycle allows PLLs to generate clock outputs with  
a variable duty cycle. This feature is supported on each PLL post-scale  
counter (g0, g1, e). The duty cycle setting is achieved by a low- and high-  
time count setting for the post-scale dividers. The Quartus II software  
uses the frequency input and the required multiply or divide rate to  
determine the duty cycle choices.  
Control Signals  
There are three control signals for clearing and enabling PLLs and their  
outputs. You can use these signals to control PLL resynchronization and  
the ability to gate PLL output clocks for low-power applications.  
The pllenablesignal enables and disables PLLs. When the pllenable  
signal is low, the clock output ports are driven by ground and all the PLLs  
go out of lock. When the pllenablesignal goes high again, the PLLs  
relock and resynchronize to the input clocks. An input pin or LE output  
can drive the pllenablesignal.  
The aresetsignals are reset/resynchronization inputs for each PLL.  
Cyclone devices can drive these input signals from input pins or from  
LEs. When aresetis driven high, the PLL counters will reset, clearing  
the PLL output and placing the PLL out of lock. When driven low again,  
the PLL will resynchronize to its input as it relocks.  
The pfdenasignals control the phase frequency detector (PFD) output  
with a programmable gate. If you disable the PFD, the VCO will operate  
at its last set value of control voltage and frequency with some drift, and  
the system will continue running when the PLL goes out of lock or the  
input clock disables. By maintaining the last locked frequency, the system  
has time to store its current settings before shutting down. You can either  
use their own control signal or gated locked status signals to trigger the  
pfdenasignal.  
f
For more information on Cyclone PLLs, see Chapter 6, Using PLLs in  
Cyclone Devices.  
2–38  
Preliminary  
Altera Corporation  
January 2007  
I/O Structure  
IOEs support many features, including:  
I/O Structure  
Differential and single-ended I/O standards  
3.3-V, 64- and 32-bit, 66- and 33-MHz PCI compliance  
Joint Test Action Group (JTAG) boundary-scan test (BST) support  
Output drive strength control  
Weak pull-up resistors during configuration  
Slew-rate control  
Tri-state buffers  
Bus-hold circuitry  
Programmable pull-up resistors in user mode  
Programmable input and output delays  
Open-drain outputs  
DQ and DQS I/O pins  
Cyclone device IOEs contain a bidirectional I/O buffer and three registers  
for complete embedded bidirectional single data rate transfer.  
Figure 2–27 shows the Cyclone IOE structure. The IOE contains one input  
register, one output register, and one output enable register. You can use  
the input registers for fast setup times and output registers for fast clock-  
to-output times. Additionally, you can use the output enable (OE) register  
for fast clock-to-output enable timing. The Quartus II software  
automatically duplicates a single OE register that controls multiple  
output or bidirectional pins. IOEs can be used as input, output, or  
bidirectional pins.  
Altera Corporation  
January 2007  
2–39  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–27. Cyclone IOE Structure  
Logic Array  
OE Register  
OE  
D
Q
Output Register  
Output  
D
Q
Combinatorial  
input (1)  
Input  
Input Register  
D
Q
Note to Figure 2–27:  
(1) There are two paths available for combinatorial inputs to the logic array. Each path  
contains a unique programmable delay chain.  
The IOEs are located in I/O blocks around the periphery of the Cyclone  
device. There are up to three IOEs per row I/O block and up to three IOEs  
per column I/O block (column I/O blocks span two columns). The row  
I/O blocks drive row, column, or direct link interconnects. The column  
I/O blocks drive column interconnects. Figure 2–28 shows how a row  
I/O block connects to the logic array. Figure 2–29 shows how a column  
I/O block connects to the logic array.  
2–40  
Preliminary  
Altera Corporation  
January 2007  
I/O Structure  
Figure 2–28. Row I/O Block Connection to the Interconnect  
R4 Interconnects  
C4 Interconnects  
I/O Block Local  
Interconnect  
21 Data and  
Control Signals  
from Logic Array (1)  
21  
LAB  
Row  
I/O Block  
io_datain[2..0] and  
comb_io_datain[2..0] (2)  
Direct Link  
Interconnect  
from Adjacent LAB  
Direct Link  
Interconnect  
to Adjacent LAB  
Row I/O Block  
Contains up to  
Three IOEs  
io_clk[5:0]  
LAB Local  
Interconnect  
Notes to Figure 2–28:  
(1) The 21 data and control signals consist of three data out lines, io_dataout[2..0], three output enables,  
io_coe[2..0], three input clock enables, io_cce_in[2..0], three output clock enables, io_cce_out[2..0],  
three clocks, io_cclk[2..0], three asynchronous clear signals, io_caclr[2..0], and three synchronous clear  
signals, io_csclr[2..0].  
(2) Each of the three IOEs in the row I/O block can have one io_dataininput (combinatorial or registered) and one  
comb_io_datain(combinatorial) input.  
Altera Corporation  
January 2007  
2–41  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–29. Column I/O Block Connection to the Interconnect  
Column I/O  
Block Contains  
up to Three IOEs  
Column I/O Block  
21 Data &  
Control Signals  
from Logic Array (1)  
IO_datain[2:0] &  
comb_io_datain[2..0]  
(2)  
21  
io_clk[5..0]  
I/O Block  
Local Interconnect  
R4 Interconnects  
LAB  
LAB  
LAB  
LAB Local  
C4 Interconnects  
Interconnect  
Notes to Figure 2–29:  
(1) The 21 data and control signals consist of three data out lines, io_dataout[2..0], three output enables,  
io_coe[2..0], three input clock enables, io_cce_in[2..0], three output clock enables, io_cce_out[2..0],  
three clocks, io_cclk[2..0], three asynchronous clear signals, io_caclr[2..0], and three synchronous clear  
signals, io_csclr[2..0].  
(2) Each of the three IOEs in the column I/O block can have one io_dataininput (combinatorial or registered) and  
one comb_io_datain(combinatorial) input.  
2–42  
Preliminary  
Altera Corporation  
January 2007  
I/O Structure  
The pin's datain signals can drive the logic array. The logic array drives  
the control and data signals, providing a flexible routing resource. The  
row or column IOE clocks, io_clk[5..0], provide a dedicated routing  
resource for low-skew, high-speed clocks. The global clock network  
generates the IOE clocks that feed the row or column I/O regions (see  
“Global Clock Network & Phase-Locked Loops” on page 2–29).  
Figure 2–30 illustrates the signal paths through the I/O block.  
Figure 2–30. Signal Path through the I/O Block  
Row or Column  
io_clk[5..0]  
To Other  
IOEs  
io_datain  
To Logic  
Array  
comb_io_datain  
oe  
ce_in  
io_csclr  
io_coe  
ce_out  
aclr/preset  
sclr  
Data and  
Control  
Signal  
IOE  
io_cce_in  
io_cce_out  
Selection  
From Logic  
Array  
clk_in  
io_caclr  
io_cclk  
clk_out  
dataout  
io_dataout  
Each IOE contains its own control signal selection for the following  
control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset,  
clk_in, and clk_out. Figure 2–31 illustrates the control signal  
selection.  
Altera Corporation  
January 2007  
2–43  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 2–31. Control Signal Selection per IOE  
Dedicated I/O  
Clock [5..0]  
io_coe  
Local  
Interconnect  
io_csclr  
Local  
Interconnect  
io_caclr  
Local  
Interconnect  
io_cce_out  
Local  
Interconnect  
io_cce_in  
io_cclk  
Local  
Interconnect  
ce_out  
clk_out  
sclr/preset  
clk_in  
ce_in  
aclr/preset  
oe  
Local  
Interconnect  
In normal bidirectional operation, you can use the input register for input  
data requiring fast setup times. The input register can have its own clock  
input and clock enable separate from the OE and output registers. The  
output register can be used for data requiring fast clock-to-output  
performance. The OE register is available for fast clock-to-output enable  
timing. The OE and output register share the same clock source and the  
same clock enable source from the local interconnect in the associated  
LAB, dedicated I/O clocks, or the column and row interconnects.  
Figure 2–32 shows the IOE in bidirectional configuration.  
2–44  
Preliminary  
Altera Corporation  
January 2007  
I/O Structure  
Figure 2–32. Cyclone IOE in Bidirectional I/O Configuration  
ioe_clk[5..0]  
Column or Row  
Interconect  
OE  
OE Register  
PRN  
D
Q
V
CCIO  
clkout  
ENA  
Optional  
PCI Clamp  
CLRN  
ce_out  
V
CCIO  
Programmable  
Pull-Up  
aclr/prn  
Resistor  
Chip-Wide Reset  
Output Register  
Output  
Pin Delay  
PRN  
D
Q
ENA  
Drive Strength Control  
Open-Drain Output  
Slew Control  
sclr/preset  
CLRN  
comb_datain  
Input Pin to  
Logic Array Delay  
data_in  
Bus Hold  
Input Pin to  
Input Register Delay  
or Input Pin to  
Input Register  
PRN  
Logic Array Delay  
D
Q
ENA  
clkin  
CLRN  
ce_in  
The Cyclone device IOE includes programmable delays to ensure zero  
hold times, minimize setup times, or increase clock to output times.  
A path in which a pin directly drives a register may require a  
programmable delay to ensure zero hold time, whereas a path in which a  
pin drives a register through combinatorial logic may not require the  
delay. Programmable delays decrease input-pin-to-logic-array and IOE  
input register delays. The Quartus II Compiler can program these delays  
Altera Corporation  
January 2007  
2–45  
Preliminary  
Cyclone Device Handbook, Volume 1  
to automatically minimize setup time while providing a zero hold time.  
Programmable delays can increase the register-to-pin delays for output  
registers. Table 2–9 shows the programmable delays for Cyclone devices.  
Table 2–9. Cyclone Programmable Delay Chain  
Programmable Delays  
Quartus II Logic Option  
Input pin to logic array delay  
Input pin to input register delay  
Output pin delay  
Decrease input delay to internal cells  
Decrease input delay to input registers  
Increase delay to output pin  
There are two paths in the IOE for a combinatorial input to reach the logic  
array. Each of the two paths can have a different delay. This allows you  
adjust delays from the pin to internal LE registers that reside in two  
different areas of the device. The designer sets the two combinatorial  
input delays by selecting different delays for two different paths under  
the Decrease input delay to internal cells logic option in the Quartus II  
software. When the input signal requires two different delays for the  
combinatorial input, the input register in the IOE is no longer available.  
The IOE registers in Cyclone devices share the same source for clear or  
preset. The designer can program preset or clear for each individual IOE.  
The designer can also program the registers to power up high or low after  
configuration is complete. If programmed to power up low, an  
asynchronous clear can control the registers. If programmed to power up  
high, an asynchronous preset can control the registers. This feature  
prevents the inadvertent activation of another device's active-low input  
upon power up. If one register in an IOE uses a preset or clear signal then  
all registers in the IOE must use that same signal if they require preset or  
clear. Additionally a synchronous reset signal is available to the designer  
for the IOE registers.  
External RAM Interfacing  
Cyclone devices support DDR SDRAM and FCRAM interfaces at up to  
133 MHz through dedicated circuitry.  
DDR SDRAM & FCRAM  
Cyclone devices have dedicated circuitry for interfacing with DDR  
SDRAM. All I/O banks support DDR SDRAM and FCRAM I/O pins.  
However, the configuration input pins in bank 1 must operate at 2.5 V  
because the SSTL-2 VCCIO level is 2.5 V. Additionally, the configuration  
2–46  
Preliminary  
Altera Corporation  
January 2007  
I/O Structure  
output pins (nSTATUSand CONF_DONE) and all the JTAG pins in I/O  
bank 3 must operate at 2.5 V because the VCCIO level of SSTL-2 is 2.5 V.  
I/O banks 1, 2, 3, and 4 support DQS signals with DQ bus modes of × 8.  
