EP2C15A15T324I8ES [ALTERA]

Cyclone II Device Family; Cyclone II器件系列
EP2C15A15T324I8ES
型号: EP2C15A15T324I8ES
厂家: ALTERA CORPORATION    ALTERA CORPORATION
描述:

Cyclone II Device Family
Cyclone II器件系列

文件: 总168页 (文件大小:2205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Section I. Cyclone II  
Device Family Data Sheet  
This section provides information for board layout designers to  
successfully layout their boards for Cyclone® II devices. It contains the  
required PCB layout guidelines, device pin tables, and package  
specifications.  
This section includes the following chapters:  
Chapter 1. Introduction  
Chapter 2. Cyclone II Architecture  
Chapter 3. Configuration & Testing  
Chapter 4. Hot Socketing & Power-On Reset  
Chapter 5. DC Characteristics and Timing Specifications  
Chapter 6. Reference & Ordering Information  
Refer to each chapter for its own specific revision history. For information  
on when each chapter was updated, refer to the Chapter Revision Dates  
section, which appears in the complete handbook.  
Revision History  
Altera Corporation  
Section I–1  
Preliminary  
Revision History  
Cyclone II Device Handbook, Volume 1  
Section I–2  
Preliminary  
Altera Corporation  
1. Introduction  
CII51001-3.2  
Following the immensely successful first-generation Cyclone® device  
family, Altera® Cyclone II FPGAs extend the low-cost FPGA density  
range to 68,416 logic elements (LEs) and provide up to 622 usable I/O  
pins and up to 1.1 Mbits of embedded memory. Cyclone II FPGAs are  
manufactured on 300-mm wafers using TSMC's 90-nm low-k dielectric  
process to ensure rapid availability and low cost. By minimizing silicon  
area, Cyclone II devices can support complex digital systems on a single  
chip at a cost that rivals that of ASICs. Unlike other FPGA vendors who  
compromise power consumption and performance for low-cost, Altera’s  
latest generation of low-cost FPGAs—Cyclone II FPGAs, offer 60% higher  
performance and half the power consumption of competing 90-nm  
FPGAs. The low cost and optimized feature set of Cyclone II FPGAs make  
them ideal solutions for a wide array of automotive, consumer,  
communications, video processing, test and measurement, and other  
end-market solutions. Reference designs, system diagrams, and IP, found  
at www.altera.com, are available to help you rapidly develop complete  
end-market solutions using Cyclone II FPGAs.  
Introduction  
Low-Cost Embedded Processing Solutions  
Cyclone II devices support the Nios II embedded processor which allows  
you to implement custom-fit embedded processing solutions. Cyclone II  
devices can also expand the peripheral set, memory, I/O, or performance  
of embedded processors. Single or multiple Nios II embedded processors  
can be designed into a Cyclone II device to provide additional  
co-processing power or even replace existing embedded processors in  
your system. Using Cyclone II and Nios II together allow for low-cost,  
high-performance embedded processing solutions, which allow you to  
extend your product's life cycle and improve time to market over  
standard product solutions.  
Low-Cost DSP Solutions  
Use Cyclone II FPGAs alone or as DSP co-processors to improve  
price-to-performance ratios for digital signal processing (DSP)  
applications. You can implement high-performance yet low-cost DSP  
systems with the following Cyclone II features and design support:  
Up to 150 18 × 18 multipliers  
Up to 1.1 Mbit of on-chip embedded memory  
High-speed interfaces to external memory  
Altera Corporation  
February 2008  
1–1  
Features  
DSP intellectual property (IP) cores  
DSP Builder interface to The Mathworks Simulink and Matlab  
design environment  
DSP Development Kit, Cyclone II Edition  
Cyclone II devices include a powerful FPGA feature set optimized for  
low-cost applications including a wide range of density, memory,  
embedded multiplier, and packaging options. Cyclone II devices support  
a wide range of common external memory interfaces and I/O protocols  
required in low-cost applications. Parameterizable IP cores from Altera  
and partners make using Cyclone II interfaces and protocols fast and easy.  
The Cyclone II device family offers the following features:  
Features  
High-density architecture with 4,608 to 68,416 LEs  
M4K embedded memory blocks  
Up to 1.1 Mbits of RAM available without reducing available  
logic  
4,096 memory bits per block (4,608 bits per block including 512  
parity bits)  
Variable port configurations of ×1, ×2, ×4, ×8, ×9, ×16, ×18, ×32,  
and ×36  
True dual-port (one read and one write, two reads, or two  
writes) operation for ×1, ×2, ×4, ×8, ×9, ×16, and ×18 modes  
Byte enables for data input masking during writes  
Up to 260-MHz operation  
Embedded multipliers  
Up to 150 18- × 18-bit multipliers are each configurable as two  
independent 9- × 9-bit multipliers with up to 250-MHz  
performance  
Optional input and output registers  
Advanced I/O support  
High-speed differential I/O standard support, including LVDS,  
RSDS, mini-LVDS, LVPECL, differential HSTL, and differential  
SSTL  
Single-ended I/O standard support, including 2.5-V and 1.8-V,  
SSTL class I and II, 1.8-V and 1.5-V HSTL class I and II, 3.3-V PCI  
and PCI-X 1.0, 3.3-, 2.5-, 1.8-, and 1.5-V LVCMOS, and 3.3-, 2.5-,  
and 1.8-V LVTTL  
Peripheral Component Interconnect Special Interest Group (PCI  
SIG) PCI Local Bus Specification, Revision 3.0 compliance for 3.3-V  
operation at 33 or 66 MHz for 32- or 64-bit interfaces  
PCI Express with an external TI PHY and an Altera PCI Express  
×1 Megacore® function  
1–2  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
Introduction  
133-MHz PCI-X 1.0 specification compatibility  
High-speed external memory support, including DDR, DDR2,  
and SDR SDRAM, and QDRII SRAM supported by drop in  
Altera IP MegaCore functions for ease of use  
Three dedicated registers per I/O element (IOE): one input  
register, one output register, and one output-enable register  
Programmable bus-hold feature  
Programmable output drive strength feature  
Programmable delays from the pin to the IOE or logic array  
I/O bank grouping for unique VCCIO and/or VREF bank  
settings  
MultiVoltI/O standard support for 1.5-, 1.8-, 2.5-, and  
3.3-interfaces  
Hot-socketing operation support  
Tri-state with weak pull-up on I/O pins before and during  
configuration  
Programmable open-drain outputs  
Series on-chip termination support  
Flexible clock management circuitry  
Hierarchical clock network for up to 402.5-MHz performance  
Up to four PLLs per device provide clock multiplication and  
division, phase shifting, programmable duty cycle, and external  
clock outputs, allowing system-level clock management and  
skew control  
Up to 16 global clock lines in the global clock network that drive  
throughout the entire device  
Device configuration  
Fast serial configuration allows configuration times less than  
100 ms  
Decompression feature allows for smaller programming file  
storage and faster configuration times  
Supports multiple configuration modes: active serial, passive  
serial, and JTAG-based configuration  
Supports configuration through low-cost serial configuration  
devices  
Device configuration supports multiple voltages (either 3.3, 2.5,  
or 1.8 V)  
Intellectual property  
Altera megafunction and Altera MegaCore function support,  
and Altera Megafunctions Partners Program (AMPPSM  
megafunction support, for a wide range of embedded  
processors, on-chip and off-chip interfaces, peripheral  
)
functions, DSP functions, and communications functions and  
Altera Corporation  
February 2008  
1–3  
Cyclone II Device Handbook, Volume 1  
Features  
protocols. Visit the Altera IPMegaStore at www.altera.com to  
download IP MegaCore functions.  
Nios II Embedded Processor support  
The Cyclone II family offers devices with the Fast-On feature, which  
offers a faster power-on-reset (POR) time. Devices that support the  
Fast-On feature are designated with an “A” in the device ordering code.  
For example, EP2C5A, EP2C8A, EP2C15A, and EP2C20A. The EP2C5A is  
only available in the automotive speed grade. The EP2C8A and EP2C20A  
are only available in the industrial speed grade. The EP2C15A is only  
available with the Fast-On feature and is available in both commercial  
and industrial grades. The Cyclone II “A” devices are identical in feature  
set and functionality to the non-A devices except for support of the faster  
POR time.  
f
f
Cyclone II A devices are offered in automotive speed grade. For more  
information, refer to the Cyclone II section in the Automotive-Grade Device  
Handbook.  
For more information on POR time specifications for Cyclone II A and  
non-A devices, refer to the Hot Socketing & Power-On Reset chapter in the  
Cyclone II Device Handbook.  
Table 1–1 lists the Cyclone II device family features. Table 1–2 lists the  
Cyclone II device package offerings and maximum user I/O pins.  
Table 1–1. Cyclone II FPGA Family Features (Part 1 of 2)  
Feature EP2C5 (2) EP2C8 (2) EP2C15 (1) EP2C20 (2) EP2C35 EP2C50 EP2C70  
LEs  
4,608  
26  
8,256  
36  
14,448  
52  
18,752  
52  
33,216  
105  
50,528  
129  
68,416  
250  
M4K RAM blocks (4  
Kbits plus  
512 parity bits  
Total RAM bits  
119,808  
165,888  
239,616  
239,616  
483,840 594,432 1,152,00  
0
Embedded  
multipliers (3)  
13  
2
18  
2
26  
4
26  
4
35  
86  
150  
PLLs  
4
4
4
1–4  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
Introduction  
Table 1–1. Cyclone II FPGA Family Features (Part 2 of 2)  
Feature  
EP2C5 (2) EP2C8 (2) EP2C15 (1) EP2C20 (2) EP2C35 EP2C50 EP2C70  
Maximum user  
I/O pins  
158  
182  
315  
315  
475  
450  
622  
Notes to Table 1–1:  
(1) The EP2C15A is only available with the Fast On feature, which offers a faster POR time. This device is available in  
both commercial and industrial grade.  
(2) The EP2C5, EP2C8, and EP2C20 optionally support the Fast On feature, which is designated with an “A” in the  
device ordering code. The EP2C5A is only available in the automotive speed grade. The EP2C8A and EP2C20A  
devices are only available in industrial grade.  
(3) This is the total number of 18 × 18 multipliers. For the total number of 9 × 9 multipliers per device, multiply the  
total number of 18 × 18 multipliers by 2.  
Altera Corporation  
February 2008  
1–5  
Cyclone II Device Handbook, Volume 1  
Features  
Table 1–2. Cyclone II Package Options & Maximum User I/O Pins Notes (1) (2)  
484-Pin  
Ultra  
FineLine  
BGA  
256-Pin  
FineLine FineLine  
BGA  
484-Pin  
672-Pin 896-Pin  
FineLine FineLine  
144-Pin  
TQFP (3) PQFP (4) PQFP  
208-Pin 240-Pin  
Device  
BGA  
BGA  
BGA  
EP2C5 (6) (8)  
EP2C8 (6)  
89  
85  
142  
138  
158 (5)  
182  
182  
152  
152  
152  
EP2C8A (6), (7)  
EP2C15A (6), (7)  
EP2C20 (6)  
315  
315  
315  
322  
294  
142  
EP2C20A (6), (7)  
EP2C35 (6)  
322  
294  
475  
450  
422  
EP2C50 (6)  
EP2C70 (6)  
622  
Notes to Table 1–2:  
(1) Cyclone II devices support vertical migration within the same package (for example, you can migrate between the  
EP2C20 device in the 484-pin FineLine BGA package and the EP2C35 and EP2C50 devices in the same package).  
(2) The Quartus® II software I/O pin counts include four additional pins, TDI, TDO, TMS, and TCK, which are not  
available as general purpose I/O pins.  
(3) TQFP: thin quad flat pack.  
(4) PQFP: plastic quad flat pack.  
(5) Vertical migration is supported between the EP2C5F256 and the EP2C8F256 devices. However, not all of the DQ  
and DQS groups are supported. Vertical migration between the EP2C5 and the EP2C15 in the F256 package is not  
supported.  
(6) The I/O pin counts for the EP2C5, EP2C8, and EP2C15A devices include 8 dedicated clock pins that can be used  
for data inputs. The I/O counts for the EP2C20, EP2C35, EP2C50, and EP2C70 devices include 16 dedicated clock  
pins that can be used for data inputs.  
(7) EP2C8A, EP2C15A, and EP2C20A have a Fast On feature that has a faster POR time. The EP2C15A is only available  
with the Fast On option.  
(8) The EP2C5 optionally support the Fast On feature, which is designated with an “A” in the device ordering code.  
The EP2C5A is only available in the automotive speed grade. Refer to the Cyclone II section in the Automotive-Grade  
Device Handbook.  
Cyclone II devices support vertical migration within the same package  
(for example, you can migrate between the EP2C35, EPC50, and EP2C70  
devices in the 672-pin FineLine BGA package). The exception to vertical  
migration support within the Cyclone II family is noted in Table 1–3.  
1–6  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
Introduction  
Vertical migration means that you can migrate to devices whose  
dedicated pins, configuration pins, and power pins are the same for a  
given package across device densities.  
Table 1–3. Total Number of Non-Migratable I/O Pins for Cyclone II Vertical Migration Paths  
256-Pin  
FineLineBGA FineLineBGA  
484-Pin  
672-Pin  
FineLineBGA  
(3)  
Vertical  
Migration Path  
208-Pin  
PQFP  
484-Pin Ultra  
FineLine BGA  
144-Pin TQFP  
(1)  
(2)  
EP2C5 to  
EP2C8  
4
4
1 (4)  
28  
28  
EP2C8 to  
EP2C15  
30  
0
0
EP2C15 to  
EP2C20  
EP2C20 to  
EP2C35  
16  
28  
EP2C35 to  
EP2C50  
28 (5)  
28  
EP2C50 to  
EP2C70  
Notes to Table 1–3:  
(1) Vertical migration between the EP2C5F256 to the EP2C15AF256 and the EP2C5F256 to the EP2C20F256 devices is  
not supported.  
(2) When migrating from the EP2C20F484 device to the EP2C50F484 device, a total of 39 I/O pins are non-migratable.  
(3) When migrating from the EP2C35F672 device to the EP2C70F672 device, a total of 56 I/O pins are non-migratable.  
(4) In addition to the one non-migratable I/O pin, there are 34 DQ pins that are non-migratable.  
(5) The pinouts of 484 FBGA and 484 UBGA are the same.  
1
When moving from one density to a larger density, I/O pins are  
often lost because of the greater number of power and ground  
pins required to support the additional logic within the larger  
device. For I/O pin migration across densities, you must cross  
reference the available I/O pins using the device pin-outs for all  
planned densities of a given package type to identify which I/O  
pins are migratable.  
To ensure that your board layout supports migratable densities within  
one package offering, enable the applicable vertical migration path  
within the Quartus II software (go to Assignments menu, then Device,  
then click the Migration Devices button). After compilation, check the  
information messages for a full list of I/O, DQ, LVDS, and other pins that  
are not available because of the selected migration path. Table 1–3 lists the  
Cyclone II device package offerings and shows the total number of  
non-migratable I/O pins when migrating from one density device to a  
larger density device.  
Altera Corporation  
February 2008  
1–7  
Cyclone II Device Handbook, Volume 1  
Features  
Cyclone II devices are available in up to three speed grades: –6, –7, and  
–8, with –6 being the fastest. Table 1–4 shows the Cyclone II device  
speed-grade offerings.  
Table 1–4. Cyclone II Device Speed Grades  
484-Pin  
Ultra  
FineLine  
BGA  
256-Pin  
FineLine FineLine  
BGA  
484-Pin  
672-Pin  
FineLine FineLine  
BGA  
896-Pin  
144-Pin 208-Pin 240-Pin  
Device  
TQFP  
PQFP  
PQFP  
BGA  
BGA  
EP2C5 (1)  
EP2C8  
6, 7, 8 7, 8  
6, 7, 8 7, 8  
6, 7, 8  
6, 7, 8  
8  
EP2C8A (2)  
EP2C15A  
EP2C20  
6, 7, 8 6, 7, 8  
6, 7, 8 6, 7, 8  
8  
EP2C20A (2)  
EP2C35  
8  
8  
6, 7, 8 6, 7, 8 6, 7, 8  
6, 7, 8 6, 7, 8 6, 7, 8  
EP2C50  
EP2C70  
6, 7, 8 6, 7, 8  
Notes to Table 1–4:  
(1) The EP2C5 optionally support the Fast On feature, which is designated with an “A” in the device ordering code.  
The EP2C5A is only available in the automotive speed grade. Refer to the Cyclone II section in the Automotive-Grade  
Device Handbook for detailed information.  
(2) EP2C8A and EP2C20A are only available in industrial grade.  
1–8  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
Introduction  
This chapter references the following documents:  
Referenced  
Documents  
Hot Socketing & Power-On Reset chapter in Cyclone II Device Handbook  
Automotive-Grade Device Handbook  
Table 1–5 shows the revision history for this document.  
Document  
Revision History  
Table 1–5. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
February 2008  
v3.2  
Added “Referenced Documents”.  
Updated “Features” section and Table 1–1, Table 1–2,  
and Table 1–4 with information about EP2C5A.  
February 2007  
v3.1  
Added document revision history.  
Added new Note (2) to Table 1–2.  
Note to explain difference  
between I/O pin count  
information provided in  
Table 1–2 and in the Quartus II  
software documentation.  
November 2005  
v2.1  
Updated Introduction and Features.  
Updated Table 1–3.  
July 2005 v2.0  
Updated technical content throughout.  
Updated Table 1–2.  
Added Tables 1–3 and 1–4.  
November 2004  
v1.1  
Updated Table 1–2.  
Updated bullet list in the “Features” section.  
June 2004 v1.0 Added document to the Cyclone II Device Handbook.  
Altera Corporation  
February 2008  
1–9  
Cyclone II Device Handbook, Volume 1  
Document Revision History  
1–10  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
2. CycloneII Architecture  
CII51002-3.1  
Cyclone® II devices contain a two-dimensional row- and column-based  
architecture to implement custom logic. Column and row interconnects  
of varying speeds provide signal interconnects between logic array  
blocks (LABs), embedded memory blocks, and embedded multipliers.  
Functional  
Description  
The logic array consists of LABs, with 16 logic elements (LEs) in each  
LAB. An LE is a small unit of logic providing efficient implementation of  
user logic functions. LABs are grouped into rows and columns across the  
device. Cyclone II devices range in density from 4,608 to 68,416 LEs.  
Cyclone II devices provide a global clock network and up to four  
phase-locked loops (PLLs). The global clock network consists of up to 16  
global clock lines that drive throughout the entire device. The global clock  
network can provide clocks for all resources within the device, such as  
input/output elements (IOEs), LEs, embedded multipliers, and  
embedded memory blocks. The global clock lines can also be used for  
other high fan-out signals. Cyclone II PLLs provide general-purpose  
clocking with clock synthesis and phase shifting as well as external  
outputs for high-speed differential I/O support.  
M4K memory blocks are true dual-port memory blocks with 4K bits of  
memory plus parity (4,608 bits). These blocks provide dedicated true  
dual-port, simple dual-port, or single-port memory up to 36-bits wide at  
up to 260 MHz. These blocks are arranged in columns across the device  
in between certain LABs. Cyclone II devices offer between 119 to  
1,152 Kbits of embedded memory.  
Each embedded multiplier block can implement up to either two 9 × 9-bit  
multipliers, or one 18 × 18-bit multiplier with up to 250-MHz  
performance. Embedded multipliers are arranged in columns across the  
device.  
Each Cyclone II device I/O pin is fed by an IOE located at the ends of LAB  
rows and columns around the periphery of the device. I/O pins support  
various single-ended and differential I/O standards, such as the 66- and  
33-MHz, 64- and 32-bit PCI standard, PCI-X, and the LVDS I/O standard  
at a maximum data rate of 805 megabits per second (Mbps) for inputs and  
640 Mbps for outputs. Each IOE contains a bidirectional I/O buffer and  
three registers for registering input, output, and output-enable signals.  
Dual-purpose DQS, DQ, and DM pins along with delay chains (used to  
Altera Corporation  
February 2007  
2–1  
Logic Elements  
phase-align double data rate (DDR) signals) provide interface support for  
external memory devices such as DDR, DDR2, and single data rate (SDR)  
SDRAM, and QDRII SRAM devices at up to 167 MHz.  
Figure 2–1 shows a diagram of the Cyclone II EP2C20 device.  
Figure 2–1. Cyclone II EP2C20 Device Block Diagram  
PLL  
IOEs  
PLL  
Embedded  
Multipliers  
Logic  
Array  
Logic  
Array  
Logic  
Array  
Logic  
Array  
IOEs  
IOEs  
M4K Blocks  
M4K Blocks  
PLL  
IOEs  
PLL  
The number of M4K memory blocks, embedded multiplier blocks, PLLs,  
rows, and columns vary per device.  
The smallest unit of logic in the Cyclone II architecture, the LE, is compact  
and provides advanced features with efficient logic utilization. Each LE  
features:  
Logic Elements  
A four-input look-up table (LUT), which is a function generator that  
can implement any function of four variables  
A programmable register  
A carry chain connection  
A register chain connection  
The ability to drive all types of interconnects: local, row, column,  
register chain, and direct link interconnects  
Support for register packing  
Support for register feedback  
2–2  
Altera Corporation  
Cyclone II Device Handbook, Volume 1  
February 2007  
Cyclone II Architecture  
Figure 2–2 shows a Cyclone II LE.  
Figure 2–2. Cyclone II LE  
Register Chain  
Routing From  
Previous LE  
LAB-Wide  
Register Bypass  
Packed  
Synchronous  
LAB Carry-In  
Load  
Programmable  
Register  
LAB-Wide  
Synchronous  
Clear  
Register Select  
data1  
data2  
data3  
Row, Column,  
And Direct Link  
Routing  
Synchronous  
Load and  
Clear Logic  
Look-Up  
Table  
(LUT)  
Carry  
Chain  
D
Q
data4  
ENA  
CLRN  
Row, Column,  
And Direct Link  
Routing  
labclr1  
labclr2  
Asynchronous  
Clear Logic  
Local Routing  
Chip-Wide  
Reset  
(DEV_CLRn)  
Register Chain  
Output  
Clock &  
Clock Enable  
Select  
Register  
Feedback  
labclk1  
labclk2  
labclkena1  
labclkena2  
LAB Carry-Out  
Each LE’s programmable register can be configured for D, T, JK, or SR  
operation. Each register has data, clock, clock enable, and clear inputs.  
Signals that use the global clock network, general-purpose I/O pins, or  
any internal logic can drive the register’s clock and clear control signals.  
Either general-purpose I/O pins or internal logic can drive the clock  
enable. For combinational functions, the LUT output bypasses the  
register and drives directly to the LE outputs.  
Each LE has three outputs that drive the local, row, and column routing  
resources. The LUT or register output can drive these three outputs  
independently. Two LE outputs drive column or row and direct link  
routing connections and one drives local interconnect resources, allowing  
the LUT to drive one output while the register drives another output. This  
feature, register packing, improves device utilization because the device  
can use the register and the LUT for unrelated functions. When using  
register packing, the LAB-wide synchronous load control signal is not  
available. See “LAB Control Signals” on page 2–8 for more information.  
Altera Corporation  
February 2007  
2–3  
Cyclone II Device Handbook, Volume 1  
Logic Elements  
Another special packing mode allows the register output to feed back into  
the LUT of the same LE so that the register is packed with its own fan-out  
LUT, providing another mechanism for improved fitting. The LE can also  
drive out registered and unregistered versions of the LUT output.  
In addition to the three general routing outputs, the LEs within an LAB  
have register chain outputs. Register chain outputs allow registers within  
the same LAB to cascade together. The register chain output allows an  
LAB to use LUTs for a single combinational function and the registers to  
be used for an unrelated shift register implementation. These resources  
speed up connections between LABs while saving local interconnect  
resources. See “MultiTrack Interconnect” on page 2–10 for more  
information on register chain connections.  
LE Operating Modes  
The Cyclone II LE operates in one of the following modes:  
Normal mode  
Arithmetic mode  
Each mode uses LE resources differently. In each mode, six available  
inputs to the LE—the four data inputs from the LAB local interconnect,  
the LAB carry-in from the previous carry-chain LAB, and the register  
chain connection—are directed to different destinations to implement the  
desired logic function. LAB-wide signals provide clock, asynchronous  
clear, synchronous clear, synchronous load, and clock enable control for  
the register. These LAB-wide signals are available in all LE modes.  
The Quartus® II software, in conjunction with parameterized functions  
such as library of parameterized modules (LPM) functions, automatically  
chooses the appropriate mode for common functions such as counters,  
adders, subtractors, and arithmetic functions. If required, you can also  
create special-purpose functions that specify which LE operating mode to  
use for optimal performance.  
Normal Mode  
The normal mode is suitable for general logic applications and  
combinational functions. In normal mode, four data inputs from the LAB  
local interconnect are inputs to a four-input LUT (see Figure 2–3). The  
Quartus II Compiler automatically selects the carry-in or the data3  
signal as one of the inputs to the LUT. LEs in normal mode support  
packed registers and register feedback.  
2–4  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Figure 2–3. LE in Normal Mode  
sload  
sclear  
(LAB Wide) (LAB Wide)  
Packed Register Input  
Register chain  
connection  
Row, Column, and  
Direct Link Routing  
Q
D
data1  
data2  
Row, Column, and  
Direct Link Routing  
ENA  
Four-Input  
LUT  
data3  
cin (from cout  
of previous LE)  
CLRN  
clock (LAB Wide)  
Local routing  
data4  
ena (LAB Wide)  
aclr (LAB Wide)  
Register  
chain output  
Register Feedback  
Arithmetic Mode  
The arithmetic mode is ideal for implementing adders, counters,  
accumulators, and comparators. An LE in arithmetic mode implements a  
2-bit full adder and basic carry chain (see Figure 2–4). LEs in arithmetic  
mode can drive out registered and unregistered versions of the LUT  
output. Register feedback and register packing are supported when LEs  
are used in arithmetic mode.  
Altera Corporation  
February 2007  
2–5  
Cyclone II Device Handbook, Volume 1  
Logic Elements  
Figure 2–4. LE in Arithmetic Mode  
sload  
sclear  
(LAB Wide) (LAB Wide)  
Register chain  
connection  
data1  
data2  
Three-Input  
Row, column, and  
direct link routing  
Q
LUT  
D
Row, column, and  
direct link routing  
ENA  
CLRN  
Three-Input  
LUT  
cin (from cout  
of previous LE)  
clock (LAB Wide)  
ena (LAB Wide)  
aclr (LAB Wide)  
Local routing  
cout  
Register  
chain output  
Register Feedback  
The Quartus II Compiler automatically creates carry chain logic during  
design processing, or you can create it manually during design entry.  
Parameterized functions such as LPM functions automatically take  
advantage of carry chains for the appropriate functions.  
The Quartus II Compiler creates carry chains longer than 16 LEs by  
automatically linking LABs in the same column. For enhanced fitting, a  
long carry chain runs vertically, which allows fast horizontal connections  
to M4K memory blocks or embedded multipliers through direct link  
interconnects. For example, if a design has a long carry chain in a LAB  
column next to a column of M4K memory blocks, any LE output can feed  
an adjacent M4K memory block through the direct link interconnect.  
Whereas if the carry chains ran horizontally, any LAB not next to the  
column of M4K memory blocks would use other row or column  
interconnects to drive a M4K memory block. A carry chain continues as  
far as a full column.  
2–6  
Altera Corporation  
Cyclone II Device Handbook, Volume 1  
February 2007  
Cyclone II Architecture  
Each LAB consists of the following:  
Logic Array  
Blocks  
16 LEs  
LAB control signals  
LE carry chains  
Register chains  
Local interconnect  
The local interconnect transfers signals between LEs in the same LAB.  
Register chain connections transfer the output of one LE’s register to the  
adjacent LE’s register within an LAB. The Quartus II Compiler places  
associated logic within an LAB or adjacent LABs, allowing the use of  
local, and register chain connections for performance and area efficiency.  
Figure 2–5 shows the Cyclone II LAB.  
Figure 2–5. Cyclone II LAB Structure  
Row Interconnect  
Column  
Interconnect  
Direct link  
interconnect  
from adjacent  
block  
Direct link  
interconnect  
from adjacent  
block  
Direct link  
interconnect  
to adjacent  
block  
Direct link  
interconnect  
to adjacent  
block  
Local Interconnect  
LAB  
Altera Corporation  
February 2007  
2–7  
Cyclone II Device Handbook, Volume 1  
Logic Array Blocks  
LAB Interconnects  
The LAB local interconnect can drive LEs within the same LAB. The LAB  
local interconnect is driven by column and row interconnects and LE  
outputs within the same LAB. Neighboring LABs, PLLs, M4K RAM  
blocks, and embedded multipliers from the left and right can also drive  
an LAB’s local interconnect through the direct link connection. The direct  
link connection feature minimizes the use of row and column  
interconnects, providing higher performance and flexibility. Each LE can  
drive 48 LEs through fast local and direct link interconnects. Figure 2–6  
shows the direct link connection.  
Figure 2–6. Direct Link Connection  
Direct link interconnect from  
left LAB, M4K memory  
block, embedded multiplier,  
PLL, or IOE output  
Direct link interconnect from  
right LAB, M4K memory  
block, embedded multiplier,  
PLL, or IOE output  
Direct link  
interconnect  
to right  
Direct link  
interconnect  
to left  
Local  
Interconnect  
LAB  
LAB Control Signals  
Each LAB contains dedicated logic for driving control signals to its LEs.  
The control signals include:  
Two clocks  
Two clock enables  
Two asynchronous clears  
One synchronous clear  
One synchronous load  
2–8  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
This gives a maximum of seven control signals at a time. When using the  
LAB-wide synchronous load, the clkena of labclk1 is not available.  
Additionally, register packing and synchronous load cannot be used  
simultaneously.  
Each LAB can have up to four non-global control signals. Additional LAB  
control signals can be used as long as they are global signals.  
Synchronous clear and load signals are useful for implementing counters  
and other functions. The synchronous clear and synchronous load signals  
are LAB-wide signals that affect all registers in the LAB.  
Each LAB can use two clocks and two clock enable signals. Each LAB’s  
clock and clock enable signals are linked. For example, any LE in a  
particular LAB using the labclk1 signal also uses labclkena1. If the  
LAB uses both the rising and falling edges of a clock, it also uses both  
LAB-wide clock signals. De-asserting the clock enable signal turns off the  
LAB-wide clock.  
The LAB row clocks [5..0] and LAB local interconnect generate the LAB-  
wide control signals. The MultiTrackinterconnect’s inherent low skew  
allows clock and control signal distribution in addition to data. Figure 2–7  
shows the LAB control signal generation circuit.  
Figure 2–7. LAB-Wide Control Signals  
Dedicated  
LAB Row  
Clocks  
6
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
labclkena2  
labclkena1  
labclr1  
synclr  
labclk1  
labclk2  
syncload  
labclr2  
LAB-wide signals control the logic for the register’s clear signal. The LE  
directly supports an asynchronous clear function. Each LAB supports up  
to two asynchronous clear signals (labclr1and labclr2).  
Altera Corporation  
February 2007  
2–9  
Cyclone II Device Handbook, Volume 1  
MultiTrack Interconnect  
A LAB-wide asynchronous load signal to control the logic for the  
register’s preset signal is not available. The register preset is achieved by  
using a NOT gate push-back technique. Cyclone II devices can only  
support either a preset or asynchronous clear signal.  
In addition to the clear port, Cyclone II devices provide a chip-wide reset  
pin (DEV_CLRn) that resets all registers in the device. An option set before  
compilation in the Quartus II software controls this pin. This chip-wide  
reset overrides all other control signals.  
In the Cyclone II architecture, connections between LEs, M4K memory  
blocks, embedded multipliers, and device I/O pins are provided by the  
MultiTrack interconnect structure with DirectDrive™ technology. The  
MultiTrack interconnect consists of continuous, performance-optimized  
routing lines of different speeds used for inter- and intra-design block  
connectivity. The Quartus II Compiler automatically places critical paths  
on faster interconnects to improve design performance.  
MultiTrack  
Interconnect  
DirectDrive technology is a deterministic routing technology that ensures  
identical routing resource usage for any function regardless of placement  
within the device. The MultiTrack interconnect and DirectDrive  
technology simplify the integration stage of block-based designing by  
eliminating the re-optimization cycles that typically follow design  
changes and additions.  
The MultiTrack interconnect consists of row (direct link, R4, and R24) and  
column (register chain, C4, and C16) interconnects that span fixed  
distances. A routing structure with fixed-length resources for all devices  
allows predictable and repeatable performance when migrating through  
different device densities.  
Row Interconnects  
Dedicated row interconnects route signals to and from LABs, PLLs, M4K  
memory blocks, and embedded multipliers within the same row. These  
row resources include:  
Direct link interconnects between LABs and adjacent blocks  
R4 interconnects traversing four blocks to the right or left  
R24 interconnects for high-speed access across the length of the  
device  
2–10  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
The direct link interconnect allows an LAB, M4K memory block, or  
embedded multiplier block to drive into the local interconnect of its left  
and right neighbors. Only one side of a PLL block interfaces with direct  
link and row interconnects. The direct link interconnect provides fast  
communication between adjacent LABs and/or blocks without using  
row interconnect resources.  
The R4 interconnects span four LABs, three LABs and one M4K memory  
block, or three LABs and one embedded multiplier to the right or left of a  
source LAB. These resources are used for fast row connections in a four-  
LAB region. Every LAB has its own set of R4 interconnects to drive either  
left or right. Figure 2–8 shows R4 interconnect connections from an LAB.  
R4 interconnects can drive and be driven by LABs, M4K memory blocks,  
embedded multipliers, PLLs, and row IOEs. For LAB interfacing, a  
primary LAB or LAB neighbor (see Figure 2–8) can drive a given R4  
interconnect. For R4 interconnects that drive to the right, the primary  
LAB and right neighbor can drive on to the interconnect. For R4  
interconnects that drive to the left, the primary LAB and its left neighbor  
can drive on to the interconnect. R4 interconnects can drive other R4  
interconnects to extend the range of LABs they can drive. Additionally,  
R4 interconnects can drive R24 interconnects, C4, and C16 interconnects  
for connections from one row to another.  
Figure 2–8. R4 Interconnect Connections  
Adjacent LAB can  
Drive onto Another  
LAB's R4 Interconnect  
R4 Interconnect  
Driving Right  
C4 Column Interconnects (1)  
R4 Interconnect  
Driving Left  
LAB  
Neighbor  
Primary  
LAB (2)  
LAB  
Neighbor  
Notes to Figure 2–8:  
(1) C4 interconnects can drive R4 interconnects.  