For × 8 mode, there are up to eight groups of programmable DQS and DQ  
pins, I/O banks 1, 2, 3, and 4 each have two groups in the 324-pin and  
400-pin FineLine BGA packages. Each group consists of one DQS pin, a  
set of eight DQ pins, and one DM pin (see Figure 2–33). Each DQS pin  
drives the set of eight DQ pins within that group.  
Figure 2–33. Cyclone Device DQ & DQS Groups in × 8 Mode  
Note (1)  
Top, Bottom, Left, or Right I/O Bank  
DQ Pins  
DQS Pin  
DM Pin  
Note to Figure 2–33:  
(1) Each DQ group consists of one DQS pin, eight DQ pins, and one DM pin.  
Table 2–10 shows the number of DQ pin groups per device.  
Table 2–10. DQ Pin Groups (Part 1 of 2)  
Number of × 8 DQ  
Total DQ Pin  
Device  
Package  
Pin Groups  
Count  
EP1C3  
100-pin TQFP (1)  
144-pin TQFP  
3
4
8
8
24  
32  
64  
64  
EP1C4  
324-pin FineLine BGA  
400-pin FineLine BGA  
Altera Corporation  
January 2007  
2–47  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 2–10. DQ Pin Groups (Part 2 of 2)  
Number of × 8 DQ  
Total DQ Pin  
Count  
Device  
Package  
Pin Groups  
EP1C6  
144-pin TQFP  
4
4
4
4
4
8
8
8
32  
32  
32  
32  
32  
64  
64  
64  
240-pin PQFP  
256-pin FineLine BGA  
240-pin PQFP  
EP1C12  
EP1C20  
256-pin FineLine BGA  
324-pin FineLine BGA  
324-pin FineLine BGA  
400-pin FineLine BGA  
Note to Table 2–10:  
(1) EP1C3 devices in the 100-pin TQFP package do not have any DQ pin groups in  
I/O bank 1.  
A programmable delay chain on each DQS pin allows for either a 90°  
phase shift (for DDR SDRAM), or a 72° phase shift (for FCRAM) which  
automatically center-aligns input DQS synchronization signals within the  
data window of their corresponding DQ data signals. The phase-shifted  
DQS signals drive the global clock network. This global DQS signal clocks  
DQ signals on internal LE registers.  
These DQS delay elements combine with the PLL’s clocking and phase  
shift ability to provide a complete hardware solution for interfacing to  
high-speed memory.  
The clock phase shift allows the PLL to clock the DQ output enable and  
output paths. The designer should use the following guidelines to meet  
133 MHz performance for DDR SDRAM and FCRAM interfaces:  
The DQS signal must be in the middle of the DQ group it clocks  
Resynchronize the incoming data to the logic array clock using  
successive LE registers or FIFO buffers  
LE registers must be placed in the LAB adjacent to the DQ I/O pin  
column it is fed by  
Figure 2–34 illustrates DDR SDRAM and FCRAM interfacing from the  
I/O through the dedicated circuitry to the logic array.  
2–48  
Preliminary  
Altera Corporation  
January 2007  
I/O Structure  
Figure 2–34. DDR SDRAM & FCRAM Interfacing  
DQS  
OE LE  
Register  
OE  
DQ  
OE  
OE LE  
Output LE  
Register  
Register  
OE LE  
Register  
V
CC  
Output LE  
Registers  
t
Δ
clk  
Adjacent  
LAB LEs  
OE LE  
Register  
Input LE  
Registers  
DataA  
DataB  
Output LE  
Register  
-90˚ clk  
GND  
Output LE  
Registers  
Input LE  
Registers  
Programmable  
Delay Chain  
PLL  
Global Clock  
Phase Shifted -90˚  
LE  
Register  
LE  
Register  
Resynchronizing  
Global Clock  
Adjacent LAB LEs  
Programmable Drive Strength  
The output buffer for each Cyclone device I/O pin has a programmable  
drive strength control for certain I/O standards. The LVTTL and  
LVCMOS standards have several levels of drive strength that the designer  
can control. SSTL-3 class I and II, and SSTL-2 class I and II support a  
minimum setting, the lowest drive strength that guarantees the IOH/IOL  
Altera Corporation  
January 2007  
2–49  
Preliminary  
Cyclone Device Handbook, Volume 1  
of the standard. Using minimum settings provides signal slew rate  
control to reduce system noise and signal overshoot. Table 2–11 shows the  
possible settings for the I/O standards with drive strength control.  
Table 2–11. Programmable Drive Strength Note (1)  
IOH/IOL Current Strength Setting (mA)  
I/O Standard  
LVTTL (3.3 V)  
4
8
12  
16  
24(2)  
2
LVCMOS (3.3 V)  
LVTTL (2.5 V)  
4
8
12(2)  
2
8
12  
16(2)  
2
LVTTL (1.8 V)  
8
12(2)  
2
LVCMOS (1.5 V)  
4
8(2)  
Notes to Table 2–11:  
(1) SSTL-3 class I and II, SSTL-2 class I and II, and 3.3-V PCI I/O Standards do not  
support programmable drive strength.  
(2) This is the default current strength setting in the Quartus II software.  
Open-Drain Output  
Cyclone devices provide an optional open-drain (equivalent to an open-  
collector) output for each I/O pin. This open-drain output enables the  
device to provide system-level control signals (e.g., interrupt and write-  
enable signals) that can be asserted by any of several devices.  
2–50  
Preliminary  
Altera Corporation  
January 2007  
I/O Structure  
Slew-Rate Control  
The output buffer for each Cyclone device I/O pin has a programmable  
output slew-rate control that can be configured for low noise or high-  
speed performance. A faster slew rate provides high-speed transitions for  
high-performance systems. However, these fast transitions may  
introduce noise transients into the system. A slow slew rate reduces  
system noise, but adds a nominal delay to rising and falling edges. Each  
I/O pin has an individual slew-rate control, allowing the designer to  
specify the slew rate on a pin-by-pin basis. The slew-rate control affects  
both the rising and falling edges.  
Bus Hold  
Each Cyclone device I/O pin provides an optional bus-hold feature. The  
bus-hold circuitry can hold the signal on an I/O pin at its last-driven  
state. Since the bus-hold feature holds the last-driven state of the pin until  
the next input signal is present, an external pull-up or pull-down resistor  
is not necessary to hold a signal level when the bus is tri-stated.  
The bus-hold circuitry also pulls undriven pins away from the input  
threshold voltage where noise can cause unintended high-frequency  
switching. The designer can select this feature individually for each I/O  
pin. The bus-hold output will drive no higher than VCCIO to prevent  
overdriving signals. If the bus-hold feature is enabled, the device cannot  
use the programmable pull-up option. Disable the bus-hold feature when  
the I/O pin is configured for differential signals.  
The bus-hold circuitry uses a resistor with a nominal resistance (RBH) of  
approximately 7 kΩto pull the signal level to the last-driven state.  
Table 4–15 on page 4–6 gives the specific sustaining current for each  
VCCIO voltage level driven through this resistor and overdrive current  
used to identify the next-driven input level.  
The bus-hold circuitry is only active after configuration. When going into  
user mode, the bus-hold circuit captures the value on the pin present at  
the end of configuration.  
Programmable Pull-Up Resistor  
Each Cyclone device I/O pin provides an optional programmable pull-  
up resistor during user mode. If the designer enables this feature for an  
I/O pin, the pull-up resistor (typically 25 kΩ) holds the output to the  
VCCIO level of the output pin's bank. Dedicated clock pins do not have the  
optional programmable pull-up resistor.  
Altera Corporation  
January 2007  
2–51  
Preliminary  
Cyclone Device Handbook, Volume 1  
Advanced I/O Standard Support  
Cyclone device IOEs support the following I/O standards:  
3.3-V LVTTL/LVCMOS  
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
3.3-V PCI  
LVDS  
RSDS  
SSTL-2 class I and II  
SSTL-3 class I and II  
Differential SSTL-2 class II (on output clocks only)  
Table 2–12 describes the I/O standards supported by Cyclone devices.  
Table 2–12. Cyclone I/O Standards  
Board  
Termination  
Voltage (VTT) (V)  
Input Reference  
Voltage (VREF) (V) Voltage (VCCIO) (V)  
Output Supply  
I/O Standard  
Type  
3.3-V LVTTL/LVCMOS  
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
Single-ended  
Single-ended  
Single-ended  
Single-ended  
Single-ended  
Differential  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.25  
1.5  
3.3  
2.5  
1.8  
1.5  
3.3  
2.5  
2.5  
2.5  
3.3  
2.5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.25  
1.5  
3.3-V PCI (1)  
LVDS (2)  
RSDS (2)  
Differential  
SSTL-2 class I and II  
SSTL-3 class I and II  
Differential SSTL-2 (3)  
Voltage-referenced  
Voltage-referenced  
Differential  
1.25  
1.25  
Notes to Table 2–12:  
(1) There is no megafunction support for EP1C3 devices for the PCI compiler. However, EP1C3 devices support PCI  
by using the LVTTL 16-mA I/O standard and drive strength assignments in the Quartus II software. The device  
requires an external diode for PCI compliance.  
(2) EP1C3 devices in the 100-pin TQFP package do not support the LVDS and RSDS I/O standards.  
(3) This I/O standard is only available on output clock pins (PLL_OUTpins). EP1C3 devices in the 100-pin package  
do not support this I/O standard as it does not have PLL_OUTpins.  
Cyclone devices contain four I/O banks, as shown in Figure 2–35. I/O  
banks 1 and 3 support all the I/O standards listed in Table 2–12. I/O  
banks 2 and 4 support all the I/O standards listed in Table 2–12 except the  
3.3-V PCI standard. I/O banks 2 and 4 contain dual-purpose DQS, DQ,  
2–52  
Preliminary  
Altera Corporation  
January 2007  
I/O Structure  
and DM pins to support a DDR SDRAM or FCRAM interface. I/O bank  
1 can also support a DDR SDRAM or FCRAM interface, however, the  
configuration input pins in I/O bank 1 must operate at 2.5 V. I/O bank 3  
can also support a DDR SDRAM or FCRAM interface, however, all the  
JTAG pins in I/O bank 3 must operate at 2.5 V.  
Figure 2–35. Cyclone I/O Banks  
Notes (1), (2)  
I/O Bank 2  
I/O Bank 1  
Also Supports  
the 3.3-V PCI  
I/O Standard  
I/O Bank 3  
Also Supports  
the 3.3-V PCI  
I/O Standard  
All I/O Banks Support  
3.3-V LVTTL/LVCMOS  
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
I/O Bank 1  
I/O Bank 3  
LVDS  
RSDS  
SSTL-2 Class I and II  
SSTL-3 Class I and II  
Individual  
Power Bus  
I/O Bank 4  
Notes to Figure 2–35:  
(1) Figure 2–35 is a top view of the silicon die.  
(2) Figure 2–35 is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.  
Each I/O bank has its own VCCIOpins. A single device can support 1.5-V,  
1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support a  
different standard with different I/O voltages. Each bank also has dual-  
purpose VREFpins to support any one of the voltage-referenced  
standards (e.g., SSTL-3) independently. If an I/O bank does not use  
voltage-referenced standards, the VREF pins are available as user I/O pins.  
Altera Corporation  
January 2007  
2–53  
Preliminary  
Cyclone Device Handbook, Volume 1  
Each I/O bank can support multiple standards with the same VCCIO for  
input and output pins. For example, when VCCIO is 3.3-V, a bank can  
support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.  
LVDS I/O Pins  
A subset of pins in all four I/O banks supports LVDS interfacing. These  
dual-purpose LVDS pins require an external-resistor network at the  
transmitter channels in addition to 100-Ωtermination resistors on receiver  
channels. These pins do not contain dedicated serialization or  
deserialization circuitry; therefore, internal logic performs serialization  
and deserialization functions.  
Table 2–13 shows the total number of supported LVDS channels per  
device density.  
Table 2–13. Cyclone Device LVDS Channels  
Device  
Pin Count  
Number of LVDS Channels  
EP1C3  
EP1C4  
EP1C6  
100  
144  
324  
400  
144  
240  
256  
240  
256  
324  
324  
400  
(1)  
34  
103  
129  
29  
72  
72  
EP1C12  
66  
72  
103  
95  
EP1C20  
129  
Note to Table 2–13:  
(1) EP1C3 devices in the 100-pin TQFP package do not support the LVDS I/O  
standard.  
MultiVolt I/O Interface  
The Cyclone architecture supports the MultiVolt I/O interface feature,  
which allows Cyclone devices in all packages to interface with systems of  
different supply voltages. The devices have one set of VCC pins for  
internal operation and input buffers (VCCINT), and four sets for I/O  
output drivers (VCCIO).  
2–54  
Preliminary  
Altera Corporation  
January 2007  
Power Sequencing & Hot Socketing  
The Cyclone VCCINT pins must always be connected to a 1.5-V power  
supply. If the VCCINT level is 1.5 V, then input pins are 1.5-V, 1.8-V, 2.5-V,  
and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V,  
2.5-V, or 3.3-V power supply, depending on the output requirements. The  
output levels are compatible with systems of the same voltage as the  
power supply (i.e., when VCCIO pins are connected to a 1.5-V power  
supply, the output levels are compatible with 1.5-V systems). When VCCIO  
pins are connected to a 3.3-V power supply, the output high is 3.3-V and  
is compatible with 3.3-V or 5.0-V systems. Table 2–14 summarizes  
Cyclone MultiVolt I/O support.  
Table 2–14. Cyclone MultiVolt I/O Support  
Note (1)  
Input Signal  
1.5 V 1.8 V 2.5 V 3.3 V 5.0 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V  
Output Signal  
VCCIO (V)  
1.5  
1.8  
2.5  
3.3  
v (2)  
v (2) v (2)  
v (2)  
v
v
v
v
v
v (3)  
v (5)  
v
v (5)  
v
v
v
v (4)  
v (6) v (7) v (7) v (7)  
v (8)  
v
v
Notes to Table 2–14:  
(1) The PCI clamping diode must be disabled to drive an input with voltages higher than VCCIO  
.
(2) When VCCIO = 1.5-V or 1.8-V and a 2.5-V or 3.3-V input signal feeds an input pin, higher pin leakage current is  
expected. Turn on Allow voltage overdrive for LVTTL / LVCMOS input pins in the Assignments > Device >  
Device and Pin Options > Pin Placement tab when a device has this I/O combinations.  
(3) When VCCIO = 1.8-V, a Cyclone device can drive a 1.5-V device with 1.8-V tolerant inputs.  
(4) When VCCIO = 3.3-V and a 2.5-V input signal feeds an input pin, the VCCIO supply current will be slightly larger  
than expected.  
(5) When VCCIO = 2.5-V, a Cyclone device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.  
(6) Cyclone devices can be 5.0-V tolerant with the use of an external resistor and the internal PCI clamp diode.  
(7) When VCCIO = 3.3-V, a Cyclone device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.  
(8) When VCCIO = 3.3-V, a Cyclone device can drive a device with 5.0-V LVTTL inputs but not 5.0-V LVCMOS inputs.  
Because Cyclone devices can be used in a mixed-voltage environment,  
they have been designed specifically to tolerate any possible power-up  
sequence. Therefore, the VCCIO and VCCINT power supplies may be  
powered in any order.  
Power  
Sequencing &  
Hot Socketing  
Signals can be driven into Cyclone devices before and during power up  
without damaging the device. In addition, Cyclone devices do not drive  
out during power up. Once operating conditions are reached and the  
device is configured, Cyclone devices operate as specified by the user.  
Altera Corporation  
January 2007  
2–55  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 2–15 shows the revision history for this document.  
Document  
Revision History  
Table 2–15. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
January 2007  
v1.5  
Added document revision history.  
Updated Figures 2–17, 2–18, 2–19, 2–20, 2–21, and 2–32.  
August 2005  
v1.4  
Minor updates.  
February 2005  
v1.3  
Updated JTAG chain limits. Added test vector information.  
Corrected Figure 2-12.  
Added a note to Tables 2-17 through 2-21 regarding violating  
the setup or hold time.  
October 2003  
v1.2  
Updated phase shift information.  
Added 64-bit PCI support information.  
September  
2003 v1.1  
Updated LVDS data rates to 640 Mbps from 311 Mbps.  
May 2003 v1.0 Added document to Cyclone Device Handbook.  
2–56  
Preliminary  
Altera Corporation  
January 2007  
3. Configuration & Testing  
C51003-1.3  
All Cyclone® devices provide JTAG BST circuitry that complies with the  
IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be  
performed either before or after, but not during configuration. Cyclone  
devices can also use the JTAG port for configuration together with either  
the Quartus® II software or hardware using either Jam Files (.jam) or Jam  
Byte-Code Files (.jbc).  
IEEE Std. 1149.1  
(JTAG)Boundary  
Scan Support  
Cyclone devices support reconfiguring the I/O standard settings on the  
IOE through the JTAG BST chain. The JTAG chain can update the I/O  
standard for all input and output pins any time before or during user  
mode. Designers can use this ability for JTAG testing before configuration  
when some of the Cyclone pins drive or receive from other devices on the  
board using voltage-referenced standards. Since the Cyclone device  
might not be configured before JTAG testing, the I/O pins might not be  
configured for appropriate electrical standards for chip-to-chip  
communication. Programming those I/O standards via JTAG allows  
designers to fully test I/O connection to other devices.  
The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The  
TDO pin voltage is determined by the VCCIO of the bank where it resides.  
The bank VCCIO selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or  
3.3-V compatible.  
Cyclone devices also use the JTAG port to monitor the operation of the  
®
device with the SignalTap II embedded logic analyzer. Cyclone devices  
support the JTAG instructions shown in Table 3–1.  
Table 3–1. Cyclone JTAG Instructions (Part 1 of 2)  
JTAG Instruction  
Instruction Code  
Description  
00 0000 0101  
Allows a snapshot of signals at the device pins to be captured and  
examined during normal device operation, and permits an initial  
data pattern to be output at the device pins. Also used by the  
SignalTap II embedded logic analyzer.  
SAMPLE/PRELOAD  
00 0000 0000  
11 1111 1111  
Allows the external circuitry and board-level interconnects to be  
tested by forcing a test pattern at the output pins and capturing test  
results at the input pins.  
EXTEST(1)  
Places the 1-bit bypass register between the TDI and TDO pins,  
which allows the BST data to pass synchronously through selected  
devices to adjacent devices during normal device operation.  
BYPASS  
Altera Corporation  
January 2007  
3–1  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 3–1. Cyclone JTAG Instructions (Part 2 of 2)  
JTAG Instruction  
Instruction Code  
Description  
00 0000 0111  
Selects the 32-bit USERCODE register and places it between the  
TDI and TDO pins, allowing the USERCODE to be serially shifted  
out of TDO.  
USERCODE  
00 0000 0110  
00 0000 1011  
Selects the IDCODE register and places it between TDI and TDO,  
allowing the IDCODE to be serially shifted out of TDO.  
IDCODE  
Places the 1-bit bypass register between the TDI and TDO pins,  
which allows the BST data to pass synchronously through selected  
devices to adjacent devices during normal device operation, while  
tri-stating all of the I/O pins.  
HIGHZ(1)  
00 0000 1010  
Places the 1-bit bypass register between the TDI and TDO pins,  
which allows the BST data to pass synchronously through selected  
devices to adjacent devices during normal device operation while  
holding I/O pins to a state defined by the data in the boundary-scan  
register.  
CLAMP(1)  
ICR instructions  
Used when configuring a Cyclone device via the JTAG port with a  
MasterBlasterTM or ByteBlasterMVTM download cable, or when  
using a Jam File or Jam Byte-Code File via an embedded  
processor.  
00 0000 0001  
00 0000 1101  
PULSE_NCONFIG  
CONFIG_IO  
Emulates pulsing the nCONFIGpin low to trigger reconfiguration  
even though the physical pin is unaffected.  
Allows configuration of I/O standards through the JTAG chain for  
JTAG testing. Can be executed before, after, or during  
configuration. Stops configuration if executed during configuration.  
Once issued, the CONFIG_IOinstruction will hold nSTATUSlow  
to reset the configuration device. nSTATUSis held low until the  
device is reconfigured.  
SignalTap II  
instructions  
Monitors internal device operation with the SignalTap II embedded  
logic analyzer.  
Note to Table 3–1:  
(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.  
In the Quartus II software, there is an Auto Usercode feature where you  
can choose to use the checksum value of a programming file as the JTAG  
user code. If selected, the checksum is automatically loaded to the  
USERCODE register. Choose Assignments > Device > Device and Pin  
Options > General. Turn on Auto Usercode.  
3–2  
Preliminary  
Altera Corporation  
January 2007  
IEEE Std. 1149.1 (JTAG) Boundary Scan Support  
The Cyclone device instruction register length is 10 bits and the  
USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the  
boundary-scan register length and device IDCODE information for  
Cyclone devices.  
Table 3–2. Cyclone Boundary-Scan Register Length  
Device  
Boundary-Scan Register Length  
EP1C3  
EP1C4  
EP1C6  
EP1C12  
EP1C20  
339  
930  
582  
774  
930  
Table 3–3. 32-Bit Cyclone Device IDCODE  
IDCODE (32 bits) (1)  
Device  
Manufacturer Identity  
Version (4 Bits)  
Part Number (16 Bits)  
LSB (1 Bit) (2)  
(11 Bits)  
EP1C3  
EP1C4  
EP1C6  
EP1C12  
EP1C20  
0000  
0000  
0000  
0000  
0000  
0010 0000 1000 0001  
0010 0000 1000 0101  
0010 0000 1000 0010  
0010 0000 1000 0011  
0010 0000 1000 0100  
000 0110 1110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
1
1
1
1
1
Notes to Table 3–3:  
(1) The most significant bit (MSB) is on the left.  
(2) The IDCODE’s least significant bit (LSB) is always 1.  
Altera Corporation  
January 2007  
3–3  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 3–1 shows the timing requirements for the JTAG signals.  
Figure 3–1. Cyclone JTAG Waveforms  
TMS  
TDI  
tJCP  
tJCH  
t JCL  
tJPH  
tJPSU  
TCK  
TDO  
tJPXZ  
tJPZX  
tJPCO  
tJSSU  
tJSH  
Signal  
to Be  
Captured  
tJSCO  
tJSZX  
tJSXZ  
Signal  
to Be  
Driven  
Table 3–4 shows the JTAG timing parameters and values for Cyclone  
devices.  
Table 3–4. Cyclone JTAG Timing Parameters & Values  
Symbol  
tJCP  
Parameter  
Min Max Unit  
100  
50  
50  
20  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCKclock period  
tJCH  
TCKclock high time  
tJCL  
TCKclock low time  
tJPSU  
tJPH  
JTAG port setup time  
JTAG port hold time  
tJPCO  
tJPZX  
tJPXZ  
tJSSU  
tJSH  
JTAG port clock to output  
25  
25  
25  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
Capture register setup time  
20  
45  
Capture register hold time  
tJSCO  
tJSZX  
tJSXZ  
Update register clock to output  
Update register high impedance to valid output  
Update register valid output to high impedance  
35  
35  
35  
3–4  
Preliminary  
Altera Corporation  
January 2007  
SignalTap II Embedded Logic Analyzer  
1
Cyclone devices must be within the first 8 devices in a JTAG  
chain. All of these devices have the same JTAG controller. If any  
of the Cyclone devices are in the 9th or after they will fail  
configuration. This does not affect the SignalTap® II logic  
analyzer.  
f
For more information on JTAG, see the following documents:  
AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices  
Jam Programming & Test Language Specification  
Cyclone devices feature the SignalTap II embedded logic analyzer, which  
monitors design operation over a period of time through the IEEE  
Std. 1149.1 (JTAG) circuitry. A designer can analyze internal logic at speed  
without bringing internal signals to the I/O pins. This feature is  
particularly important for advanced packages, such as FineLine BGA  
packages, because it can be difficult to add a connection to a pin during  
the debugging process after a board is designed and manufactured.  