(2) This pattern is repeated for every LAB in the LAB row.  
Altera Corporation  
February 2007  
2–11  
Cyclone II Device Handbook, Volume 1  
MultiTrack Interconnect  
R24 row interconnects span 24 LABs and provide the fastest resource for  
long row connections between non-adjacent LABs, M4K memory blocks,  
dedicated multipliers, and row IOEs. R24 row interconnects drive to  
other row or column interconnects at every fourth LAB. R24 row  
interconnects drive LAB local interconnects via R4 and C4 interconnects  
and do not drive directly to LAB local interconnects. R24 interconnects  
can drive R24, R4, C16, and C4 interconnects.  
Column Interconnects  
The column interconnect operates similar to the row interconnect. Each  
column of LABs is served by a dedicated column interconnect, which  
vertically routes signals to and from LABs, M4K memory blocks,  
embedded multipliers, and row and column IOEs. These column  
resources include:  
Register chain interconnects within an LAB  
C4 interconnects traversing a distance of four blocks in an up and  
down direction  
C16 interconnects for high-speed vertical routing through the device  
Cyclone II devices include an enhanced interconnect structure within  
LABs for routing LE output to LE input connections faster using register  
chain connections. The register chain connection allows the register  
output of one LE to connect directly to the register input of the next LE in  
the LAB for fast shift registers. The Quartus II Compiler automatically  
takes advantage of these resources to improve utilization and  
performance. Figure 2–9 shows the register chain interconnects.  
2–12  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Figure 2–9. Register Chain Interconnects  
Local Interconnect  
Routing Among LEs  
in the LAB  
LE 1  
Carry Chain  
Routing to  
Adjacent LE  
Register Chain  
Routing to Adjacent  
LE's Register Input  
LE 2  
LE 3  
LE 4  
LE 5  
LE 6  
LE 7  
LE 8  
LE 9  
Local  
Interconnect  
LE 10  
LE 11  
LE 12  
LE13  
LE 14  
LE 15  
LE 16  
The C4 interconnects span four LABs, M4K blocks, or embedded  
multipliers up or down from a source LAB. Every LAB has its own set of  
C4 interconnects to drive either up or down. Figure 2–10 shows the C4  
interconnect connections from an LAB in a column. The C4 interconnects  
can drive and be driven by all types of architecture blocks, including  
PLLs, M4K memory blocks, embedded multiplier blocks, and column  
and row IOEs. For LAB interconnection, a primary LAB or its LAB  
neighbor (see Figure 2–10) can drive a given C4 interconnect. C4  
interconnects can drive each other to extend their range as well as drive  
row interconnects for column-to-column connections.  
Altera Corporation  
February 2007  
2–13  
Cyclone II Device Handbook, Volume 1  
MultiTrack Interconnect  
Figure 2–10. C4 Interconnect Connections  
Note (1)  
C4 Interconnect  
Drives Local and R4  
Interconnects  
Up to Four Rows  
C4 Interconnect  
Driving Up  
LAB  
Row  
Interconnect  
Adjacent LAB can  
drive onto neighboring  
LAB's C4 interconnect  
LAB  
Neighbor  
Primary  
LAB  
Local  
Interconnect  
C4 Interconnect  
Driving Down  
Note to Figure 2–10:  
(1) Each C4 interconnect can drive either up or down four rows.  
2–14  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
C16 column interconnects span a length of 16 LABs and provide the  
fastest resource for long column connections between LABs, M4K  
memory blocks, embedded multipliers, and IOEs. C16 column  
interconnects drive to other row and column interconnects at every  
fourth LAB. C16 column interconnects drive LAB local interconnects via  
C4 and R4 interconnects and do not drive LAB local interconnects  
directly. C16 interconnects can drive R24, R4, C16, and C4 interconnects.  
Device Routing  
All embedded blocks communicate with the logic array similar to  
LAB-to-LAB interfaces. Each block (for example, M4K memory,  
embedded multiplier, or PLL) connects to row and column interconnects  
and has local interconnect regions driven by row and column  
interconnects. These blocks also have direct link interconnects for fast  
connections to and from a neighboring LAB.  
Table 2–1 shows the Cyclone II device’s routing scheme.  
Table 2–1. Cyclone II Device Routing Scheme (Part 1 of 2)  
Destination  
Source  
Register  
Chain  
v
v
Local  
Interconnect  
v
v
v
v
v
Direct Link  
Interconnect  
v
v
R4  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Interconnect  
R24  
Interconnect  
C4  
v
Interconnect  
C16  
Interconnect  
Altera Corporation  
February 2007  
2–15  
Cyclone II Device Handbook, Volume 1  
Global Clock Network & Phase-Locked Loops  
Table 2–1. Cyclone II Device Routing Scheme (Part 2 of 2)  
Destination  
Source  
LE  
v
v
v
v
v
v
v
v
v
M4K memory  
Block  
Embedded  
Multipliers  
v
v
v
v
v
v
PLL  
v
v
v
Column IOE  
Row IOE  
v
v
v
v
Cyclone II devices provide global clock networks and up to four PLLs for  
a complete clock management solution. Cyclone II clock network features  
include:  
Global Clock  
Network &  
Phase-Locked  
Loops  
Up to 16 global clock networks  
Up to four PLLs  
Global clock network dynamic clock source selection  
Global clock network dynamic enable and disable  
2–16  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
Each global clock network has a clock control block to select from a  
number of input clock sources (PLL clock outputs, CLK[] pins, DPCLK[]  
pins, and internal logic) to drive onto the global clock network. Table 2–2  
lists how many PLLs, CLK[] pins, DPCLK[] pins, and global clock  
networks are available in each Cyclone II device. CLK[] pins are  
dedicated clock pins and DPCLK[] pins are dual-purpose clock pins.  
Table 2–2. Cyclone II Device Clock Resources  
Number of  
Global Clock  
Networks  
Number of  
PLLs  
Number of  
CLK Pins  
Number of  
DPCLK Pins  
Device  
EP2C5  
2
2
4
4
4
4
4
8
8
8
EP2C8  
8
8
8
EP2C15  
EP2C20  
EP2C35  
EP2C50  
EP2C70  
16  
16  
16  
16  
16  
20  
20  
20  
20  
20  
16  
16  
16  
16  
16  
Figures 2–11 and 2–12 show the location of the Cyclone II PLLs, CLK[]  
inputs, DPCLK[] pins, and clock control blocks.  
Altera Corporation  
February 2007  
2–17  
Cyclone II Device Handbook, Volume 1  
Global Clock Network & Phase-Locked Loops  
Figure 2–11. EP2C5 & EP2C8 PLL, CLK[], DPCLK[] & Clock Control Block Locations  
DPCLK10  
DPCLK8  
PLL 2  
Clock Control  
Block (1)  
GCLK[7..0]  
4
DPCLK0  
DPCLK7  
CLK[7..4]  
DPCLK6  
8
8
8
CLK[3..0]  
DPCLK1  
4
4
8
GCLK[7..0]  
4
Clock Control  
Block (1)  
PLL 1  
DPCLK2  
DPCLK4  
Note to Figure 2–11:  
(1) There are four clock control blocks on each side.  
2–18  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
Figure 2–12. EP2C15 & Larger PLL, CLK[], DPCLK[] & Clock Control Block Locations  
DPCLK[11..10]  
CLK[11..8]  
DPCLK[9..8]  
CDPCLK7  
CDPCLK6  
2
2
4
4
PLL 3  
PLL 2  
3
CDPCLK5  
DPCLK7  
CDPCLK0  
(2)  
(2)  
4
Clock Control  
Block (1)  
GCLK[15..0]  
3
DPCLK0  
CLK[3..0]  
DPCLK1  
16  
16  
16  
CLK[7..4]  
4
4
16  
DPCLK6  
Clock Control  
Block (1)  
GCLK[15..0]  
4
3
(2)  
(2)  
CDPCLK4  
CDPCLK1  
3
4
PLL 1  
PLL 4  
4
2
2
CDPCLK2  
CLK[15..12]  
CDPCLK3  
DPCLK[3..2]  
DPCLK[5..4]  
Notes to Figure 2–12:  
(1) There are four clock control blocks on each side.  
(2) Only one of the corner CDPCLKpins in each corner can feed the clock control block at a time. The other CDPCLKpins  
can be used as general-purpose I/O pins.  
Altera Corporation  
February 2007  
2–19  
Cyclone II Device Handbook, Volume 1  
Global Clock Network & Phase-Locked Loops  
Dedicated Clock Pins  
Larger Cyclone II devices (EP2C15 and larger devices) have 16 dedicated  
clock pins (CLK[15..0], four pins on each side of the device). Smaller  
Cyclone II devices (EP2C5 and EP2C8 devices) have eight dedicated clock  
pins (CLK[7..0], four pins on left and right sides of the device). These  
CLKpins drive the global clock network (GCLK), as shown in  
Figures 2–11 and 2–12.  
If the dedicated clock pins are not used to feed the global clock networks,  
they can be used as general-purpose input pins to feed the logic array  
using the MultiTrack interconnect. However, if they are used as general-  
purpose input pins, they do not have support for an I/O register and  
must use LE-based registers in place of an I/O register.  
Dual-Purpose Clock Pins  
Cyclone II devices have either 20 dual-purpose clock pins,  
DPCLK[19..0] or 8 dual-purpose clock pins, DPCLK[7..0]. In the  
larger Cyclone II devices (EP2C15 devices and higher), there are  
20 DPCLK pins; four on the left and right sides and six on the top and  
bottom of the device. The corner CDPCLK pins are first multiplexed before  
they drive into the clock control block. Since the signals pass through a  
multiplexer before feeding the clock control block, these signals incur  
more delay to the clock control block than other DPCLK pins that directly  
feed the clock control block. In the smaller Cyclone II devices (EP2C5 and  
EP2C8 devices), there are eight DPCLK pins; two on each side of the device  
(see Figures 2–11 and 2–12).  
A programmable delay chain is available from the DPCLK pin to its fan-  
out destinations. To set the propagation delay from the DPCLK pin to its  
fan-out destinations, use the Input Delay from Dual-Purpose Clock Pin  
to Fan-Out Destinations assignment in the Quartus II software.  
These dual-purpose pins can connect to the global clock network for  
high-fanout control signals such as clocks, asynchronous clears, presets,  
and clock enables, or protocol control signals such as TRDY and IRDY for  
PCI, or DQS signals for external memory interfaces.  
2–20  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Global Clock Network  
The 16 or 8 global clock networks drive throughout the entire device.  
Dedicated clock pins (CLK[]), PLL outputs, the logic array, and  
dual-purpose clock (DPCLK[]) pins can also drive the global clock  
network.  
The global clock network can provide clocks for all resources within the  
device, such as IOEs, LEs, memory blocks, and embedded multipliers.  
The global clock lines can also be used for control signals, such as clock  
enables and synchronous or asynchronous clears fed from the external  
pin, or DQS signals for DDR SDRAM or QDRII SRAM interfaces. Internal  
logic can also drive the global clock network for internally generated  
global clocks and asynchronous clears, clock enables, or other control  
signals with large fan-out.  
Clock Control Block  
There is a clock control block for each global clock network available in  
Cyclone II devices. The clock control blocks are arranged on the device  
periphery and there are a maximum of 16 clock control blocks available  
per Cyclone II device. The larger Cyclone II devices (EP2C15 devices and  
larger) have 16 clock control blocks, four on each side of the device. The  
smaller Cyclone II devices (EP2C5 and EP2C8 devices) have eight clock  
control blocks, four on the left and right sides of the device.  
The control block has these functions:  
Dynamic global clock network clock source selection  
Dynamic enable/disable of the global clock network  
In Cyclone II devices, the dedicated CLK[] pins, PLL counter outputs,  
DPCLK[] pins, and internal logic can all feed the clock control block. The  
output from the clock control block in turn feeds the corresponding  
global clock network.  
The following sources can be inputs to a given clock control block:  
Four clock pins on the same side as the clock control block  
Three PLL clock outputs from a PLL  
Four DPCLK pins (including CDPCLK pins) on the same side as the  
clock control block  
Four internally-generated signals  
Altera Corporation  
February 2007  
2–21  
Cyclone II Device Handbook, Volume 1  
Global Clock Network & Phase-Locked Loops  
Of the sources listed, only two clock pins, two PLL clock outputs, one  
DPCLK pin, and one internally-generated signal are chosen to drive into a  
clock control block. Figure 2–13 shows a more detailed diagram of the  
clock control block. Out of these six inputs, the two clock input pins and  
two PLL outputs can be dynamic selected to feed a global clock network.  
The clock control block supports static selection of DPCLK and the signal  
from internal logic.  
Figure 2–13. Clock Control Block  
Clock Control Block  
Internal Logic  
DPCLK or  
CDPCLK  
Enable/  
Disable  
Global  
Clock  
Static Clock Select (3)  
Static Clock  
Select (3)  
(3)  
CLK[n + 3]  
CLK[n + 2]  
CLK[n + 1]  
CLK[n]  
C0  
C1  
C2  
inclk1  
inclk0  
f
IN  
PLL  
CLKSWITCH (1)  
CLKSELECT[1..0] (2)  
CLKENA (4)  
Notes to Figure 2–13:  
(1) The CLKSWITCHsignal can either be set through the configuration file or it can be dynamically set when using the  
manual PLL switchover feature. The output of the multiplexer is the input reference clock (fIN) for the PLL.  
(2) The CLKSELECT[1..0]signals are fed by internal logic and can be used to dynamically select the clock source for  
the global clock network when the device is in user mode.  
(3) The static clock select signals are set in the configuration file and cannot be dynamically controlled when the device  
is in user mode.  
(4) Internal logic can be used to enabled or disabled the global clock network in user mode.  
2–22  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
Global Clock Network Distribution  
Cyclone II devices contains 16 global clock networks. The device uses  
multiplexers with these clocks to form six-bit buses to drive column IOE  
clocks, LAB row clocks, or row IOE clocks (see Figure 2–14). Another  
multiplexer at the LAB level selects two of the six LAB row clocks to feed  
the LE registers within the LAB.  
Figure 2–14. Global Clock Network Multiplexers  
Column I/O Region  
IO_CLK [5..0]  
Global Clock  
Network  
Clock [15 or 7..0]  
LAB Row Clock  
LABCLK[5..0]  
Row I/O Region  
IO_CLK [5..0]  
LAB row clocks can feed LEs, M4K memory blocks, and embedded  
multipliers. The LAB row clocks also extend to the row I/O clock regions.  
IOE clocks are associated with row or column block regions. Only six  
global clock resources feed to these row and column regions. Figure 2–15  
shows the I/O clock regions.  
Altera Corporation  
February 2007  
2–23  
Cyclone II Device Handbook, Volume 1  
Global Clock Network & Phase-Locked Loops  
Figure 2–15. LAB & I/O Clock Regions  
Column I/O Clock Region  
IO_CLK[5..0]  
6
I/O Clock Regions  
Cyclone Logic Array  
LAB Row Clocks  
labclk[5..0]  
LAB Row Clocks  
labclk[5..0]  
6
6
6
6
6
6
LAB Row Clocks  
labclk[5..0]  
LAB Row Clocks  
labclk[5..0]  
6
6
Global Clock  
Network  
Row I/O Clock  
Region  
8 or 16  
IO_CLK[5..0]  
LAB Row Clocks  
labclk[5..0]  
LAB Row Clocks  
labclk[5..0]  
6
6
6
6
I/O Clock Regions  
6
Column I/O Clock Region  
IO_CLK[5..0]  
f
For more information on the global clock network and the clock control  
block, see the PLLs in Cyclone II Devices chapter in Volume 1 of the  
Cyclone II Device Handbook.  
2–24  
Altera Corporation  
Cyclone II Device Handbook, Volume 1  
February 2007  
Cyclone II Architecture  
PLLs  
Cyclone II PLLs provide general-purpose clocking as well as support for  
the following features:  
Clock multiplication and division  
Phase shifting  
Programmable duty cycle  
Up to three internal clock outputs  
One dedicated external clock output  
Clock outputs for differential I/O support  
Manual clock switchover  
Gated lock signal  
Three different clock feedback modes  
Control signals  
Cyclone II devices contain either two or four PLLs. Table 2–3 shows the  
PLLs available for each Cyclone II device.  
Table 2–3. Cyclone II Device PLL Availability  
Device  
PLL1  
PLL2  
PLL3  
PLL4  
EP2C5  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
EP2C8  
EP2C15  
EP2C20  
EP2C35  
EP2C50  
EP2C70  
v
v
v
v
v
v
v
v
v
v
Altera Corporation  
February 2007  
2–25  
Cyclone II Device Handbook, Volume 1  
Global Clock Network & Phase-Locked Loops  
Table 2–4 describes the PLL features in Cyclone II devices.  
Table 2–4. Cyclone II PLL Features  
Feature  
Description  
Clock multiplication and division  
m / (n × post-scale counter)  
m and post-scale counter values (C0 to C2) range from 1 to 32. n ranges  
from 1 to 4.  
Phase shift  
Cyclone II PLLs have an advanced clock shift capability that enables  
programmable phase shifts in increments of at least 45°. The finest  
resolution of phase shifting is determined by the voltage control oscillator  
(VCO) period divided by 8 (for example, 1/1000 MHz/8 = down to 125-ps  
increments).  
Programmable duty cycle  
The programmable duty cycle allows PLLs to generate clock outputs with  
a variable duty cycle. This feature is supported on each PLL post-scale  
counter (C0-C2).  
Number of internal clock outputs  
Number of external clock outputs  
The Cyclone II PLL has three outputs which can drive the global clock  
network. One of these outputs (C2) can also drive a dedicated  
PLL<#>_OUTpin (single ended or differential).  
The C2 output drives a dedicated PLL<#>_OUTpin. If the C2 output is not  
used to drive an external clock output, it can be used to drive the internal  
global clock network. The C2 output can concurrently drive the external  
clock output and internal global clock network.  
Manual clock switchover  
Gated lock signal  
The Cyclone II PLLs support manual switchover of the reference clock  
through internal logic. This enables you to switch between two reference  
input clocks during user mode for applications that may require clock  
redundancy or support for clocks with two different frequencies.  
The lock output indicates that there is a stable clock output signal in phase  
with the reference clock. Cyclone II PLLs include a programmable counter  
that holds the lock signal low for a user-selected number of input clock  
transitions, allowing the PLL to lock before enabling the locked signal.  
Either a gated locked signal or an ungated locked signal from the locked  
port can drive internal logic or an output pin.  
Clock feedback modes  
In zero delay buffer mode, the external clock output pin is phase-aligned  
with the clock input pin for zero delay.  
In normal mode, the PLL compensates for the internal global clock network  
delay from the input clock pin to the clock port of the IOE output registers  
or registers in the logic array.  
In no compensation mode, the PLL does not compensate for any clock  
networks.  
Control signals  
The pllenablesignal enables and disables the PLLs.  
The areset signal resets/resynchronizes the inputs for each PLL.  
The pfdena signal controls the phase frequency detector (PFD) output  
with a programmable gate.  
2–26  
Altera Corporation  
Cyclone II Device Handbook, Volume 1  
February 2007  
Cyclone II Architecture  
Figure 2–16 shows a block diagram of the Cyclone II PLL.  
Figure 2–16. Cyclone II PLL  
Note (1)  
VCO Phase Selection  
Selectable at Each  
PLL Output Port  
Post-Scale  
Counters  
Manual Clock  
Switchover  
Select Signal  
8
Reference  
Input Clock  
Global  
Clock  
÷c0  
f
= f /n  
REF IN  
f
VCO  
CLK0 (1)  
up  
8
8
inclk0  
inclk1  
CLK1  
f
Global  
Clock  
Charge  
Pump  
IN  
Loop  
Filter  
÷n  
PFD  
VCO  
÷k  
(3)  
÷c1  
CLK2 (1)  
down  
CLK3  
f
FB  
÷c2  
(2)  
Global  
Clock  
÷m  
PLL<#>_OUT  
To I/O or  
general routing  
Lock Detect  
& Filter  
Notes to Figure 2–16:  
(1) This input can be single-ended or differential. If you are using a differential I/O standard, then two CLK pins are  
used. LVDS input is supported via the secondary function of the dedicated CLK pins. For example, the CLK0 pin’s  
secondary function is LVDSCLK1p and the CLK1 pin’s secondary function is LVDSCLK1n. If a differential I/O  
standard is assigned to the PLL clock input pin, the corresponding CLK(n) pin is also completely used. The  
Figure 2–16 shows the possible clock input connections (CLK0/CLK1) to PLL1.  
(2) This counter output is shared between a dedicated external clock output I/O and the global clock network.  
f
For more information on Cyclone II PLLs, see the PLLs in the Cyclone II  
Devices chapter in Volume 1 of the Cyclone II Device Handbook.  
The Cyclone II embedded memory consists of columns of M4K memory  
blocks. The M4K memory blocks include input registers that synchronize  
writes and output registers to pipeline designs and improve system  
performance. The output registers can be bypassed, but input registers  
cannot.  
Embedded  
Memory  
Altera Corporation  
February 2007  
2–27  
Cyclone II Device Handbook, Volume 1  
Embedded Memory  
Each M4K block can implement various types of memory with or without  
parity, including true dual-port, simple dual-port, and single-port RAM,  
ROM, and first-in first-out (FIFO) buffers. The M4K blocks support the  
following features:  
4,608 RAM bits  
250-MHz performance  
True dual-port memory  
Simple dual-port memory  
Single-port memory  
Byte enable  
Parity bits  
Shift register  
FIFO buffer  
ROM  
Various clock modes  
Address clock enable  
1
Violating the setup or hold time on the memory block address  
registers could corrupt memory contents. This applies to both  
read and write operations.  
Table 2–5 shows the capacity and distribution of the M4K memory blocks  
in each Cyclone II device.  
Table 2–5. M4K Memory Capacity & Distribution in Cyclone II Devices  
Device  
M4K Columns  
M4K Blocks  
Total RAM Bits  
EP2C5  
2
2
2
2
3
3
5
26  
36  
119,808  
165,888  
239,616  
239,616  
483,840  
594,432  
1,152,000  
EP2C8  
EP2C15  
EP2C20  
EP2C35  
EP2C50  
EP2C70  
52  
52  
105  
129  
250  
2–28  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Table 2–6 summarizes the features supported by the M4K memory.  
Table 2–6. M4K Memory Features  
Feature  
Description  
Maximum performance (1)  
250 MHz  
4,608  
Total RAM bits per M4K block (including parity bits)  
Configurations supported  
4K × 1  
2K × 2  
1K × 4  
512 × 8  
512 × 9  
256 × 16  
256 × 18  
128 × 32 (not available in true dual-port mode)  
128 × 36 (not available in true dual-port mode)  
Parity bits  
One parity bit for each byte. The parity bit, along with  
internal user logic, can implement parity checking for  
error detection to ensure data integrity.  
Byte enable  
M4K blocks support byte writes when the write port has  
a data width of 1, 2, 4, 8, 9, 16, 18, 32, or 36 bits. The  
byte enables allow the input data to be masked so the  
device can write to specific bytes. The unwritten bytes  
retain the previous written value.  
Packed mode  
Two single-port memory blocks can be packed into a  
single M4K block if each of the two independent block  
sizes are equal to or less than half of the M4K block  
size, and each of the single-port memory blocks is  
configured in single-clock mode.  
Address clock enable  
M4K blocks support address clock enable, which is  
used to hold the previous address value for as long as  
the signal is enabled. This feature is useful in handling  
misses in cache applications.  
Memory initialization file (.mif)  
When configured as RAM or ROM, you can use an  
initialization file to pre-load the memory contents.  
Power-up condition  
Outputs cleared  
Register clears  
Output registers only  
Same-port read-during-write  
Mixed-port read-during-write  
New data available at positive clock edge  
Old data available at positive clock edge  
Note to Table 2–6:  
(1) Maximum performance information is preliminary until device characterization.  
Altera Corporation  
February 2007  
2–29  
Cyclone II Device Handbook, Volume 1  
Embedded Memory  
Memory Modes  
Table 2–7 summarizes the different memory modes supported by the  
M4K memory blocks.  
Table 2–7. M4K Memory Modes  
Memory Mode  
Description  
Single-port memory  
M4K blocks support single-port mode, used when  
simultaneous reads and writes are not required.  
Single-port memory supports non-simultaneous  
reads and writes.  
Simple dual-port memory  
Simple dual-port memory supports a  
simultaneous read and write.  
Simple dual-port with mixed Simple dual-port memory mode with different  
width  
read and write port widths.  
True dual-port memory  
True dual-port mode supports any combination of  
two-port operations: two reads, two writes, or one  
read and one write at two different clock  
frequencies.  
True dual-port with mixed  
width  
True dual-port mode with different read and write  
port widths.  
Embedded shift register  
M4K memory blocks are used to implement shift  
registers. Data is written into each address  
location at the falling edge of the clock and read  
from the address at the rising edge of the clock.  
ROM  
The M4K memory blocks support ROM mode. A  
MIF initializes the ROM contents of these blocks.  
FIFO buffers  
A single clock or dual clock FIFO may be  
implemented in the M4K blocks. Simultaneous  
read and write from an empty FIFO buffer is not  
supported.  
1
Embedded Memory can be inferred in your HDL code or  
directly instantiated in the Quartus II software using the  
MegaWizard® Plug-in Manager Memory Compiler feature.  
2–30  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Clock Modes  
Table 2–8 summarizes the different clock modes supported by the M4K  
memory.  
Table 2–8. M4K Clock Modes  
Clock Mode  
Description  
Independent In this mode, a separate clock is available for each port (ports A  
and B). Clock A controls all registers on the port A side, while  
clock B controls all registers on the port B side.  
Input/output  
Read/write  
Single  
On each of the two ports, A or B, one clock controls all registers  
for inputs into the memory block: data input, wren, and address.  
The other clock controls the block’s data output registers.  
Up to two clocks are available in this mode. The write clock  
controls the block’s data inputs, wraddress, and wren. The  
read clock controls the data output, rdaddress, and rden.  
In this mode, a single clock, together with clock enable, is used to  
control all registers of the memory block. Asynchronous clear  
signals for the registers are not supported.  
Table 2–9 shows which clock modes are supported by all M4K blocks  
when configured in the different memory modes.  
Table 2–9. Cyclone II M4K Memory Clock Modes  
True Dual-Port  
Mode  
Simple Dual-Port  
Mode  
Clocking Modes  
Single-Port Mode  
Independent  
Input/output  
Read/write  
Single clock  
v
v
v
v
v
v
v
v
M4K Routing Interface  
The R4, C4, and direct link interconnects from adjacent LABs drive the  
M4K block local interconnect. The M4K blocks can communicate with  
LABs on either the left or right side through these row resources or with  
LAB columns on either the right or left with the column resources. Up to  
16 direct link input connections to the M4K block are possible from the  
left adjacent LAB and another 16 possible from the right adjacent LAB.  
M4K block outputs can also connect to left and right LABs through each  
16 direct link interconnects. Figure 2–17 shows the M4K block to logic  
array interface.  
Altera Corporation  
February 2007  
2–31  
Cyclone II Device Handbook, Volume 1  
Embedded Multipliers  
Figure 2–17. M4K RAM Block LAB Row Interface  
C4 Interconnects  
R4 Interconnects  
16  
Direct link  
Direct link  
interconnect  
to adjacent LAB  
interconnect  
to adjacent LAB  
dataout  
M4K RAM  
Block  
Direct link  
Direct link  
16  
16  
interconnect  
interconnect  
from adjacent LAB  
from adjacent LAB  
Byte enable  
Control  
Signals  
Clocks  
address  
datain  
6
M4K RAM Block Local  
Interconnect Region  
LAB Row Clocks  
f
For more information on Cyclone II embedded memory, see the  
Cyclone II Memory Blocks chapter in Volume 1 of the Cyclone II Device  
Handbook.  
Cyclone II devices have embedded multiplier blocks optimized for  
multiplier-intensive digital signal processing (DSP) functions, such as  
finite impulse response (FIR) filters, fast Fourier transform (FFT)  
functions, and discrete cosine transform (DCT) functions. You can use the  
embedded multiplier in one of two basic operational modes, depending  
on the application needs:  
Embedded  
Multipliers  
One 18-bit multiplier  
Up to two independent 9-bit multipliers  
2–32  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
Embedded multipliers can operate at up to 250 MHz (for the fastest speed  
grade) for 18 × 18 and 9 × 9 multiplications when using both input and  
output registers.  
Each Cyclone II device has one to three columns of embedded multipliers  
that efficiently implement multiplication functions. An embedded  
multiplier spans the height of one LAB row. Table 2–10 shows the number  
of embedded multipliers in each Cyclone II device and the multipliers  
that can be implemented.  
Table 2–10. Number of Embedded Multipliers in Cyclone II Devices  
Note (1)  
Embedded  
Multiplier Columns  
Embedded  
Multipliers  
Device  
9 × 9 Multipliers 18 × 18 Multipliers  
EP2C5  
EP2C8  
1
1
1
1
1
2
3
13  
18  
26  
36  
13  
18  
EP2C15  
EP2C20  
EP2C35  
EP2C50  
EP2C70  
26  
52  
26  
26  
52  
26  
35  
70  
35  
86  
172  
300  
86  
150  
150  
Note to Table 2–10:  
(1) Each device has either the number of 9 × 9-, or 18 × 18-bit multipliers shown. The total number of multipliers for  
each device is not the sum of all the multipliers.  
The embedded multiplier consists of the following elements:  
Multiplier block  
Input and output registers  
Input and output interfaces  
Figure 2–18 shows the multiplier block architecture.  
Altera Corporation  
February 2007  
2–33  
Cyclone II Device Handbook, Volume 1  
Embedded Multipliers  
Figure 2–18. Multiplier Block Architecture  
signa (1)  
signb (1)  
aclr  
clock  
ena  
D
Q
Q
Data A  
Data B  
ENA  
Data Out  
D
Q
CLRN  
ENA  
CLRN  
D
ENA  
Output  
Register  
Input  
Register  
CLRN  
Embedded Multiplier Block  
Note to Figure 2–18:  
(1) If necessary, these signals can be registered once to match the data signal path.  
Each multiplier operand can be a unique signed or unsigned number.  
Two signals, signa and signb, control the representation of each  
operand respectively. A logic 1 value on the signa signal indicates that  
data A is a signed number while a logic 0 value indicates an unsigned  
number. Table 2–11 shows the sign of the multiplication result for the  
various operand sign representations. The result of the multiplication is  
signed if any one of the operands is a signed value.  
Table 2–11. Multiplier Sign Representation  
Data A (signa Value)  
Data B (signb Value)  
Result  
Unsigned  
Unsigned  
Signed  
Unsigned  
Signed  
Unsigned  
Signed  
Signed  
Signed  
Unsigned  
Signed  
Signed  
2–34  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
There is only one signa and one signb signal for each dedicated  
multiplier. Therefore, all of the data A inputs feeding the same dedicated  
multiplier must have the same sign representation. Similarly, all of the  
data B inputs feeding the same dedicated multiplier must have the same  
sign representation. The signa and signb signals can be changed  
dynamically to modify the sign representation of the input operands at  
run time. The multiplier offers full precision regardless of the sign  
representation and can be registered using dedicated registers located at  
the input register stage.  
Multiplier Modes  
Table 2–12 summarizes the different modes that the embedded  
multipliers can operate in.  
Table 2–12. Embedded Multiplier Modes  
Multiplier Mode  
Description  
18-bit Multiplier  
An embedded multiplier can be configured to support a  
single 18 × 18 multiplier for operand widths up to 18 bits.  
All 18-bit multiplier inputs and results can be registered  
independently. The multiplier operands can accept  
signed integers, unsigned integers, or a combination of  
both.  
9-bit Multiplier  
An embedded multiplier can be configured to support  
two 9 × 9 independent multipliers for operand widths up  
to 9-bits. Both 9-bit multiplier inputs and results can be  
registered independently. The multiplier operands can  
accept signed integers, unsigned integers or a  
combination of both.  
There is only one signa signal to control the sign  
representation of both data A inputs and one signb  
signal to control the sign representation of both data B  
inputs of the 9-bit multipliers within the same dedicated  
multiplier.  
Altera Corporation  
February 2007  
2–35  
Cyclone II Device Handbook, Volume 1  
Embedded Multipliers  
Embedded Multiplier Routing Interface  
The R4, C4, and direct link interconnects from adjacent LABs drive the  
embedded multiplier row interface interconnect. The embedded  
multipliers can communicate with LABs on either the left or right side  
through these row resources or with LAB columns on either the right or  
left with the column resources. Up to 16 direct link input connections to  
the embedded multiplier are possible from the left adjacent LABs and  
another 16 possible from the right adjacent LAB. Embedded multiplier  
outputs can also connect to left and right LABs through 18 direct link  
interconnects each. Figure 2–19 shows the embedded multiplier to logic  
array interface.  
Figure 2–19. Embedded Multiplier LAB Row Interface  
Direct Link Interconnect  
from Adjacent LAB  
18 Direct Link Outputs  
to Adjacent LABs  
Direct Link Interconnect  
from Adjacent LAB  
C4 Interconnects  
R4 Interconnects  
36  
Embedded Multiplier  
LAB  
LAB  
18  
18  
16  
16  
5
Control  
[35..0]  
36  
[35..0]  
18  
18  
Row Interface  
Block  
Embedded Multiplier  
to LAB Row Interface  
Block Interconnect Region  
36 Inputs per Row  
36 Outputs per Row  
LAB Block  
Interconect Region  
LAB Block  
Interconect Region  
C4 Interconnects  
2–36  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
There are five dynamic control input signals that feed the embedded  
multiplier: signa, signb, clk, clkena, and aclr. signaand signb  
can be registered to match the data signal input path. The same clk,  
clkena, and aclrsignals feed all registers within a single embedded  
multiplier.  
f
For more information on Cyclone II embedded multipliers, see the  
Embedded Multipliers in Cyclone II Devices chapter.  
IOEs support many features, including:  
I/O Structure &  
Features  
Differential and single-ended I/O standards  
3.3-V, 64- and 32-bit, 66- and 33-MHz PCI compliance  
Joint Test Action Group (JTAG) boundary-scan test (BST) support  
Output drive strength control  
Weak pull-up resistors during configuration  
Tri-state buffers  
Bus-hold circuitry  
Programmable pull-up resistors in user mode  
Programmable input and output delays  
Open-drain outputs  
DQ and DQS I/O pins  
VREF pins  
Cyclone II device IOEs contain a bidirectional I/O buffer and three  
registers for complete embedded bidirectional single data rate transfer.  