SignalTap II  
Embedded Logic  
Analyzer  
The logic, circuitry, and interconnects in the Cyclone architecture are  
configured with CMOS SRAM elements. Altera FPGAs are  
Configuration  
reconfigurable and every device is tested with a high coverage  
production test program so the designer does not have to perform fault  
testing and can instead focus on simulation and design verification.  
Cyclone devices are configured at system power-up with data stored in  
an Altera configuration device or provided by a system controller. The  
Cyclone device's optimized interface allows the device to act as controller  
in an active serial configuration scheme with the new low-cost serial  
configuration device. Cyclone devices can be configured in under 120 ms  
using serial data at 20 MHz. The serial configuration device can be  
programmed via the ByteBlaster II download cable, the Altera  
Programming Unit (APU), or third-party programmers.  
In addition to the new low-cost serial configuration device, Altera offers  
in-system programmability (ISP)-capable configuration devices that can  
configure Cyclone devices via a serial data stream. The interface also  
enables microprocessors to treat Cyclone devices as memory and  
configure them by writing to a virtual memory location, making  
reconfiguration easy. After a Cyclone device has been configured, it can  
be reconfigured in-circuit by resetting the device and loading new data.  
Real-time changes can be made during system operation, enabling  
innovative reconfigurable computing applications.  
Altera Corporation  
January 2007  
3–5  
Preliminary  
Cyclone Device Handbook, Volume 1  
Operating Modes  
The Cyclone architecture uses SRAM configuration elements that require  
configuration data to be loaded each time the circuit powers up. The  
process of physically loading the SRAM data into the device is called  
configuration. During initialization, which occurs immediately after  
configuration, the device resets registers, enables I/O pins, and begins to  
operate as a logic device. Together, the configuration and initialization  
processes are called command mode. Normal device operation is called  
user mode.  
SRAM configuration elements allow Cyclone devices to be reconfigured  
in-circuit by loading new configuration data into the device. With real-  
time reconfiguration, the device is forced into command mode with a  
device pin. The configuration process loads different configuration data,  
reinitializes the device, and resumes user-mode operation. Designers can  
perform in-field upgrades by distributing new configuration files either  
within the system or remotely.  
A built-in weak pull-up resistor pulls all user I/O pins to VCCIO before  
and during device configuration.  
The configuration pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O  
standards. The voltage level of the configuration output pins is  
determined by the VCCIO of the bank where the pins reside. The bank  
VCCIO selects whether the configuration inputs are 1.5-V, 1.8-V, 2.5-V, or  
3.3-V compatible.  
Configuration Schemes  
Designers can load the configuration data for a Cyclone device with one  
of three configuration schemes (see Table 3–5), chosen on the basis of the  
target application. Designers can use a configuration device, intelligent  
controller, or the JTAG port to configure a Cyclone device. A low-cost  
configuration device can automatically configure a Cyclone device at  
system power-up.  
3–6  
Preliminary  
Altera Corporation  
January 2007  
Document Revision History  
Multiple Cyclone devices can be configured in any of the three  
configuration schemes by connecting the configuration enable (nCE) and  
configuration enable output (nCEO) pins on each device.  
Table 3–5. Data Sources for Configuration  
Configuration Scheme  
Data Source  
Active serial  
Low-cost serial configuration device  
Passive serial (PS)  
Enhanced or EPC2 configuration device,  
MasterBlaster or ByteBlasterMV download cable,  
or serial data source  
JTAG  
MasterBlaster or ByteBlasterMV download cable  
or a microprocessor with a Jam or JBC file  
Table 3–6 shows the revision history for this document.  
Document  
Revision History  
Table 3–6. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
January 2007  
v1.3  
Added document revision history.  
Updated handpara note below Table 3–4.  
August 2005  
V1.2  
Minor updates.  
February 2005  
V1.1  
Updated JTAG chain limits. Added information concerning test  
vectors.  
May 2003 v1.0 Added document to Cyclone Device Handbook.  
Altera Corporation  
January 2007  
3–7  
Preliminary  
Cyclone Device Handbook, Volume 1  
3–8  
Preliminary  
Altera Corporation  
January 2007  
4. DC & Switching  
Characteristics  
C51004-1.6  
Cyclone® devices are offered in both commercial, industrial, and  
extended temperature grades. However, industrial-grade and extended-  
temperature-grade devices may have limited speed-grade availability.  
Operating  
Conditions  
Tables 4–1 through 4–16 provide information on absolute maximum  
ratings, recommended operating conditions, DC operating conditions,  
and capacitance for Cyclone devices.  
Table 4–1. Cyclone Device Absolute Maximum Ratings  
Notes (1), (2)  
Symbol  
VCCINT  
VCCIO  
VCCA  
VI  
Parameter  
Conditions  
Minimum  
–0.5  
Maximum  
2.4  
Unit  
V
Supply voltage  
With respect to ground (3)  
With respect to ground (3)  
–0.5  
4.6  
V
Supply voltage  
–0.5  
2.4  
V
DC input voltage  
–0.5  
4.6  
V
IOUT  
DC output current, per pin  
Storage temperature  
Ambient temperature  
Junction temperature  
–25  
25  
mA  
° C  
° C  
° C  
TSTG  
TAMB  
TJ  
No bias  
–65  
150  
135  
135  
Under bias  
–65  
BGA packages under bias  
Table 4–2. Cyclone Device Recommended Operating Conditions (Part 1 of 2)  
Symbol  
Parameter  
Conditions  
Minimum  
Maximum  
Unit  
VCCINT  
Supply voltage for internal logic  
and input buffers  
(4)  
1.425  
1.575  
V
V
V
V
V
V
VCCIO  
Supply voltage for output buffers,  
3.3-V operation  
(4)  
(4)  
3.00  
2.375  
1.71  
1.4  
3.60  
2.625  
1.89  
1.6  
Supply voltage for output buffers,  
2.5-V operation  
Supply voltage for output buffers,  
1.8-V operation  
(4)  
Supply voltage for output buffers,  
1.5-V operation  
(4)  
VI  
Input voltage  
(3), (5)  
–0.5  
4.1  
Altera Corporation  
January 2007  
4–1  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–2. Cyclone Device Recommended Operating Conditions (Part 2 of 2)  
Symbol  
Parameter  
Conditions  
Minimum  
Maximum  
VCCIO  
Unit  
V
VO  
TJ  
Output voltage  
Operating junction temperature  
0
0
For commercial  
use  
85  
° C  
For industrial use  
–40  
–40  
100  
125  
° C  
° C  
For extended-  
temperature use  
Table 4–3. Cyclone Device DC Operating Conditions  
Note (6)  
Typica  
l
Symbol  
Parameter  
Conditions  
Minimum  
Maximum Unit  
II  
Input pin leakage current  
VI = VCCIOmax to 0 V (8)  
VO = VCCIOmax to 0 V (8)  
–10  
–10  
10  
10  
μA  
μA  
IOZ  
Tri-stated I/O pin leakage  
current  
ICC0  
VCC supply current (standby)  
(All M4K blocks in power-down  
mode) (7)  
EP1C3  
EP1C4  
EP1C6  
EP1C12  
EP1C20  
4
6
mA  
mA  
mA  
mA  
mA  
6
8
12  
RCONF (9) Value of I/O pin pull-up resistor VI = 0 V; VCCI0 = 3.3 V  
15  
20  
30  
50  
25  
45  
65  
100  
1
50  
70  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
before and during configuration  
VI = 0 V; VCCI0 = 2.5 V  
VI = 0 V; VCCI0 = 1.8 V  
VI = 0 V; VCCI0 = 1.5 V  
100  
150  
2
Recommended value of I/O pin  
external pull-down resistor  
before and during configuration  
Table 4–4. LVTTL Specifications (Part 1 of 2)  
Symbol  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
Conditions  
Minimum  
3.0  
Maximum  
Unit  
VCCIO  
3.6  
4.1  
0.7  
V
V
V
VIH  
VIL  
1.7  
–0.5  
4–2  
Preliminary  
Altera Corporation  
January 2007  
Operating Conditions  
Table 4–4. LVTTL Specifications (Part 2 of 2)  
Symbol  
Parameter  
High-level output voltage  
Low-level output voltage  
Conditions  
Minimum  
Maximum  
Unit  
V
VOH  
VOL  
IOH = –4 to –24 mA (11)  
IOL = 4 to 24 mA (11)  
2.4  
0.45  
V
Table 4–5. LVCMOS Specifications  
Symbol  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Conditions  
Minimum  
3.0  
Maximum  
3.6  
Unit  
V
VCCIO  
VIH  
VIL  
1.7  
4.1  
V
–0.5  
0.7  
V
VOH  
VCCIO = 3.0,  
V
CCIO – 0.2  
V
IOH = –0.1 mA  
VOL  
Low-level output voltage  
VCCIO = 3.0,  
IOL = 0.1 mA  
0.2  
V
Table 4–6. 2.5-V I/O Specifications  
Symbol  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Conditions  
Minimum  
2.375  
1.7  
Maximum  
2.625  
4.1  
Unit  
V
VCCIO  
VIH  
VIL  
V
–0.5  
2.1  
0.7  
V
VOH  
IOH = –0.1 mA  
V
I
I
OH = –1 mA  
2.0  
V
OH = –2 to –16 mA (11)  
1.7  
V
VOL  
Low-level output voltage  
IOL = 0.1 mA  
0.2  
0.4  
0.7  
V
I
I
OH = 1 mA  
V
OH = 2 to 16 mA (11)  
V
Altera Corporation  
January 2007  
4–3  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–7. 1.8-V I/O Specifications  
Symbol  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Conditions  
Minimum  
1.65  
Maximum  
1.95  
Unit  
V
VCCIO  
VIH  
VIL  
0.65 × VCCIO  
–0.3  
2.25 (12)  
0.35 × VCCIO  
V
V
VOH  
VOL  
IOH = –2 to –8 mA (11) VCCIO – 0.45  
IOL = 2 to 8 mA (11)  
V
0.45  
V
Table 4–8. 1.5-V I/O Specifications  
Symbol  
Parameter  
Output supply voltage  
High-level input voltage  
Conditions  
Minimum  
Maximum  
Unit  
V
VCCIO  
1.4  
1.6  
VIH  
0.65 × VCCIO VCCIO + 0.3  
V
(12)  
VIL  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
–0.3  
0.35 × VCCIO  
V
V
V
VOH  
VOL  
IOH = –2 mA (11)  
IOL = 2 mA (11)  
0.75 × VCCIO  
0.25 × VCCIO  
Table 4–9. 2.5-V LVDS I/O Specifications  
Note (13)  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum  
Unit  
V
VCCIO  
I/O supply voltage  
2.375  
250  
2.5  
2.625  
550  
50  
VOD  
Differential output voltage RL = 100 Ω  
mV  
mV  
Δ VOD  
Change in VOD between  
high and low  
RL = 100 Ω  
VOS  
Output offset voltage  
RL = 100 Ω  
RL = 100 Ω  
1.125  
1.25  
1.375  
50  
V
Δ VOS  
Change in VOS between  
high and low  
mV  
VTH  
VIN  
Differential input threshold VCM = 1.2 V  
–100  
0.0  
100  
2.4  
mV  
V
Receiver input voltage  
range  
RL  
Receiver differential input  
resistor  
90  
100  
110  
Ω
4–4  
Preliminary  
Altera Corporation  
January 2007  
Operating Conditions  
Table 4–10. 3.3-V PCI Specifications  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum  
Unit  
V
VCCIO  
Output supply voltage  
High-level input voltage  
3.0  
3.3  
3.6  
VIH  
0.5 ×  
VCCIO  
VCCIO  
0.5  
+
V
VIL  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
–0.5  
0.3 ×  
VCCIO  
V
V
V
VOH  
VOL  
IOUT = –500 μA  
IOUT = 1,500 μA  
0.9 ×  
VCCIO  
0.1 ×  
VCCIO  
Table 4–11. SSTL-2 Class I Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
2.375  
Typical  
2.5  
Maximum  
2.625  
Unit  
V
VCCIO  
Output supply voltage  