Figure 2–20 shows the Cyclone II IOE structure. The IOE contains one  
input register, one output register, and one output enable register. You can  
use the input registers for fast setup times and output registers for fast  
clock-to-output times. Additionally, you can use the output enable (OE)  
register for fast clock-to-output enable timing. The Quartus II software  
automatically duplicates a single OE register that controls multiple  
output or bidirectional pins. You can use IOEs as input, output, or  
bidirectional pins.  
Altera Corporation  
February 2007  
2–37  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Figure 2–20. Cyclone II IOE Structure  
Logic Array  
OE Register  
OE  
Output Register  
Output  
Input (1)  
Input Register  
Note to Figure 2–20:  
(1) There are two paths available for combinational or registered inputs to the logic  
array. Each path contains a unique programmable delay chain.  
The IOEs are located in I/O blocks around the periphery of the Cyclone II  
device. There are up to five IOEs per row I/O block and up to four IOEs  
per column I/O block (column I/O blocks span two columns). The row  
I/O blocks drive row, column (only C4 interconnects), or direct link  
interconnects. The column I/O blocks drive column interconnects.  
Figure 2–21 shows how a row I/O block connects to the logic array.  
Figure 2–22 shows how a column I/O block connects to the logic array.  
2–38  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Figure 2–21. Row I/O Block Connection to the Interconnect  
R4 & R24 Interconnects  
C4 Interconnects  
I/O Block Local  
Interconnect  
35 Data and  
Control Signals  
from Logic Array (1)  
35  
LAB  
Row  
I/O Block  
io_datain0[4..0]  
io_datain1[4..0] (2)  
Direct Link  
Interconnect  
from Adjacent LAB  
Direct Link  
Interconnect  
to Adjacent LAB  
Row I/O Block  
Contains up to  
Five IOEs  
io_clk[5..0]  
LAB Local  
Interconnect  
Notes to Figure 2–21:  
(1) The 35 data and control signals consist of five data out lines, io_dataout[4..0], five output enables,  
io_coe[4..0], five input clock enables, io_cce_in[4..0], five output clock enables, io_cce_out[4..0],  
five clocks, io_cclk[4..0], five asynchronous clear signals, io_caclr[4..0], and five synchronous clear  
signals, io_csclr[4..0].  
(2) Each of the five IOEs in the row I/O block can have two io_datain (combinational or registered) inputs.  
Altera Corporation  
February 2007  
2–39  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Figure 2–22. Column I/O Block Connection to the Interconnect  
Column I/O  
Block Contains  
up to Four IOEs  
Column I/O Block  
28 Data &  
Control Signals  
from Logic Array (1)  
io_datain0[3..0]  
io_datain1[3..0] (2)  
28  
io_clk[5..0]  
I/O Block  
Local Interconnect  
R4 & R24 Interconnects  
LAB  
LAB  
LAB  
LAB Local  
C4 & C24 Interconnects  
Interconnect  
Notes to Figure 2–22:  
(1) The 28 data and control signals consist of four data out lines, io_dataout[3..0], four output enables,  
io_coe[3..0], four input clock enables, io_cce_in[3..0], four output clock enables, io_cce_out[3..0],  
four clocks, io_cclk[3..0], four asynchronous clear signals, io_caclr[3..0], and four synchronous clear  
signals, io_csclr[3..0].  
(2) Each of the four IOEs in the column I/O block can have two io_datain (combinational or registered) inputs.  
2–40  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
The pin’s datain signals can drive the logic array. The logic array drives  
the control and data signals, providing a flexible routing resource. The  
row or column IOE clocks, io_clk[5..0], provide a dedicated routing  
resource for low-skew, high-speed clocks. The global clock network  
generates the IOE clocks that feed the row or column I/O regions (see  
“Global Clock Network & Phase-Locked Loops” on page 2–16).  
Figure 2–23 illustrates the signal paths through the I/O block.  
Figure 2–23. Signal Path Through the I/O Block  
Row or Column  
io_clk[5..0]  
To Other  
IOEs  
io_datain0  
io_datain1  
To Logic  
Array  
oe  
ce_in  
io_csclr  
io_coe  
ce_out  
Data and  
Control  
Signal  
IOE  
aclr/preset  
sclr/preset  
io_cce_in  
io_cce_out  
Selection  
From Logic  
Array  
clk_in  
io_caclr  
io_cclk  
clk_out  
dataout  
io_dataout  
Each IOE contains its own control signal selection for the following  
control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset,  
clk_in, and clk_out. Figure 2–24 illustrates the control signal  
selection.  
Altera Corporation  
February 2007  
2–41  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Figure 2–24. Control Signal Selection per IOE  
Dedicated I/O  
Clock [5..0]  
io_coe  
Local  
Interconnect  
io_csclr  
Local  
Interconnect  
io_caclr  
Local  
Interconnect  
io_cce_out  
Local  
Interconnect  
io_cce_in  
io_cclk  
Local  
Interconnect  
ce_out  
clk_out  
sclr/preset  
clk_in  
ce_in  
aclr/preset  
oe  
Local  
Interconnect  
In normal bidirectional operation, you can use the input register for input  
data requiring fast setup times. The input register can have its own clock  
input and clock enable separate from the OE and output registers. You can  
use the output register for data requiring fast clock-to-output  
performance. The OE register is available for fast clock-to-output enable  
timing. The OE and output register share the same clock source and the  
same clock enable source from the local interconnect in the associated  
LAB, dedicated I/O clocks, or the column and row interconnects. All  
registers share sclr and aclr, but each register can individually disable  
sclr and aclr. Figure 2–25 shows the IOE in bidirectional  
configuration.  
2–42  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Figure 2–25. Cyclone II IOE in Bidirectional I/O Configuration  
io_clk[5..0]  
Column  
or Row  
Interconect  
OE  
OE Register  
PRN  
D
Q
V
CCIO  
clkout  
ENA  
Optional  
PCI Clamp  
CLRN  
ce_out  
V
CCIO  
Programmable  
Pull-Up  
aclr/prn  
Resistor  
Chip-Wide Reset  
Output Register  
PRN  
Output  
Pin Delay  
D
Q
ENA  
Open-Drain Output  
sclr/preset  
CLRN  
data_in1  
data_in0  
Bus Hold  
Input Pin to  
Input Register Delay  
or Input Pin to  
Logic Array Delay  
Input Register  
PRN  
D
Q
ENA  
clkin  
CLRN  
ce_in  
The Cyclone II device IOE includes programmable delays to ensure zero  
hold times, minimize setup times, or increase clock to output times.  
A path in which a pin directly drives a register may require a  
programmable delay to ensure zero hold time, whereas a path in which a  
pin drives a register through combinational logic may not require the  
delay. Programmable delays decrease input-pin-to-logic-array and IOE  
input register delays. The Quartus II Compiler can program these delays  
to automatically minimize setup time while providing a zero hold time.  
Altera Corporation  
February 2007  
2–43  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Programmable delays can increase the register-to-pin delays for output  
registers. Table 2–13 shows the programmable delays for Cyclone II  
devices.  
Table 2–13. Cyclone II Programmable Delay Chain  
Programmable Delays  
Quartus II Logic Option  
Input pin to logic array delay  
Input pin to input register delay  
Output pin delay  
Input delay from pin to internal cells  
Input delay from pin to input register  
Delay from output register to output pin  
There are two paths in the IOE for an input to reach the logic array. Each  
of the two paths can have a different delay. This allows you to adjust  
delays from the pin to internal LE registers that reside in two different  
areas of the device. You set the two combinational input delays by  
selecting different delays for two different paths under the Input delay  
from pin to internal cells logic option in the Quartus II software.  
However, if the pin uses the input register, one of delays is disregarded  
because the IOE only has two paths to internal logic. If the input register  
is used, the IOE uses one input path. The other input path is then  
available for the combinational path, and only one input delay  
assignment is applied.  
The IOE registers in each I/O block share the same source for clear or  
preset. You can program preset or clear for each individual IOE, but both  
features cannot be used simultaneously. You can also program the  
registers to power up high or low after configuration is complete. If  
programmed to power up low, an asynchronous clear can control the  
registers. If programmed to power up high, an asynchronous preset can  
control the registers. This feature prevents the inadvertent activation of  
another device’s active-low input upon power up. If one register in an  
IOE uses a preset or clear signal then all registers in the IOE must use that  
same signal if they require preset or clear. Additionally a synchronous  
reset signal is available for the IOE registers.  
External Memory Interfacing  
Cyclone II devices support a broad range of external memory interfaces  
such as SDR SDRAM, DDR SDRAM, DDR2 SDRAM, and QDRII SRAM  
external memories. Cyclone II devices feature dedicated high-speed  
interfaces that transfer data between external memory devices at up to  
167 MHz/333 Mbps for DDR and DDR2 SDRAM devices and  
167 MHz/667 Mbps for QDRII SRAM devices. The programmable DQS  
delay chain allows you to fine tune the phase shift for the input clocks or  
strobes to properly align clock edges as needed to capture data.  
2–44  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
In Cyclone II devices, all the I/O banks support SDR and DDR SDRAM  
memory up to 167 MHz/333 Mbps. All I/O banks support DQS signals  
with the DQ bus modes of ×8/×9, or ×16/×18. Table 2–14 shows the  
external memory interfaces supported in Cyclone II devices.  
Table 2–14. External Memory Support in Cyclone II Devices  
Note (1)  
Maximum Clock  
Maximum Data  
Rate Supported  
(Mbps)  
Maximum Bus  
Width  
Memory Standard  
I/O Standard  
Rate Supported  
(MHz)  
SDR SDRAM  
DDR SDRAM  
LVTTL (2)  
72  
72  
72  
72  
72  
36  
167  
167  
133  
167  
125  
167  
167  
SSTL-2 class I (2)  
SSTL-2 class II (2)  
SSTL-18 class I (2)  
SSTL-18 class II (3)  
333 (1)  
267 (1)  
333 (1)  
250 (1)  
668 (1)  
DDR2 SDRAM  
QDRII SRAM (4)  
1.8-V HSTL class I  
(2)  
1.8-V HSTL class II  
36  
100  
400 (1)  
(3)  
Notes to Table 2–14:  
(1) The data rate is for designs using the Clock Delay Control circuitry.  
(2) The I/O standards are supported on all the I/O banks of the Cyclone II device.  
(3) The I/O standards are supported only on the I/O banks on the top and bottom of the Cyclone II device.  
(4) For maximum performance, Altera recommends using the 1.8-V HSTL I/O standard because of higher I/O drive  
strength. QDRII SRAM devices also support the 1.5-V HSTL I/O standard.  
Cyclone II devices use data (DQ), data strobe (DQS), and clock pins to  
interface with external memory. Figure 2–26 shows the DQ and DQS pins  
in the ×8/×9 mode.  
Altera Corporation  
February 2007  
2–45  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Figure 2–26. Cyclone II Device DQ & DQS Groups in ×8/×9 Mode  
Notes (1), (2)  
DQ Pins  
DQS Pin (2)  
DQ Pins  
DM Pin  
Notes to Figure 2–26:  
(1) Each DQ group consists of a DQS pin, DM pin, and up to nine DQ pins.  
(2) This is an idealized pin layout. For actual pin layout, refer to the pin table.  
Cyclone II devices support the data strobe or read clock signal (DQS)  
used in DDR and DDR2 SDRAM. Cyclone II devices can use either  
bidirectional data strobes or unidirectional read clocks. The dedicated  
external memory interface in Cyclone II devices also includes  
programmable delay circuitry that can shift the incoming DQS signals to  
center align the DQS signals within the data window.  
The DQS signal is usually associated with a group of data (DQ) pins. The  
phase-shifted DQS signals drive the global clock network, which is used  
to clock the DQ signals on internal LE registers.  
Table 2–15 shows the number of DQ pin groups per device.  
Table 2–15. Cyclone II DQS & DQ Bus Mode Support (Part 1 of 2)  
Note (1)  
Number of ×8  
Groups  
Number of ×9 Number of ×16 Number of ×18  
Device  
Package  
Groups (5), (6)  
Groups  
Groups (5), (6)  
EP2C5  
144-pin TQFP (2)  
3
7 (3)  
3
3
4
3
4
4
4
8
4
8
0
3
0
3
4
4
8
4
8
0
3
0
3
4
4
8
4
8
208-pin PQFP  
EP2C8  
144-pin TQFP (2)  
208-pin PQFP  
7 (3)  
8 (3)  
8
256-pin FineLine BGA®  
256-pin FineLine BGA  
484-pin FineLine BGA  
256-pin FineLine BGA  
484-pin FineLine BGA  
EP2C15  
EP2C20  
16 (4)  
8
16 (4)  
2–46  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
Table 2–15. Cyclone II DQS & DQ Bus Mode Support (Part 2 of 2)  
Note (1)  
Number of ×8  
Groups  
Number of ×9 Number of ×16 Number of ×18  
Device  
Package  
Groups (5), (6)  
Groups  
Groups (5), (6)  
EP2C35  
484-pin FineLine BGA  
672-pin FineLine BGA  
484-pin FineLine BGA  
672-pin FineLine BGA  
672-pin FineLine BGA  
896-pin FineLine BGA  
16 (4)  
20 (4)  
16 (4)  
20 (4)  
20 (4)  
20 (4)  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
EP2C50  
EP2C70  
Notes to Table 2–15:  
(1) Numbers are preliminary.  
(2) EP2C5 and EP2C8 devices in the 144-pin TQFP package do not have any DQ pin groups in I/O bank 1.  
(3) Because of available clock resources, only a total of 6 DQ/DQS groups can be implemented.  
(4) Because of available clock resources, only a total of 14 DQ/DQS groups can be implemented.  
(5) The ×9 DQS/DQ groups are also used as ×8 DQS/DQ groups. The ×18 DQS/DQ groups are also used as ×16  
DQS/DQ groups.  
(6) For QDRI implementation, if you connect the D ports (write data) to the Cyclone II DQ pins, the total available ×9  
DQS /DQ and ×18 DQS/DQ groups are half of that shown in Table 2–15.  
You can use any of the DQ pins for the parity pins in Cyclone II devices.  
The Cyclone II device family supports parity in the ×8/×9, and ×16/×18  
mode. There is one parity bit available per eight bits of data pins.  
The data mask, DM, pins are required when writing to DDR SDRAM and  
DDR2 SDRAM devices. A low signal on the DM pin indicates that the  
write is valid. If the DM signal is high, the memory masks the DQ signals.  
In Cyclone II devices, the DM pins are assigned and are the preferred  
pins. Each group of DQS and DQ signals requires a DM pin.  
When using the Cyclone II I/O banks to interface with the DDR memory,  
at least one PLL with two clock outputs is needed to generate the system  
and write clock. The system clock is used to clock the DQS write signals,  
commands, and addresses. The write clock is shifted by –90° from the  
system clock and is used to clock the DQ signals during writes.  
Figure 2–27 illustrates DDR SDRAM interfacing from the I/O through  
the dedicated circuitry to the logic array.  
Altera Corporation  
February 2007  
2–47  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Figure 2–27. DDR SDRAM Interfacing  
DQS  
DQ  
LE  
Register  
LE  
Register  
OE  
OE  
t
Adjacent LAB LEs  
LE  
LE  
Register  
Register  
LE  
Register  
LE  
Register  
V
DataA  
DataB  
LE  
Register  
LE  
Register  
CC  
LE  
Register  
LE  
Register  
LE  
Register  
LE  
Register  
LE  
Register  
GND  
clk  
Clock Delay  
Control Circuitry  
PLL  
Global Clock  
en/dis  
-90˚ Shifted clk  
Resynchronizing  
to System Clock  
Clock Control  
Block  
Dynamic Enable/Disable  
Circuitry  
ENOUT  
ena_register_mode  
f
For more information on Cyclone II external memory interfaces, see the  
External Memory Interfaces chapter in Volume 1 of the Cyclone II Device  
Handbook.  
2–48  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Programmable Drive Strength  
The output buffer for each Cyclone II device I/O pin has a programmable  
drive strength control for certain I/O standards. The LVTTL, LVCMOS,  
SSTL-2 class I and II, SSTL-18 class I and II, HSTL-18 class I and II, and  
HSTL-1.5 class I and II standards have several levels of drive strength that  
you can control. Using minimum settings provides signal slew rate  
control to reduce system noise and signal overshoot. Table 2–16 shows  
the possible settings for the I/O standards with drive strength control.  
Table 2–16. Programmable Drive Strength (Part 1 of 2)  
Note (1)  
IOH/IOL Current Strength Setting (mA)  
I/O Standard  
Top & Bottom I/O Pins  
Side I/O Pins  
LVTTL (3.3 V)  
4
8
4
8
12  
16  
20  
24  
4
12  
16  
20  
24  
4
LVCMOS (3.3 V)  
8
8
12  
16  
20  
24  
4
12  
LVTTL/LVCMOS (2.5 V)  
LVTTL/LVCMOS (1.8 V)  
4
8
8
12  
16  
2
2
4
4
6
6
8
8
10  
12  
10  
12  
Altera Corporation  
February 2007  
2–49  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Table 2–16. Programmable Drive Strength (Part 2 of 2)  
Note (1)  
I
OH/IOL Current Strength Setting (mA)  
I/O Standard  
Top & Bottom I/O Pins  
Side I/O Pins  
LVCMOS (1.5 V)  
2
2
4
6
4
6
8
SSTL-2 class I  
SSTL-2 class II  
8
8
12  
16  
20  
24  
6
12  
16  
SSTL-18 class I  
6
8
8
10  
12  
16  
18  
8
10  
SSTL-18 class II  
HSTL-18 class I  
8
10  
12  
16  
18  
20  
8
10  
12  
HSTL-18 class II  
HSTL-15 class I  
8
10  
12  
16  
HSTL-15 class II  
Note to Table 2–16:  
(1) The default current in the Quartus II software is the maximum setting for each  
I/O standard.  
Open-Drain Output  
Cyclone II devices provide an optional open-drain (equivalent to an  
open-collector) output for each I/O pin. This open-drain output enables  
the device to provide system-level control signals (that is, interrupt and  
write-enable signals) that can be asserted by any of several devices.  
2–50  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Slew Rate Control  
Slew rate control is performed by using programmable output drive  
strength.  
Bus Hold  
Each Cyclone II device user I/O pin provides an optional bus-hold  
feature. The bus-hold circuitry can hold the signal on an I/O pin at its  
last-driven state. Since the bus-hold feature holds the last-driven state of  
the pin until the next input signal is present, an external pull-up or  
pull-down resistor is not necessary to hold a signal level when the bus is  
tri-stated.  
The bus-hold circuitry also pulls undriven pins away from the input  
threshold voltage where noise can cause unintended high-frequency  
switching. You can select this feature individually for each I/O pin. The  
bus-hold output drives no higher than VCCIO to prevent overdriving  
signals.  
1
If the bus-hold feature is enabled, the device cannot use the  
programmable pull-up option. Disable the bus-hold feature  
when the I/O pin is configured for differential signals. Bus hold  
circuitry is not available on the dedicated clock pins.  
The bus-hold circuitry is only active after configuration. When going into  
user mode, the bus-hold circuit captures the value on the pin present at  
the end of configuration.  
The bus-hold circuitry uses a resistor with a nominal resistance (RBH) of  
approximately 7 kΩto pull the signal level to the last-driven state. Refer  
to the DC Characteristics & Timing Specifications chapter in Volume 1 of the  
Cyclone II Device Handbook for the specific sustaining current for each  
VCCIO voltage level driven through the resistor and overdrive current  
used to identify the next driven input level.  
Programmable Pull-Up Resistor  
Each Cyclone II device I/O pin provides an optional programmable  
pull-up resistor during user mode. If you enable this feature for an I/O  
pin, the pull-up resistor (typically 25 kΩ) holds the output to the VCCIO  
level of the output pin’s bank.  
1
If the programmable pull-up is enabled, the device cannot use  
the bus-hold feature. The programmable pull-up resistors are  
not supported on the dedicated configuration, JTAG, and  
dedicated clock pins.  
Altera Corporation  
February 2007  
2–51  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Advanced I/O Standard Support  
Table 2–17 shows the I/O standards supported by Cyclone II devices and  
which I/O pins support them.  
Table 2–17. Cyclone II Supported I/O Standards & Constraints (Part 1 of 2)  
Top & Bottom  
V
CCIO Level  
Side I/O Pins  
I/O Pins  
I/O Standard  
Type  
CLK, UserI/O CLK,  
User I/O  
Pins  
Input Output  
PLL_OUT  
DQS  
Pins  
DQS  
3.3-V LVTTL and LVCMOS  
(1)  
Single ended  
Single ended  
Single ended  
Single ended  
3.3 V/ 3.3 V  
2.5 V  
v
v
v
v
v
v
v
v
v
v
2.5-V LVTTL and LVCMOS  
1.8-V LVTTL and LVCMOS  
1.5-V LVCMOS  
3.3 V/ 2.5 V  
2.5 V  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
1.8 V/ 1.8 V  
1.5 V  
1.8 V/ 1.5 V  
1.5 V  
SSTL-2 class I  
Voltage  
referenced  
2.5 V 2.5 V  
2.5 V 2.5 V  
1.8 V 1.8 V  
1.8 V 1.8 V  
1.8 V 1.8 V  
1.8 V 1.8 V  
1.5 V 1.5 V  
1.5 V 1.5 V  
3.3 V 3.3 V  
SSTL-2 class II  
Voltage  
referenced  
SSTL-18 class I  
Voltage  
referenced  
v
(2)  
v
(2)  
v
(2)  
SSTL-18 class II  
HSTL-18 class I  
Voltage  
referenced  
Voltage  
referenced  
v
(2)  
v
(2)  
v
(2)  
HSTL-18 class II  
HSTL-15 class I  
Voltage  
referenced  
Voltage  
referenced  
v
(2)  
v
(2)  
v
(2)  
HSTL-15 class II  
PCI and PCI-X (1) (3)  
Voltage  
referenced  
Single ended  
v
v
v
v
Differential SSTL-2 class I or Pseudo  
class II  
(5)  
2.5 V  
differential (4)  
2.5 V  
(5)  
v
v
(6)  
(6)  
Differential SSTL-18 class I Pseudo  
(5)  
1.8 V  
v (7)  
or class II  
differential (4)  
1.8 V  
(5)  
v
v
(6)  
(6)  
2–52  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
Table 2–17. Cyclone II Supported I/O Standards & Constraints (Part 2 of 2)  
Top & Bottom  
V
CCIO Level  
Side I/O Pins  
I/O Pins  
I/O Standard  
Type  
CLK, UserI/O CLK,  
User I/O  
PLL_OUT  
Input Output  
DQS  
Pins  
DQS  
Pins  
Differential HSTL-15 class I Pseudo  
(5)  
1.5 V  
v (7)  
v (7)  
or class II  
differential (4)  
1.5 V  
(5)  
v
v
(6)  
(6)  
Differential HSTL-18 class I Pseudo  
(5)  
1.8 V  
or class II  
differential (4)  
1.8 V  
(5)  
v
v
(6)  
(6)  
LVDS  
Differential  
Differential  
Differential  
2.5 V 2.5 V  
v
v
v
v
v
v
v
v
RSDS and mini-LVDS (8)  
LVPECL (9)  
(5)  
2.5 V  
3.3 V/  
2.5 V/  
1.8 V/  
1.5 V  
(5)  
v
v
Notes to Table 2–17:  
(1) To drive inputs higher than VCC IO but less than 4.0 V, disable the PCI clamping diode and turn on the Allow  
LVTTL and LVCMOS input levels to overdrive input buffer option in the Quartus II software.  
(2) These pins support SSTL-18 class II and 1.8- and 1.5-V HSTL class II inputs.  
(3) PCI-X does not meet the IV curve requirement at the linear region. PCI-clamp diode is not available on top and  
bottom I/O pins.  
(4) Pseudo-differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed  
as inverted. Pseudo-differential HSTL and SSTL inputs treat differential inputs as two single-ended HSTL and  
SSTL inputs and only decode one of them.  
(5) This I/O standard is not supported on these I/O pins.  
(6) This I/O standard is only supported on the dedicated clock pins.  
(7) PLL_OUTdoes not support differential SSTL-18 class II and differential 1.8 and 1.5-V HSTL class II.  
(8) mini-LVDS and RSDS are only supported on output pins.  
(9) LVPECL is only supported on clock inputs.  
f
For more information on Cyclone II supported I/O standards, see the  
Selectable I/O Standards in Cyclone II Devices chapter in Volume 1 of the  
Cyclone II Device Handbook.  
High-Speed Differential Interfaces  
Cyclone II devices can transmit and receive data through LVDS signals at  
a data rate of up to 640 Mbps and 805 Mbps, respectively. For the LVDS  
transmitter and receiver, the Cyclone II device’s input and output pins  
support serialization and deserialization through internal logic.  
Altera Corporation  
February 2007  
2–53  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
The reduced swing differential signaling (RSDS) and mini-LVDS  
standards are derivatives of the LVDS standard. The RSDS and  
mini-LVDS I/O standards are similar in electrical characteristics to  
LVDS, but have a smaller voltage swing and therefore provide increased  
power benefits and reduced electromagnetic interference (EMI).  
Cyclone II devices support the RSDS and mini-LVDS I/O standards at  
data rates up to 311 Mbps at the transmitter.  
A subset of pins in each I/O bank (on both rows and columns) support  
the high-speed I/O interface. The dual-purpose LVDS pins require an  
external-resistor network at the transmitter channels in addition to 100-Ω  
termination resistors on receiver channels. These pins do not contain  
dedicated serialization or deserialization circuitry. Therefore, internal  
logic performs serialization and deserialization functions.  
Cyclone II pin tables list the pins that support the high-speed I/O  
interface. The number of LVDS channels supported in each device family  
member is listed in Table 2–18.  
Table 2–18. Cyclone II Device LVDS Channels (Part 1 of 2)  
Number of LVDS  
Channels (1)  
Device  
Pin Count  
EP2C5  
EP2C8  
144  
208  
256  
144  
208  
256  
256  
484  
240  
256  
484  
484  
672  
484  
672  
31 (35)  
56 (60)  
61 (65)  
29 (33)  
53 (57)  
75 (79)  
EP2C15  
EP2C20  
52 (60)  
128 (136)  
45 (53)  
52 (60)  
128 (136)  
131 (139)  
201 (209)  
119 (127)  
189 (197)  
EP2C35  
EP2C50  
2–54  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Table 2–18. Cyclone II Device LVDS Channels (Part 2 of 2)  
Number of LVDS  
Channels (1)  
Device  
Pin Count  
EP2C70  
672  
896  
160 (168)  
257 (265)  
Note to Table 2–18:  
(1) The first number represents the number of bidirectional I/O pins which can be  
used as inputs or outputs. The number in parenthesis includes dedicated clock  
input pin pairs which can only be used as inputs.  
You can use I/O pins and internal logic to implement a high-speed I/O  
receiver and transmitter in Cyclone II devices. Cyclone II devices do not  
contain dedicated serialization or deserialization circuitry. Therefore,  
shift registers, internal PLLs, and IOEs are used to perform  
serial-to-parallel conversions on incoming data and parallel-to-serial  
conversion on outgoing data.  
The maximum internal clock frequency for a receiver and for a  
transmitter is 402.5 MHz. The maximum input data rate of 805 Mbps and  
the maximum output data rate of 640 Mbps is only achieved when DDIO  
registers are used. The LVDS standard does not require an input  
reference voltage, but it does require a 100-Ωtermination resistor  
between the two signals at the input buffer. An external resistor network  
is required on the transmitter side.  
f
For more information on Cyclone II differential I/O interfaces, see the  
High-Speed Differential Interfaces in Cyclone II Devices chapter in Volume 1  
of the Cyclone II Device Handbook.  
Series On-Chip Termination  
On-chip termination helps to prevent reflections and maintain signal  
integrity. This also minimizes the need for external resistors in high pin  
count ball grid array (BGA) packages. Cyclone II devices provide I/O  
driver on-chip impedance matching and on-chip series termination for  
single-ended outputs and bidirectional pins.  
Altera Corporation  
February 2007  
2–55  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Cyclone II devices support driver impedance matching to the impedance  
of the transmission line, typically 25 or 50 Ω. When used with the output  
drivers, on-chip termination sets the output driver impedance to 25 or  
50 Ω. Cyclone II devices also support I/O driver series termination  
(RS = 50 Ω) for SSTL-2 and SSTL-18. Table 2–19 lists the I/O standards that  
support impedance matching and series termination.  
Table 2–19. I/O Standards Supporting Series Termination  
Note (1)  
Target RS (Ω)  
VCCIO (V)  
I/O Standards  
3.3-V LVTTL and LVCMOS  
2.5-V LVTTL and LVCMOS  
1.8-V LVTTL and LVCMOS  
SSTL-2 class I  
25 (2)  
50 (2)  
50 (2)  
50 (2)  
50 (2)  
3.3  
2.5  
1.8  
2.5  
1.8  
SSTL-18 class I  
Notes to Table 2–19:  
(1) Supported conditions are VCCIO = VCCIO 50 mV.  
(2) These RS values are nominal values. Actual impedance varies across process,  
voltage, and temperature conditions.  
1
The recommended frequency range of operation is pending  
silicon characterization.  
On-chip series termination can be supported on any I/O bank. VCCIO and  
VREF must be compatible for all I/O pins in order to enable on-chip series  
termination in a given I/O bank. I/O standards that support different RS  
values can reside in the same I/O bank as long as their VCCIO and VREF are  
not conflicting.  
1
When using on-chip series termination, programmable drive  
strength is not available.  
Impedance matching is implemented using the capabilities of the output  
driver and is subject to a certain degree of variation, depending on the  
process, voltage and temperature. The actual tolerance is pending silicon  
characterization.  
2–56  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
I/O Banks  
The I/O pins on Cyclone II devices are grouped together into I/O banks  
and each bank has a separate power bus. EP2C5 and EP2C8 devices have  
four I/O banks (see Figure 2–28), while EP2C15, EP2C20, EP2C35,  
EP2C50, and EP2C70 devices have eight I/O banks (see Figure 2–29).  
Each device I/O pin is associated with one I/O bank. To accommodate  
voltage-referenced I/O standards, each Cyclone II I/O bank has a VREF  
bus. Each bank in EP2C5, EP2C8, EP2C15, EP2C20, EP2C35, and EP2C50  
devices supports two VREF pins and each bank of EP2C70 supports four  
VREF pins. When using the VREF pins, each VREF pin must be properly  
connected to the appropriate voltage level. In the event these pins are not  
used as VREF pins, they may be used as regular I/O pins.  
The top and bottom I/O banks (banks 2 and 4 in EP2C5 and EP2C8  
devices and banks 3, 4, 7, and 8 in EP2C15, EP2C20, EP2C35, EP2C50, and  
EP2C70 devices) support all I/O standards listed in Table 2–17, except the  
PCI/PCI-X I/O standards. The left and right side I/O banks (banks 1 and  
3 in EP2C5 and EP2C8 devices and banks 1, 2, 5, and 6 in EP2C15, EP2C20,  
EP2C35, EP2C50, and EP2C70 devices) support I/O standards listed in  
Table 2–17, except SSTL-18 class II, HSTL-18 class II, and HSTL-15 class II  
I/O standards. See Table 2–17 for a complete list of supported I/O  
standards.  
The top and bottom I/O banks (banks 2 and 4 in EP2C5 and EP2C8  
devices and banks 3, 4, 7, and 8 in EP2C15, EP2C20, EP2C35, EP2C50, and  
EP2C70 devices) support DDR2 memory up to 167 MHz/333 Mbps and  
QDR memory up to 167 MHz/668 Mbps. The left and right side I/O  
banks (1 and 3 of EP2C5 and EP2C8 devices and 1, 2, 5, and 6 of EP2C15,  
EP2C20, EP2C35, EP2C50, and EP2C70 devices) only support SDR and  
DDR SDRAM interfaces. All the I/O banks of the Cyclone II devices  
support SDR memory up to 167 MHz/167 Mbps and DDR memory up to  
167 MHz/333 Mbps.  
1
DDR2 and QDRII interfaces may be implemented in Cyclone II  
side banks if the use of class I I/O standard is acceptable.  
Altera Corporation  
February 2007  
2–57  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
Figure 2–28. EP2C5 & EP2C8 I/O Banks  
Notes (1), (2)  
I/O Bank 2 Also Supports  
the SSTL-18 Class II,  
HSTL-18 Class II, & HSTL-15  
Class II I/O Standards  
I/O Bank 2  
All I/O Banks Support  
3.3-V LVTTL/LVCMOS  
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
LVDS  
RSDS  
I/O Bank 1  
Also Supports the  
3.3-V PCI & PCI-X  
I/O Standards  
I/O Bank 3  
Also Supports the  
3.3-V PCI & PCI-X  
I/O Standards  
mini-LVDS  
LVPECL (3)  
I/O Bank 1  
SSTL-2 Class I and II  
SSTL-18 Class I  
HSTL-18 Class I  
HSTL-15 Class I  
Differential SSTL-2 (4)  
Differential SSTL-18 (4)  
Differential HSTL-18 (5)  
Differential HSTL-15 (5)  
I/O Bank 3  
Individual  
Power Bus  
I/O Bank 4  
I/O Bank 4 Also Supports  
the SSTL-18 Class II,  
HSTL-18 Class II, & HSTL-15  
Class II I/O Standards  
Notes to Figure 2–28:  
(1) This is a top view of the silicon die.  
(2) This is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.  
(3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output  
pins.  
(4) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock  
pins.  
(5) The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock  
pins.  
2–58  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Cyclone II Architecture  
Figure 2–29. EP2C15, EP2C20, EP2C35, EP2C50 & EP2C70 I/O Banks  
Notes (1), (2)  
I/O Banks 3 & 4 Also Support  
the SSTL-18 Class II,  
HSTL-18 Class II, & HSTL-15  
Class II I/O Standards  
I/O Bank 3  
I/O Bank 4  
Individual  
Power Bus  
All I/O Banks Support  
3.3-V LVTTL/LVCMOS  
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
I/O Bank 2  
I/O Bank 5  
LVDS  
RSDS  
mini-LVDS  
LVPECL (3)  
I/O Banks 1 & 2 Also  
Support the 3.3-V PCI  
& PCI-X I/O Standards  
I/O Banks 5 & 6 Also  
Support the 3.3-V PCI  
& PCI-X I/O Standards  
SSTL-2 Class I and II  
SSTL-18 Class I  
HSTL-18 Class I  
HSTL-15 Class I  
Differential SSTL-2 (4)  
Differential SSTL-18 (4)  
Differential HSTL-18 (5)  
Differential HSTL-15 (5)  
I/O Bank 1  
I/O Bank 6  
Regular I/O Block  
Regular I/O Block  
Bank 7  
Bank 8  
I/O Banks 7 & 8 Also Support  
the SSTL-18 Class II,  
HSTL-18 Class II, & HSTL-15  
Class II I/O Standards  
Notes to Figure 2–29:  
(1) This is a top view of the silicon die.  
(2) This is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.  
(3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output  
pins.  
(4) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock  
pins.  
(5) The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock  
pins.  
Each I/O bank has its own VCCIO pins. A single device can support  
1.5-V, 1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support  
a different standard with different I/O voltages. Each bank also has  
dual-purpose VREF pins to support any one of the voltage-referenced  
Altera Corporation  
February 2007  
2–59  
Cyclone II Device Handbook, Volume 1  
I/O Structure & Features  
standards (e.g., SSTL-2) independently. If an I/O bank does not use  
voltage-referenced standards, the VREF pins are available as user I/O  
pins.  
Each I/O bank can support multiple standards with the same VCCIO for  
input and output pins. For example, when VCCIO is 3.3-V, a bank can  
support LVTTL, LVCMOS, and 3.3-V PCI for inputs and outputs.  
Voltage-referenced standards can be supported in an I/O bank using any  
number of single-ended or differential standards as long as they use the  
same VREF and a compatible VCCIO value.  
MultiVolt I/O Interface  
The Cyclone II architecture supports the MultiVolt I/O interface feature,  
which allows Cyclone II devices in all packages to interface with systems  
of different supply voltages. Cyclone II devices have one set of VCC pins  
(VCCINT) that power the internal device logic array and input buffers that  
use the LVPECL, LVDS, HSTL, or SSTL I/O standards. Cyclone II devices  
also have four or eight sets of VCC pins (VCCIO) that power the I/O  
output drivers and input buffers that use the LVTTL, LVCMOS, or PCI  
I/O standards.  
The Cyclone II VCCINT pins must always be connected to a 1.2-V power  
supply. If the VCCINT level is 1.2 V, then input pins are 1.5-V, 1.8-V, 2.5-V,  
and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V,  
1.8-V, 2.5-V, or 3.3-V power supply, depending on the output  
requirements. The output levels are compatible with systems of the same  
voltage as the power supply (i.e., when VCCIO pins are connected to a  
1.5-V power supply, the output levels are compatible with 1.5-V systems).  
When VCCIO pins are connected to a 3.3-V power supply, the output high  
is 3.3-V and is compatible with 3.3-V systems. Table 2–20 summarizes  
Cyclone II MultiVolt I/O support.  
Table 2–20. Cyclone II MultiVolt I/O Support (Part 1 of 2)  
Note (1)  
Input Signal  
VCCIO (V)  
Output Signal  
1.8 V 2.5 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
1.5 V  
v
v (3)  
v (5)  
3.3 V  
1.5  
1.8  
2.5  
v
v (4)  
v
v
v (2)  
v (2)  
v
v (2)  
v (2)  
v
v
v
v (5)  
2–60  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Cyclone II Architecture  
Table 2–20. Cyclone II MultiVolt I/O Support (Part 2 of 2)  
Note (1)  
Input Signal  
Output Signal  
V
CCIO (V)  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
3.3  
v
v
v (4)  
v (6)  
v (6)  
v (6)  
Notes to Table 2–20:  
(1) The PCI clamping diode must be disabled to drive an input with voltages higher than VCCIO  
.
(2) These input values overdrive the input buffer, so the pin leakage current is slightly higher than the default value.  
To drive inputs higher than VCCIO but less than 4.0 V, disable the PCI clamping diode and turn on Allow voltage  
overdrive for LVTTL/LVCMOS input pins option in Device setting option in the Quartus II software.  
(3) When VCCIO = 1.8-V, a Cyclone II device can drive a 1.5-V device with 1.8-V tolerant inputs.  
(4) When VCCIO = 3.3-V and a 2.5-V input signal feeds an input pin or when VC CIO = 1.8-V and a 1.5-V input signal  
feeds an input pin, the VCCIO supply current will be slightly larger than expected. The reason for this increase is  
that the input signal level does not drive to the VCCIO rail, which causes the input buffer to not completely shut off.  
(5) When VCCIO = 2.5-V, a Cyclone II device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.  
(6) When VCCIO = 3.3-V, a Cyclone II device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.  
Altera Corporation  
February 2007  
2–61  
Cyclone II Device Handbook, Volume 1  
Document Revision History  
Table 2–21 shows the revision history for this document.  
Document  
Revision History  
Table 2–21. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
February 2007  
v3.1  
Added document revision history.  
Removed Table 2-1.  
Updated Figure 2–25.  
Added new Note (1) to Table 2–17.  
Added handpara note in “I/O Banks” section.  
Updated Note (2) to Table 2–20.  
Removed Drive Strength  
Control from Figure 2–25.  
Elaboration of DDR2 and  
QDRIIinterfacessupported  
by I/O bank included.  
November 2005  
v2.1  
Updated Table 2–7.  
Updated Figures 2–11 and 2–12.  
Updated Programmable Drive Strength table.  
Updated Table 2–16.  
Updated Table 2–18.  
Updated Table 2–19.  
July 2005 v2.0  
Updated technical content throughout.  
Updated Table 2–16.  
February 2005  
v1.2  
Updated figure 2-12.  
November 2004 Updated Table 2–19.  
v1.1  
June 2004 v1.0 Added document to the Cyclone II Device Handbook.  
2–62  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
3. Configuration & Testing  
CII51003-2.2  
All Cyclone® II devices provide JTAG BST circuitry that complies with  
the IEEE Std. 1149.1. JTAG boundary-scan testing can be performed  
either before or after, but not during configuration. Cyclone II devices can  
also use the JTAG port for configuration with the Quartus® II software or  
hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc).  
IEEE Std. 1149.1  
(JTAG)Boundary  
Scan Support  
Cyclone II devices support IOE I/O standard reconfiguration through the  
JTAG BST chain. The JTAG chain can update the I/O standard for all  
input and output pins any time before or during user mode through the  
CONFIG_IOinstruction. You can use this capability for JTAG testing  
before configuration when some of the Cyclone II pins drive or receive  
from other devices on the board using voltage-referenced standards.  
Since the Cyclone II device might not be configured before JTAG testing,  
the I/O pins may not be configured for appropriate electrical standards  
for chip-to-chip communication. Programming the I/O standards via  
JTAG allows you to fully test I/O connections to other devices.  
f
For information on I/O reconfiguration, refer to the MorphIO: An I/O  
Reconfiguration Solution for Altera Devices White Paper.  
A device operating in JTAG mode uses four required pins: TDI, TDO, TMS,  
and TCK. The TCKpin has an internal weak pull-down resister, while the  
TDIand TMSpins have weak internal pull-up resistors. The TDOoutput  
pin and all JTAG input pin voltage is determined by the VCCIO of the bank  
where it resides. The bank VCCIO selects whether the JTAG inputs are 1.5-,  
1.8-, 2.5-, or 3.3-V compatible.  
1
Stratix® II, Stratix, Cyclone II and Cyclone devices must be  
within the first 8 devices in a JTAG chain. All of these devices  
have the same JTAG controller. If any of the Stratix II, Stratix,  
Cyclone II or Cyclone devices are in the 9th of further position,  
they fail configuration. This does not affect Signal Tap II.  
Altera Corporation  
February 2007  
3–1  
IEEE Std. 1149.1 (JTAG) Boundary Scan Support  
Cyclone II devices also use the JTAG port to monitor the logic operation  
of the device with the SignalTap® II embedded logic analyzer. Cyclone II  
devices support the JTAG instructions shown in Table 3–1.  
Table 3–1. Cyclone II JTAG Instructions (Part 1 of 2)  
JTAG Instruction Instruction Code  
SAMPLE/PRELOAD 00 0000 0101  
Description  
Allows a snapshot of signals at the device pins to be captured and  
examined during normal device operation, and permits an initial  
data pattern to be output at the device pins. Also used by the  
SignalTap II embedded logic analyzer.  
Allows the external circuitry and board-level interconnects to be  
tested by forcing a test pattern at the output pins and capturing test  
results at the input pins.  
EXTEST (1)  
BYPASS  
00 0000 1111  
11 1111 1111  
00 0000 0111  
Places the 1-bit bypass register between the TDIand TDOpins,  
which allows the BST data to pass synchronously through selected  
devices to adjacent devices during normal device operation.  
USERCODE  
Selects the 32-bit USERCODEregister and places it between the  
TDIand TDOpins, allowing the USERCODEto be serially shifted  
out of TDO.  
IDCODE  
00 0000 0110  
00 0000 1011  
Selects the IDCODEregister and places it between TDIand TDO,  
allowing the IDCODEto be serially shifted out of TDO.  
HIGHZ (1)  
Places the 1-bit bypass register between the TDIand TDOpins,  
which allows the BST data to pass synchronously through selected  
devices to adjacent devices during normal device operation, while  
tri-stating all of the I/O pins.  
CLAMP (1)  
00 0000 1010  
Places the 1-bit bypass register between the TDIand TDOpins,  
which allows the BST data to pass synchronously through selected  
devices to adjacent devices during normal device operation while  
holding I/O pins to a state defined by the data in the boundary-scan  
register.  
Used when configuring a Cyclone II device via the JTAG port with  
a USB Blaster, ByteBlasterII, MasterBlasteror  
ByteBlasterMVdownload cable, or when using a Jam File or JBC  
File via an embedded processor.  
ICR  
instructions  
PULSE_NCONFIG  
00 0000 0001  
Emulates pulsing the nCONFIGpin low to trigger reconfiguration  
even though the physical pin is unaffected.  
3–2  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
Configuration & Testing  
Table 3–1. Cyclone II JTAG Instructions (Part 2 of 2)  
JTAG Instruction  
Instruction Code  
Description  
Allows configuration of I/O standards through the JTAG chain for  
JTAG testing. Can be executed before, after, or during  
configuration. Stops configuration if executed during configuration.  
Once issued, the CONFIG_IOinstruction holds nSTATUSlow to  
reset the configuration device. nSTATUSis held low until the  
device is reconfigured.  
CONFIG_IO  
00 0000 1101  
SignalTap II  
instructions  
Monitors internal device operation with the SignalTap II embedded  
logic analyzer.  
Note to Table 3–1:  
(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.  
The Quartus II software has an Auto Usercode feature where you can  
choose to use the checksum value of a programming file as the JTAG user  
code. If selected, the checksum is automatically loaded to the USERCODE  
register. In the Settings dialog box in the Assignments menu, click Device  
& Pin Options, then General, and then turn on the Auto Usercode  
option.  
Altera Corporation  
February 2007  
3–3  
Cyclone II Device Handbook, Volume 1  
IEEE Std. 1149.1 (JTAG) Boundary Scan Support  
The Cyclone II device instruction register length is 10 bits and the  
USERCODEregister length is 32 bits. Tables 3–2 and 3–3 show the  
boundary-scan register length and device IDCODEinformation for  
Cyclone II devices.  
Table 3–2. Cyclone II Boundary-Scan Register Length  
Device  
Boundary-Scan Register Length  
EP2C5  
EP2C8  
498  
597  
EP2C15  
EP2C20  
EP2C35  
EP2C50  
EP2C70  
969  
969  
1,449  
1,374  
1,890  
Table 3–3. 32-Bit Cyclone II Device IDCODE  
IDCODE (32 Bits) (1)  
Device  
Version (4 Bits)  
0000  
Part Number (16 Bits)  
0010 0000 1011 0001  
0010 0000 1011 0010  
0010 0000 1011 0011  
0010 0000 1011 0011  
0010 0000 1011 0100  
0010 0000 1011 0101  
0010 0000 1011 0110  
Manufacturer Identity (11 Bits) LSB (1 Bit) (2)  
EP2C5  
EP2C8  
000 0110 1110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
1
1
1
1
1
1
1
0000  
EP2C15  
EP2C20  
EP2C35  
EP2C50  
EP2C70  
0000  
0000  
0000  
0000  
0000  
Notes to Table 3–3:  
(1) The most significant bit (MSB) is on the left.  
(2) The IDCODE’s least significant bit (LSB) is always 1.  
For more information on the Cyclone II JTAG specifications, refer to the  
DC Characteristics & Timing Specifications chapter in the Cyclone II Device  
Handbook, Volume 1.  
3–4  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Configuration & Testing  
Cyclone II devices support the SignalTap II embedded logic analyzer,  
which monitors design operation over a period of time through the IEEE  
Std. 1149.1 (JTAG) circuitry. You can analyze internal logic at speed  
without bringing internal signals to the I/O pins. This feature is  
particularly important for advanced packages, such as FineLine BGA®  
packages, because it can be difficult to add a connection to a pin during  
the debugging process after a board is designed and manufactured.  
SignalTap II  
Embedded Logic  
Analyzer  
f
For more information on the SignalTap II, see the Signal Tap chapter of  
the Quartus II Handbook, Volume 3.  
The logic, circuitry, and interconnects in the Cyclone II architecture are  
configured with CMOS SRAM elements. Altera FPGA devices are  
reconfigurable and every device is tested with a high coverage  
production test program so you do not have to perform fault testing and  
can instead focus on simulation and design verification.  
Configuration  
Cyclone II devices are configured at system power-up with data stored in  
an Altera configuration device or provided by a system controller. The  
Cyclone II device’s optimized interface allows the device to act as  
controller in an active serial configuration scheme with EPCS serial  
configuration devices. The serial configuration device can be  
programmed via SRunner, the ByteBlaster II or USB Blaster download  
cable, the Altera Programming Unit (APU), or third-party programmers.  
In addition to EPCS serial configuration devices, Altera offers in-system  
programmability (ISP)-capable configuration devices that can configure  
Cyclone II devices via a serial data stream using the Passive serial (PS)  
configuration mode. The PS interface also enables microprocessors to  
treat Cyclone II devices as memory and configure them by writing to a  
virtual memory location, simplifying reconfiguration. After a Cyclone II  
device has been configured, it can be reconfigured in-circuit by resetting  
the device and loading new configuration data. Real-time changes can be  
made during system operation, enabling innovative reconfigurable  
applications.  
The Cyclone II architecture uses SRAM configuration elements that  
require configuration data to be loaded each time the circuit powers up.  
The process of physically loading the SRAM data into the device is called  
configuration. During initialization, which occurs immediately after  
configuration, the device resets registers, enables I/O pins, and begins to  
operate as a logic device. You can use the 10MHz internal oscillator or the  
optional CLKUSRpin during the initialization. The 10 MHz internal  
oscillator is disabled in user mode. Together, the configuration and  
initialization processes are called command mode. Normal device  
operation is called user mode.  
Operating  
Modes  
Altera Corporation  
February 2007  
3–5  
Cyclone II Device Handbook, Volume 1  
Configuration Schemes  
SRAM configuration elements allow Cyclone II devices to be  
reconfigured in-circuit by loading new configuration data into the device.  
With real-time reconfiguration, the device is forced into command mode  
with the nCONFIGpin. The configuration process loads different  
configuration data, reinitializes the device, and resumes user-mode  
operation. You can perform in-field upgrades by distributing new  
configuration files within the system or remotely.  
A built-in weak pull-up resistor pulls all user I/O pins to VCCIO before  
and during device configuration.  
The configuration pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O  
standards. The voltage level of the configuration output pins is  
determined by the VCCIO of the bank where the pins reside. The bank  
VCCIO selects whether the configuration inputs are 1.5-V, 1.8-V, 2.5-V, or  
3.3-V compatible.  
You can load the configuration data for a Cyclone II device with one of  
three configuration schemes (see Table 3–4), chosen on the basis of the  
target application. You can use a configuration device, intelligent  
controller, or the JTAG port to configure a Cyclone II device. A low-cost  
configuration device can automatically configure a Cyclone II device at  
system power-up.  
Configuration  
Schemes  
Multiple Cyclone II devices can be configured in any of the three  
configuration schemes by connecting the configuration enable (nCE) and  
configuration enable output (nCEO) pins on each device.  
Table 3–4. Data Sources for Configuration  
Configuration  
Scheme  
Data Source  
Active serial (AS)  
Low-cost serial configuration device  
Passive serial (PS) Enhanced or EPC2 configuration device, MasterBlaster, ByteBlasterMV, ByteBlaster II or  
USB Blaster download cable, or serial data source  
JTAG  
MasterBlaster, ByteBlasterMV, ByteBlaster II or USB Blaster download cable or a  
microprocessor with a Jam or JBC file  
f
For more information on configuration, see the Configuring Cyclone II  
Devices chapter of the Cyclone II Handbook, Volume 2.  
3–6  
Altera Corporation  
Cyclone II Device Handbook, Volume 1  
February 2007  
Configuration & Testing  
Cyclone II devices offer on-chip circuitry for automated checking of  
single event upset (SEU) detection. Some applications that require the  
device to operate error free at high elevations or in close proximity to  
earth’s North or South Pole require periodic checks to ensure continued  
data integrity. The error detection cyclic redundancy code (CRC) feature  
controlled by the Device & Pin Options dialog box in the Quartus II  
software uses a 32-bit CRC circuit to ensure data reliability and is one of  
the best options for mitigating SEU.  
Cyclone II  
Automated  
Single Event  
Upset Detection  
You can implement the error detection CRC feature with existing circuitry  
in Cyclone II devices, eliminating the need for external logic. For  
Cyclone II devices, the CRC is pre-computed by Quartus II software and  
then sent to the device as part of the POF file header. The CRC_ERRORpin  
reports a soft error when configuration SRAM data is corrupted,  
indicating to the user to preform a device reconfiguration.  
Custom-Built Circuitry  
Dedicated circuitry in the Cyclone II devices performs error detection  
automatically. This error detection circuitry in Cyclone II devices  
constantly checks for errors in the configuration SRAM cells while the  
device is in user mode. You can monitor one external pin for the error and  
use it to trigger a re-configuration cycle. You can select the desired time  
between checks by adjusting a built-in clock divider.  
Software Interface  
In the Quartus II software version 4.1 and later, you can turn on the  
automated error detection CRC feature in the Device & Pin Options  
dialog box. This dialog box allows you to enable the feature and set the  
internal frequency of the CRC checker between 400 kHz to 80 MHz. This  
controls the rate that the CRC circuitry verifies the internal configuration  
SRAM bits in the FPGA device.  
f
For more information on CRC, refer to AN: 357 Error Detection Using CRC  
in Altera FPGAs.  
Altera Corporation  
February 2007  
3–7  
Cyclone II Device Handbook, Volume 1  
Document Revision History  
Table 3–5 shows the revision history for this document.  
Document  
Revision History  
Table 3–5. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
February 2007  
v2.2  
Added document revision history.  
Added new handpara nore in “IEEE Std. 1149.1 (JTAG)  
Boundary Scan Support” section.  
Updated “Cyclone II Automated Single Event Upset  
Detection” section.  
Added information about  
limitation of cascading  
multi devices in the same  
JTAG chain.  
Corrected information on  
CRC calculation.  
July 2005 v2.0  
Updated technical content.  
February 2005  
v1.2  
Updated information on JTAG chain limitations.  
November 2004 Updated Table 3–4.  
v1.1  
June 2004 v1.0 Added document to the Cyclone II Device Handbook.  
3–8  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
4. Hot Socketing & Power-On  
Reset  
CII51004-3.1  
Cyclone® II devices offer hot socketing (also known as hot plug-in, hot  
insertion, or hot swap) and power sequencing support without the use of  
any external devices. You can insert or remove a Cyclone II board in a  
system during system operation without causing undesirable effects to  
the board or to the running system bus.  
Introduction  
The hot-socketing feature lessens the board design difficulty when using  
Cyclone II devices on printed circuit boards (PCBs) that also contain a  
mixture of 3.3-, 2.5-, 1.8-, and 1.5-V devices. With the Cyclone II  
hot-socketing feature, you no longer need to ensure a proper power-up  
sequence for each device on the board.  
The Cyclone II hot-socketing feature provides:  
Board or device insertion and removal without external components  
or board manipulation  
Support for any power-up sequence  
Non-intrusive I/O buffers to system buses during hot insertion  
This chapter also discusses the power-on reset (POR) circuitry in  
Cyclone II devices. The POR circuitry keeps the devices in the reset state  
until the VCC is within operating range.  
Cyclone II devices offer hot-socketing capability with all three features  
listed above without any external components or special design  
requirements. The hot-socketing feature in Cyclone II devices offers the  
following:  
Cyclone II  
Hot-Socketing  
Specifications  
The device can be driven before power-up without any damage to  
the device itself.  
I/O pins remain tri-stated during power-up. The device does not  
drive out before or during power-up, thereby affecting other buses  
in operation.  
Altera Corporation  
February 2007  
4–1  
Cyclone II Hot-Socketing Specifications  
Devices Can Be Driven before Power-Up  
You can drive signals into the I/O pins, dedicated input pins, and  
dedicated clock pins of Cyclone II devices before or during power-up or  
power-down without damaging the device. Cyclone II devices support  
any power-up or power-down sequence (VCCIO and VCCINT) to simplify  
system level design.  
I/O Pins Remain Tri-Stated during Power-Up  
A device that does not support hot socketing may interrupt system  
operation or cause contention by driving out before or during power-up.  
In a hot-socketing situation, the Cyclone II device’s output buffers are  
turned off during system power-up or power-down. The Cyclone II  
device also does not drive out until the device is configured and has  
attained proper operating conditions. The I/O pins are tri-stated until the  
device enters user mode with a weak pull-up resistor (R) to 3.3V. Refer to  
Figure 4–1 for more information.  
1
You can power up or power down the VCCIO and VCCINT pins in  
any sequence. The VCCIO and VCCINT must have monotonic rise  
to their steady state levels. (Refer to Figure 4–3 for more  
information.) The power supply ramp rates can range from  
100 µs to 100 ms for non “A” devices. Both VCC supplies must  
power down within 100 ms of each other to prevent I/O pins  
from driving out. During hot socketing, the I/O pin capacitance  
is less than 15 pF and the clock pin capacitance is less than 20 pF.  
Cyclone II devices meet the following hot-socketing  
specification.  
The hot-socketing DC specification is | IIOPIN | < 300 µA.  
The hot-socketing AC specification is | IIOPIN | < 8 mA for 10 ns or  
less.  
This specification takes into account the pin capacitance but not board  
trace and external loading capacitance. You must consider additional  
capacitance for trace, connector, and loading separately.  
IIOPIN is the current at any user I/O pin on the device. The DC  
specification applies when all VCC supplies to the device are stable in the  
powered-up or powered-down conditions. For the AC specification, the  
peak current duration due to power-up transients is 10 ns or less.  
A possible concern for semiconductor devices in general regarding hot  
socketing is the potential for latch-up. Latch-up can occur when electrical  
subsystems are hot socketed into an active system. During hot socketing,  
the signal pins may be connected and driven by the active system before  
4–2  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Hot Socketing & Power-On Reset  
the power supply can provide current to the device’s VCC and ground  
planes. This condition can lead to latch-up and cause a low-impedance  
path from VCC to ground within the device. As a result, the device extends  
a large amount of current, possibly causing electrical damage.  
Altera has ensured by design of the I/O buffers and hot-socketing  
circuitry, that Cyclone II devices are immune to latch-up during hot  
socketing.  
The hot-socketing feature turns off the output buffer during power up  
(either VCCINT or VCCIO supplies) or power down. The hot-socket circuit  
generates an internal HOTSCKTsignal when either VCCINT or VCCIO is  
below the threshold voltage. Designs cannot use the HOTSCKTsignal for  
other purposes. The HOTSCKTsignal cuts off the output buffer to ensure  
that no DC current (except for weak pull-up leakage current) leaks  
through the pin. When VCC ramps up slowly, VCC is still relatively low  
even after the internal PORsignal (not available to the FPGA fabric used  
by customer designs) is released and the configuration is finished. The  
CONF_DONE, nCEO, and nSTATUSpins fail to respond, as the output  
buffer cannot drive out because the hot-socketing circuitry keeps the I/O  
pins tristated at this low VCC voltage. Therefore, the hot-socketing circuit  
has been removed on these configuration output or bidirectional pins to  
ensure that they are able to operate during configuration. These pins are  
expected to drive out during power-up and power-down sequences.  
Hot-Socketing  
Feature  
Implementation  
in Cyclone II  
Devices  
Each I/O pin has the circuitry shown in Figure 4–1.  
Altera Corporation  
February 2007  
4–3  
Cyclone II Device Handbook, Volume 1  
Hot-Socketing Feature Implementation in Cyclone II Devices  
Figure 4–1. Hot-Socketing Circuit Block Diagram for Cyclone II Devices  
Power-On  
Reset  
Monitor  
Output  
Weak  
Pull-Up  
R
Output Enable  
Resistor  
Voltage  
Tolerance  
Control  
Hot Socket  
PAD  
Output  
Pre-Driver  
Input Buffer  
to Logic Array  
The POR circuit monitors VCCINT voltage level and keeps I/O pins  
tri-stated until the device is in user mode. The weak pull-up resistor (R)  
from the I/O pin to VCCIO keeps the I/O pins from floating. The voltage  
tolerance control circuit permits the I/O pins to be driven by 3.3 V before  
VCCIO and/or VCCINT are powered, and it prevents the I/O pins from  
driving out when the device is not in user mode.  
f
For more information, see the DC Characteristics & Timing Specifications  
chapter in Volume 1 of the Cyclone II Device Handbook for the value of the  
internal weak pull-up resistors.  
Figure 4–2 shows a transistor level cross section of the Cyclone II device  
I/O buffers. This design ensures that the output buffers do not drive  
when VCCIO is powered before VCCINT or if the I/O pad voltage is higher  
than VCCIO. This also applies for sudden voltage spikes during hot  
socketing. The VPAD leakage current charges the voltage tolerance control  
circuit capacitance.  
4–4  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Hot Socketing & Power-On Reset  
Figure 4–2. Transistor Level Diagram of FPGA Device I/O Buffers  
V
Logic Array  
Signal  
PAD  
(1)  
(2)  
V
CCIO  
n+  
n+  
p+  
p+  
n+  
n-well  
p-well  
p-substrate  
Notes to Figure 4–2:  
(1) This is the logic array signal or the larger of either the VCCIO or VPAD signal.  
(2) This is the larger of either the VCCIO or VPAD signal.  
Cyclone II devices contain POR circuitry to keep the device in a reset state  
until the power supply voltage levels have stabilized during power-up.  
The POR circuit monitors the VCCINT voltage levels and tri-states all user  
I/O pins until the VCC reaches the recommended operating levels. In  
addition, the POR circuitry also monitors the VCCIO level of the two I/O  
banks that contains configuration pins (I/O banks 1 and 3 for EP2C5 and  
EP2C8, I/O banks 2 and 6 for EP2C15A, EP2C20, EP2C35, EP2C50, and  
EP2C70) and tri-states all user I/O pins until the VCC reaches the  
recommended operating levels.  
Power-On Reset  
Circuitry  
After the Cyclone II device enters user mode, the POR circuit continues to  
monitor the VCCINT voltage level so that a brown-out condition during  
user mode can be detected. If the VCCINT voltage sags below the POR trip  
point during user mode, the POR circuit resets the device. If the VCCIO  
voltage sags during user mode, the POR circuit does not reset the device.  
"Wake-up" Time for Cyclone II Devices  
In some applications, it may be necessary for a device to wake up very  
quickly in order to begin operation. The Cyclone II device family offers  
the Fast-On feature to support fast wake-up time applications. Devices  
that support the Fast-On feature are designated with an “A” in the  
ordering code and have stricter power up requirements compared to non-  
A devices.  
Altera Corporation  
February 2007  
4–5  
Cyclone II Device Handbook, Volume 1  
Power-On Reset Circuitry  
For Cyclone II devices, wake-up time consists of power-up, POR,  
configuration, and initialization. The device must properly go through all  
four stages to configure correctly and begin operation. You can calculate  
wake-up time using the following equation:  
Wake-Up Time = V Ramp Time + POR Time + Configuration Time + Initialization Time  
CC  
Figure 4–3 illustrates the components of wake up time.  
Figure 4–3. Cyclone II Wake-Up Time  
Voltage  
V
Minimum  
CC  
Time  
V
Ramp  
CC  
Time  
POR Time  
Configuration Time  
Initialization  
Time  
User  
Mode  
Note to Figure 4–3:  
(1) VCC ramp must be monotonic.  
The VCC ramp time and POR time will depend on the device  
characteristics and the power supply used in your system. The fast-on  
devices require a maximum VCC ramp time of 2 ms and have a maximum  
POR time of 12 ms.  
Configuration time will depend on the configuration mode chosen and  
the configuration file size. You can calculate configuration time by  
multiplying the number of bits in the configuration file with the period of  
the configuration clock. For fast configuration times, you should use  
Passive Serial (PS) configuration mode with maximum DCLK frequency  
of 100 MHz. In addition, you can use compression to reduce the  
configuration file size and speed up the configuration time. The tCD2UM  
or tCD2UMC parameters will determine the initialization time.  
1
For more information on the tCD2UM or tCD2UMC parameters, refer  
to the Configuring Cyclone II Devices chapter in the Cyclone II  
Device Handbook.  
4–6  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2007  
Hot Socketing & Power-On Reset  
If you cannot meet the maximum VCC ramp time requirement, you must  
use an external component to hold nCONFIGlow until the power supplies  
have reached their minimum recommend operating levels. Otherwise,  
the device may not properly configure and enter user mode.  
Cyclone II devices are hot socketable and support all power-up and  
power-down sequences with the one requirement that VCCIO and VCCINT  
be powered up and down within 100 ms of each other to keep the I/O  
pins from driving out. Cyclone II devices do not require any external  
devices for hot socketing and power sequencing.  
Conclusion  
Table 4–1 shows the revision history for this document.  
Document  
Revision History  
Table 4–1. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
February 2007  
v3.1  
Added document revision history.  
Updated “I/O Pins Remain Tri-Stated during Power-Up”  
section.  
Updated “Power-On Reset Circuitry” section.  
Added footnote to Figure 4–3.  
Specified VCCIO and VCCINT  
supplies must be GND  
when "not powered".  
Added clarification about  
input-tristate behavior.  
Added infomation on VCC  
monotonic ramp.  
July 2005 v2.0  
Updated technical content throughout.  
Removed ESD section.  
February 2005  
v1.1  
June 2004 v1.0 Added document to the Cyclone II Device Handbook.  
Altera Corporation  
February 2007  
4–7  
Cyclone II Device Handbook, Volume 1  
Document Revision History  
4–8  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  
5. DC Characteristics and  
Timing Specifications  
CII51005-4.0  
Cyclone® II devices are offered in commercial, industrial, automotive,  
and extended temperature grades. Commercial devices are offered in –6  
(fastest), –7, and –8 speed grades.  
Operating  
Conditions  
All parameter limits are representative of worst-case supply voltage and  
junction temperature conditions. Unless otherwise noted, the parameter  
values in this chapter apply to all Cyclone II devices. AC and DC  
characteristics are specified using the same numbers for commercial,  
industrial, and automotive grades. All parameters representing voltages  
are measured with respect to ground.  
Tables 5–1 through 5–4 provide information on absolute maximum  
ratings.  
Table 5–1. Cyclone II Device Absolute Maximum Ratings  
Notes (1), (2)  
Minimum Maximum  
Symbol Parameter Conditions  
Unit  
V
VCCINT  
VCCIO  
Supply voltage  
With respect to ground  
–0.5  
–0.5  
–0.5  
–0.5  
–25  
–65  
1.8  
4.6  
1.8  
4.6  
40  
Output supply voltage  
PLL [1..4] PLL supply voltage  
DC input voltage (3)  
V
VCCA  
VIN  
_
V
V
IOUT  
TSTG  
TJ  
DC output current, per pin  
Storage temperature  
No bias  
mA  
°C  
°C  
150  
125  
Junction temperature  
BGA packages under bias  
Notes to Table 5–1:  
(1) Conditions beyond those listed in this table cause permanent damage to a device. These are stress ratings only.  
Functional operation at these levels or any other conditions beyond those specified in this chapter is not implied.  
Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse  
effect on the device reliability.  
(2) Refer to the Operating Requirements for Altera Devices Data Sheet for more information.  
(3) During transitions, the inputs may overshoot to the voltage shown in Table 5–4 based upon the input duty cycle.  
The DC case is equivalent to 100% duty cycle. During transition, the inputs may undershoot to –2.0 V for input  
currents less than 100 mA and periods shorter than 20 ns.  
Altera Corporation  
February 2008  
5–1  
Operating Conditions  
Table 5–2 specifies the recommended operating conditions for Cyclone II  
devices. It shows the allowed voltage ranges for VCCINT, VCCIO, and the  
operating junction temperature (TJ). The LVTTL and LVCMOS inputs are  
powered by VCCIO only. The LVDS and LVPECL input buffers on  
dedicated clock pins are powered by VCCINT. The SSTL, HSTL, LVDS  
input buffers are powered by both VCCINT and VCCIO  
.
Table 5–2. Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Minimum  
Maximum  
Unit  
VCCINT  
Supply voltage for internal  
logic and input buffers  
(1)  
1.15  
1.25  
V
VCCIO (2)  
Supply voltage for output  
buffers, 3.3-V operation  
(1)  
(1)  
(1)  
(1)  
3.135 (3.00)  
2.375  
3.465 (3.60)  
V
V
V
V
(3)  
Supply voltage for output  
buffers, 2.5-V operation  
2.625  
Supply voltage for output  
buffers, 1.8-V operation  
1.71  
1.89  
Supply voltage for output  
buffers, 1.5-V operation  
1.425  
1.575  
TJ  
Operating junction  
temperature  
For commercial use  
For industrial use  
0
85  
°C  
°C  
°C  
–40  
–40  
100  
125  
For extended  
temperature use  
For automotive use  
–40  
125  
°C  
Notes to Table 5–2:  
(1) The VCC must rise monotonically. The maximum VCC (both VCCIO and VCCINT) rise time is 100 ms for non-A devices  
and 2 ms for A devices.  
(2) The VCCIO range given here spans the lowest and highest operating voltages of all supported I/O standards. The  
recommended VCCIO range specific to each of the single-ended I/O standards is given in Table 5–6, and those  
specific to the differential standards is given in Table 5–8.  
(3) The minimum and maximum values of 3.0 V and 3.6 V, respectively, for VCCIO only applies to the PCI and PCI-X  
I/O standards. Refer to Table 5–6 for the voltage range of other I/O standards.  