Termination voltage  
Reference voltage  
VTT  
VREF  
VIH  
VREF – 0.04  
1.15  
VREF  
1.25  
VREF + 0.04  
1.35  
V
V
High-level input voltage  
Low-level input voltage  
High-level output voltage  
VREF + 0.18  
–0.3  
3.0  
V
VIL  
VREF – 0.18  
V
VOH  
IOH = –8.1 mA  
VTT + 0.57  
V
(11)  
VOL  
Low-level output voltage  
IOL = 8.1 mA (11)  
VTT – 0.57  
V
Table 4–12. SSTL-2 Class II Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
2.3  
Typical  
2.5  
Maximum  
2.7  
Unit  
V
VCCIO  
Output supply voltage  
Termination voltage  
Reference voltage  
VTT  
VREF  
VIH  
VREF – 0.04  
1.15  
VREF  
1.25  
VREF + 0.04  
1.35  
V
V
High-level input voltage  
Low-level input voltage  
High-level output voltage  
VREF + 0.18  
–0.3  
VCCIO + 0.3  
VREF – 0.18  
V
VIL  
V
VOH  
IOH = –16.4 mA  
VTT + 0.76  
V
(11)  
VOL  
Low-level output voltage  
IOL = 16.4 mA  
VTT – 0.76  
V
(11)  
Altera Corporation  
January 2007  
4–5  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–13. SSTL-3 Class I Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
3.0  
Typical  
3.3  
Maximum  
3.6  
Unit  
V
VCCIO  
Output supply voltage  
Termination voltage  
VTT  
VREF  
VIH  
VREF – 0.05  
1.3  
VREF  
1.5  
VREF + 0.05  
1.7  
V
Reference voltage  
V
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
VREF + 0.2  
–0.3  
VCCIO + 0.3  
VREF – 0.2  
V
VIL  
V
VOH  
VOL  
IOH = –8 mA (11)  
IOL = 8 mA (11)  
VTT + 0.6  
V
VTT – 0.6  
V
Table 4–14. SSTL-3 Class II Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
3.0  
Typical  
3.3  
Maximum  
3.6  
Unit  
V
VCCIO  
Output supply voltage  
Termination voltage  
Reference voltage  
VTT  
VREF  
VIH  
VREF – 0.05  
1.3  
VREF  
1.5  
VREF + 0.05  
1.7  
V
V
High-level input voltage  
Low-level input voltage  
High-level output voltage  
VREF + 0.2  
–0.3  
VCCIO + 0.3  
VREF – 0.2  
V
VIL  
V
VOH  
IOH = –16 mA  
VTT + 0.8  
V
(11)  
VOL  
Low-level output voltage  
IOL = 16 mA (11)  
VTT – 0.8  
V
Table 4–15. Bus Hold Parameters  
VCCIO Level  
Parameter  
Conditions  
Unit  
1.5 V  
Min Max  
1.8 V  
Max  
2.5 V  
3.3 V  
Min  
Min  
Max  
Min  
Max  
Low sustaining VIN > VIL  
current  
30  
50  
70  
μA  
μA  
μA  
μA  
(maximum)  
High sustaining VIN < VIH  
–30  
–50  
–70  
current  
(minimum)  
Low overdrive  
current  
0 V < VIN  
VCCIO  
<
200  
300  
500  
High overdrive 0 V < VIN  
<
–200  
–300  
–500  
current  
VCCIO  
4–6  
Preliminary  
Altera Corporation  
January 2007  
Operating Conditions  
Table 4–16. Cyclone Device Capacitance  
Note (14)  
Symbol  
Parameter  
Typical  
Unit  
pF  
CIO  
Input capacitance for user I/O pin  
4.0  
4.7  
CLVDS  
CVREF  
CDPCLK  
CCLK  
Input capacitance for dual-purpose LVDS/user I/O pin  
Input capacitance for dual-purpose VREF/user I/O pin.  
Input capacitance for dual-purpose DPCLK/user I/O pin.  
Input capacitance for CLK pin.  
pF  
12.0  
4.4  
pF  
pF  
4.7  
pF  
Notes to Tables 4–1 through 4–16:  
(1) Refer to the Operating Requirements for Altera Devices Data Sheet.  
(2) Conditions beyond those listed in Table 4–1 may cause permanent damage to a device. Additionally, device  
operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.  
(3) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for  
input currents less than 100 mA and periods shorter than 20 ns.  
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.  
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are  
powered.  
(6) Typical values are for TA = 25° C, VCCINT = 1.5 V, and VCCIO = 1.5 V, 1.8 V, 2.5 V, and 3.3 V.  
(7) VI = ground, no load, no toggling inputs.  
(8) This value is specified for normal device operation. The value may vary during power-up. This applies for all  
VCCIO settings (3.3, 2.5, 1.8, and 1.5 V).  
(9) RCONF is the measured value of internal pull-up resistance when the I/O pin is tied directly to GND. RCONF value  
will be lower if an external source drives the pin higher than VC CIO  
.
(10) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO  
.
(11) Drive strength is programmable according to values in Chapter 2, Cyclone Architecture, Table 2–11.  
(12) Overdrive is possible when a 1.5 V or 1.8 V and a 2.5 V or 3.3 V input signal feeds an input pin. Turn on “Allow  
voltage overdrive” for LVTTL/LVCMOS input pins in the Assignments > Device > Device and Pin Options > Pin  
Placement tab when a device has this I/O combination. However, higher leakage current is expected.  
(13) The Cyclone LVDS interface requires a resistor network outside of the transmitter channels.  
(14) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement  
accuracy is within 0.5 pF.  
Altera Corporation  
January 2007  
4–7  
Preliminary  
Cyclone Device Handbook, Volume 1  
Designers can use the Altera web Early Power Estimator to estimate the  
device power.  
Power  
Consumption  
Cyclone devices require a certain amount of power-up current to  
successfully power up because of the nature of the leading-edge process  
on which they are fabricated. Table 4–17 shows the maximum power-up  
current required to power up a Cyclone device.  
Table 4–17. Cyclone Maximum Power-Up Current (ICCINT) Requirements (In-Rush Current)  
Device  
Commercial Specification  
Industrial Specification  
Unit  
EP1C3  
150  
150  
175  
300  
500  
180  
180  
210  
360  
600  
mA  
mA  
mA  
mA  
mA  
EP1C4  
EP1C6  
EP1C12  
EP1C20  
Notes to Table 4–17:  
(1) The Cyclone devices (except for the EP1C20 device) meet the power up specification for Mini PCI.  
(2) The lot codes 9G0082 to 9G2999, or 9G3109 and later comply to the specifications in Table 4–17 and meet the Mini  
PCI specification. Lot codes appear at the top of the device.  
(3) The lot codes 9H0004 to 9H29999, or 9H3014 and later comply to the specifications in this table and meet the Mini  
PCI specification. Lot codes appear at the top of the device.  
Designers should select power supplies and regulators that can supply  
this amount of current when designing with Cyclone devices. This  
specification is for commercial operating conditions. Measurements were  
performed with an isolated Cyclone device on the board. Decoupling  
capacitors were not used in this measurement. To factor in the current for  
decoupling capacitors, sum up the current for each capacitor using the  
following equation:  
I = C (dV/dt)  
The exact amount of current that is consumed varies according to the  
process, temperature, and power ramp rate. If the power supply or  
regulator can supply more current than required, the Cyclone device may  
consume more current than the maximum current specified in Table 4–17.  
However, the device does not require any more current to successfully  
power up than what is listed in Table 4–17.  
The duration of the ICCINT power-up requirement depends on the VCCINT  
voltage supply rise time. The power-up current consumption drops when  
the VCCINT supply reaches approximately 0.75 V. For example, if the  
VCCINT rise time has a linear rise of 15 ms, the current consumption spike  
drops by 7.5 ms.  
4–8  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Typically, the user-mode current during device operation is lower than  
the power-up current in Table 4–17. Altera recommends using the  
Cyclone Power Calculator, available on the Altera web site, to estimate  
the user-mode ICCINT consumption and then select power supplies or  
regulators based on the higher value.  
The DirectDrive technology and MultiTrack interconnect ensure  
predictable performance, accurate simulation, and accurate timing  
analysis across all Cyclone device densities and speed grades. This  
section describes and specifies the performance, internal, external, and  
PLL timing specifications.  
Timing Model  
All specifications are representative of worst-case supply voltage and  
junction temperature conditions.  
Preliminary & Final Timing  
Timing models can have either preliminary or final status. The  
Quartus® II software issues an informational message during the design  
compilation if the timing models are preliminary. Table 4–18 shows the  
status of the Cyclone device timing models.  
Preliminary status means the timing model is subject to change. Initially,  
timing numbers are created using simulation results, process data, and  
other known parameters. These tests are used to make the preliminary  
numbers as close to the actual timing parameters as possible.  
Final timing numbers are based on actual device operation and testing.  
These numbers reflect the actual performance of the device under  
worst-case voltage and junction temperature conditions.  
Table 4–18. Cyclone Device Timing Model Status  
Device  
EP1C3  
EP1C4  
EP1C6  
EP1C12  
EP1C20  
Preliminary  
Final  
v
v
v
v
v
Altera Corporation  
January 2007  
4–9  
Preliminary  
Cyclone Device Handbook, Volume 1  
Performance  
The maximum internal logic array clock tree frequency is limited to the  
specifications shown in Table 4–19.  
Table 4–19. Clock Tree Maximum Performance Specification  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Parameter  
Definition  
Units  
Min Typ Max Min Typ Max Min Typ Max  
Clock tree  
fMAX  
Maximumfrequency  
that the clock tree  
can support for  
clocking registered  
logic  
405  
320  
275 MHz  
Table 4–20 shows the Cyclone device performance for some common  
designs. All performance values were obtained with the Quartus II  
software compilation of library of parameterized modules (LPM)  
functions or megafunctions. These performance values are based on  
EP1C6 devices in 144-pin TQFP packages.  
Table 4–20. Cyclone Device Performance  
Resources Used  
M4K  
Performance  
Resource  
Used  
Design Size &  
Function  
M4K  
-6 Speed -7 Speed -8 Speed  
Mode  
LEs  
Memory Memory  
Grade  
(MHz)  
Grade  
(MHz)  
Grade  
(MHz)  
Bits  
Blocks  
LE  
16-to-1  
multiplexer  
-
-
21  
44  
-
-
405.00  
320.00  
275.00  
32-to-1  
-
-
317.36  
284.98  
260.15  
multiplexer  
16-bit counter  
-
-
16  
66  
-
-
-
-
405.00  
208.99  
320.00  
181.98  
275.00  
160.75  
64-bit counter (1)  
4–10  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Table 4–20. Cyclone Device Performance  
Resources Used  
M4K  
Performance  
-6 Speed -7 Speed -8 Speed  
Resource  
Used  
Design Size &  
Function  
M4K  
Mode  
LEs  
Memory Memory  
Grade  
(MHz)  
Grade  
(MHz)  
Grade  
(MHz)  
Bits  
Blocks  
M4K  
memory  
block  
RAM 128 × 36 bit Single port  
-
-
4,608  
4,608  
1
1
256.00  
255.95  
222.67  
222.67  
197.01  
196.97  
RAM 128 × 36 bit Simple  
dual-port  
mode  
RAM 256 × 18 bit True dual-  
port mode  
-
4,608  
1
255.95  
222.67  
196.97  
FIFO 128 × 36 bit  
-
40  
11  
4,608  
4,536  
1
1
256.02  
255.95  
222.67  
222.67  
197.01  
196.97  
Shift register  
9 × 4 × 128  
Shift  
register  
Note to Table 4–20:  
(1) The performance numbers for this function are from an EP1C6 device in a 240-pin PQFP package.  