5–2  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–3. DC Characteristics for User I/O, Dual-Purpose, and Dedicated Pins (Part 1 of 2)  
Symbol  
Parameter  
Conditions  
(1), (2)  
Minimum Typical Maximum Unit  
VIN  
Input voltage  
–0.5  
–10  
4.0  
10  
V
Ii  
Input pin leakage  
current  
VIN = VCCIOmax to 0 V (3)  
μA  
VOUT  
IOZ  
Output voltage  
0
VCCIO  
10  
V
Tri-stated I/O pin  
leakage current  
VOUT = VCCIOmax to 0 V (3)  
–10  
μA  
ICCINT0  
VCCINT supply  
current (standby)  
VIN = ground,  
no load, no  
toggling inputs  
TJ = 25° C  
Nominal  
EP2C5/A  
EP2C8/A  
EP2C15A  
EP2C20/A  
EP2C35  
EP2C50  
EP2C70  
EP2C5/A  
EP2C8/A  
EP2C15A  
EP2C20/A  
EP2C35  
EP2C50  
EP2C70  
0.010  
0.017  
0.037  
0.037  
0.066  
0.101  
0.141  
0.7  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
A
A
A
A
VCCINT  
A
A
A
ICCIO0  
VCCIO supply current VIN = ground,  
(standby)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
no load, no  
toggling inputs  
TJ = 25° C  
0.8  
0.9  
VCCIO = 2.5 V  
0.9  
1.3  
1.3  
1.7  
Altera Corporation  
February 2008  
5–3  
Cyclone II Device Handbook, Volume 1  
Operating Conditions  
Table 5–3. DC Characteristics for User I/O, Dual-Purpose, and Dedicated Pins (Part 2 of 2)  
Symbol  
Parameter  
Conditions  
IN = 0 V; VCCIO = 3.3 V  
IN = 0 V; VCCIO = 2.5 V  
IN = 0 V; VCCIO = 1.8 V  
IN = 0 V; VCCIO = 1.5 V  
IN = 0 V; VCCIO = 1.2 V  
(7)  
Minimum Typical Maximum Unit  
RCONF (5) (6) Value of I/O pin  
pull-up resistor  
V
V
V
V
V
10  
15  
30  
40  
50  
25  
35  
50  
75  
90  
1
50  
70  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
before and during  
configuration  
100  
150  
170  
2
Recommended  
value of I/O pin  
external pull-down  
resistor before and  
during configuration  
Notes to Table 5–3:  
(1) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are  
powered.  
(2) The minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to the  
voltages shown in Table 5–4, based on input duty cycle for input currents less than 100 mA. The overshoot is  
dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.  
(3) This value is specified for normal device operation. The value may vary during power-up. This applies for all VCCIO  
settings (3.3, 2.5, 1.8, and 1.5 V).  
(4) Maximum values depend on the actual TJ and design utilization. See the Excel-based PowerPlay Early Power  
Estimator (www.altera.com) or the Quartus II PowerPlay Power Analyzer feature for maximum values. Refer to  
“Power Consumption” on page 5–13 for more information.  
(5) RCONF values are based on characterization. RCONF = VCCIO/IRCONF. RCONF values may be different if VIN value is  
not 0 V. Pin pull-up resistance values will be lower if an external source drives the pin higher than VCCIO  
.
(6) Minimum condition at –40°C and high VCC, typical condition at 25°C and nominal VCC and maximum condition at  
125°C and low VCC for RCONF values.  
(7) These values apply to all VCCIO settings.  
Table 5–4 shows the maximum VIN overshoot voltage and the  
dependency on the duty cycle of the input signal. Refer to Table 5–3 for  
more information.  
Table 5–4. VIN Overshoot Voltage for All Input Buffers  
Maximum VIN (V)  
Input Signal Duty Cycle  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
100% (DC)  
90%  
50%  
30%  
17%  
10%  
5–4  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Single-Ended I/O Standards  
Tables 5–6 and 5–7 provide operating condition information when using  
single-ended I/O standards with Cyclone II devices. Table 5–5 provides  
descriptions for the voltage and current symbols used in Tables 5–6 and  
5–7.  
Table 5–5. Voltage and Current Symbol Definitions  
Symbol  
Definition  
VCCIO  
Supply voltage for single-ended inputs and for output drivers  
Reference voltage for setting the input switching threshold  
Input voltage that indicates a low logic level  
VREF  
VIL  
VIH  
Input voltage that indicates a high logic level  
Output voltage that indicates a low logic level  
Output voltage that indicates a high logic level  
Output current condition under which VOL is tested  
Output current condition under which VOH is tested  
VOL  
VOH  
IOL  
IOH  
VTT  
Voltage applied to a resistor termination as specified by  
HSTL and SSTL standards  
Table 5–6. Recommended Operating Conditions for User I/O Pins Using Single-Ended I/O Standards  
Note (1) (Part 1 of 2)  
VCCIO (V)  
VREF (V)  
VIL (V)  
VIH (V)  
I/O Standard  
Min  
Typ  
Max  
Min  
Typ  
Max  
Max  
Min  
3.3-VLVTTLand 3.135  
LVCMOS  
3.3  
3.465  
0.8  
1.7  
2.5-VLVTTLand 2.375  
LVCMOS  
2.5  
1.8  
2.625  
1.890  
0.7  
1.7  
1.8-VLVTTLand 1.710  
LVCMOS  
0.35 × VCCIO  
0.65 × VCCIO  
1.5-V LVCMOS  
PCI and PCI-X  
SSTL-2 class I  
1.425  
3.000  
2.375  
1.5  
3.3  
2.5  
1.575  
3.600  
2.625  
0.35 × VCCIO  
0.3 × VCCIO  
0.65 × VCCIO  
0.5 × VCCIO  
1.19  
1.25  
1.31  
VREF – 0.18 (DC) VREF + 0.18 (DC)  
VREF – 0.35 (AC) VREF + 0.35 (AC)  
SSTL-2 class II  
SSTL-18 class I  
2.375  
1.7  
2.5  
1.8  
2.625  
1.9  
1.19  
1.25  
0.9  
1.31  
VREF – 0.18 (DC) VREF + 0.18 (DC)  
VREF – 0.35 (AC) VREF + 0.35 (AC)  
0.833  
0.969  
V
REF – 0.125 (DC) VREF + 0.125 (DC)  
VREF – 0.25 (AC) VREF + 0.25 (AC)  
Altera Corporation  
February 2008  
5–5  
Cyclone II Device Handbook, Volume 1  
Operating Conditions  
Table 5–6. Recommended Operating Conditions for User I/O Pins Using Single-Ended I/O Standards  
Note (1) (Part 2 of 2)  
VCCIO (V)  
VREF (V)  
VIL (V)  
Max  
VIH (V)  
Min  
I/O Standard  
Min  
Typ  
Max  
Min  
Typ  
Max  
SSTL-18 class II  
1.7  
1.8  
1.9  
0.833  
0.9  
0.969 VREF – 0.125 (DC) VREF + 0.125 (DC)  
VREF – 0.25 (AC) VREF + 0.25 (AC)  
1.8-V HSTL  
class I  
1.71  
1.71  
1.8  
1.8  
1.5  
1.5  
1.89  
1.89  
0.85  
0.85  
0.71  
0.71  
0.9  
0.9  
0.95  
0.95  
0.79  
0.79  
VREF – 0.1 (DC)  
VREF – 0.2 (AC)  
VREF + 0.1 (DC)  
VREF + 0.2 (AC)  
1.8-V HSTL  
class II  
VREF – 0.1 (DC)  
VREF – 0.2 (AC)  
VREF + 0.1 (DC)  
VREF + 0.2 (AC)  
1.5-V HSTL  
class I  
1.425  
1.425  
1.575  
1.575  
0.75  
0.75  
VREF – 0.1 (DC)  
VREF – 0.2 (AC)  
VREF + 0.1 (DC)  
VREF + 0.2 (AC)  
1.5-V HSTL  
class II  
VREF – 0.1 (DC)  
VREF – 0.2 (AC)  
VREF + 0.1 (DC)  
VREF + 0.2 (AC)  
Note to Table 5–6:  
(1) Nominal values (Nom) are for TA = 25° C, VCCINT = 1.2 V, and VCCIO = 1.5, 1.8, 2.5, and 3.3 V.  
Table 5–7. DC Characteristics of User I/O Pins Using Single-Ended Standards Notes (1), (2) (Part 1 of 2)  
Test Conditions Voltage Thresholds  
I/O Standard  
IOL (mA)  
IOH (mA)  
Maximum VOL (V)  
Minimum VOH (V)  
3.3-V LVTTL  
4
0.1  
1
–4  
–0.1  
–1  
0.45  
0.2  
2.4  
VCCIO – 0.2  
2.0  
3.3-V LVCMOS  
2.5-V LVTTL and  
LVCMOS  
0.4  
1.8-V LVTTL and  
LVCMOS  
2
2
–2  
–2  
0.45  
VCCIO – 0.45  
0.75 × VCCIO  
1.5-V LVTTL and  
LVCMOS  
0.25 × VCCIO  
PCI and PCI-X  
1.5  
8.1  
16.4  
6.7  
13.4  
8
–0.5  
–8.1  
–16.4  
–6.7  
–13.4  
–8  
0.1 × VCCIO  
VTT – 0.57  
0.9 × VCCIO  
VTT + 0.57  
SSTL-2 class I  
SSTL-2 class II  
SSTL-18 class I  
SSTL-18 class II  
1.8-V HSTL class I  
1.8-V HSTL class II  
V
TT – 0.76  
VTT + 0.76  
V
TT – 0.475  
0.28  
VTT + 0.475  
VCCIO – 0.28  
VCCIO – 0.4  
VCCIO – 0.4  
0.4  
16  
–16  
0.4  
5–6  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–7. DC Characteristics of User I/O Pins Using Single-Ended Standards Notes (1), (2) (Part 2 of 2)  
Test Conditions  
Voltage Thresholds  
I/O Standard  
I
OL (mA)  
IOH (mA)  
Maximum VOL (V)  
Minimum VOH (V)  
1.5-V HSTL class I  
1.5V HSTL class II  
8
–8  
0.4  
0.4  
VCCIO – 0.4  
VCCIO – 0.4  
16  
–16  
Notes to Table 5–7:  
(1) The values in this table are based on the conditions listed in Tables 5–2 and 5–6.  
(2) This specification is supported across all the programmable drive settings available as shown in the Cyclone II  
Architecture chapter of the Cyclone II Device Handbook.  
Differential I/O Standards  
The RSDS and mini-LVDS I/O standards are only supported on output  
pins. The LVDS I/O standard is supported on both receiver input pins  
and transmitter output pins.  
1
For more information on how these differential I/O standards  
are implemented, refer to the High-Speed Differential Interfaces in  
Cyclone II Devices chapter of the Cyclone II Device Handbook.  
Figure 5–1 shows the receiver input waveforms for all differential I/O  
standards (LVDS, LVPECL, differential 1.5-V HSTL class I and II,  
differential 1.8-V HSTL class I and II, differential SSTL-2 class I and II, and  
differential SSTL-18 class I and II).  
Altera Corporation  
February 2008  
5–7  
Cyclone II Device Handbook, Volume 1  
Operating Conditions  
Figure 5–1. Receiver Input Waveforms for Differential I/O Standards  
Single-Ended Waveform  
Positive Channel (p) = V  
IH  
V
(1)  
ID  
Negative Channel (n) = V  
Ground  
IL  
V
(2)  
ICM  
Differential Waveform (Mathematical Function of Positive and Negative Channel)  
V
(1)  
ID  
0 V  
(1)  
V
ID  
p n (3)  
Notes to Figure 5–1:  
(1) VID is the differential input voltage. VID = |p – n|.  
(2) VICM is the input common mode voltage. VICM = (p + n)/2.  
(3) The p – n waveform is a function of the positive channel (p) and the negative channel (n).  
5–8  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–8 shows the recommended operating conditions for user I/O  
pins with differential I/O standards.  
Table 5–8. Recommended Operating Conditions for User I/O Pins Using Differential Signal I/O Standards  
V
CCIO (V)  
VID (V) (1)  
VICM (V)  
Typ  
VIL (V)  
VIH (V)  
I/O  
Standard  
Min Typ Max Min Typ Max  
Min  
Max Min Max  
Min Max  
LVDS  
2.375 2.5 2.625 0.1  
0.65  
0.1  
2.0  
Mini-LVDS 2.375 2.5 2.625  
(2)  
RSDS (2)  
2.375 2.5 2.625  
0
LVPECL  
3.135 3.3 3.465 0.1  
0.6  
0.95  
2.2  
2.1  
2.88  
(3) (6)  
Differential 1.425 1.5 1.575 0.2  
1.5-V HSTL  
class I  
VCCIO 0.68  
+ 0.6  
0.9  
VREF VREF  
– 0.20 + 0.20  
and II (4)  
Differential  
1.8-V HSTL  
class I  
1.71  
1.8 1.89  
VREF VREF  
– 0.20 + 0.20  
and II (4)  
Differential 2.375 2.5 2.625 0.36  
SSTL-2  
class I  
VCCIO 0.5 × 0.5 × 0.5 ×  
VCCIO VCCIO VCCIO  
– 0.2 + 0.2  
VREF VREF  
– 0.35 + 0.35  
+ 0.6  
and II (5)  
Differential  
SSTL-18  
class I  
1.7  
1.8  
1.9  
0.25  
VCCIO 0.5 × 0.5 × 0.5 ×  
VCCIO VCCIO VCCIO  
– 0.2 + 0.2  
VREF VREF  
– 0.25 + 0.25  
+ 0.6  
and II (5)  
Notes to Table 5–8:  
(1) Refer to the High-Speed Differential Interfaces in Cyclone II Devices chapter of the Cyclone II Device Handbook for  
measurement conditions on VID  
(2) The RSDS and mini-LVDS I/O standards are only supported on output pins.  
.
(3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output  
pins.  
(4) The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock  
pins.  
(5) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock  
pins.  
(6) The LVPECL clock inputs are powered by VCCINT and support all VCCIO settings. However, it is recommended to  
connect VCCIO to typical value of 3.3V.  
Altera Corporation  
February 2008  
5–9  
Cyclone II Device Handbook, Volume 1  
Operating Conditions  
Figure 5–2 shows the transmitter output waveforms for all supported  
differential output standards (LVDS, mini-LVDS, RSDS, differential 1.5-V  
HSTL class I and II, differential 1.8-V HSTL class I and II, differential  
SSTL-2 class I and II, and differential SSTL-18 class I and II).  
Figure 5–2. Transmitter Output Waveforms for Differential I/O Standards  
Single-Ended Waveform  
Positive Channel (p) = V  
OH  
V
(1)  
OD  
Negative Channel (n) = V  
Ground  
OL  
V
(2)  
OCM  
Differential Waveform (Mathematical Function of Positive and Negative Channel)  
V
(1)  
OD  
0 V  
V
(1)  
OD  
p n (3)  
Notes to Figure 5–2:  
(1) VOD is the output differential voltage. VOD = |p – n|.  
(2) VOCM is the output common mode voltage. VOCM = (p + n)/2.  
(3) The p – n waveform is a function of the positive channel (p) and the negative channel (n).  
Table 5–9 shows the DC characteristics for user I/O pins with differential  
I/O standards.  
Table 5–9. DC Characteristics for User I/O Pins Using Differential I/O Standards Note (1) (Part 1 of 2)  
VOD (mV)  
ΔVOD (mV)  
VOCM (V)  
Typ  
VOH (V)  
VOL (V)  
I/O Standard  
Min Typ Max Min Max Min  
Max  
Min Max Min  
Max  
LVDS  
250  
300  
100  
600  
600  
600  
50  
50  
1.125  
1.125  
1.125  
1.25  
1.25  
1.25  
1.375  
1.375  
1.375  
mini-LVDS (2)  
RSDS (2)  
Differential 1.5-V  
HSTL class I  
and II (3)  
VCCIO  
– 0.4  
0.4  
5–10  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–9. DC Characteristics for User I/O Pins Using Differential I/O Standards Note (1) (Part 2 of 2)  
V
OD (mV)  
ΔVOD (mV)  
VOCM (V)  
VOH (V)  
VOL (V)  
I/O Standard  
Min Typ Max Min Max Min  
Typ  
Max  
Min Max Min  
Max  
Differential 1.8-V  
HSTL class I  
and II (3)  
VCCIO  
– 0.4  
0.4  
Differential  
SSTL-2 class I  
(4)  
VTT  
+
VTT –  
0.57  
0.57  
Differential  
SSTL-2 class II  
(4)  
VTT  
+
VTT –  
0.76  
0.76  
Differential  
SSTL-18 class I  
(4)  
0.5 ×  
0.5 ×  
0.5 × VTT  
+
VTT –  
0.475  
VCCIO VCCIO VCCIO  
0.475  
+
0.125  
0.125  
Differential  
SSTL-18 class II  
(4)  
0.5 ×  
0.5 ×  
0.5 × VCCIO  
0.28  
VCCIO VCCIO VCCIO  
– 0.28  
+
0.125  
0.125  
Notes to Table 5–9:  
(1) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output  
pins.  
(2) The RSDS and mini-LVDS I/O standards are only supported on output pins.  
(3) The differential 1.8-V HSTL and differential 1.5-V HSTL I/O standards are only supported on clock input pins and  
PLL output clock pins.  
(4) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock  
pins.  
Table 5–10 shows the types of pins that support bus hold circuitry.  
DC  
Characteristics  
for Different Pin  
Types  
Table 5–10. Bus Hold Support  
Pin Type  
Bus Hold  
I/O pins using single-ended I/O standards  
I/O pins using differential I/O standards  
Dedicated clock pins  
Yes  
No  
No  
No  
No  
JTAG  
Configuration pins  
Altera Corporation  
February 2008  
5–11  
Cyclone II Device Handbook, Volume 1  
DC Characteristics for Different Pin Types  
Table 5–11 specifies the bus hold parameters for general I/O pins.  
Table 5–11. Bus Hold Parameters  
Note (1)  
VCCIO Level  
2.5 V  
Parameter  
Conditions  
Unit  
1.8 V  
3.3 V  
Min  
Max  
Min  
Max  
Min  
Max  
Bus-hold low, sustaining  
current  
VIN  
>
30  
50  
70  
μA  
μA  
VIL(maximum)  
Bus-hold high, sustaining  
current  
VIN  
<
–30  
–50  
–70  
VIL(minimum)  
Bus-hold low, overdrive  
current  
0 V < VIN < VCCIO  
200  
–200  
1.07  
300  
–300  
1.7  
500  
–500  
2.0  
μA  
μA  
V
Bus-hold high, overdrive  
current  
0 V < VIN < VCCIO  
Bus-hold trip point (2)  
0.68  
0.7  
0.8  
Notes to Table 5–11:  
(1) There is no specification for bus-hold at VCCIO = 1.5 V for the HSTL I/O standard.  
(2) The bus-hold trip points are based on calculated input voltages from the JEDEC standard.  
On-Chip Termination Specifications  
Table 5–12 defines the specifications for internal termination resistance  
tolerance when using series or differential on-chip termination.  
Table 5–12. Series On-Chip Termination Specifications  
Resistance Tolerance  
Extended/  
Symbol  
Description  
Conditions  
Commercial Industrial  
Automotive Unit  
Temp Max  
Max  
Max  
25-Ω RS  
50-Ω RS  
50-Ω RS  
Internal series termination without VCCIO = 3.3V  
calibration (25-Ω setting)  
30  
30  
40  
40  
50  
%
%
%
Internal series termination without VCCIO = 2.5V  
calibration (50-Ω setting)  
30  
30  
40  
Internal series termination without VCCIO = 1.8V  
calibration (50-Ω setting)  
30 (1)  
Note to Table 5–12:  
(1) For commercial –8 devices, the tolerance is 40%.  
5–12  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–13 shows the Cyclone II device pin capacitance for different I/O  
pin types.  
Table 5–13. Device Capacitance Note (1)  
Symbol  
Parameter  
Typical  
Unit  
pF  
CIO  
Input capacitance for user I/O pin.  
6
6
CLVDS  
CVREF  
CCLK  
Input capacitance for dual-purpose  
LVDS/user I/O pin.  
pF  
21  
5
pF  
pF  
Input capacitance for dual-purpose VREF  
pin when used as VREFor user I/O pin.  
Input capacitance for clock pin.  
Note to Table 5–13:  
(1) Capacitance is sample-tested only. Capacitance is measured using time-domain  
reflectometry (TDR). Measurement accuracy is within 0.5 pF.  
You can calculate the power usage for your design using the PowerPlay  
Early Power Estimator and the PowerPlay Power Analyzer feature in the  
Quartus® II software.  
Power  
Consumption  
The interactive PowerPlay Early Power Estimator is typically used  
during the early stages of FPGA design, prior to finalizing the project, to  
get a magnitude estimate of the device power. The Quartus II software  
PowerPlay Power Analyzer feature is typically used during the later  
stages of FPGA design. The PowerPlay Power Analyzer also allows you  
to apply test vectors against your design for more accurate power  
consumption modeling.  
In both cases, only use these calculations as an estimation of power, not  
as a specification. For more information on PowerPlay tools, refer to the  
PowerPlay Early Power Estimator User Guide and the Power Estimation and  
Analysis section in volume 3 of the Quartus II Handbook.  
1
You can obtain the Excel-based PowerPlay Early Power  
Estimator at www.altera.com. Refer to Table 5–3 on page 5–3 for  
typical ICC standby specifications.  
The power-up current required by Cyclone II devices does not exceed the  
maximum static current. The rate at which the current increases is a  
function of the system power supply. The exact amount of current  
consumed varies according to the process, temperature, and power ramp  
rate. The duration of the ICCINT power-up requirement depends on the  
VCCINT voltage supply rise time.  
Altera Corporation  
February 2008  
5–13  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
You should select power supplies and regulators that can supply the  
amount of current required when designing with Cyclone II devices.  
Altera recommends using the Cyclone II PowerPlay Early Power  
Estimator to estimate the user-mode ICCINT consumption and then select  
power supplies or regulators based on the values obtained.  
The DirectDrive™ technology and MultiTrack™ interconnect ensure  
predictable performance, accurate simulation, and accurate timing  
analysis across all Cyclone II device densities and speed grades. This  
section describes and specifies the performance, internal, external,  
high-speed I/O, JTAG, and PLL timing specifications.  
Timing  
Specifications  
This section shows the timing models for Cyclone II devices. Commercial  
devices meet this timing over the commercial temperature range.  
Industrial devices meet this timing over the industrial temperature range.  
Automotive devices meet this timing over the automotive temperature  
range. Extended devices meet this timing over the extended temperature  
range. All specifications are representative of worst-case supply voltage  
and junction temperature conditions.  
Preliminary and Final Timing Specifications  
Timing models can have either preliminary or final status. The Quartus II  
software issues an informational message during the design compilation  
if the timing models are preliminary. Table 5–14 shows the status of the  
Cyclone II device timing models.  
Preliminary status means the timing model is subject to change. Initially,  
timing numbers are created using simulation results, process data, and  
other known parameters. These tests are used to make the preliminary  
numbers as close to the actual timing parameters as possible.  
5–14  
Altera Corporation  
Cyclone II Device Handbook, Volume 1  
February 2008  
DC Characteristics and Timing Specifications  
Final timing numbers are based on actual device operation and testing.  
These numbers reflect the actual performance of the device under  
worst-case voltage and junction temperature conditions.  
Table 5–14. Cyclone II Device Timing Model Status  
Device  
Speed Grade  
Commercial/Industrial  
Automotive  
Preliminary  
Final  
EP2C5/A  
EP2C8/A  
EP2C15A  
EP2C20/A  
v
v
Commercial/Industrial  
Automotive  
v
v
Commercial/Industrial  
Automotive  
v
v
Commercial/Industrial  
Automotive  
v
v
EP2C35  
EP2C50  
EP2C70  
Commercial/Industrial  
Commercial/Industrial  
Commercial/Industrial  
v
v
v
Performance  
Table 5–15 shows Cyclone II performance for some common designs. All  
performance values were obtained with Quartus II software compilation  
of LPM, or MegaCore functions for the FIR and FFT designs.  
Table 5–15. Cyclone II Performance (Part 1 of 4)  
Resources Used  
Performance (MHz)  
–7 –7  
Speed Speed  
Grade Grade  
M4K  
LEs Memory  
Blocks  
–6  
Speed  
Grade  
–8  
Speed  
Grade  
Applications  
DSP  
Blocks  
(6)  
(7)  
LE  
16-to-1 multiplexer (1)  
32-to-1 multiplexer (1)  
16-bit counter  
21  
38  
16  
64  
0
0
0
0
0
0
0
0
385.35 313.97 270.85 286.04  
294.2  
401.6  
260.75 228.78 191.02  
349.4 310.65 310.65  
64-bit counter  
157.15 137.98 126.08 126.27  
Altera Corporation  
February 2008  
5–15  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–15. Cyclone II Performance (Part 2 of 4)  
Resources Used  
Performance (MHz)  
–7 –7  
Speed Speed  
Grade Grade  
M4K  
LEs Memory  
Blocks  
–6  
Speed  
Grade  
–8  
Speed  
Grade  
Applications  
DSP  
Blocks  
(6)  
(7)  
Memory Simple dual-port RAM 128 × 36 bit  
0
0
1
1
1
1
1
0
0
0
0
0
235.29 194.93 163.13 163.13  
235.29 194.93 163.13 163.13  
235.29 194.93 163.13 163.13  
M4K  
(3), (5)  
block  
True dual-port RAM 128 × 18 bit  
(3), (5)  
FIFO 128 × 16 bit  
(5)  
32  
0
Simple dual-port RAM 128 × 36 bit  
(4),(5)  
210.08  
195.0 163.02 163.02  
True dual-port RAM 128x18 bit  
0
163.02 163.02 163.02 163.02  
(4),(5)  
DSP  
block  
9 × 9-bit multiplier (2)  
0
0
0
0
1
1
8
4
9
260.01 216.73 180.57 180.57  
260.01 216.73 180.57 180.57  
182.74 147.47 127.74 122.98  
153.56 131.25 110.44 110.57  
18 × 18-bit multiplier (2)  
18-bit, 4 tap FIR filter  
113  
52  
0
Larger  
Designs  
8-bit, 16 tap parallel FIR filter  
0
8-bit, 1024 pt, Streaming,  
3 Mults/5 Adders FFT function  
3191  
22  
235.07  
235.07  
235.07  
195.0 147.51 163.02  
8-bit, 1024 pt, Streaming,  
4 Mults/2 Adders FFT function  
3041  
1056  
22  
5
12  
3
195.0 146.3 163.02  
8-bit, 1024 pt, Single Output,  
1 Parallel FFT Engine, Burst,  
3 Mults/5 Adders FFT function  
195.0 147.84 163.02  
195.0 149.99 163.02  
195.0 149.61 163.02  
195.0 149.34 163.02  
195.0 148.21 163.02  
8-bit, 1024 pt, Single Output,  
1 Parallel FFT Engine, Burst,  
4 Mults/2 Adders FFT function  
1006  
1857  
1757  
2550  
5
4
6
8
9
235.07  
200.0  
8-bit, 1024 pt, Single Output,  
2 Parallel FFT Engines, Burst,  
3 Mults/5 Adders FFT function  
10  
10  
10  
8-bit, 1024 pt, Single Output,  
2 Parallel FFT Engines, Burst,  
4 Mults/2 Adders FFT function  
200.0  
8-bit, 1024 pt, Quad Output,  
1 Parallel FFT Engine, Burst,  
3 Mults/5 Adders FFT function  
235.07  
5–16  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–15. Cyclone II Performance (Part 3 of 4)  
Resources Used  
Performance (MHz)  
–7 –7  
Speed Speed  
Grade Grade  
M4K  
LEs Memory  
Blocks  
–6  
Speed  
Grade  
–8  
Speed  
Grade  
Applications  
DSP  
Blocks  
(6)  
(7)  
Larger  
8-bit, 1024 pt, Quad Output,  
2400  
4343  
4043  
7496  
6896  
2934  
10  
14  
14  
28  
28  
18  
12  
18  
24  
36  
48  
9
235.07  
200.0  
200.0  
200.0  
200.0  
235.07  
195.0 140.11 163.02  
195.0 152.67 163.02  
195.0 149.72 163.02  
195.0 150.01 163.02  
195.0 151.33 163.02  
195.0 148.89 163.02  
Designs 1 Parallel FFT Engine, Burst,  
4 Mults/2 Adders FFT function  
8-bit, 1024 pt, Quad Output,  
2 Parallel FFT Engines, Burst,  
3 Mults/5 Adders FFT function  
8-bit, 1024 pt, Quad Output,  
2 Parallel FFT Engines, Burst,  
4 Mults/2 Adders FFT function  
8-bit, 1024 pt, Quad Output,  
4 Parallel FFT Engines, Burst,  
3 Mults/5 Adders FFT function  
8-bit, 1024 pt, Quad Output,  
4 Parallel FFT Engines, Burst,  
4 Mults/2 Adders FFT function  
8-bit, 1024 pt, Quad Output,  
1 Parallel FFT Engine, Buffered  
Burst,  
3 Mults/5 Adders FFT function  
8-bit, 1024 pt, Quad Output,  
1 Parallel FFT Engine, Buffered  
Burst,  
2784  
4720  
4420  
18  
30  
30  
12  
18  
24  
235.07  
200.0  
200.0  
195.0 151.51 163.02  
195.0 149.76 163.02  
195.0 151.08 163.02  
4 Mults/2 Adders FFT function  
8-bit, 1024 pt, Quad Output,  
2 Parallel FFT Engines, Buffered  
Burst,  
3 Mults/5 Adders FFT function  
8-bit, 1024 pt, Quad Output,  
2 Parallel FFT Engines, Buffered  
Burst,  
4 Mults/2 Adders FFT function  
Altera Corporation  
February 2008  
5–17  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–15. Cyclone II Performance (Part 4 of 4)  
Resources Used  
Performance (MHz)  
–7 –7  
Speed Speed  
Grade Grade  
M4K  
LEs Memory  
Blocks  
–6  
Speed  
Grade  
–8  
Speed  
Grade  
Applications  
DSP  
Blocks  
(6)  
(7)  
Larger  
8-bit, 1024 pt, Quad Output,  
8053  
60  
36  
200.0  
200.0  
195.0 149.23 163.02  
Designs 4 Parallel FFT Engines, Buffered  
Burst, 3 Mults/5 Adders FFT  
function  
8-bit, 1024 pt, Quad Output,  
4 Parallel FFT Engines, Buffered  
Burst, 4 Mults/2 Adders FFT  
function  
7453  
60  
48  
195.0 151.28 163.02  
Notes to Table 5–15 :  
(1) This application uses registered inputs and outputs.  
(2) This application uses registered multiplier input and output stages within the DSP block.  
(3) This application uses the same clock source for both A and B ports.  
(4) This application uses independent clock sources for A and B ports.  
(5) This application uses PLL clock outputs that are globally routed to connect and drive M4K clock ports. Use of  
non-PLL clock sources or local routing to drive M4K clock ports may result in lower performance numbers than  
shown here. Refer to the Quartus II timing report for actual performance numbers.  
(6) These numbers are for commercial devices.  
(7) These numbers are for automotive devices.  
Internal Timing  
Refer to Tables 5–16 through 5–19 for the internal timing parameters.  
Table 5–16. LE_FF Internal Timing Microparameters (Part 1 of 2)  
–6 Speed Grade (1)  
–7 Speed Grade (2)  
–8 Speed Grade (3)  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
TSU  
–36  
–40  
–38  
306  
286  
135  
141  
244  
217  
–40  
–40  
306  
306  
135  
141  
244  
244  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
TH  
266  
TCO  
TCLR  
141  
250  
277  
304  
191  
5–18  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–16. LE_FF Internal Timing Microparameters (Part 2 of 2)  
–6 Speed Grade (1) –7 Speed Grade (2)  
–8 Speed Grade (3)  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
TPRE  
191  
244  
217  
244  
244  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
TCLKL  
TCLKH  
tLUT  
1000  
1242  
1111  
1242  
1111  
172  
1242  
1242  
1242  
1242  
172  
1000  
180  
438  
545  
651  
180  
180  
Notes to Table 5–16:  
(1) For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices  
offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.  
(2) For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing  
parameter for automotive devices. The second row represents the minimum timing parameter for commercial  
devices.  
(3) For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing  
parameter for industrial devices. The second row represents the minimum timing parameter for commercial  
devices.  
Table 5–17. IOE Internal Timing Microparameters (Part 1 of 2)  
–6 Speed Grade (1)  
–7 Speed Grade (2)  
–8 Speed Grade (3)  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
TSU  
TH  
76  
101  
89  
101  
101  
106  
106  
95  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
88  
106  
97  
TCO  
99  
155  
95  
171  
187  
99  
99  
TPIN2COMBOUT_R  
TPIN2COMBOUT_C  
TCOMBIN2PIN_R  
384  
762  
366  
384  
367  
385  
1280  
1344  
784  
366  
384  
367  
385  
1280  
1344  
855  
385  
760  
783  
854  
1344  
2490  
2689  
2887  
Altera Corporation  
February 2008  
5–19  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–17. IOE Internal Timing Microparameters (Part 2 of 2)  
–6 Speed Grade (1)  
–7 Speed Grade (2)  
–8 Speed Grade (3)  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
TCOMBIN2PIN_C  
1418  
2622  
1352  
1418  
165  
2831  
1352  
1418  
165  
3041  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
TCLR  
137  
151  
165  
TPRE  
TCLKL  
TCLKH  
192  
233  
233  
212  
233  
1000  
1242  
1111  
1242  
1111  
1242  
1242  
1242  
1242  
1000  
Notes to Table 5–17:  
(1) For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices  
offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.  
(2) For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing  
parameter for automotive devices. The second row represents the minimum timing parameter for commercial  
devices.  
(3) For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing  
parameter for industrial devices. The second row represents the minimum timing parameter for commercial  
devices.  
Table 5–18. DSP Block Internal Timing Microparameters (Part 1 of 2)  
–6 Speed Grade (1)  
–7 Speed Grade (2)  
–8 Speed Grade (3)  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
TSU  
TH  
47  
62  
54  
62  
62  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
110  
113  
111  
0
113  
113  
0
TCO  
0
0
0
0
0
0
TINREG2PIPE9  
TINREG2PIPE18  
652  
1379  
621  
652  
621  
652  
1872  
621  
652  
621  
652  
2441  
652  
1379  
1872  
2441  
5–20  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–18. DSP Block Internal Timing Microparameters (Part 2 of 2)  
–6 Speed Grade (1)  
–7 Speed Grade (2)  
–8 Speed Grade (3)  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
TPIPE2OUTREG  
47  
104  
45  
142  
45  
185  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
47  
47  
TPD9  
529  
2470  
505  
3353  
505  
4370  
529  
529  
TPD18  
TCLR  
425  
2903  
406  
3941  
406  
5136  
425  
425  
2686  
3572  
3129  
2769  
2307  
2769  
2307  
3572  
3572  
2769  
2769  
2769  
2769  
TCLKL  
TCLKH  
1923  
1923  
Notes to Table 5–18:  
(1) For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices  
offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.  
(2) For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing  
parameter for automotive devices. The second row represents the minimum timing parameter for commercial  
devices.  
(3) For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing  
parameter for industrial devices. The second row represents the minimum timing parameter for commercial  
devices.  
Table 5–19. M4K Block Internal Timing Microparameters (Part 1 of 3)  
–6 Speed Grade (1) –7 Speed Grade (2) –8 Speed Grade (3)  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
TM4KRC  
2387  
3764  
2275  
2387  
46  
4248  
2275  
2387  
46  
4736  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
TM4KWERESU  
TM4KWEREH  
TM4KBESU  
35  
40  
46  
234  
267  
250  
46  
267  
267  
46  
35  
40  
46  
Altera Corporation  
February 2008  
5–21  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–19. M4K Block Internal Timing Microparameters (Part 2 of 3)  
–6 Speed Grade (1) –7 Speed Grade (2) –8 Speed Grade (3)  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
TM4KBEH  
234  
724  
3680  
267  
250  
46  
826  
4157  
267  
267  
46  
930  
4636  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
TM4KDATAASU  
TM4KDATAAH  
TM4KADDRASU  
TM4KADDRAH  
TM4KDATABSU  
TM4KDATABH  
TM4KRADDRBSU  
TM4KRADDRBH  
TM4KDATACO1  
TM4KDATACO2  
TM4KCLKH  
35  
40  
46  
234  
267  
250  
46  
267  
267  
46  
35  
40  
46  
234  
267  
250  
46  
267  
267  
46  
35  
40  
46  
234  
267  
250  
46  
267  
267  
46  
35  
40  
46  
234  
267  
250  
445  
466  
2234  
2345  
2769  
2307  
2769  
2307  
267  
267  
445  
466  
2234  
2345  
2769  
2769  
2769  
2769  
466  
2345  
1923  
TM4KCLKL  
1923  
5–22  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–19. M4K Block Internal Timing Microparameters (Part 3 of 3)  
–6 Speed Grade (1) –7 Speed Grade (2) –8 Speed Grade (3)  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
TM4KCLR  
191  
244  
217  
244  
244  
ps  
ps  
Notes to Table 5–19:  
(1) For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices  
offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.  
(2) For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing  
parameter for automotive devices. The second row represents the minimum timing parameter for commercial  
devices.  
(3) For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing  
parameter for industrial devices. The second row represents the minimum timing parameter for commercial  
devices.  
Cyclone II Clock Timing Parameters  
Refer to Tables 5–20 through 5–34 for Cyclone II clock timing parameters.  
Table 5–20. Cyclone II Clock Timing Parameters  
Symbol  
Parameter  
tCIN  
Delay from clock pad to I/O input register  
Delay from clock pad to I/O output register  
Delay from PLL inclkpad to I/O input register  
Delay from PLL inclkpad to I/O output register  
tCOUT  
tPLLCIN  
tPLLCOUT  
EP2C5/A Clock Timing Parameters  
Tables 5–21 and 5–22 show the clock timing parameters for EP2C5/A  
devices.  
Table 5–21. EP2C5/A Column Pins Global Clock Timing Parameters (Part 1 of 2)  
Fast Corner  
–7 Speed  
Grade  
(1)  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
Automotive  
tCIN  
1.283  
1.343  
1.358  
2.329  
2.363  
0.076  
2.484  
2.516  
0.038  
2.688  
2.717  
0.042  
2.688  
2.717  
0.052  
ns  
ns  
ns  
tCOUT  
1.297  
tPLLCIN  
–0.188  
–0.201  
Altera Corporation  
February 2008  
5–23  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–21. EP2C5/A Column Pins Global Clock Timing Parameters (Part 2 of 2)  
Fast Corner  
–7 Speed  
Grade  
(1)  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
Automotive  
tPLLCOUT  
–0.174  
–0.186  
0.11  
0.07  
0.071  
0.081  
ns  
Notes to Table 5–21:  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
Table 5–22. EP2C5/A Row Pins Global Clock Timing Parameters  
Fast Corner  
–7 Speed  
Grade  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
(1)  
Automotive  
tCIN  
1.212  
1.214  
1.267  
1.269  
2.210  
2.226  
2.351  
2.364  
2.54  
2.540  
2.548  
ns  
ns  
ns  
ns  
tCOUT  
2.548  
tPLLCIN  
tPLLCOUT  
–0.259  
–0.257  
–0.277  
–0.275  
–0.043  
–0.027  
–0.095  
–0.082  
–0.106  
–0.098  
–0.096  
–0.088  
Notes to Table 5–22:  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
EP2C8/A Clock Timing Parameters  
Tables 5–23 and 5–24 show the clock timing parameters for EP2C8/A  
devices.  
Table 5–23. EP2C8/A Column Pins Global Clock Timing Parameters (Part 1 of 2)  
Fast Corner  
–7 Speed  
Grade  
(1)  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
Automotive  
tCIN  
1.339  
1.404  
1.419  
2.405  
2.439  
0.055  
2.565  
2.597  
0.015  
2.764  
2.793  
0.016  
2.774  
2.803  
0.026  
ns  
ns  
ns  
tCOUT  
1.353  
tPLLCIN  
–0.193  
–0.204  
5–24  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–23. EP2C8/A Column Pins Global Clock Timing Parameters (Part 2 of 2)  
Fast Corner  
–7 Speed  
Grade  
(1)  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
Automotive  
tPLLCOUT  
–0.179  
–0.189  
0.089  
0.047  
0.045  
0.055  
ns  
Notes to Table 5–23:  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
Table 5–24. EP2C8/A Row Pins Global Clock Timing Parameters  
Fast Corner  
–7 Speed  
Grade  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
(1)  
Automotive  
tCIN  
1.256  
1.258  
1.314  
1.316  
2.270  
2.286  
–0.08  
–0.064  
2.416  
2.429  
2.596  
2.604  
2.606  
2.614  
ns  
ns  
ns  
ns  
tCOUT  
tPLLCIN  
tPLLCOUT  
–0.276  
–0.274  
–0.294  
–0.292  
–0.134  
–0.121  
–0.152  
–0.144  
–0.142  
–0.134  
Notes to Table 5–24:  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
EP2C15A Clock Timing Parameters  
Tables 5–25 and 5–26 show the clock timing parameters for EP2C15A  
devices.  
Table 5–25. EP2C15A Column Pins Global Clock Timing Parameters  
Fast Corner  
–7 Speed  
Grade  
(1)  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
Automotive  
tCIN  
1.621  
1.698  
1.713  
2.590  
2.624  
0.045  
2.766  
2.798  
0.008  
3.009  
3.038  
0.046  
2.989  
3.018  
0.016  
ns  
ns  
ns  
tCOUT  
1.635  
tPLLCIN  
–0.351  
–0.372  
Altera Corporation  
February 2008  
5–25  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–25. EP2C15A Column Pins Global Clock Timing Parameters  
Fast Corner  
–7 Speed  
–7 Speed  
Grade  
(2)  
–6 Speed  
–8 Speed  
Grade  
Parameter  
Grade  
Unit  
Industrial/  
Grade  
Commercial  
(1)  
Automotive  
tPLLCOUT  
–0.337  
–0.357  
0.079  
0.04  
0.075  
0.045  
ns  
Notes to Table 5–25:  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
Table 5–26. EP2C15A Row Pins Global Clock Timing Parameters  
Fast Corner  
–7 Speed  
Grade  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
(1)  
Automotive  
tCIN  
1.542  
1.544  
1.615  
1.617  
2.490  
2.506  
2.651  
2.664  
2.886  
2.894  
2.866  
2.874  
ns  
ns  
ns  
ns  
tCOUT  
tPLLCIN  
tPLLCOUT  
–0.424  
–0.422  
–0.448  
–0.446  
–0.057  
–0.041  
–0.107  
–0.094  
–0.077  
–0.069  
–0.107  
–0.099  
Notes to Table 5–26:  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
EP2C20/A Clock Timing Parameters  
Tables 5–27 and 5–28 show the clock timing parameters for EP2C20/A  
devices.  
Table 5–27. EP2C20/A Column Pins Global Clock Timing Parameters (Part 1 of 2)  
Fast Corner  
–7 Speed  
Grade  
(1)  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
Automotive  
tCIN  
1.621  
1.698  
1.713  
2.590  
2.624  
0.045  
2.766  
2.798  
0.008  
3.009  
3.038  
0.046  
2.989  
3.018  
0.016  
ns  
ns  
ns  
tCOUT  
1.635  
tPLLCIN  
–0.351  
–0.372  
5–26  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–27. EP2C20/A Column Pins Global Clock Timing Parameters (Part 2 of 2)  
Fast Corner  
–7 Speed  
Grade  
(1)  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
Automotive  
tPLLCOUT  
–0.337  
–0.357  
0.079  
0.04  
0.075  
0.045  
ns  
Notes to Table 5–27:  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
Table 5–28. EP2C20/A Row Pins Global Clock Timing Parameters  
Fast Corner  
–7 Speed  
Grade  
–7 Speed  
Grade  
(2)  
–6 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial/  
Commercial  
(1)  
Automotive  
tCIN  
1.542  
1.544  
1.615  
1.617  
2.490  
2.506  
2.651  
2.664  
2.886  
2.894  
2.866  
2.874  
ns  
ns  
ns  
ns  
tCOUT  
tPLLCIN  
tPLLCOUT  
–0.424  
–0.422  
–0.448  
–0.446  
–0.057  
–0.041  
–0.107  
–0.094  
–0.077  
–0.069  
–0.107  
–0.099  
Notes to Table 5–28:  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
EP2C35 Clock Timing Parameters  
Tables 5–29 and 5–30 show the clock timing parameters for EP2C35  
devices.  
Table 5–29. EP2C35 Column Pins Global Clock Timing Parameters  
Fast Corner  
–6 Speed  
Grade  
–7 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial  
Commercial  
1.569  
tCIN  
1.499  
1.513  
2.652  
2.686  
0.272  
0.306  
2.878  
2.910  
0.316  
0.348  
3.155  
3.184  
0.41  
ns  
ns  
ns  
ns  
tCOUT  
1.584  
tPLLCIN  
tPLLCOUT  
–0.026  
–0.012  
–0.032  
–0.017  
0.439  
Altera Corporation  
February 2008  
5–27  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–30. EP2C35 Row Pins Global Clock Timing Parameters  
Fast Corner  
–6 Speed  
–7 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.410  
Commercial  
1.476  
tCIN  
2.514  
2.530  
0.134  
0.15  
2.724  
2.737  
0.162  
0.175  
2.986  
2.994  
0.241  
0.249  
ns  
ns  
ns  
ns  
tCOUT  
1.412  
1.478  
tPLLCIN  
tPLLCOUT  
–0.117  
–0.115  
–0.127  
–0.125  
EP2C50 Clock Timing Parameters  
Tables 5–31 and 5–32 show the clock timing parameters for EP2C50  
devices.  
Table 5–31. EP2C50 Column Pins Global Clock Timing Parameters  
Fast Corner  
–6 Speed  
–7 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.575  
Commercial  
1.651  
tCIN  
2.759  
2.793  
0.113  
0.147  
2.940  
2.972  
0.075  
0.107  
3.174  
3.203  
0.089  
0.118  
ns  
ns  
ns  
ns  
tCOUT  
1.589  
1.666  
tPLLCIN  
tPLLCOUT  
–0.149  
–0.135  
–0.158  
–0.143  
Table 5–32. EP2C50 Row Pins Global Clock Timing Parameters  
Fast Corner  
–6 Speed  
–7 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.463  
Commercial  
1.533  
tCIN  
2.624  
2.640  
2.791  
2.804  
3.010  
3.018  
ns  
ns  
ns  
ns  
tCOUT  
1.465  
1.535  
tPLLCIN  
tPLLCOUT  
–0.261  
–0.259  
–0.276  
–0.274  
–0.022  
–0.006  
–0.074  
–0.061  
–0.075  
–0.067  
5–28  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
EP2C70 Clock Timing Parameters  
Tables 5–33 and 5–34 show the clock timing parameters for EP2C70  
devices.  
Table 5–33. EP2C70 Column Pins Global Clock Timing Parameters  
Fast Corner  
–6 Speed  
Grade  
–7 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Industrial  
Commercial  
1.651  
tCIN  
1.575  
1.589  
2.914  
2.948  
0.27  
3.105  
3.137  
0.268  
0.3  
3.174  
3.203  
0.089  
0.118  
ns  
ns  
ns  
ns  
tCOUT  
1.666  
tPLLCIN  
tPLLCOUT  
–0.149  
–0.135  
–0.158  
–0.143  
0.304  
Table 5–34. EP2C70 Row Pins Global Clock Timing Parameters  
Fast Corner  
–6 Speed  
–7 Speed  
Grade  
–8 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.463  
Commercial  
1.533  
tCIN  
2.753  
2.769  
0.109  
0.125  
2.927  
2.940  
0.09  
3.010  
3.018  
ns  
ns  
ns  
ns  
tCOUT  
1.465  
1.535  
tPLLCIN  
tPLLCOUT  
–0.261  
–0.259  
–0.276  
–0.274  
–0.075  
–0.067  
0.103  
Clock Network Skew Adders  
Table 5–35 shows the clock network specifications.  
Table 5–35. Clock Network Specifications  
Name  
Description  
Max  
Unit  
Clock skew adder  
EP2C5/A, EP2C8/A (1)  
Inter-clock network, same bank  
88  
88  
ps  
ps  
Inter-clock network, same side and  
entire chip  
Clock skew adder  
EP2C15A, EP2C20/A,  
EP2C35, EP2C50,  
EP2C70 (1)  
Inter-clock network, same bank  
118  
138  
ps  
ps  
Inter-clock network, same side and  
entire chip  
Note to Table 5–35:  
(1) This is in addition to intra-clock network skew, which is modeled in the  
Quartus II software.  
Altera Corporation  
February 2008  
5–29  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
IOE Programmable Delay  
Refer to Table 5–36 and 5–37 for IOE programmable delay.  
Table 5–36. Cyclone II IOE Programmable Delay on Column Pins Notes (1), (2)  
–7 Speed  
Grade  
Fast Corner  
–6 Speed  
Grade  
–8 Speed  
Grade  
Number  
of  
(3)  
(4)  
Parameter Paths Affected  
Unit  
Settings  
Min Max Min Max Min  
Max  
Min  
Max  
Offset Offset Offset Offset Offset Offset Offset Offset  
Input Delay Pad -> I/O  
from Pin to dataout to core  
Internal  
7
8
2
0
0
2233  
2344  
0
3827  
0
0
4232  
4088  
0
4349  
ps  
ps  
Cells  
Input Delay Pad -> I/O  
from Pin to input register  
Input  
0
0
2656  
2788  
0
4555  
0
0
4914  
4748  
0
4940  
ps  
ps  
Register  
Delay from I/O output  
0
0
303  
318  
0
563  
0
0
638  
617  
0
670  
ps  
ps  
Output  
register -> Pad  
Register to  
Output Pin  
Notes to Table 5–36:  
(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version  
of the Quartus II software.  
(2) The minimum and maximum offset timing numbers are in reference to setting “0” as available in the Quartus II  
software.  
(3) The value in the first row for each parameter represents the fast corner timing parameter for industrial and  
automotive devices. The second row represents the fast corner timing parameter for commercial devices.  
(4) The value in the first row is for automotive devices. The second row is for commercial devices.  
Table 5–37. Cyclone II IOE Programmable Delay on Row Pins Notes (1), (2) (Part 1 of 2)  
–6 Speed  
Grade  
–7 Speed  
Grade (4)  
Fast Corner (3)  
–8 Speed Grade  
Number  
of  
Settings  
Paths  
Affected  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Offset Offset Offset Offset Offset Offset Offset Offset  
InputDelay Pad ->  
from Pin to I/O  
7
0
0
2240  
2352  
0
3776  
0
0
4174  
4033  
0
4290  
ps  
ps  
Internal  
Cells  
dataout  
to core  
5–30  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–37. Cyclone II IOE Programmable Delay on Row Pins Notes (1), (2) (Part 2 of 2)  
–6 Speed  
Grade  
–7 Speed  
Grade (4)  
Fast Corner (3)  
–8 Speed Grade  
Number  
of  
Settings  
Paths  
Affected  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Offset Offset Offset Offset Offset Offset Offset Offset  
InputDelay Pad ->  
from Pin to I/O input  
8
2
0
0
2669  
2802  
0
4482  
0
0
4834  
4671  
0
4859  
ps  
ps  
Input  
register  
Register  
Delay from I/O  
0
0
308  
324  
0
572  
0
0
648  
626  
0
682  
ps  
ps  
Output  
output  
Register to register -  
Output Pin > Pad  
Notes to Table 5–37 :  
(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version  
of the Quartus II software.  
(2) The minimum and maximum offset timing numbers are in reference to setting “0” as available in the Quartus II  
software.  
(3) The value in the first row represents the fast corner timing parameter for industrial and automotive devices. The  
second row represents the fast corner timing parameter for commercial devices.  
(4) The value in the first row is for automotive devices. The second row is for commercial devices.  
Default Capacitive Loading of Different I/O Standards  
Refer to Table 5–38 for default capacitive loading of different I/O  
standards.  
Table 5–38. Default Loading of Different I/O Standards for Cyclone II Device  
(Part 1 of 2)  
I/O Standard  
Capacitive Load  
Unit  
LVTTL  
LVCMOS  
2.5V  
0
0
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
0
1.8V  
0
1.5V  
0
PCI  
10  
10  
0
PCI-X  
SSTL_2_CLASS_I  
SSTL_2_CLASS_II  
SSTL_18_CLASS_I  
0
0
Altera Corporation  
February 2008  
5–31  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–38. Default Loading of Different I/O Standards for Cyclone II Device  
(Part 2 of 2)  
I/O Standard  
Capacitive Load  
Unit  
SSTL_18_CLASS_II  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
1.5V_HSTL_CLASS_I  
1.5V_HSTL_CLASS_II  
1.8V_HSTL_CLASS_I  
1.8V_HSTL_CLASS_II  
DIFFERENTIAL_SSTL_2_CLASS_I  
DIFFERENTIAL_SSTL_2_CLASS_II  
DIFFERENTIAL_SSTL_18_CLASS_I  
DIFFERENTIAL_SSTL_18_CLASS_II  
1.5V_DIFFERENTIAL_HSTL_CLASS_I  
1.5V_DIFFERENTIAL_HSTL_CLASS_II  
1.8V_DIFFERENTIAL_HSTL_CLASS_I  
1.8V_DIFFERENTIAL_HSTL_CLASS_II  
LVDS  
1.2V_HSTL  
1.2V_DIFFERENTIAL_HSTL  
5–32  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2008  
DC Characteristics and Timing Specifications  
I/O Delays  
Refer to Tables 5–39 through 5–43 for I/O delays.  
Table 5–39. I/O Delay Parameters  
Symbol  
Parameter  
tDIP  
Delay from I/O datain to output pad  
tOP  
Delay from I/O output register to output pad  
Delay from input pad to I/O dataout to core  
Delay from input pad to I/O input register  
tPCOUT  
tPI  
Table 5–40. Cyclone II I/O Input Delay for Column Pins (Part 1 of 3)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Speed Speed  
Grade Grade  
(1)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Automotive  
-cial  
(2)  
LVTTL  
2.5V  
tPI  
581  
367  
624  
410  
725  
511  
790  
576  
581  
367  
533  
319  
533  
319  
577  
363  
577  
363  
609  
385  
654  
430  
760  
536  
828  
604  
609  
385  
558  
334  
558  
334  
605  
381  
605  
381  
1222 1228 1282 1282  
760 783 854 854  
1192 1238 1283 1283  
730 793 855 855  
1372 1428 1484 1484  
910 983 1056 1056  
1439 1497 1556 1556  
977 1052 1128 1128  
1222 1228 1282 1282  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
1.8V  
1.5V  
LVCMOS  
760  
990  
528  
990  
528  
783  
1015 1040 1040  
570 612 612  
1015 1040 1040  
570 612 612  
854  
854  
SSTL_2_CLASS_I  
SSTL_2_CLASS_II  
SSTL_18_CLASS_I  
SSTL_18_CLASS_II  
1027 1035 1045 1045  
565 590 617 617  
1027 1035 1045 1045  
565 590 617 617  
tPCOUT  
Altera Corporation  
February 2008  
5–33  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–40. Cyclone II I/O Input Delay for Column Pins (Part 2 of 3)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Speed Speed  
Grade Grade  
(1)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Automotive  
-cial  
(2)  
1.5V_HSTL_CLASS_I  
1.5V_HSTL_CLASS_II  
1.8V_HSTL_CLASS_I  
1.8V_HSTL_CLASS_II  
tPI  
589  
375  
589  
375  
577  
363  
577  
363  
533  
319  
533  
319  
577  
363  
577  
363  
577  
363  
577  
363  
589  
375  
589  
375  
623  
409  
570  
356  
617  
393  
617  
393  
605  
381  
605  
381  
558  
334  
558  
334  
605  
381  
605  
381  
605  
381  
605  
381  
617  
393  
617  
393  
653  
429  
597  
373  
1145 1176 1208 1208  
683 731 780 780  
1145 1176 1208 1208  
683 731 780 780  
1027 1035 1045 1045  
565 590 617 617  
1027 1035 1045 1045  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
565  
990  
528  
990  
528  
590  
1015 1040 1040  
570 612 612  
1015 1040 1040  
570 612 612  
617  
617  
DIFFERENTIAL_SSTL_2_  
CLASS_I  
DIFFERENTIAL_SSTL_2_  
CLASS_II  
DIFFERENTIAL_SSTL_18_  
CLASS_I  
1027 1035 1045 1045  
565 590 617 617  
1027 1035 1045 1045  
565 590 617 617  
1027 1035 1045 1045  
565 590 617 617  
1027 1035 1045 1045  
565 590 617 617  
1145 1176 1208 1208  
683 731 780 780  
1145 1176 1208 1208  
683 731 780 780  
1072 1075 1078 1078  
610 630 650 650  
1263 1324 1385 1385  
801 879 957 957  
DIFFERENTIAL_SSTL_18_  
CLASS_II  
1.8V_DIFFERENTIAL_HSTL_  
CLASS_I  
1.8V_DIFFERENTIAL_HSTL_  
CLASS_II  
1.5V_DIFFERENTIAL_HSTL_  
CLASS_I  
1.5V_DIFFERENTIAL_HSTL_  
CLASS_II  
LVDS  
1.2V_HSTL  
tPCOUT  
5–34  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–40. Cyclone II I/O Input Delay for Column Pins (Part 3 of 3)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Speed Speed  
Grade Grade  
(1)  
I/O Standard  
1.2V_DIFFERENTIAL_HSTL  
Notes to Table 5–40 :  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Automotive  
-cial  
(2)  
tPI  
570  
356  
597  
373  
1263 1324 1385 1385  
ps  
ps  
tPCOUT  
801  
879  
957  
957  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
Table 5–41. Cyclone II I/O Input Delay for Row Pins (Part 1 of 2)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Speed Speed  
Grade Grade  
(1)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Automotive  
-cial  
(2)  
LVTTL  
2.5V  
tPI  
583  
366  
629  
412  
729  
512  
794  
577  
583  
366  
536  
319  
536  
319  
581  
364  
581  
364  
593  
376  
611  
384  
659  
432  
764  
537  
832  
605  
611  
384  
561  
334  
561  
334  
609  
382  
609  
382  
621  
394  
1129 1160 1240 1240  
762 784 855 855  
1099 1171 1244 1244  
732 795 859 859  
1278 1360 1443 1443  
911 984 1058 1058  
1345 1429 1513 1513  
978 1053 1128 1128  
1129 1160 1240 1240  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
1.8V  
1.5V  
LVCMOS  
762  
896  
529  
896  
529  
933  
566  
933  
566  
784  
947  
571  
947  
571  
967  
591  
967  
591  
855  
998  
613  
998  
613  
855  
998  
613  
998  
613  
SSTL_2_CLASS_I  
SSTL_2_CLASS_II  
SSTL_18_CLASS_I  
SSTL_18_CLASS_II  
1.5V_HSTL_CLASS_I  
1004 1004  
619 619  
1004 1004  
619 619  
1051 1109 1167 1167  
684 733 782 782  
tPCOUT  
Altera Corporation  
February 2008  
5–35  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–41. Cyclone II I/O Input Delay for Row Pins (Part 2 of 2)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Speed Speed  
Grade Grade  
(1)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Automotive  
-cial  
(2)  
1.5V_HSTL_CLASS_II  
1.8V_HSTL_CLASS_I  
1.8V_HSTL_CLASS_II  
tPI  
593  
376  
581  
364  
581  
364  
536  
319  
536  
319  
581  
364  
581  
364  
581  
364  
581  
364  
593  
376  
593  
376  
651  
434  
595  
378  
595  
378  
621  
394  
609  
382  
609  
382  
561  
334  
561  
334  
609  
382  
609  
382  
609  
382  
609  
382  
621  
394  
621  
394  
682  
455  
623  
396  
623  
396  
1051 1109 1167 1167  
782 782  
1004 1004  
619 619  
1004 1004  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
684  
933  
566  
933  
566  
896  
529  
896  
529  
933  
566  
933  
566  
933  
566  
933  
566  
733  
967  
591  
967  
591  
947  
571  
947  
571  
967  
591  
967  
591  
967  
591  
967  
591  
619  
998  
613  
998  
613  
619  
998  
613  
998  
613  
DIFFERENTIAL_SSTL_2_  
CLASS_I  
DIFFERENTIAL_SSTL_2_  
CLASS_II  
DIFFERENTIAL_SSTL_18_  
CLASS_I  
1004 1004  
619 619  
1004 1004  
619 619  
1004 1004  
619 619  
1004 1004  
619 619  
1051 1109 1167 1167  
684 733 782 782  
1051 1109 1167 1167  
684 733 782 782  
1036 1075 1113 1113  
669 699 728 728  
1113 1156 1232 1232  
746 780 847 847  
1113 1156 1232 1232  
746 780 847 847  
DIFFERENTIAL_SSTL_18_  
CLASS_II  
1.8V_DIFFERENTIAL_HSTL_  
CLASS_I  
1.8V_DIFFERENTIAL_HSTL_  
CLASS_II  
1.5V_DIFFERENTIAL_HSTL_  
CLASS_I  
1.5V_DIFFERENTIAL_HSTL_  
CLASS_II  
LVDS  
PCI  
PCI-X  
tPCOUT  
Notes to Table 5–41 :  
(1) These numbers are for commercial devices.  
(2) These numbers are for automotive devices.  
5–36  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 1 of 6)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Drive  
Strength  
Speed Speed  
Grade Grade  
(2)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Automotive  
-cial  
(3)  
LVTTL  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1524  
1656  
1343  
1475  
1287  
1419  
1239  
1371  
1228  
1360  
1220  
1352  
1346  
1478  
1240  
1372  
1221  
1353  
1203  
1335  
1194  
1326  
1192  
1324  
1599  
1738  
1409  
1548  
1350  
1489  
1299  
1438  
1288  
1427  
1279  
1418  
1412  
1551  
1300  
1439  
1280  
1419  
1262  
1401  
1252  
1391  
1250  
1389  
2903 3125 3341 3348  
3073 3319 3567 3567  
2670 2866 3054 3061  
2840 3060 3280 3280  
2547 2735 2917 2924  
2717 2929 3143 3143  
2478 2665 2844 2851  
2648 2859 3070 3070  
2456 2641 2820 2827  
2626 2835 3046 3046  
2452 2637 2815 2822  
2622 2831 3041 3041  
2509 2695 2873 2880  
2679 2889 3099 3099  
2473 2660 2840 2847  
2643 2854 3066 3066  
2428 2613 2790 2797  
2598 2807 3016 3016  
2403 2587 2765 2772  
2573 2781 2991 2991  
2378 2562 2738 2745  
2548 2756 2964 2964  
2382 2566 2742 2749  
2552 2760 2968 2968  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
12 mA  
16 mA  
20 mA  
24 mA  
(1)  
LVCMOS  
4 mA  
8 mA  
12 mA  
16 mA  
20 mA  
24 mA  
(1)  
Altera Corporation  
February 2008  
5–37  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 2 of 6)  
Fast Corner  
Drive  
–7  
–7  
–6  
Speed  
Grade  
–8  
Speed Speed  
Grade Grade  
(2)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Strength  
Automotive  
-cial  
(3)  
2.5V  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1208  
1340  
1190  
1322  
1154  
1286  
1140  
1272  
1682  
1814  
1567  
1699  
1475  
1607  
1451  
1583  
1438  
1570  
1438  
1570  
2083  
2215  
1793  
1925  
1770  
1902  
1703  
1835  
1267  
1406  
1248  
1387  
1210  
1349  
1195  
1334  
1765  
1904  
1644  
1783  
1547  
1686  
1522  
1661  
1508  
1647  
1508  
1647  
2186  
2325  
1881  
2020  
1857  
1996  
1787  
1926  
2478 2614 2743 2750  
2648 2808 2969 2969  
2307 2434 2554 2561  
2477 2628 2780 2780  
2192 2314 2430 2437  
2362 2508 2656 2656  
2152 2263 2375 2382  
2322 2457 2601 2601  
3988 4279 4563 4570  
4158 4473 4789 4789  
3301 3538 3768 3775  
3471 3732 3994 3994  
2993 3195 3391 3398  
3163 3389 3617 3617  
2882 3074 3259 3266  
3052 3268 3485 3485  
2853 3041 3223 3230  
3023 3235 3449 3449  
2853 3041 3223 3230  
3023 3235 3449 3449  
4477 4870 5256 5263  
4647 5064 5482 5482  
3649 3965 4274 4281  
3819 4159 4500 4500  
3527 3823 4112 4119  
3697 4017 4338 4338  
3537 3827 4111 4118  
3707 4021 4337 4337  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
12 mA  
16 mA  
(1)  
1.8V  
2 mA  
4 mA  
6 mA  
8 mA  
10 mA  
12 mA  
(1)  
1.5V  
2 mA  
4 mA  
6 mA  
8 mA  
(1)  
5–38  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 3 of 6)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Drive  
Strength  
Speed Speed  
Grade Grade  
(2)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Automotive  
-cial  
(3)  
SSTL_2_  
CLASS_I  
8 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1196  
1328  
1174  
1306  
1158  
1290  
1152  
1284  
1152  
1284  
1472  
1604  
1469  
1601  
1466  
1598  
1466  
1598  
1454  
1586  
1453  
1585  
1460  
1592  
1462  
1594  
1462  
1594  
1254  
1393  
1231  
1370  
1214  
1353  
1208  
1347  
1208  
1347  
1544  
1683  
1541  
1680  
1538  
1677  
1538  
1677  
1525  
1664  
1524  
1663  
1531  
1670  
1534  
1673  
1534  
1673  
2388 2516 2638 2645  
2558 2710 2864 2864  
2277 2401 2518 2525  
2447 2595 2744 2744  
2245 2365 2479 2486  
2415 2559 2705 2705  
2231 2351 2464 2471  
2401 2545 2690 2690  
2225 2345 2458 2465  
2395 2539 2684 2684  
3140 3345 3542 3549  
3310 3539 3768 3768  
3086 3287 3482 3489  
3256 3481 3708 3708  
2980 3171 3354 3361  
3150 3365 3580 3580  
2980 3171 3354 3361  
3150 3365 3580 3580  
2905 3088 3263 3270  
3075 3282 3489 3489  
2900 3082 3257 3264  
3070 3276 3483 3483  
3222 3424 3618 3625  
3392 3618 3844 3844  
3090 3279 3462 3469  
3260 3473 3688 3688  
3090 3279 3462 3469  
3260 3473 3688 3688  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
12 mA  
(1)  
SSTL_2_  
CLASS_II  
16 mA  
20 mA  
24 mA  
(1)  
SSTL_18_  
CLASS_I  
6 mA  
8 mA  
10 mA  
12 mA  
(1)  
SSTL_18_  
CLASS_II  
16 mA  
18 mA  
(1)  
1.8V_HSTL_  
CLASS_I  
8 mA  
10 mA  
12 mA  
(1)  
Altera Corporation  
February 2008  
5–39  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 4 of 6)  
Fast Corner  
Drive  
–7  
–7  
–6  
Speed  
Grade  
–8  
Speed Speed  
Grade Grade  
(2)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Strength  
Automotive  
-cial  
(3)  
1.8V_HSTL_  
CLASS_II  
16 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1449  
1581  
1450  
1582  
1452  
1584  
1779  
1911  
1784  
1916  
1784  
1916  
1750  
1882  
1196  
1328  
1174  
1306  
1158  
1290  
1152  
1284  
1152  
1284  
1520  
1659  
1521  
1660  
1523  
1662  
1866  
2005  
1872  
2011  
1872  
2011  
1836  
1975  
1254  
1393  
1231  
1370  
1214  
1353  
1208  
1347  
1208  
1347  
2936 3107 3271 3278  
3106 3301 3497 3497  
2924 3101 3272 3279  
3094 3295 3498 3498  
2926 3096 3259 3266  
3096 3290 3485 3485  
4292 4637 4974 4981  
4462 4831 5200 5200  
4031 4355 4673 4680  
4201 4549 4899 4899  
4031 4355 4673 4680  
4201 4549 4899 4899  
3844 4125 4399 4406  
4014 4319 4625 4625  
2388 2516 2638 2645  
2558 2710 2864 2864  
2277 2401 2518 2525  
2447 2595 2744 2744  
2245 2365 2479 2486  
2415 2559 2705 2705  
2231 2351 2464 2471  
2401 2545 2690 2690  
2225 2345 2458 2465  
2395 2539 2684 2684  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
18 mA  
20 mA  
(1)  
1.5V_HSTL_  
CLASS_I  
8 mA  
10 mA  
12 mA  
(1)  
1.5V_HSTL_  
CLASS_II  
16 mA  
(1)  
DIFFERENTIAL_  
SSTL_2_CLASS_I  
8 mA  
12 mA  
(1)  
DIFFERENTIAL_  
SSTL_2_CLASS_II  
16 mA  
20 mA  
24 mA  
(1)  
5–40  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 5 of 6)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Drive  
Strength  
Speed Speed  
Grade Grade  
(2)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Automotive  
-cial  
(3)  
DIFFERENTIAL_  
SSTL_18_CLASS_I  
6 mA  
8 mA  
10 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1472  
1604  
1469  
1601  
1466  
1598  
1466  
1598  
1454  
1586  
1453  
1585  
1460  
1592  
1462  
1594  
1462  
1594  
1449  
1581  
1450  
1582  
1452  
1584  
1779  
1911  
1784  
1916  
1784  
1916  
1544  
1683  
1541  
1680  
1538  
1677  
1538  
1677  
1525  
1664  
1524  
1663  
1531  
1670  
1534  
1673  
1534  
1673  
1520  
1659  
1521  
1660  
1523  
1662  
1866  
2005  
1872  
2011  
1872  
2011  
3140 3345 3542 3549  
3310 3539 3768 3768  
3086 3287 3482 3489  
3256 3481 3708 3708  
2980 3171 3354 3361  
3150 3365 3580 3580  
2980 3171 3354 3361  
3150 3365 3580 3580  
2905 3088 3263 3270  
3075 3282 3489 3489  
2900 3082 3257 3264  
3070 3276 3483 3483  
3222 3424 3618 3625  
3392 3618 3844 3844  
3090 3279 3462 3469  
3260 3473 3688 3688  
3090 3279 3462 3469  
3260 3473 3688 3688  
2936 3107 3271 3278  
3106 3301 3497 3497  
2924 3101 3272 3279  
3094 3295 3498 3498  
2926 3096 3259 3266  
3096 3290 3485 3485  
4292 4637 4974 4981  
4462 4831 5200 5200  
4031 4355 4673 4680  
4201 4549 4899 4899  
4031 4355 4673 4680  
4201 4549 4899 4899  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
12 mA  
(1)  
DIFFERENTIAL_  
SSTL_18_CLASS_II  
16 mA  
18 mA  
(1)  
1.8V_DIFFERENTIAL 8 mA  
_HSTL_CLASS_I  
10 mA  
12 mA  
(1)  
1.8V_DIFFERENTIAL 16 mA  
_HSTL_CLASS_II  
18 mA  
20 mA  
(1)  
1.5V_DIFFERENTIAL 8 mA  
_HSTL_CLASS_I  
10 mA  
12 mA  
(1)  
Altera Corporation  
February 2008  
5–41  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 6 of 6)  
Fast Corner  
Drive  
–7  
–7  
–6  
Speed  
Grade  
–8  
Speed Speed  
Grade Grade  
(2)  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Industrial/ Commer  
Strength  
Automotive  
-cial  
(3)  
1.5V_DIFFERENTIAL 16 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1750  
1882  
1258  
1390  
1258  
1390  
1258  
1390  
1221  
1353  
2403  
2535  
2403  
2535  
1836  
1975  
1319  
1458  
1319  
1458  
1319  
1458  
1280  
1419  
2522  
2661  
2522  
2661  
3844 4125 4399 4406  
4014 4319 4625 4625  
2243 2344 2438 2445  
2413 2538 2664 2664  
2243 2344 2438 2445  
2413 2538 2664 2664  
2243 2344 2438 2445  
2413 2538 2664 2664  
2258 2435 2605 2612  
2428 2629 2831 2831  
4635 5344 6046 6053  
4805 5538 6272 6272  
4635 5344 6046 6053  
4805 5538 6272 6272  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
_HSTL_CLASS_II  
(1)  
LVDS  
RSDS  
MINI_LVDS  
SIMPLE_RSDS  
1.2V_HSTL  
1.2V_DIFFERENTIAL  
_HSTL  
Notes to Table 5–42:  
(1) This is the default setting in the Quartus II software.  
(2) These numbers are for commercial devices.  
(3) These numbers are for automotive devices.  
5–42  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–43. Cyclone II I/O Output Delay for Row Pins (Part 1 of 4)  
Fast Corner  
–7  
–7  
–6  
–8  
Drive  
Speed Speed  
Grade Grade  
(2)  
Industrial  
I/O Standard  
Parameter  
Speed  
Grade  
Speed Unit  
Grade  
Commer-  
cial  
Strength  
/Auto-  
(3)  
motive  
LVTTL  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1343  
1467  
1198  
1322  
1156  
1280  
1124  
1248  
1112  
1236  
1105  
1229  
1200  
1324  
1125  
1249  
1106  
1230  
1126  
1250  
1105  
1229  
1408  
1540  
1256  
1388  
1212  
1344  
1178  
1310  
1165  
1297  
1158  
1290  
1258  
1390  
1179  
1311  
1159  
1291  
1180  
1312  
1158  
1290  
2539  
2747  
2411  
2619  
2282  
2490  
2286  
2494  
2245  
2453  
2253  
2461  
2231  
2439  
2260  
2468  
2217  
2425  
2350  
2558  
2177  
2385  
2694  
2931  
2587  
2824  
2452  
2689  
2455  
2692  
2413  
2650  
2422  
2659  
2396  
2633  
2429  
2666  
2383  
2620  
2477  
2714  
2296  
2533  
2885  
3158  
2756  
3029  
2614  
2887  
2618  
2891  
2574  
2847  
2583  
2856  
2555  
2828  
2591  
2864  
2543  
2816  
2598  
2871  
2409  
2682  
2891  
3158  
2762  
3029  
2620  
2887  
2624  
2891  
2580  
2847  
2589  
2856  
2561  
2828  
2597  
2864  
2549  
2816  
2604  
2871  
2415  
2682  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
12 mA  
16 mA  
20 mA  
24 mA  
(1)  
LVCMOS  
4 mA  
8 mA  
12 mA  
(1)  
2.5V  
4 mA  
8 mA  
(1)  
Altera Corporation  
February 2008  
5–43  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–43. Cyclone II I/O Output Delay for Row Pins (Part 2 of 4)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Drive  
Strength  
Speed Speed  
Grade Grade  
(2)  
Industrial  
/Auto-  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Commer-  
cial  
(3)  
motive  
1.8V  
2 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1503  
1627  
1400  
1524  
1388  
1512  
1347  
1471  
1347  
1471  
1332  
1456  
1853  
1977  
1694  
1818  
1694  
1818  
1090  
1214  
1097  
1221  
1068  
1192  
1371  
1495  
1365  
1489  
1374  
1498  
1576  
1708  
1468  
1600  
1455  
1587  
1412  
1544  
1412  
1544  
1396  
1528  
1943  
2075  
1776  
1908  
1776  
1908  
1142  
1274  
1150  
1282  
1119  
1251  
1437  
1569  
1431  
1563  
1440  
1572  
3657  
3865  
3010  
3218  
2857  
3065  
2714  
2922  
2714  
2922  
2678  
2886  
4127  
4335  
3452  
3660  
3452  
3660  
2152  
2360  
2131  
2339  
2067  
2275  
2828  
3036  
2832  
3040  
2806  
3014  
3927  
4164  
3226  
3463  
3050  
3287  
2897  
3134  
2897  
3134  
2856  
3093  
4492  
4729  
3747  
3984  
3747  
3984  
2268  
2505  
2246  
2483  
2177  
2414  
3018  
3255  
3024  
3261  
2990  
3227  
4190  
4463  
3434  
3707  
3236  
3509  
3072  
3345  
3072  
3345  
3028  
3301  
4849  
5122  
4036  
4309  
4036  
4309  
2376  
2649  
2354  
2627  
2281  
2554  
3200  
3473  
3209  
3482  
3167  
3440  
4196  
4463  
3440  
3707  
3242  
3509  
3078  
3345  
3078  
3345  
3034  
3301  
4855  
5122  
4042  
4309  
4042  
4309  
2382  
2649  
2360  
2627  
2287  
2554  
3206  
3473  
3215  
3482  
3173  
3440  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
4 mA  
6 mA  
8 mA  
10 mA  
12 mA  
(1)  
1.5V  
2 mA  
4 mA  
6 mA (1) tOP  
tDIP  
SSTL_2_  
CLASS_I  
8 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
12 mA  
(1)  
SSTL_2_  
CLASS_II  
16 mA  
(1)  
SSTL_18_  
CLASS_I  
6 mA  
8 mA  
10 mA  
(1)  
5–44  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–43. Cyclone II I/O Output Delay for Row Pins (Part 3 of 4)  
Fast Corner  
–7  
–7  
–6  
–8  
Drive  
Speed Speed  
Grade Grade  
(2)  
Industrial  
I/O Standard  
Parameter  
Speed  
Grade  
Speed Unit  
Grade  
Commer-  
cial  
Strength  
/Auto-  
(3)  
motive  
1.8V_HSTL_  
CLASS_I  
8 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1364  
1488  
1332  
1456  
1332  
1456  
1657  
1781  
1090  
1214  
1097  
1221  
1068  
1192  
1430  
1562  
1396  
1528  
1396  
1528  
1738  
1870  
1142  
1274  
1150  
1282  
1119  
1251  
2853  
3061  
2842  
3050  
2842  
3050  
3642  
3850  
2152  
2360  
2131  
2339  
2067  
2275  
3017  
3254  
3011  
3248  
3011  
3248  
3917  
4154  
2268  
2505  
2246  
2483  
2177  
2414  
3178  
3451  
3173  
3446  
3173  
3446  
4185  
4458  
2376  
2649  
2354  
2627  
2281  
2554  
3184  
3451  
3179  
3446  
3179  
3446  
4191  
4458  
2382  
2649  
2360  
2627  
2287  
2554  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
10 mA  
12 mA  
(1)  
1.5V_HSTL_  
CLASS_I  
8 mA  
(1)  
DIFFERENTIAL_ 8 mA  
SSTL_2_  
CLASS_I  
12 mA  
(1)  
DIFFERENTIAL_ 16 mA  
SSTL_2_  
CLASS_II  
(1)  
DIFFERENTIAL_ 6 mA  
SSTL_18_  
CLASS_I  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1371  
1495  
1365  
1489  
1374  
1498  
1364  
1488  
1332  
1456  
1332  
1456  
1657  
1781  
1437  
1569  
1431  
1563  
1440  
1572  
1430  
1562  
1396  
1528  
1396  
1528  
1738  
1870  
2828  
3036  
2832  
3040  
2806  
3014  
2853  
3061  
2842  
3050  
2842  
3050  
3642  
3850  
3018  
3255  
3024  
3261  
2990  
3227  
3017  
3254  
3011  
3248  
3011  
3248  
3917  
4154  
3200  
3473  
3209  
3482  
3167  
3440  
3178  
3451  
3173  
3446  
3173  
3446  
4185  
4458  
3206  
3473  
3215  
3482  
3173  
3440  
3184  
3451  
3179  
3446  
3179  
3446  
4191  
4458  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
10 mA  
(1)  
1.8V_  
8 mA  
DIFFERENTIAL_  
HSTL_  
10 mA  
CLASS_I  
12 mA  
(1)  
1.5V_  
8 mA  
DIFFERENTIAL_ (1)  
HSTL_  
CLASS_I  
Altera Corporation  
February 2008  
5–45  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–43. Cyclone II I/O Output Delay for Row Pins (Part 4 of 4)  
Fast Corner  
–7  
–7  
–6  
Speed  
Grade  
–8  
Drive  
Strength  
Speed Speed  
Grade Grade  
(2)  
Industrial  
/Auto-  
I/O Standard  
Parameter  
Speed Unit  
Grade  
Commer-  
cial  
(3)  
motive  
LVDS  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1216  
1340  
1216  
1340  
1216  
1340  
989  
1275  
1407  
1275  
1407  
1275  
1407  
1036  
1168  
1036  
1168  
2089  
2297  
2089  
2297  
2089  
2297  
2070  
2278  
2070  
2278  
2184  
2421  
2184  
2421  
2184  
2421  
2214  
2451  
2214  
2451  
2272  
2545  
2272  
2545  
2272  
2545  
2352  
2625  
2352  
2625  
2278  
2545  
2278  
2545  
2278  
2545  
2358  
2625  
2358  
2625  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
RSDS  
MINI_LVDS  
PCI  
1113  
989  
PCI-X  
1113  
Notes to Table 5–43:  
(1) This is the default setting in the Quartus II software.  
(2) These numbers are for commercial devices.  
(3) These numbers are for automotive devices.  
Maximum Input and Output Clock Rate  
Maximum clock toggle rate is defined as the maximum frequency  
achievable for a clock type signal at an I/O pin. The I/O pin can be a  
regular I/O pin or a dedicated clock I/O pin.  
The maximum clock toggle rate is different from the maximum data bit  
rate. If the maximum clock toggle rate on a regular I/O pin is 300 MHz,  
the maximum data bit rate for dual data rate (DDR) could be potentially  
as high as 600 Mbps on the same I/O pin.  
Table 5–44 specifies the maximum input clock toggle rates. Table 5–45  
specifies the maximum output clock toggle rates at default load.  
Table 5–46 specifies the derating factors for the output clock toggle rate  
for non-default load.  
To calculate the output toggle rate for a non-default load, use this  
formula:  
The toggle rate for a non-default load  
5–46  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2008  
DC Characteristics and Timing Specifications  
= 1000 / (1000/toggle rate at default load + derating factor * load  
value in pF/1000)  
For example, the output toggle rate at 0 pF (default) load for SSTL-18  
Class II 18mA I/O standard is 270 MHz on a 6 device column I/O pin.  
The derating factor is 29 ps/pF. For a 10pF load, the toggle rate is  
calculated as:  
1000 / (1000/270 + 29 × 10/1000) = 250 (MHz)  
Tables 5–44 through 5–46 show the I/O toggle rates for Cyclone II  
devices.  
Table 5–44. Maximum Input Clock Toggle Rate on Cyclone II Devices (Part 1 of 2)  
Maximum Input Clock Toggle Rate on Cyclone II Devices (MHz)  
Dedicated Clock  
Column I/O Pins  
Row I/O Pins  
Inputs  
I/O Standard  
–6 –7  
–8  
–6  
–7  
–8  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
LVTTL  
2.5V  
450  
450  
450  
300  
450  
500  
500  
500  
500  
500  
500  
500  
500  
405  
405  
405  
270  
405  
500  
500  
500  
500  
500  
500  
500  
500  
360  
360  
360  
240  
360  
500  
500  
500  
500  
500  
500  
500  
500  
450  
450  
450  
300  
450  
500  
500  
500  
500  
500  
500  
500  
500  
350  
350  
500  
405  
405  
405  
270  
405  
500  
500  
500  
500  
500  
500  
500  
500  
315  
315  
500  
360  
360  
360  
240  
360  
500  
500  
500  
500  
500  
500  
500  
500  
280  
280  
500  
420  
450  
450  
300  
420  
500  
500  
500  
500  
500  
500  
500  
500  
350  
350  
500  
380  
405  
405  
270  
380  
500  
500  
500  
500  
500  
500  
500  
500  
315  
315  
500  
340  
360  
360  
240  
340  
500  
500  
500  
500  
500  
500  
500  
500  
280  
280  
500  
1.8V  
1.5V  
LVCMOS  
SSTL_2_CLASS_I  
SSTL_2_CLASS_II  
SSTL_18_CLASS_I  
SSTL_18_CLASS_II  
1.5V_HSTL_CLASS_I  
1.5V_HSTL_CLASS_II  
1.8V_HSTL_CLASS_I  
1.8V_HSTL_CLASS_II  
PCI  
PCI-X  
DIFFERENTIAL_SSTL_2_  
CLASS_I  
500  
500  
500  
DIFFERENTIAL_SSTL_2_  
CLASS_II  
500  
500  
500  
500  
500  
500  
500  
500  
500  
Altera Corporation  
February 2008  
5–47  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–44. Maximum Input Clock Toggle Rate on Cyclone II Devices (Part 2 of 2)  
Maximum Input Clock Toggle Rate on Cyclone II Devices (MHz)  
Dedicated Clock  
Inputs  
Column I/O Pins  
–6 –7 –8  
Row I/O Pins  
–7  
I/O Standard  
–6  
–8  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
DIFFERENTIAL_SSTL_18_  
CLASS_I  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
DIFFERENTIAL_SSTL_18_  
CLASS_II  
1.8V_DIFFERENTIAL_HSTL_  
CLASS_I  
1.8V_DIFFERENTIAL_HSTL_  
CLASS_II  
1.5V_DIFFERENTIAL_HSTL_  
CLASS_I  
1.5V_DIFFERENTIAL_HSTL_  
CLASS_II  
LVPECL  
402  
90  
402  
80  
402  
402  
402  
402  
402  
110  
110  
402  
402  
90  
402  
402  
80  
LVDS  
402  
110  
110  
1.2V_HSTL  
1.2V_DIFFERENTIAL_HSTL  
90  
80  
90  
80  
Table 5–45. Maximum Output Clock Toggle Rate on Cyclone II Devices (Part 1 of 4)  
Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)  
Dedicated Clock  
Column I/O Pins (1)  
Row I/O Pins (1)  
Drive  
Outputs  
I/O Standard  
Strength  
–6  
–7  
–8  
–6  
–7  
–8  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
LVTTL  
4 mA  
120  
200  
280  
290  
330  
360  
100  
170  
230  
240  
280  
300  
80  
120  
200  
280  
290  
330  
360  
100  
170  
230  
240  
280  
300  
80  
120  
200  
280  
290  
330  
360  
100  
170  
230  
240  
280  
300  
80  
8 mA  
140  
190  
200  
230  
250  
140  
190  
200  
230  
250  
140  
190  
200  
230  
250  
12 mA  
16 mA  
20 mA  
24 mA  
5–48  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2008  
DC Characteristics and Timing Specifications  
Table 5–45. Maximum Output Clock Toggle Rate on Cyclone II Devices (Part 2 of 4)  
Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)  
Dedicated Clock  
Column I/O Pins (1)  
Row I/O Pins (1)  
Drive  
Outputs  
I/O Standard  
Strength  
–6  
–7  
–8  
–6  
–7  
–8  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
LVCMOS  
4 mA  
250  
280  
310  
320  
350  
370  
180  
280  
440  
450  
120  
180  
220  
240  
300  
350  
80  
210  
230  
260  
270  
290  
310  
150  
230  
370  
405  
100  
150  
180  
200  
250  
290  
60  
170  
190  
210  
220  
240  
250  
120  
190  
300  
350  
80  
250  
280  
310  
210  
230  
260  
170  
190  
210  
250  
280  
310  
210  
230  
260  
170  
190  
210  
8 mA  
12 mA  
16 mA  
20 mA  
24 mA  
4 mA  
2.5V  
1.8V  
180  
280  
150  
230  
120  
190  
180  
280  
150  
230  
120  
190  
8 mA  
12 mA  
16 mA  
2 mA  
120  
180  
220  
240  
300  
350  
80  
100  
150  
180  
200  
250  
290  
60  
80  
120  
180  
220  
240  
300  
350  
80  
100  
150  
180  
200  
250  
290  
60  
80  
4 mA  
120  
150  
160  
210  
240  
50  
120  
150  
160  
210  
240  
50  
120  
150  
160  
210  
240  
50  
6 mA  
8 mA  
10 mA  
12 mA  
2 mA  
1.5V  
4 mA  
130  
180  
230  
400  
400  
350  
400  
400  
260  
260  
270  
280  
110  
150  
190  
340  
340  
290  
340  
340  
220  
220  
220  
230  
90  
130  
180  
110  
150  
90  
130  
180  
110  
150  
90  
6 mA  
120  
160  
280  
280  
240  
280  
280  
180  
180  
180  
190  
120  
120  
8 mA  
SSTL_2_CLASS_I  
SSTL_2_CLASS_II  
8 mA  
400  
400  
350  
340  
340  
290  
280  
280  
240  
400  
400  
350  
340  
340  
290  
280  
280  
240  
12 mA  
16 mA  
20 mA  
24 mA  
6 mA  
SSTL_18_  
CLASS_I  
260  
260  
270  
220  
220  
220  
180  
180  
180  
260  
260  
270  
220  
220  
220  
180  
180  
180  
8 mA  
10 mA  
12 mA  
Altera Corporation  
February 2008  
5–49  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–45. Maximum Output Clock Toggle Rate on Cyclone II Devices (Part 3 of 4)  
Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)  
Dedicated Clock  
Outputs  
Column I/O Pins (1)  
–6 –7 –8  
Row I/O Pins (1)  
–6 –7 –8  
Drive  
Strength  
I/O Standard  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
SSTL_18_ CLASS_II  
16 mA  
18 mA  
260  
270  
260  
300  
320  
230  
240  
250  
210  
220  
230  
210  
400  
400  
350  
400  
400  
260  
260  
270  
280  
260  
270  
260  
300  
320  
230  
240  
250  
220  
220  
220  
250  
270  
190  
200  
210  
170  
180  
190  
170  
340  
340  
290  
340  
340  
220  
220  
220  
230  
220  
220  
220  
250  
270  
190  
200  
210  
180  
180  
180  
210  
220  
160  
160  
170  
140  
150  
160  
140  
280  
280  
240  
280  
280  
180  
180  
180  
190  
180  
180  
180  
210  
220  
160  
160  
170  
1.8V_HSTL_ CLASS_I 8 mA  
260  
300  
320  
220  
250  
270  
180  
210  
220  
260  
300  
320  
220  
250  
270  
180  
210  
220  
10 mA  
12 mA  
1.8V_HSTL_ CLASS_II 16 mA  
18 mA  
20 mA  
1.5V_HSTL_ CLASS_I 8 mA  
10 mA  
210  
170  
140  
210  
170  
140  
12 mA  
1.5V_HSTL_ CLASS_II 16 mA  
DIFFERENTIAL_  
SSTL_2_CLASS_I  
8 mA  
400  
400  
350  
340  
340  
290  
280  
280  
240  
400  
400  
350  
340  
340  
290  
280  
280  
240  
12 mA  
16 mA  
20 mA  
24 mA  
6 mA  
DIFFERENTIAL_  
SSTL_2_CLASS_II  
DIFFERENTIAL_  
SSTL_18_CLASS_I  
260  
260  
270  
220  
220  
220  
180  
180  
180  
260  
260  
270  
220  
220  
220  
180  
180  
180  
8 mA  
10 mA  
12 mA  
DIFFERENTIAL_SSTL 16 mA  
_18_CLASS_II  
18 mA  
1.8V_  
DIFFERENTIAL_HSTL  
_CLASS_I  
8 mA  
260  
300  
320  
220  
250  
270  
180  
210  
220  
260  
300  
320  
220  
250  
270  
180  
210  
220  
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
1.8V_  
DIFFERENTIAL_HSTL  
_CLASS_II  
5–50  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–45. Maximum Output Clock Toggle Rate on Cyclone II Devices (Part 4 of 4)  
Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)  
Dedicated Clock  
Column I/O Pins (1)  
Row I/O Pins (1)  
Drive  
Outputs  
I/O Standard  
Strength  
–6  
–7  
–8  
–6  
–7  
–8  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
1.5V_  
DIFFERENTIAL_HSTL  
_CLASS_I  
8 mA  
210  
220  
230  
210  
170  
180  
190  
170  
140  
150  
160  
140  
210  
170  
140  
210  
170  
140  
10 mA  
12 mA  
16 mA  
1.5V_  
DIFFERENTIAL_HSTL  
_CLASS_II  
LVDS  
400  
400  
400  
380  
80  
340  
340  
340  
320  
80  
280  
280  
280  
260  
80  
400  
400  
400  
380  
340  
340  
340  
320  
280  
280  
280  
260  
400  
400  
400  
380  
340  
340  
340  
320  
280  
280  
280  
260  
RSDS  
MINI_LVDS  
SIMPLE_RSDS  
1.2V_HSTL  
1.2V_  
80  
80  
80  
DIFFERENTIAL_HSTL  
PCI  
350  
350  
360  
315  
315  
300  
280  
280  
250  
350  
350  
360  
315  
315  
300  
280  
280  
250  
PCI-X  
LVTTL  
OCT_25_  
OHMS  
360  
300  
250  
LVCMOS  
OCT_25_  
OHMS  
360  
240  
290  
240  
290  
300  
200  
240  
200  
240  
250  
160  
200  
160  
200  
360  
240  
290  
240  
290  
300  
200  
240  
200  
240  
250  
160  
200  
160  
200  
360  
240  
290  
300  
200  
240  
250  
160  
200  
2.5V  
OCT_50_  
OHMS  
1.8V  
OCT_50_  
OHMS  
SSTL_2_CLASS_I  
SSTL_18_CLASS_I  
OCT_50_  
OHMS  
OCT_50_  
OHMS  
Note to Table 5–45:  
(1) This is based on single data rate I/Os.  
Altera Corporation  
February 2008  
5–51  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–46. Maximum Output Clock Toggle Rate Derating Factors (Part 1 of 4)  
Maximum Output Clock Toggle Rate Derating Factors (ps/pF)  
Dedicated Clock  
Outputs  
Column I/O Pins  
–6 –7 –8  
Row I/O Pins  
–7  
Drive  
Strength  
I/O Standard  
–6  
–8  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
LVTTL  
4 mA  
438  
306  
139  
145  
65  
439  
321  
179  
158  
77  
439  
336  
220  
172  
90  
338  
267  
193  
139  
74  
362  
283  
198  
147  
79  
387  
299  
202  
156  
84  
338  
267  
193  
139  
74  
362  
283  
198  
147  
79  
387  
299  
202  
156  
84  
8 mA  
12 mA  
16 mA  
20 mA  
24 mA  
4 mA  
19  
20  
21  
14  
18  
22  
14  
18  
22  
LVCMOS  
298  
190  
43  
305  
205  
72  
313  
219  
101  
110  
56  
197  
112  
27  
205  
118  
31  
214  
125  
35  
197  
112  
27  
205  
118  
31  
214  
125  
35  
8 mA  
12 mA  
16 mA  
20 mA  
24 mA  
4 mA  
87  
99  
36  
46  
24  
25  
27  
2.5V  
1.8V  
228  
173  
119  
64  
233  
177  
121  
65  
237  
180  
123  
66  
270  
191  
306  
199  
343  
208  
270  
191  
306  
199  
343  
208  
8 mA  
12 mA  
16 mA  
2 mA  
452  
321  
227  
37  
457  
347  
255  
118  
72  
461  
373  
283  
199  
103  
10  
332  
244  
178  
58  
367  
291  
222  
133  
85  
403  
337  
266  
207  
123  
44  
332  
244  
178  
58  
367  
291  
222  
133  
85  
403  
337  
266  
207  
123  
44  
4 mA  
6 mA  
8 mA  
10 mA  
12 mA  
2 mA  
41  
46  
46  
7
8
13  
28  
13  
28  
1.5V  
738  
499  
261  
22  
764  
518  
271  
25  
789  
536  
282  
29  
540  
300  
60  
604  
354  
103  
669  
408  
146  
540  
300  
60  
604  
354  
103  
669  
408  
146  
4 mA  
6 mA  
8 mA  
SSTL_2_CLASS_I  
8 mA  
46  
47  
49  
25  
40  
56  
25  
40  
56  
12 mA  
67  
69  
70  
23  
42  
60  
23  
42  
60  
5–52  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–46. Maximum Output Clock Toggle Rate Derating Factors (Part 2 of 4)  
Maximum Output Clock Toggle Rate Derating Factors (ps/pF)  
Dedicated Clock  
Column I/O Pins  
Row I/O Pins  
Drive  
Outputs  
I/O Standard  
Strength  
–6 –7 –8  
–6  
–7  
–8  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
SSTL_2_CLASS_II  
16 mA  
20 mA  
24 mA  
6 mA  
42  
41  
40  
20  
20  
20  
19  
43  
42  
42  
22  
22  
22  
23  
45  
44  
43  
24  
24  
25  
26  
15  
46  
47  
23  
29  
47  
49  
25  
42  
49  
51  
27  
15  
46  
47  
23  
29  
47  
49  
25  
42  
49  
51  
27  
SSTL_18_  
CLASS_I  
8 mA  
10 mA  
12 mA  
SSTL_18_ CLASS_II  
1.8V_HSTL_ CLASS_I  
16 mA  
18 mA  
8 mA  
30  
29  
26  
46  
67  
62  
59  
57  
40  
41  
43  
18  
46  
67  
42  
41  
40  
20  
20  
20  
19  
33  
29  
28  
47  
67  
65  
62  
59  
40  
42  
43  
20  
47  
69  
43  
42  
42  
22  
22  
22  
23  
36  
29  
29  
48  
67  
68  
65  
62  
41  
42  
43  
21  
49  
70  
45  
44  
43  
24  
24  
25  
26  
59  
65  
71  
28  
25  
23  
15  
46  
47  
23  
61  
66  
71  
32  
40  
42  
29  
47  
49  
25  
63  
68  
72  
36  
56  
60  
42  
49  
51  
27  
59  
65  
71  
28  
25  
23  
15  
46  
47  
23  
61  
66  
71  
32  
40  
42  
29  
47  
49  
25  
63  
68  
72  
36  
56  
60  
42  
49  
51  
27  
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
8 mA  
1.8V_HSTL_ CLASS_II  
1.5V_HSTL_ CLASS_I  
1.5V_HSTL_ CLASS_II  
10 mA  
12 mA  
16 mA  
DIFFERENTIAL_SSTL_2 8 mA  
_CLASS_I  
12 mA  
DIFFERENTIAL_SSTL_2 16 mA  
_CLASS_II  
20 mA  
24 mA  
DIFFERENTIAL_SSTL_  
18_CLASS_I  
6 mA  
8 mA  
10 mA  
12 mA  
Altera Corporation  
February 2008  
5–53  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–46. Maximum Output Clock Toggle Rate Derating Factors (Part 3 of 4)  
Maximum Output Clock Toggle Rate Derating Factors (ps/pF)  
Dedicated Clock  
Outputs  
Column I/O Pins  
–6 –7 –8  
Row I/O Pins  
–7  
Drive  
Strength  
I/O Standard  
–6  
–8  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
DIFFERENTIAL_SSTL_  
18_CLASS_II  
16 mA  
18 mA  
8 mA  
30  
29  
26  
46  
67  
62  
59  
57  
40  
41  
43  
18  
33  
29  
28  
47  
67  
65  
62  
59  
40  
42  
43  
20  
36  
29  
29  
48  
67  
68  
65  
62  
41  
42  
43  
21  
59  
65  
71  
28  
61  
66  
71  
32  
63  
68  
72  
36  
59  
65  
71  
28  
61  
66  
71  
32  
63  
68  
72  
36  
1.8V_  
DIFFERENTIAL_HSTL_  
CLASS_I  
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
8 mA  
1.8V_  
DIFFERENTIAL_HSTL_  
CLASS_II  
1.5V_  
DIFFERENTIAL_HSTL_  
CLASS_I  
10 mA  
12 mA  
16 mA  
1.5V_  
DIFFERENTIAL_HSTL_  
CLASS_II  
LVDS  
11  
11  
13  
13  
16  
16  
11  
11  
11  
15  
13  
13  
13  
19  
15  
15  
15  
23  
11  
11  
11  
15  
13  
13  
13  
19  
15  
15  
15  
23  
RSDS  
MINI_LVDS  
SIMPLE_RSDS  
1.2V_HSTL  
11  
13  
16  
15  
19  
23  
130  
130  
132  
132  
133  
133  
1.2V_  
DIFFERENTIAL_HSTL  
PCI  
13  
14  
14  
99  
99  
21  
120  
121  
27  
142  
143  
33  
99  
99  
21  
120  
121  
27  
142  
143  
33  
PCI-X  
LVTTL  
OCT_25  
_OHMS  
LVCMOS  
2.5V  
OCT_25  
_OHMS  
13  
14  
14  
21  
27  
33  
21  
27  
33  
OCT_50  
_OHMS  
346  
198  
369  
203  
392  
209  
324  
202  
326  
203  
327  
204  
324  
202  
326  
203  
327  
204  
1.8V  
OCT_50  
_OHMS  
5–54  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–46. Maximum Output Clock Toggle Rate Derating Factors (Part 4 of 4)  
Maximum Output Clock Toggle Rate Derating Factors (ps/pF)  
Dedicated Clock  
Column I/O Pins  
Row I/O Pins  
Drive  
Outputs  
I/O Standard  
Strength  
–6 –7 –8  
–6  
–7  
–8  
–6  
–7  
–8  
Speed Speed Speed Speed Speed Speed Speed Speed Speed  
Grade Grade Grade Grade Grade Grade Grade Grade Grade  
SSTL_2_CLASS_I  
SSTL_18_CLASS_I  
OCT_50  
_OHMS  
67  
69  
70  
25  
42  
60  
25  
42  
60  
OCT_50  
_OHMS  
30  
33  
36  
47  
49  
51  
47  
49  
51  
High Speed I/O Timing Specifications  
The timing analysis for LVDS, mini-LVDS, and RSDS is different  
compared to other I/O standards because the data communication is  
source-synchronous.  
You should also consider board skew, cable skew, and clock jitter in your  
calculation. This section provides details on the timing parameters for  
high-speed I/O standards in Cyclone II devices.  
Table 5–47 defines the parameters of the timing diagram shown in  
Figure 5–3.  
Table 5–47. High-Speed I/O Timing Definitions (Part 1 of 2)  
Parameter  
Symbol  
Description  
High-speed clock  
Duty cycle  
fHSCKLK High-speed receiver and transmitter input and output clock frequency.  
tDUTY Duty cycle on high-speed transmitter output clock.  
HSIODR High-speed receiver and transmitter input and output data rate.  
High-speed I/O data rate  
Time unit interval  
TUI  
TUI = 1/HSIODR.  
Channel-to-channel skew TCCS  
The timing difference between the fastest and slowest output edges,  
including tCO variation and clock skew. The clock is included in the  
TCCS measurement.  
TCCS = TUI – SW – (2 × RSKM)  
Altera Corporation  
February 2008  
5–55  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–47. High-Speed I/O Timing Definitions (Part 2 of 2)  
Parameter  
Symbol  
Description  
Sampling window  
SW  
The period of time during which the data must be valid in order for you  
to capture it correctly. Sampling window is the sum of the setup time,  
hold time, and jitter. The window of tSU + tH is expected to be centered  
in the sampling window.  
SW = TUI – TCCS – (2 × RSKM)  
Receiver input skew  
margin  
RSKM  
RSKM is defined by the total margin left after accounting for the  
sampling window and TCCS.  
RSKM = (TUI – SW – TCCS) / 2  
Input jitter (peak to peak)  
Output jitter (peak to peak)  
Signal rise time  
Peak-to-peak input jitter on high-speed PLLs.  