Internal Timing Parameters  
Internal timing parameters are specified on a speed grade basis  
independent of device density. Tables 4–21 through 4–24 describe the  
Cyclone device internal timing microparameters for LEs, IOEs, M4K  
memory structures, and MultiTrack interconnects.  
Table 4–21. LE Internal Timing Microparameter Descriptions  
Symbol  
Parameter  
LE register setup time before clock  
LE register hold time after clock  
LE register clock-to-output delay  
LE combinatorial LUT delay for data-in to data-out  
Minimum clear pulse width  
tSU  
tH  
tCO  
tLUT  
tCLR  
tPRE  
Minimum preset pulse width  
tCLKHL  
Minimum clock high or low time  
Altera Corporation  
January 2007  
4–11  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–22. IOE Internal Timing Microparameter Descriptions  
Symbol  
Parameter  
tSU  
IOE input and output register setup time before clock  
IOE input and output register hold time after clock  
IOE input and output register clock-to-output delay  
Row input pin to IOE combinatorial output  
Column input pin to IOE combinatorial output  
Row IOE data input to combinatorial output pin  
Column IOE data input to combinatorial output pin  
Minimum clear pulse width  
tH  
tCO  
tPIN2COMBOUT_R  
tPIN2COMBOUT_C  
tCOMBIN2PIN_R  
tCOMBIN2PIN_C  
tCLR  
tPRE  
Minimum preset pulse width  
tCLKHL  
Minimum clock high or low time  
Table 4–23. M4K Block Internal Timing Microparameter Descriptions  
Symbol Parameter  
tM4KRC  
Synchronous read cycle time  
tM4KWC  
Synchronous write cycle time  
tM4KWERESU  
tM4KWEREH  
tM4KBESU  
Write or read enable setup time before clock  
Write or read enable hold time after clock  
Byte enable setup time before clock  
Byte enable hold time after clock  
tM4KBEH  
tM4KDATAASU  
tM4KDATAAH  
tM4KADDRASU  
tM4KADDRAH  
tM4KDATABSU  
tM4KDATABH  
tM4KADDRBSU  
tM4KADDRBH  
tM4KDATACO1  
tM4KDATACO2  
tM4KCLKHL  
tM4KCLR  
A port data setup time before clock  
A port data hold time after clock  
A port address setup time before clock  
A port address hold time after clock  
B port data setup time before clock  
B port data hold time after clock  
B port address setup time before clock  
B port address hold time after clock  
Clock-to-output delay when using output registers  
Clock-to-output delay without output registers  
Minimum clock high or low time  
Minimum clear pulse width  
4–12  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Table 4–24. Routing Delay Internal Timing Microparameter Descriptions  
Symbol Parameter  
tR4  
tC4  
tLOCAL  
Delay for an R4 line with average loading; covers a distance  
of four LAB columns  
Delay for an C4 line with average loading; covers a distance  
of four LAB rows  
Local interconnect delay  
Figure 4–1 shows the memory waveforms for the M4K timing parameters  
shown in Table 4–23.  
Figure 4–1. Dual-Port RAM Timing Microparameter Waveform  
wrclock  
tWEREH  
tWERESU  
wren  
tWADDRH  
tWADDRSU  
an-1  
an  
a0  
a1  
a2  
a3  
a4  
a5  
wraddress  
data-in  
a6  
tDATAH  
din-1  
din4  
din5  
din6  
din  
tDATASU  
rdclock  
tWEREH  
tWERESU  
rden  
tRC  
rdaddress  
bn  
b1  
b2  
b3  
b0  
tDATACO1  
doutn-1  
doutn  
dout0  
reg_data-out  
doutn-2  
tDATACO2  
doutn  
doutn-1  
dout0  
unreg_data-out  
Altera Corporation  
January 2007  
4–13  
Preliminary  
Cyclone Device Handbook, Volume 1  
Internal timing parameters are specified on a speed grade basis  
independent of device density. Tables 4–25 through 4–28 show the  
internal timing microparameters for LEs, IOEs, TriMatrix memory  
structures, DSP blocks, and MultiTrack interconnects.  
Table 4–25. LE Internal Timing Microparameters  
-6  
-7  
-8  
Symbol  
Unit  
Min  
29  
Max  
Min  
33  
Max  
Min  
37  
Max  
tSU  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tH  
12  
13  
15  
tCO  
tLUT  
tCLR  
tPRE  
173  
454  
198  
522  
224  
590  
129  
129  
148  
148  
167  
167  
tCLKHL  
1,234  
1,562  
1,818  
Table 4–26. IOE Internal Timing Microparameters  
-6 -7  
-8  
Symbol  
Unit  
Min  
348  
0
Max  
Min  
400  
0
Max  
Min  
452  
0
Max  
tSU  
tH  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tCO  
511  
587  
664  
tPIN2COMBOUT_R  
tPIN2COMBOUT_C  
tCOMBIN2PIN_R  
tCOMBIN2PIN_C  
tCLR  
1,130  
1,135  
2,627  
2,615  
1,299  
1,305  
3,021  
3,007  
1,469  
1,475  
3,415  
3,399  
280  
280  
322  
322  
364  
364  
tPRE  
tCLKHL  
1,234  
1,562  
1,818  
4–14  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Table 4–27. M4K Block Internal Timing Microparameters  
-6 -7  
-8  
Symbol  
Unit  
Max  
Min  
Max  
4,379  
2,910  
Min  
Max  
5,035  
3,346  
Min  
tM4KRC  
5,691  
3,783  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tM4KWC  
tM4KWERESU  
tM4KWEREH  
tM4KBESU  
72  
43  
72  
43  
72  
43  
72  
43  
72  
43  
72  
43  
82  
49  
82  
49  
82  
49  
82  
49  
82  
49  
82  
49  
93  
55  
93  
55  
93  
55  
93  
55  
93  
55  
93  
55  
tM4KBEH  
tM4KDATAASU  
tM4KDATAAH  
tM4KADDRASU  
tM4KADDRAH  
tM4KDATABSU  
tM4KDATABH  
tM4KADDRBSU  
tM4KADDRBH  
tM4KDATACO1  
tM4KDATACO2  
tM4KCLKHL  
tM4KCLR  
621  
714  
807  
4,351  
5,003  
5,656  
1,234  
286  
1,562  
328  
1,818  
371  
Table 4–28. Routing Delay Internal Timing Microparameters  
-6 -7  
-8  
Symbol  
Unit  
Min  
Max  
261  
338  
244  
Min  
Max  
300  
388  
281  
Min  
Max  
339  
439  
318  
tR4  
tC4  
tLOCAL  
ps  
ps  
ps  
External Timing Parameters  
External timing parameters are specified by device density and speed  
grade. Figure 4–2 shows the timing model for bidirectional IOE pin  
timing. All registers are within the IOE.  
Altera Corporation  
January 2007  
4–15  
Preliminary  
Cyclone Device Handbook, Volume 1  
Figure 4–2. External Timing in Cyclone Devices  
OE Register  
PRN  
D
Q
t
t
t
t
t
XZ  
ZX  
INSU  
INH  
OUTCO  
Dedicated  
Clock  
CLRN  
Output Register  
PRN  
Bidirectional  
Pin  
D
Q
CLRN  
Input Register  
PRN  
D
Q
CLRN  
All external I/O timing parameters shown are for 3.3-V LVTTL I/O  
standard with the maximum current strength and fast slew rate. For  
external I/O timing using standards other than LVTTL or for different  
current strengths, use the I/O standard input and output delay adders in  
Tables 4–40 through 4–44.  
Table 4–29 shows the external I/O timing parameters when using global  
clock networks.  
Table 4–29. Cyclone Global Clock External I/O Timing Parameters  
Notes (1), (2) (Part 1 of 2)  
Symbol  
Parameter  
Conditions  
tINSU  
Setup time for input or bidirectional pin using IOE input  
register with global clock fed by CLKpin  
tINH  
Hold time for input or bidirectional pin using IOE input  
register with global clock fed by CLKpin  
tOUTCO  
tINSUPLL  
Clock-to-output delay output or bidirectional pin using IOE  
output register with global clock fed by CLKpin  
CLOAD = 10 pF  
Setup time for input or bidirectional pin using IOE input  
register with global clock fed by Enhanced PLL with default  
phase setting  
tINHPLL  
Hold time for input or bidirectional pin using IOE input  
register with global clock fed by enhanced PLL with default  
phase setting  
4–16  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Table 4–29. Cyclone Global Clock External I/O Timing Parameters  
Notes (1), (2) (Part 2 of 2)  
Conditions  
Symbol  
Parameter  
tOUTCOPLL  
Clock-to-output delay output or bidirectional pin using IOE  
output register with global clock enhanced PLL with default  
phase setting  
CLOAD = 10 pF  
Notes to Table 4–29:  
(1) These timing parameters are sample-tested only.  
(2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II  
software to verify the external timing for any pin.  
Tables 4–30 through 4–31 show the external timing parameters on column  
and row pins for EP1C3 devices.  
Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing  
Parameters  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Symbol  
Unit  
Min  
Max  
4.073  
2.306  
Min  
Max  
4.682  
2.651  
Min  
Max  
5.295  
2.998  
tINSU  
3.085  
0.000  
2.000  
1.795  
0.000  
0.500  
3.547  
0.000  
2.000  
2.063  
0.000  
0.500  
4.009  
0.000  
2.000  
2.332  
0.000  
0.500  
ns  
ns  
ns  
ns  
ns  
ns  
tINH  
tOUTCO  
tINSUPLL  
tINHPLL  
tOUTCOPLL  
Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Symbol  
Unit  
Min  
Max  
3.984  
2.217  
Min  
Max  
4.580  
2.549  
Min  
Max  
5.180  
2.883  
tINSU  
3.157  
0.000  
2.000  
1.867  
0.000  
0.500  
3.630  
0.000  
2.000  
2.146  
0.000  
0.500  
4.103  
0.000  
2.000  
2.426  
0.000  
0.500  
ns  
ns  
ns  
ns  
ns  
ns  
tINH  
tOUTCO  
tINSUPLL  
tINHPLL  
tOUTCOPLL  
Altera Corporation  
January 2007  
4–17  
Preliminary  
Cyclone Device Handbook, Volume 1  
Tables 4–32 through 4–33 show the external timing parameters on column  
and row pins for EP1C4 devices.  
Table 4–32. EP1C4 Column Pin Global Clock External I/O Timing  
Parameters Note (1)  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Symbol  
Unit  
Min  
Max  
3.937  
2.080  
Min  
Max  
4.526  
2.392  
Min  
Max  
5.119  
2.705  
tINSU  
2.471  
0.000  
2.000  
1.471  
0.000  
0.500  
2.841  
0.000  
2.000  
1.690  
0.000  
0.500  
3.210  
0.000  
2.000  
1.910  
0.000  
0.500  
ns  
ns  
ns  
ns  
ns  
ns  
tINH  
tOUTCO  
tINSUPLL  
tINHPLL  
tOUTCOPLL  
Table 4–33. EP1C4 Row Pin Global Clock External I/O Timing  
Parameters Note (1)  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Symbol  
Unit  
Min  
2.600  
0.000  
2.000  
1.300  
0.000  
Max  
3.991  
2.234  
Min  
2.990  
0.000  
2.000  
1.494  
0.000  
0.500  
Max  
4.388  
2.569  
Min  
3.379  
0.000  
2.000  
1.689  
0.000  
0.500  
Max  
5.189  
2.905  
tINSU  
ns  
tINH  
ns  
ns  
ns  
ns  
ns  
tOUTCO  
tINSUPLL  
tINHPLL  
tOUTCOPLL 0.500  
Note to Tables 4–32 and 4–33:  
(1) Contact Altera Applications for EP1C4 device timing parameters.  