Peak-to-peak output jitter on high-speed PLLs.  
Low-to-high transmission time.  
tRISE  
tFALL  
tLOCK  
Signal fall time  
High-to-low transmission time.  
Lock time  
Lock time for high-speed transmitter and receiver PLLs.  
Figure 5–3. High-Speed I/O Timing Diagram  
External  
Input Clock  
Time Unit Interval (TUI)  
Sampling Window (SW)  
Internal Clock  
TCCS  
RSKM  
RSKM  
TCCS  
Receiver  
Input Data  
Figure 5–4 shows the high-speed I/O timing budget.  
5–56  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2008  
DC Characteristics and Timing Specifications  
Figure 5–4. High-Speed I/O Timing Budget  
Note (1)  
Internal Clock Period  
0.5 × TCCS RSKM  
SW  
RSKM  
0.5 × TCCS  
Note to Figure 5–4:  
(1) The equation for the high-speed I/O timing budget is:  
period = TCCS + RSKM + SW + RSKM.  
Table 5–48 shows the RSDS timing budget for Cyclone II devices at  
311 Mbps. RSDS is supported for transmitting from Cyclone II devices.  
Cyclone II devices cannot receive RSDS data because the devices are  
intended for applications where they will be driving display drivers.  
Cyclone II devices support a maximum RSDS data rate of 311 Mbps using  
DDIO registers. Cyclone II devices support RSDS only in the commercial  
temperature range.  
Table 5–48. RSDS Transmitter Timing Specification (Part 1 of 2)  
–6 Speed Grade  
–7 Speed Grade  
–8 Speed Grade  
Symbol  
Conditions  
Unit  
Min Typ Max(1) Min Typ Max(1) Min Typ Max(1)  
fHSCLK  
(input  
clock  
×10  
×8  
×7  
×4  
×2  
×1  
×10  
×8  
×7  
×4  
×2  
×1  
10  
10  
10  
10  
10  
10  
100  
80  
70  
40  
20  
10  
45  
155.5  
155.5  
155.5  
155.5  
155.5  
311  
10  
10  
10  
10  
10  
10  
100  
80  
70  
40  
20  
10  
45  
155.5  
155.5  
155.5  
155.5  
155.5  
311  
10  
10  
10  
10  
10  
10  
100  
80  
70  
40  
20  
10  
45  
155.5  
155.5  
155.5  
155.5  
155.5  
311  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
frequency)  
Device  
operation  
in Mbps  
311  
311  
311  
311  
311  
311  
311  
311  
311  
311  
311  
311  
311  
311  
311  
311  
311  
311  
tDUTY  
55  
55  
55  
Altera Corporation  
February 2008  
5–57  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–48. RSDS Transmitter Timing Specification (Part 2 of 2)  
–6 Speed Grade  
–7 Speed Grade  
–8 Speed Grade  
Symbol  
Conditions  
Unit  
Min Typ Max(1) Min Typ Max(1) Min Typ Max(1)  
TCCS  
200  
500  
200  
500  
200  
500  
ps  
ps  
Output  
jitter (peak  
to peak)  
tRISE  
tFALL  
tLOCK  
20–80%,  
CLOAD = 5 pF  
500  
500  
500  
500  
500  
500  
ps  
ps  
μs  
80–20%,  
CLOAD = 5 pF  
100  
100  
100  
Note to Table 5–48:  
(1) These specifications are for a three-resistor RSDS implementation. For single-resistor RSDS in ×10 through ×2  
modes, the maximum data rate is 170 Mbps and the corresponding maximum input clock frequency is 85 MHz.  
For single-resistor RSDS in ×1 mode, the maximum data rate is 170 Mbps, and the maximum input clock frequency  
is 170 MHz. For more information about the different RSDS implementations, refer to the High-Speed Differential  
Interfaces in Cyclone II Devices chapter of the Cyclone II Device Handbook.  
In order to determine the transmitter timing requirements, RSDS receiver  
timing requirements on the other end of the link must be taken into  
consideration. RSDS receiver timing parameters are typically defined as  
tSU and tH requirements. Therefore, the transmitter timing parameter  
specifications are tCO (minimum) and tCO (maximum). Refer to Figure 5–4  
for the timing budget.  
The AC timing requirements for RSDS are shown in Figure 5–5.  
5–58  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Figure 5–5. RSDS Transmitter Clock to Data Relationship  
Transmitter  
Clock (5.88 ns)  
Channel-to-Channel  
Skew (1.68 ns)  
Transmitter  
Valid  
Data  
Transmitter  
Valid  
Data  
At transmitter  
tx_data[11..0]  
At receiver  
rx_data[11..0]  
Valid  
Data  
Valid  
Data  
Total  
Skew  
t
(2 ns)  
SU  
t
(2 ns)  
H
Table 5–49 shows the mini-LVDS transmitter timing budget for Cyclone II  
devices at 311 Mbps. Cyclone II devices cannot receive mini-LVDS data  
because the devices are intended for applications where they will be  
driving display drivers. A maximum mini-LVDS data rate of 311 Mbps is  
supported for Cyclone II devices using DDIO registers. Cyclone II  
devices support mini-LVDS only in the commercial temperature range.  
Table 5–49. Mini-LVDS Transmitter Timing Specification (Part 1 of 2)  
–6 Speed Grade  
–7 Speed Grade  
–8 Speed Grade  
Symbol  
Conditions  
Unit  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
fHSCLK  
(input  
clock  
×10  
×8  
×7  
×4  
×2  
×1  
10  
10  
10  
10  
10  
10  
155.5  
155.5  
155.5  
155.5  
155.5  
311  
10  
10  
10  
10  
10  
10  
155.5  
155.5  
155.5  
155.5  
155.5  
311  
10  
10  
10  
10  
10  
10  
155.5 MHz  
155.5 MHz  
155.5 MHz  
155.5 MHz  
155.5 MHz  
frequency)  
311  
MHz  
Altera Corporation  
February 2008  
5–59  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–49. Mini-LVDS Transmitter Timing Specification (Part 2 of 2)  
–6 Speed Grade  
–7 Speed Grade  
–8 Speed Grade  
Symbol  
Conditions  
Unit  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Device  
operation  
in Mbps  
×10  
×8  
×7  
×4  
×2  
×1  
100  
80  
70  
40  
20  
10  
45  
311  
311  
311  
311  
311  
311  
55  
100  
80  
70  
40  
20  
10  
45  
311  
311  
311  
311  
311  
311  
55  
100  
80  
70  
40  
20  
10  
45  
311  
311  
311  
311  
311  
311  
55  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
tDUTY  
TCCS  
200  
500  
200  
500  
200  
500  
ps  
Output  
ps  
jitter (peak  
to peak)  
tRISE  
tFALL  
tLOCK  
20–80%  
80–20%  
500  
500  
100  
500  
500  
100  
500  
500  
100  
ps  
ps  
μs  
In order to determine the transmitter timing requirements, mini-LVDS  
receiver timing requirements on the other end of the link must be taken  
into consideration. The mini-LVDS receiver timing parameters are  
typically defined as tSU and tH requirements. Therefore, the transmitter  
timing parameter specifications are tCO (minimum) and tCO (maximum).  
Refer to Figure 5–4 for the timing budget.  
The AC timing requirements for mini-LVDS are shown in Figure 5–6.  
Figure 5–6. mini-LVDS Transmitter AC Timing Specification  
TUI  
LVDSCLK[]n  
LVDSCLK[]p  
t
(1)  
t
(2)  
t
(1)  
t (2)  
H
SU  
H
SU  
LVDS[]p  
LVDS[]n  
Notes to Figure 5–6:  
(1) The data setup time, tSU, is 0.225 × TUI.  
(2) The data hold time, tH, is 0.225 × TUI.  
5–60  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Tables 5–50 and 5–51 show the LVDS timing budget for Cyclone II  
devices. Cyclone II devices support LVDS receivers at data rates up to  
805 Mbps, and LVDS transmitters at data rates up to 640 Mbps.  
Table 5–50. LVDS Transmitter Timing Specification (Part 1 of 2)  
–6 Speed Grade  
–7 Speed Grade  
–8 Speed Grade  
Symbol Conditions  
Unit  
Max Max  
Max Max  
Max Max  
Min  
Typ  
Min  
Typ  
Min  
Typ  
(1)  
(2)  
(1)  
(2)  
(1)  
(2)  
×10  
×8  
×7  
×4  
×2  
×1  
10  
320  
320  
10  
275  
320  
10  
155.5  
(4)  
320  
(6)  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fHSCLK  
(input  
clock  
fre-  
quency)  
10  
10  
10  
10  
10  
320  
320  
320  
320  
320  
320  
320  
320  
10  
10  
10  
10  
10  
275  
275  
275  
275  
320  
320  
320  
320  
10  
10  
10  
10  
10  
155.5  
(4)  
320  
(6)  
155.5  
(4)  
320  
(6)  
155.5  
(4)  
320  
(6)  
155.5  
(4)  
320  
(6)  
402.5 402.5  
402.5 402.5  
402.5 402.5  
(8)  
(8)  
×10  
×8  
×7  
×4  
×2  
×1  
100  
80  
70  
40  
20  
10  
640  
640  
640  
640  
640  
640  
640  
640  
640  
640  
100  
80  
70  
40  
20  
10  
550  
550  
550  
550  
550  
640  
640  
640  
640  
640  
100  
80  
70  
40  
20  
10  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
HSIODR  
311  
550  
(5)  
(7)  
311  
550  
(5)  
(7)  
311  
550  
(5)  
(7)  
311  
550  
(5)  
(7)  
311  
550  
(5)  
(7)  
402.5 402.5  
402.5 402.5  
402.5 402.5  
(9)  
55  
(9)  
45  
55  
45  
55  
45  
%
ps  
ps  
tDUTY  
160  
312.5  
363.6  
200  
500  
200  
200  
TCCS  
(3)  
500  
250  
ps  
Output  
jitter  
(peak to  
peak)  
550 (10)  
250 (11)  
20–80%  
150  
200  
250  
150  
200  
150  
200  
ps  
tRISE  
Altera Corporation  
February 2008  
5–61  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
Table 5–50. LVDS Transmitter Timing Specification (Part 2 of 2)  
–6 Speed Grade  
–7 Speed Grade  
–8 Speed Grade  
Symbol Conditions  
Unit  
Max Max  
Max Max  
Max Max  
Min  
Typ  
Min  
Typ  
Min  
Typ  
(1)  
(2)  
(1)  
(2)  
(1)  
(2)  
80–20%  
150  
200  
250  
100  
150  
200  
250  
100  
150  
200  
ps  
tFALL  
250 (11)  
100 (12)  
μs  
tLOCK  
Notes to Table 5–50:  
(1) The maximum data rate that complies with duty cycle distortion of 45–55%.  
(2) The maximum data rate when taking duty cycle in absolute ps into consideration that may not comply with 45–55%  
duty cycle distortion. If the downstream receiver can handle duty cycle distortion beyond the 45–55% range, you  
may use the higher data rate values from this column. You can calculate the duty cycle distortion as a percentage  
using the absolute ps value. For example, for a data rate of 640 Mbps (UI = 1562.5 ps) and a tDU TY of 250 ps, the  
duty cycle distortion is tDU TY/(UI*2) *100% = 250 ps/(1562.5 *2) * 100% = 8%, which gives you a duty cycle  
distortion of 42–58%.  
(3) The TCCS specification applies to the entire bank of LVDS, as long as the SERDES logic is placed within the LAB  
adjacent to the output pins.  
(4) For extended temperature devices, the maximum input clock frequency for ×10 through ×2 modes is 137.5 MHz.  
(5) For extended temperature devices, the maximum data rate for ×10 through ×2 modes is 275 Mbps.  
(6) For extended temperature devices, the maximum input clock frequency for ×10 through ×2 modes is 200 MHz.  
(7) For extended temperature devices, the maximum data rate for ×10 through ×2 modes is 400 Mbps.  
(8) For extended temperature devices, the maximum input clock frequency for ×1 mode is 340 MHz.  
(9) For extended temperature devices, the maximum data rate for ×1 mode is 340 Mbps.  
(10) For extended temperature devices, the maximum output jitter (peak to peak) is 600 ps.  
(11) For extended temperature devices, the maximum tRIS E and tFALL are 300 ps.  
(12) For extended temperature devices, the maximum lock time is 500 us.  
5–62  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–51. LVDS Receiver Timing Specification  
–6 Speed Grade  
–7 Speed Grade  
–8 Speed Grade  
Symbol  
Conditions  
Unit  
Min Typ  
Max  
Min Typ  
Max  
Min Typ  
Max  
fHSCLK  
(input clock  
frequency)  
×10  
×8  
×7  
×4  
×2  
×1  
×10  
×8  
×7  
×4  
×2  
×1  
10  
10  
10  
10  
10  
10  
100  
80  
70  
40  
20  
10  
402.5  
402.5  
402.5  
402.5  
402.5  
402.5  
805  
10  
10  
10  
10  
10  
10  
100  
80  
70  
40  
20  
10  
320  
320  
320  
320  
320  
402.5  
640  
640  
640  
640  
640  
402.5  
400  
500  
10  
10  
10  
10  
10  
10  
100  
80  
70  
40  
20  
10  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
ps  
320 (1)  
320 (1)  
320 (1)  
320 (1)  
320 (1)  
402.5 (3)  
640 (2)  
640 (2)  
640 (2)  
640 (2)  
640 (2)  
402.5 (4)  
400  
HSIODR  
805  
805  
805  
805  
402.5  
300  
SW  
Input jitter  
tolerance  
500  
550  
ps  
tLOCK  
100  
100  
ps  
100 (5)  
Notes to Table 5–51:  
(1) For extended temperature devices, the maximum input clock frequency for x10 through x2 modes is 275 MHz.  
(2) For extended temperature devices, the maximum data rate for x10 through x2 modes is 550 Mbps.  
(3) For extended temperature devices, the maximum input clock frequency for x1 mode is 340 MHz.  
(4) For extended temperature devices, the maximum data rate for x1 mode is 340 Mbps.  
(5) For extended temperature devices, the maximum lock time is 500 us.  
External Memory Interface Specifications  
Table 5–52 shows the DQS bus clock skew adder specifications.  
Table 5–52. DQS Bus Clock Skew Adder Specifications  
Mode  
DQS Clock Skew Adder  
Unit  
×9  
155  
190  
ps  
ps  
×18  
Note to Table 5–52:  
(1) This skew specification is the absolute maximum and minimum skew. For  
example, skew on a ×9 DQ group is 155 ps or 77.5 ps.  
Altera Corporation  
February 2008  
5–63  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
JTAG Timing Specifications  
Figure 5–7 shows the timing requirements for the JTAG signals.  
Figure 5–7. Cyclone II JTAG Waveform  
TMS  
TDI  
tJCP  
tJCH  
t JCL  
tJPH  
tJPSU  
TCK  
TDO  
tJPXZ  
tJPZX  
tJPCO  
tJSSU  
tJSH  
Signal  
to be  
Captured  
tJSCO  
tJSZX  
tJSXZ  
Signal  
to be  
Driven  
5–64  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2008  
DC Characteristics and Timing Specifications  
Table 5–53 shows the JTAG timing parameters and values for Cyclone II  
devices.  
Table 5–53. Cyclone II JTAG Timing Parameters and Values  
Symbol Parameter  
Min  
40  
20  
20  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJCP  
TCKclock period  
tJCH  
TCKclock high time  
tJCL  
TCKclock low time  
tJPSU  
tJPH  
JTAG port setup time (2)  
JTAG port hold time  
10  
5
tJPCO  
tJPZX  
tJPXZ  
tJSSU  
tJSH  
JTAG port clock to output (2)  
13  
13  
13  
JTAG port high impedance to valid output (2)  
JTAG port valid output to high impedance (2)  
Capture register setup time (2)  
Capture register hold time  
10  
tJSCO  
tJSZX  
tJSXZ  
Update register clock to output  
Update register high impedance to valid output  
Update register valid output to high impedance  
25  
25  
25  
Notes to Table 5–53:  
(1) This information is preliminary.  
(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For  
1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the JTAG port and capture register clock setup time is 3 ns and port  
clock to output time is 15 ns.  
1
Cyclone II devices must be within the first 17 devices in a JTAG  
chain. All of these devices have the same JTAG controller. If any  
of the Cyclone II devices are in the 18th position or after they will  
fail configuration. This does not affect the SignalTap® II logic  
analyzer.  
f
For more information on JTAG, refer to the IEEE 1149.1 (JTAG)  
Boundary-Scan Testing for Cyclone II Devices chapter in the Cyclone II  
Handbook.  
Altera Corporation  
February 2008  
5–65  
Cyclone II Device Handbook, Volume 1  
Timing Specifications  
PLL Timing Specifications  
Table 5–54 describes the Cyclone II PLL specifications when operating in  
the commercial junction temperature range (0° to 85° C), the industrial  
junction temperature range (–40° to 100° C), the automotive junction  
temperature range (–40° to 125° C), and the extended temperature range  
(–40° to 125° C). Follow the PLL specifications for –8 speed grade devices  
when operating in the industrial, automotive, or extended temperature  
range.  
Table 5–54. PLL Specifications Note (1) (Part 1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fIN  
Input clock frequency (–6 speed grade)  
Input clock frequency (–7 speed grade)  
Input clock frequency (–8 speed grade)  
PFD input frequency (–6 speed grade)  
PFD input frequency (–7 speed grade)  
PFD input frequency (–8 speed grade)  
Input clock duty cycle  
10  
10  
10  
10  
10  
10  
40  
200  
(4)  
(4)  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
%
(4)  
fINPFD  
402.5  
402.5  
402.5  
60  
fINDUTY  
tINJITTER (5)  
Input clock period jitter  
ps  
fOUT_EXT (external  
clock output)  
PLL output frequency (–6 speed grade)  
PLL output frequency (–7 speed grade)  
PLL output frequency (–8 speed grade)  
PLL output frequency (–6 speed grade)  
PLL output frequency (–7 speed grade)  
PLL output frequency (–8 speed grade)  
10  
10  
10  
10  
10  
10  
45  
(4)  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
%
(4)  
(4)  
fOUT (to global clock)  
500  
450  
402.5  
55  
tOUTDUTY  
Duty cycle for external clock output (when  
set to 50%)  
tJITTER (p-p) (2)  
Period jitter for external clock output  
fOUT_EXT > 100 MHz  
300  
ps  
fOUT_EXT 100 MHz  
30  
mUI  
tLOCK  
Time required to lock from end of device  
configuration  
100 (6)  
μs  
tPLL_PSERR  
Accuracy of PLL phase shift  
60  
ps  
5–66  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
Table 5–54. PLL Specifications Note (1) (Part 2 of 2)  
Symbol  
Parameter  
Min  
300  
10  
Typ  
Max  
1,000  
Unit  
MHz  
ns  
fVCO (3)  
PLL internal VCO operating range  
Minimum pulse width on aresetsignal.  
tARESET  
Notes to Table 5–54:  
(1) These numbers are preliminary and pending silicon characterization.  
(2) The tJITTER specification for the PLL[4..1]_OUTpins are dependent on the I/O pins in its VCCIObank, how many  
of them are switching outputs, how much they toggle, and whether or not they use programmable current strength.  
(3) If the VCO post-scale counter = 2, a 300- to 500-MHz internal VCO frequency is available.  
(4) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency  
is different for each I/O standard.  
(5) Cyclone II PLLs can track a spread-spectrum input clock that has an input jitter within 200 ps.  
(6) For extended temperature devices, the maximum lock time is 500 us.  
Duty cycle distortion (DCD) describes how much the falling edge of a  
clock is off from its ideal position. The ideal position is when both the  
clock high time (CLKH) and the clock low time (CLKL) equal half of the  
clock period (T), as shown in Figure 5–8. DCD is the deviation of the  
non-ideal falling edge from the ideal falling edge, such as D1 for the  
falling edge A and D2 for the falling edge B (Figure 5–8). The maximum  
DCD for a clock is the larger value of D1 and D2.  
Duty Cycle  
Distortion  
Figure 5–8. Duty Cycle Distortion  
Ideal Falling Edge  
CLKH = T/2  
CLKL = T/2  
D1  
D2  
Falling Edge A  
Falling Edge B  
Clock Period (T)  
DCD expressed in absolution derivation, for example, D1 or D2 in  
Figure 5–8, is clock-period independent. DCD can also be expressed as a  
percentage, and the percentage number is clock-period dependent. DCD  
as a percentage is defined as:  
Altera Corporation  
February 2008  
5–67  
Cyclone II Device Handbook, Volume 1  
Duty Cycle Distortion  
(T/2 – D1) / T (the low percentage boundary)  
(T/2 + D2) / T (the high percentage boundary)  
DCD Measurement Techniques  
DCD is measured at an FPGA output pin driven by registers inside the  
corresponding I/O element (IOE) block. When the output is a single data  
rate signal (non-DDIO), only one edge of the register input clock (positive  
or negative) triggers output transitions (Figure 5–9). Therefore, any DCD  
present on the input clock signal, or caused by the clock input buffer, or  
different input I/O standard, does not transfer to the output signal.  
Figure 5–9. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs  
IOE  
DFF  
output  
D
Q
clk  
However, when the output is a double data rate input/output (DDIO)  
signal, both edges of the input clock signal (positive and negative) trigger  
output transitions (Figure 5–10). Therefore, any distortion on the input  
clock and the input clock buffer affect the output DCD.  
5–68  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2008  
DC Characteristics and Timing Specifications  
Figure 5–10. DCD Measurement Technique for DDIO (Double-Data Rate) Outputs  
DFF  
D
PRN  
Q
INPUT  
VCC  
clk  
GND  
CLRN  
1
0
output  
V
CC DFF  
PRN  
D
Q
CLRN  
When an FPGA PLL generates the internal clock, the PLL output clocks  
the IOE block. As the PLL only monitors the positive edge of the reference  
clock input and internally re-creates the output clock signal, any DCD  
present on the reference clock is filtered out. Therefore, the DCD for a  
DDIO output with PLL in the clock path is better than the DCD for a  
DDIO output without PLL in the clock path.  
Tables 5–55 through 5–58 give the maximum DCD in absolution  
derivation for different I/O standards on Cyclone II devices. Examples  
are also provided that show how to calculate DCD as a percentage.  
Table 5–55. Maximum DCD for Single Data Outputs (SDR) on Row I/O  
Pins Notes (1), (2) (Part 1 of 2)  
Row I/O Output Standard  
C6  
C7  
C8  
Unit  
LVCMOS  
165  
195  
120  
115  
130  
60  
230  
255  
120  
115  
130  
90  
230  
255  
135  
175  
135  
90  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
LVTTL  
2.5-V  
1.8-V  
1.5-V  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
HSTL-15 Class I  
HSTL-18 Class I  
65  
75  
75  
90  
165  
145  
155  
165  
205  
155  
145  
85  
Altera Corporation  
February 2008  
5–69  
Cyclone II Device Handbook, Volume 1  
Duty Cycle Distortion  
Table 5–55. Maximum DCD for Single Data Outputs (SDR) on Row I/O  
Pins Notes (1), (2) (Part 2 of 2)  
Row I/O Output Standard  
C6  
C7  
C8  
Unit  
Differential SSTL-2 Class I  
Differential SSTL-2 Class II  
Differential SSTL-18 Class I  
Differential HSTL-18 Class I  
Differential HSTL-15 Class I  
LVDS  
60  
65  
90  
75  
90  
75  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
90  
165  
155  
145  
60  
165  
155  
205  
60  
85  
145  
60  
Simple RSDS  
60  
60  
60  
Mini LVDS  
60  
60  
60  
PCI  
195  
195  
255  
255  
255  
255  
PCI-X  
Notes to Table 5–55:  
(1) The DCD specification is characterized using the maximum drive strength  
available for each I/O standard.  
(2) Numbers are applicable for commercial, industrial, and automotive devices.  
Here is an example for calculating the DCD as a percentage for an SDR  
output on a row I/O on a –6 device:  
If the SDR output I/O standard is SSTL-2 Class II, the maximum DCD is  
65 ps (refer to Table 5–55). If the clock frequency is 167 MHz, the clock  
period T is:  
T = 1/ f = 1 / 167 MHz = 6 ns = 6000 ps  
To calculate the DCD as a percentage:  
(T/2 – DCD) / T = (6000 ps/2 – 65 ps) / 6000 ps = 48.91% (for low  
boundary)  
(T/2 + DCD) / T = (6000 ps/2 + 65 ps) / 6000ps = 51.08% (for high  
boundary  
Table 5–56. Maximum DCD for SDR Output on Column I/O Notes (1), (2)  
(Part 1 of 2)  
Column I/O Output Standard  
C6  
C7  
C8  
Unit  
LVCMOS  
LVTTL  
195  
210  
285  
305  
285  
305  
ps  
ps  
5–70  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2008  
DC Characteristics and Timing Specifications  
Table 5–56. Maximum DCD for SDR Output on Column I/O Notes (1), (2)  
(Part 2 of 2)  
Column I/O Output Standard  
C6  
C7  
C8  
Unit  
2.5-V  
140  
115  
745  
60  
140  
115  
745  
60  
155  
165  
770  
75  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1.8-V  
1.5-V  
SSTL-2 Class I  
SSTL-2 Class II  
60  
60  
80  
SSTL-18 Class I  
60  
130  
135  
115  
75  
130  
135  
115  
100  
150  
155  
75  
SSTL-18 Class II  
60  
HSTL-18 Class I  
60  
HSTL-18 Class II  
HSTL-15 Class I  
75  
150  
135  
60  
150  
135  
60  
HSTL-15 Class II  
Differential SSTL-2 Class I  
Differential SSTL-2 Class II  
Differential SSTL-18 Class I  
Differential SSTL-18 Class II  
Differential HSTL-18 Class I  
Differential HSTL-18 Class II  
Differential HSTL-15 Class I  
Differential HSTL-15 Class II  
LVDS  
60  
60  
80  
60  
130  
135  
115  
75  
130  
135  
115  
100  
150  
155  
60  
60  
60  
75  
150  
135  
60  
150  
135  
60  
Simple RSDS  
60  
70  
70  
Mini-LVDS  
60  
60  
60  
Notes to Table 5–56:  
(1) The DCD specification is characterized using the maximum drive strength  
available for each I/O standard.  
(2) Numbers are applicable for commercial, industrial, and automotive devices.  
Table 5–57. Maximum for DDIO Output on Row Pins with PLL in the Clock  
Path Notes (1), (2) (Part 1 of 2)  
Row Pins with PLL in the Clock Path  
C6  
C7  
C8  
Unit  
LVCMOS  
LVTTL  
2.5-V  
270  
285  
180  
165  
310  
305  
180  
175  
310  
335  
220  
205  
ps  
ps  
ps  
ps  
1.8-V  
Altera Corporation  
February 2008  
5–71  
Cyclone II Device Handbook, Volume 1  
Duty Cycle Distortion  
Table 5–57. Maximum for DDIO Output on Row Pins with PLL in the Clock  
Path Notes (1), (2) (Part 2 of 2)  
Row Pins with PLL in the Clock Path  
C6  
C7  
C8  
Unit  
1.5-V  
280  
150  
155  
180  
180  
205  
150  
155  
180  
180  
205  
95  
280  
190  
200  
240  
235  
220  
190  
200  
240  
235  
220  
110  
155  
110  
305  
305  
280  
230  
230  
260  
235  
220  
230  
230  
260  
235  
220  
120  
155  
120  
335  
335  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
HSTL-18 Class I  
HSTL-15 Class I  
Differential SSTL-2 Class I  
Differential SSTL-2 Class II  
Differential SSTL-18 Class I  
Differential HSTL-18 Class I  
Differential HSTL-15 Class I  
LVDS  
Simple RSDS  
100  
95  
Mini LVDS  
PCI  
285  
285  
PCI-X  
Notes to Table 5–57:  
(1) The DCD specification is characterized using the maximum drive strength  
available for each I/O standard.  
(2) Numbers are applicable for commercial, industrial, and automotive devices.  
For DDIO outputs, you can calculate actual half period from the  
following equation:  
Actual half period = ideal half period – maximum DCD  
For example, if the DDR output I/O standard is SSTL-2 Class II, the  
maximum DCD for a –5 device is 155 ps (refer to Table 5–57). If the clock  
frequency is 167 MHz, the half-clock period T/2 is:  
T/2 = 1/(2* f )= 1 /(2*167 MHz) = 3 ns = 3000 ps  
5–72  
Cyclone II Device Handbook, Volume 1  
Altera Corporation  
February 2008  
DC Characteristics and Timing Specifications  
The actual half period is then = 3000 ps – 155 ps = 2845 ps  
Table 5–58. Maximum DCD for DDIO Output on Column I/O Pins with PLL in  
the Clock Path Notes (1), (2)  
Column I/O Pins in the Clock Path  
C6  
C7  
C8  
Unit  
LVCMOS  
285  
305  
175  
190  
605  
125  
195  
130  
135  
135  
165  
220  
190  
125  
195  
130  
132  
135  
165  
220  
190  
110  
125  
110  
400  
405  
195  
205  
645  
210  
195  
240  
270  
240  
240  
335  
210  
210  
195  
240  
270  
240  
240  
335  
210  
120  
125  
120  
445  
460  
285  
260  
645  
245  
195  
245  
330  
240  
285  
335  
375  
245  
195  
245  
330  
240  
285  
335  
375  
125  
275  
125  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
LVTTL  
2.5-V  
1.8-V  
1.5-V  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II  
HSTL-18 Class I  
HSTL-18 Class II  
HSTL-15 Class I  
HSTL-15 Class II  
Differential SSTL-2 Class I  
Differential SSTL-2 Class II  
Differential SSTL-18 Class I  
Differential SSTL-18 Class II  
Differential HSTL-18 Class I  
Differential HSTL-18 Class II  
Differential HSTL-15 Class I  
Differential HSTL-15 Class II  
LVDS  
Simple RSDS  
Mini-LVDS  
Notes to Table 5–58:  
(1) The DCD specification is characterized using the maximum drive strength  
available for each I/O standard.  
(2) Numbers are applicable for commercial, industrial, and automotive devices.  
Altera Corporation  
February 2008  
5–73  
Cyclone II Device Handbook, Volume 1  
Referenced Documents  
This chapter references the following documents:  
Referenced  
Documents  
Cyclone II Architecture chapter in Cyclone II Device Handbook  
High-Speed Differential Interfaces in Cyclone II Devices chapter of the  
Cyclone II Device Handbook  
IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices  
chapter in the Cyclone II Handbook  
Operating Requirements for Altera Devices Data Sheet  
PowerPlay Early Power Estimator User Guide  
PowerPlay Power Analysis chapters in volume 3 of the Quartus II  
Handbook  
Table 5–59 shows the revision history for this document.  
Document  
Revision History  
Table 5–59. Document Revision History  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
February 2008  
v4.0  
Updated the following tables with I/O timing  
numbers for automotive-grade devices:  
Tables 5–2, 5–12, 5–13, 5–15, 5–16, 5–17, 5–18,  
5–19, 5–21, 5–22, 5–23, 5–25, 5–26, 5–27, 5–28,  
5–36, 5–37, 5–40, 5–41, 5–42, 5–43, 5–55, 5–56,  
5–57, and 5–58.  
Added I/O timing numbers for  
automotive-grade devices.  
Added “Referenced Documents”.  
April 2007  
v3.2  
Updated Table 5–3.  
Updated RCONF typical and maximum  
values in Table 5–3.  
5–74  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
DC Characteristics and Timing Specifications  
February 2007  
v3.1  
Added document revision history.  
Added VCCA minimum and maximum limitations in  
Table 5–1.  
Updated Note (1) in Table 5–2.  
Updated the maximum VCC rise time for Cyclone II  
“A” devices in Table 5–2.  
Updated RCONF information in Table 5–3.  
Changed VI to Ii in Table 5–3.  
Updated LVPECL clock inputs in Note (6) to  
Table 5–8.  
Updated Note (1) to Table 5–12.  
Updated CVREF capacitance description in  
Table 5–13.  
Updated “Timing Specifications” section.  
Updated Table 5–45.  
Added Table 5–46 with information on toggle rate  
derating factors.  
Corrected calculation of the period based on a  
640 Mbps data rate as 1562.5 ps in Note (2) to  
Table 5–50.  
Updated “PLL Timing Specifications” section.  
Updated VCO range of 300–500 MHz in Note (3) to  
Table 5–54.  
Updated chapter with extended temperature  
information.  
December 2005 Updated PLL Timing Specifications  
v2.2  
November 2005 Updated technical content throughout.  
v2.1  
July 2005  
v2.0  
Updated technical content throughout.  
November 2004 Updated the “Differential I/O Standards” section.  
v1.1  
Updated Table 5–54.  
June 2004  
v1.0  
Added document to the Cyclone II Device Handbook.  
Altera Corporation  
February 2008  
5–75  
Cyclone II Device Handbook, Volume 1  
Document Revision History  
5–76  
Altera Corporation  
February 2008  
Cyclone II Device Handbook, Volume 1  
6. Reference & Ordering  
Information  
CII51006-1.4  
Cyclone® II devices are supported by the Altera® Quartus® II design  
software, which provides a comprehensive environment for  
Software  
system-on-a-programmable-chip (SOPC) design. The Quartus II software  
includes HDL and schematic design entry, compilation and logic  
synthesis, full simulation and advanced timing analysis, SignalTap® II  
logic analyzer, and device configuration. See the Quartus II Handbook for  
more information on the Quartus II software features.  
The free Quartus II Web Edition software, available at www.Altera.com,  
supports Microsoft Windows XP and Windows 2000. The full version of  
Quartus II software is available through the Altera subscription program.  
The full version of Quartus II software supports all Altera devices, is  
available for Windows XP, Windows 2000, Sun Solaris, and Red Hat  
Linux operating systems, and includes a free suite of popular IP  
MegaCore® functions for DSP applications and interfacing to external  
memory devices. Quartus II software and Quartus II Web Edition  
software support seamless integration with your favorite third party  
EDA tools.  
Device pin-outs for Cyclone II devices are available on the Altera web site  
(www.altera.com). For more information contact Altera Applications.  
Device Pin-Outs  
Figure 6–1 describes the ordering codes for Cyclone II devices. For more  
information on a specific package, contact Altera Applications.  
Ordering  
Information  
Altera Corporation  
February 2007  
6–1  
Document Revision History  
Figure 6–1. Cyclone II Device Packaging Ordering Information  
EP2C  
70  
A
F
324  
C
7
ES  
Family Signature  
Optional Suffix  
EP2C: Cyclone II  
Indicates specific device options or  
shipment method.  
ES: Engineering sample  