4–18  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Tables 4–34 through 4–35 show the external timing parameters on column  
and row pins for EP1C6 devices.  
Table 4–34. EP1C6 Column Pin Global Clock External I/O Timing Parameters  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Symbol  
Unit  
Min  
Max  
3.917  
2.038  
Min  
Max  
4.503  
2.343  
Min  
Max  
5.093  
2.651  
tINSU  
2.691  
0.000  
2.000  
1.513  
0.000  
0.500  
3.094  
0.000  
2.000  
1.739  
0.000  
0.500  
3.496  
0.000  
2.000  
1.964  
0.000  
0.500  
ns  
ns  
ns  
ns  
ns  
ns  
tINH  
tOUTCO  
tINSUPLL  
tINHPLL  
tOUTCOPLL  
Table 4–35. EP1C6 Row Pin Global Clock External I/O Timing Parameters  
-6 Speed Grade -7 Speed Grade -8 Speed Grade  
Symbol  
Unit  
Min  
2.774  
0.000  
2.000  
1.596  
0.000  
Max  
3.817  
1.938  
Min  
3.190  
0.000  
2.000  
1.835  
0.000  
0.500  
Max  
4.388  
2.228  
Min  
3.605  
0.000  
2.000  
2.073  
0.000  
0.500  
Max  
4.963  
2.521  
tINSU  
ns  
tINH  
ns  
ns  
ns  
ns  
ns  
tOUTCO  
tINSUPLL  
tINHPLL  
tOUTCOPLL 0.500  
Tables 4–36 through 4–37 show the external timing parameters on column  
and row pins for EP1C12 devices.  
Table 4–36. EP1C12 Column Pin Global Clock External I/O Timing  
Parameters (Part 1 of 2)  
-6 Speed Grade  
-7 Speed Grade -8 Speed Grade  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
tINSU  
2.510  
0.000  
2.000  
1.588  
2.885  
0.000  
2.000  
1.824  
3.259  
0.000  
2.000  
2.061  
ns  
ns  
ns  
ns  
tINH  
tOUTCO  
tINSUPLL  
3.798  
4.367  
4.940  
Altera Corporation  
January 2007  
4–19  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–36. EP1C12 Column Pin Global Clock External I/O Timing  
Parameters (Part 2 of 2)  
-6 Speed Grade  
-7 Speed Grade -8 Speed Grade  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
tINHPLL  
tOUTCOPLL  
0.000  
0.500  
0.000  
0.500  
0.000  
0.500  
ns  
ns  
1.663  
1.913  
2.164  
Table 4–37. EP1C12 Row Pin Global Clock External I/O Timing Parameters  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Symbol  
Unit  
Min  
Max  
3.671  
1.536  
Min  
Max  
4.221  
1.767  
Min  
Max  
4.774  
1.998  
tINSU  
2.620  
0.000  
2.000  
1.698  
0.000  
0.500  
3.012  
0.000  
2.000  
1.951  
0.000  
0.500  
3.404  
0.000  
2.000  
2.206  
0.000  
0.500  
ns  
ns  
ns  
ns  
ns  
ns  
tINH  
tOUTCO  
tINSUPLL  
tINHPLL  
tOUTCOPLL  
Tables 4–38 through 4–39 show the external timing parameters on column  
and row pins for EP1C20 devices.  
Table 4–38. EP1C20 Column Pin Global Clock External I/O Timing  
Parameters  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Symbol  
Unit  
Min  
Max  
3.724  
1.667  
Min  
Max  
4.282  
1.917  
Min  
Max  
4.843  
2.169  
tINSU  
2.417  
0.000  
2.000  
1.417  
0.000  
0.500  
2.779  
0.000  
2.000  
1.629  
0.000  
0.500  
3.140  
0.000  
2.000  
1.840  
0.000  
0.500  
ns  
ns  
ns  
ns  
ns  
ns  
tINH  
tOUTCO  
tINSUPLL  
tINHPLL  
tOUTCOPLL  
4–20  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Table 4–39. EP1C20 Row Pin Global Clock External I/O Timing Parameters  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
tINSU  
2.417  
0.000  
2.000  
2.779  
0.000  
2.000  
3.140  
0.000  
2.000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tINH  
tOUTCO  
tXZ  
3.724  
3.645  
3.645  
4.282  
4.191  
4.191  
4.843  
4.740  
4.740  
tZX  
tINSUPLL  
tINHPLL  
tOUTCOPLL  
tXZPLL  
tZXPLL  
1.417  
0.000  
0.500  
1.629  
0.000  
0.500  
1.840  
0.000  
0.500  
1.667  
1.588  
1.588  
1.917  
1.826  
1.826  
2.169  
2.066  
2.066  
External I/O Delay Parameters  
External I/O delay timing parameters for I/O standard input and output  
adders and programmable input and output delays are specified by  
speed grade independent of device density.  
Tables 4–40 through 4–45 show the adder delays associated with column  
and row I/O pins for all packages. If an I/O standard is selected other  
than LVTTL 4 mA with a fast slew rate, add the selected delay to the  
external tCO and tSU I/O parameters shown in Tables 4–25 through  
4–28.  
Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders (Part 1 of 2)  
-6 Speed Grade -7 Speed Grade -8 Speed Grade  
I/O Standard  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
LVCMOS  
0
0
0
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
2.5-V LVTTL  
1.8-V LVTTL  
1.5-V LVTTL  
SSTL-3 class I  
SSTL-3 class II  
SSTL-2 class I  
0
0
0
27  
31  
35  
182  
278  
250  
250  
278  
209  
319  
288  
288  
320  
236  
361  
325  
325  
362  
Altera Corporation  
January 2007  
4–21  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders (Part 2 of 2)  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
I/O Standard  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
SSTL-2 class II  
LVDS  
278  
261  
320  
301  
362  
340  
ps  
ps  
Table 4–41. Cyclone I/O Standard Row Pin Input Delay Adders  
-6 Speed Grade -7 Speed Grade  
-8 Speed Grade  
I/O Standard  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
LVCMOS  
0
0
0
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
2.5-V LVTTL  
1.8-V LVTTL  
1.5-V LVTTL  
3.3-V PCI (1)  
SSTL-3 class I  
SSTL-3 class II  
SSTL-2 class I  
SSTL-2 class II  
LVDS  
0
0
0
27  
31  
35  
182  
278  
0
209  
319  
0
236  
361  
0
250  
250  
278  
278  
261  
288  
288  
320  
320  
301  
325  
325  
362  
362  
340  
Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 1 of 2)  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Standard  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
LVCMOS  
2 mA  
0
0
0
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
4 mA  
489  
855  
993  
0
563  
984  
1,142  
0
636  
8 mA  
1,112  
1,291  
0
12 mA  
4 mA  
3.3-V LVTTL  
8 mA  
347  
858  
819  
993  
400  
987  
942  
1,142  
452  
12 mA  
16 mA  
24 mA  
1,116  
1,065  
1,291  
4–22  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 2 of 2)  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Min Max  
Standard  
Unit  
Min  
Max  
Min  
Max  
2.5-V LVTTL  
2 mA  
329  
661  
655  
795  
4
378  
761  
754  
915  
4
427  
860  
852  
1034  
5
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
12 mA  
16 mA  
2 mA  
8 mA  
12 mA  
2 mA  
4 mA  
8 mA  
1.8-V LVTTL  
1.5-V LVTTL  
208  
208  
2,288  
608  
292  
410  
811  
485  
758  
−998  
240  
240  
2,631  
699  
271  
271  
2,974  
790  
335  
379  
SSTL-3 class I  
SSTL-3 class II  
SSTL-2 class I  
SSTL-2 class II  
LVDS  
472  
933  
558  
872  
1, 148  
533  
1,055  
631  
986  
1,298  
Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins (Part 1 of 2)  
-6 Speed Grade -7 Speed Grade -8 Speed Grade  
Min Max Min Max Min Max  
Standard  
Unit  
LVCMOS  
2 mA  
0
0
0
ps  
4 mA  
489  
855  
993  
0
563  
984  
1,142  
0
636  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
1,112  
1,291  
0
12 mA  
4 mA  
3.3-V LVTTL  
8 mA  
347  
-858  
819  
993  
329  
661  
655  
795  
400  
987  
942  
1,142  
378  
452  
12 mA  
16 mA  
24 mA  
2 mA  
1,116  
1,065  
1,291  
427  
2.5-V LVTTL  
8 mA  
761  
754  
915  
860  
12 mA  
16 mA  
852  
1,034  
Altera Corporation  
January 2007  
4–23  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins (Part 2 of 2)  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Standard  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
1.8-V LVTTL  
2 mA  
1,290  
4
1,483  
4
1,677  
5
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
12 mA  
2 mA  
4 mA  
8 mA  
208  
2,288  
608  
240  
2,631  
699  
271  
2,974  
790  
1.5-V LVTTL  
292  
335  
379  
3.3-V PCI (1)  
SSTL-3 class I  
SSTL-3 class II  
SSTL-2 class I  
SSTL-2 class II  
LVDS  
877  
410  
811  
485  
758  
998  
1,009  
472  
933  
558  
872  
1,148  
1,141  
533  
1,055  
631  
986  
1,298  
Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins (Part 1 of 2)  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
I/O Standard  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
LVCMOS  
2 mA  
1,800  
1,311  
945  
2,070  
1,507  
1,086  
928  
2,340  
1,704  
1,228  
1,049  
2,380  
1,928  
1,264  
1,315  
1,089  
3,570  
2,283  
2,291  
2,109  
7,157  
5,485  
5,209  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
4 mA  
8 mA  
12 mA  
4 mA  
807  
3.3-V LVTTL  
1,831  
1,484  
973  
2,105  
1,705  
1,118  
1,163  
963  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
1,012  
838  
2.5-V LVTTL  
1.8-V LVTTL  
2,747  
1,757  
1,763  
1,623  
5,506  
4,220  
4,008  
3,158  
2,019  
2,026  
1,865  
6,331  
4,852  
4,608  
8 mA  
12 mA  
16 mA  
2 mA  
8 mA  
12 mA  
4–24  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins (Part 2 of 2)  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
I/O Standard  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
1.5-V LVTTL  
2 mA  
6,789  
5,109  
4,793  
1,390  
989  
7,807  
5,875  
5,511  
1,598  
1,137  
2,259  
1,945  
922  
8,825  
6,641  
6,230  
1,807  
1,285  
2,554  
2,199  
1,042  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
4 mA  
8 mA  
SSTL-3 class I  
SSTL-3 class II  
SSTL-2 class I  
SSTL-2 class II  
LVDS  
1,965  
1,692  
802  
Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins (Part 1 of 2)  
-6 Speed Grade -7 Speed Grade -8 Speed Grade  
I/O Standard  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
LVCMOS  
2 mA  
1,800  
1,311  
945  
2,070  
1,507  
1,086  
928  
2,340  
1,704  
1,228  
1,049  
2,380  
1,928  
1,264  
1,315  
1,089  
3,570  
2,283  
2,291  
2,109  
7,157  
5,485  
5,209  
8,825  
6,641  
6,230  
1,199  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
4 mA  
8 mA  
12 mA  
4 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
8 mA  
12 mA  
16 mA  
2 mA  
8 mA  
12 mA  
2 mA  
4 mA  
8 mA  
807  
3.3-V LVTTL  
1,831  
1,484  
973  
2,105  
1,705  
1,118  
1,163  
963  
1,012  
838  
2.5-V LVTTL  
2,747  
1,757  
1,763  
1,623  
5,506  
4,220  
4,008  
6,789  
5,109  
4,793  
923  
3,158  
2,019  
2,026  
1,865  
6,331  
4,852  
4,608  
7,807  
5,875  
5,511  
1,061  
1.8-V LVTTL  
1.5-V LVTTL  
3.3-V PCI  
Altera Corporation  
January 2007  
4–25  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins (Part 2 of 2)  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
I/O Standard  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
SSTL-3 class I  
1,390  
989  
1,598  
1,137  
2,259  
1,945  
922  
1,807  
1,285  
2,554  
2,199  
1,042  
ps  
ps  
ps  
ps  
ps  
SSTL-3 class II  
SSTL-2 class I  
SSTL-2 class II  
LVDS  
1,965  
1,692  
802  
Note to Tables 4–40 through 4–45:  
(1) EP1C3 devices do not support the PCI I/O standard.  
Tables 4–46 through 4–47 show the adder delays for the IOE  
programmable delays. These delays are controlled with the Quartus II  
software options listed in the Parameter column.  
Table 4–46. Cyclone IOE Programmable Delays on Column Pins  
-6 Speed Grade -7 Speed Grade  
-8 Speed Grade  
Parameter  
Setting  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Decrease input delay to Off  
internal cells  
155  
2,122  
2,639  
3,057  
155  
178  
2,543  
3,034  
3,515  
178  
201  
2,875  
3,430  
3,974  
201  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Small  
Medium  
Large  
On  
Decrease input delay to Off  
input register  
0
0
0
On  
3,057  
0
3,515  
0
3,974  
0
Increase delay to output Off  
pin  
On  
552  
634  
717  
4–26  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Table 4–47. Cyclone IOE Programmable Delays on Row Pins  
-6 Speed Grade  
-7 Speed Grade  
-8 Speed Grade  
Parameter  
Setting  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Decrease input delay to  
internal cells  
Off  
154  
2,212  
2,639  
3,057  
154  
177  
2,543  
3,034  
3,515  
177  
200  
2,875  
3,430  
3,974  
200  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Small  
Medium  
Large  
On  
Decrease input delay to input Off  
register  
0
0
0
On  
3,057  
0
3,515  
0
3,974  
0
Increase delay to output pin Off  
On  
556  
639  
722  
Note to Table 4–47:  
(1) EPC1C3 devices do not support the PCI I/O standard  
Maximum Input & Output Clock Rates  
Tables 4–48 and 4–49 show the maximum input clock rate for column and  
row pins in Cyclone devices.  
Table 4–48. Cyclone Maximum Input Clock Rate for Column Pins  
-6 Speed  
Grade  
-7 Speed  
Grade  
-8 Speed  
Grade  
I/O Standard  
Unit  
LVTTL  
2.5 V  
1.8 V  
1.5 V  
464  
392  
387  
387  
405  
405  
414  
464  
473  
567  
428  
302  
311  
320  
374  
356  
365  
428  
432  
549  
387  
207  
252  
243  
333  
293  
302  
396  
396  
531  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
LVCMOS  
SSTL-3 class I  
SSTL-3 class II  
SSTL-2 class I  
SSTL-2 class II  
LVDS  
Altera Corporation  
January 2007  
4–27  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–49. Cyclone Maximum Input Clock Rate for Row Pins  
-6 Speed  
Grade  
-7 Speed  
Grade  
-8 Speed  
Grade  
I/O Standard  
Unit  
LVTTL  
464  
392  
387  
387  
405  
405  
414  
464  
473  
464  
567  
428  
302  
311  
320  
374  
356  
365  
428  
432  
428  
549  
387  
207  
252  
243  
333  
293  
302  
396  
396  
387  
531  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
2.5 V  
1.8 V  
1.5 V  
LVCMOS  
SSTL-3 class I  
SSTL-3 class II  
SSTL-2 class I  
SSTL-2 class II  
3.3-V PCI (1)  
LVDS  
Note to Tables 4–48 through 4–49:  
(1) EP1C3 devices do not support the PCI I/O standard. These parameters are only  
available on row I/O pins.  
Tables 4–50 and 4–51 show the maximum output clock rate for column  
and row pins in Cyclone devices.  
Table 4–50. Cyclone Maximum Output Clock Rate for Column Pins  
-6 Speed  
Grade  
-7 Speed  
Grade  
-8 Speed  
Grade  
I/O Standard  
Unit  
LVTTL  
2.5 V  
1.8 V  
1.5 V  
304  
220  
213  
166  
304  
100  
100  
134  
134  
320  
304  
220  
213  
166  
304  
100  
100  
134  
134  
320  
304  
220  
213  
166  
304  
100  
100  
134  
134  
275  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
LVCMOS  
SSTL-3 class I  
SSTL-3 class II  
SSTL-2 class I  
SSTL-2 class II  
LVDS  
Note to Table 4–50:  
(1) EP1C3 devices do not support the PCI I/O standard.  
4–28  
Preliminary  
Altera Corporation  
January 2007  
Timing Model  
Table 4–51. Cyclone Maximum Output Clock Rate for Row Pins  
-6 Speed  
Grade  
-7 Speed  
Grade  
-8 Speed  
Grade  
I/O Standard  
Unit  
LVTTL  
2.5 V  
1.8 V  
1.5 V  
296  
381  
286  
219  
367  
169  
160  
160  
131  
66  
285  
366  
277  
208  
356  
166  
151  
151  
123  
66  
273  
349  
267  
195  
343  
162  
146  
142  
115  
66  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
LVCMOS  
SSTL-3 class I  
SSTL-3 class II  
SSTL-2 class I  
SSTL-2 class II  
3.3-V PCI (1)  
LVDS  
320  
303  
275  
Note to Tables 4–50 through 4–51:  
(1) EP1C3 devices do not support the PCI I/O standard. These parameters are only  
available on row I/O pins.  
PLL Timing  
Table 4–52 describes the Cyclone FPGA PLL specifications.  
Table 4–52. Cyclone PLL Specifications (Part 1 of 2)  
Symbol  
Parameter  
Min  
Max  
Unit  
fIN  
Input frequency (-6 speed  
15.625  
464  
MHz  
grade)  
Input frequency (-7 speed  
grade)  
15.625  
15.625  
40.00  
428  
387  
60  
MHz  
MHz  
Input frequency (-8 speed  
grade)  
f
t
IN DUTY  
IN JITTER  
Input clock duty cycle  
Input clock period jitter  
%
ps  
200  
f
OUT_EXT (external PLL  
PLL output frequency  
(-6 speed grade)  
15.625  
15.625  
15.625  
320  
320  
275  
MHz  
MHz  
MHz  
clock output)  
PLL output frequency  
(-7 speed grade)  
PLL output frequency  
(-8 speed grade)  
Altera Corporation  
January 2007  
4–29  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 4–52. Cyclone PLL Specifications (Part 2 of 2)  
Symbol  
Parameter  
Min  
Max  
Unit  
fOUT (to global clock)  
PLL output frequency  
15.625  
405  
MHz  
(-6 speed grade)  
PLL output frequency  
(-7 speed grade)  
15.625  
15.625  
45.00  
320  
275  
MHz  
MHz  
%
PLL output frequency  
(-8 speed grade)  
t
OUT DUTY  
Duty cycle for external clock  
55  
output (when set to 50%)  
tJITTER (1)  
tLOCK (3)  
fVCO  
Period jitter for external clock  
output  
300 (2)  
100  
ps  
Time required to lock from end  
of device configuration  
10.00  
μs  
PLL internal VCO operating  
range  
500.00  
1,000  
MHz  
-
Minimum areset time  
Counter values  
10  
1
ns  
N, G0, G1, E  
32  
integer  
Notes to Table 4–52:  
(1) The tJITTER specification for the PLL[2..1]_OUTpins are dependent on the I/O pins in its VCCIO bank, how many  
of them are switching outputs, how much they toggle, and whether or not they use programmable current strength  
or slow slew rate.  
(2) fOUT 100 MHz. When the PLL external clock output frequency (fOUT) is smaller than 100 MHz, the jitter  
specification is 60 mUI.  
(3) fIN/N must be greater than 200 MHz to ensure correct lock detect circuit operation below –20 C. Otherwise, the PLL  
operates with the specified parameters under the specified conditions.  
4–30  
Preliminary  
Altera Corporation  
January 2007  
Document Revision History  
Table 4–53 shows the revision history for this document.  
Document  
Revision History  
Table 4–53. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
January 2007  
v1.6  
Added document revision history.  
Added new row for VCCA details in Table 4–1.  
Updated RCONF information in Table 4–3.  
Added new Note (12) on voltage overdrive information to  
Table 4–7 and Table 4–8.  
Updated Note (9) on RCONF information to Table 4–3.  
Updated information in “External I/O Delay Parameters”  
section.  
Updated speed grade information in Table 4–46 and  
Table 4–47.  
Updated LVDS information in Table 4–51.  
August 2005  
v1.5  
Minor updates.  
February 2005  
v1.4  
Updated information on Undershoot voltage. Updated Table  
4-2.  
Updated Table 4-3.  
Updated the undershoot voltage from 0.5 V to 2.0 V in Note 3  
of Table 4-16.  
Updated Table 4-17.  
January 2004  
v.1.3  
Added extended-temperature grade device information.  
Updated Table 4-2.  
Updated ICC0 information in Table 4-3.  
October 2003  
v.1.2  
Added clock tree information in Table 4-19.  
Finalized timing information for EP1C3 and EP1C12 devices.  
Updated timing information in Tables 4-25 through 4-26 and  
Tables 4-30 through 4-51.  
Updated PLL specifications in Table 4-52.  
July 2003 v1.1  
Updated timing information. Timing finalized for EP1C6 and  
EP1C20 devices. Updated performance information. Added PLL  
Timing section.  
May 2003 v1.0 Added document to Cyclone Device Handbook.  
Altera Corporation  
January 2007  
4–31  
Preliminary  
Cyclone Device Handbook, Volume 1  
4–32  
Preliminary  
Altera Corporation  
January 2007  
5. Reference & Ordering  
Information  
C51005-1.3  
Cyclone® devices are supported by the Altera® Quartus® II design  
software, which provides a comprehensive environment for system-on-a-  
programmable-chip (SOPC) design. The Quartus II software includes  
HDL and schematic design entry, compilation and logic synthesis, full  
simulation and advanced timing analysis, SignalTap® II logic analysis,  
and device configuration. Refer to the Design Software Selector Guide for  
more details on the Quartus II software features.  
Software  
The Quartus II software supports the Windows 2000/NT/98, Sun Solaris,  
Linux Red Hat v7.1 and HP-UX operating systems. It also supports  
seamless integration with industry-leading EDA tools through the  
NativeLink® interface.  
Device pin-outs for Cyclone devices are available on the Altera web site  
(www.altera.com) and in the Cyclone FPGA Device Handbook.  
Device Pin-Outs  
Figure 5–1 describes the ordering codes for Cyclone devices. For more  
information on a specific package, refer to Chapter 15, Package  
Information for Cyclone Devices.  
Ordering  
Information  
Figure 5–1. Cyclone Device Packaging Ordering Information  
EP1C  
20  
F
400  
C
7
ES  
Family Signature  
Optional Suffix  
EP1C: Cyclone  
Indicates specific device options or  
shipment method.  
ES: Engineering sample  
Device Type  
3
4
Speed Grade  
6, 7, or 8 , with 6 being the fastest  
6
12  
20  
Operating Temperature  
Package Type  
C: Commercial temperature (t = 0  
J
˚
C to 85  
C to 100˚  
˚
C)  
C)  
I: Industrial temperature (t = -40  
˚
J
T: Thin quad flat pack (TQFP)  
Pin Count  
Number of pins for a particular package  
Q: Plastic quad flat pack (PQFP)  
F: FineLine BGA  
Altera Corporation  
January 2007  
5–1  
Preliminary  
Cyclone Device Handbook, Volume 1  
Table 5–1 shows the revision history for this document.  
Document  
Revision History  
Table 5–1. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
January 2007  
v1.3  
Added document revision history.  
August 2005  
v1.2  
Minor updates.  
February 2005  
v1.1  
Updated Figure 5-1.  
May 2003 v1.0 Added document to Cyclone Device Handbook.  
5–2  
Preliminary  
Altera Corporation  
January 2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY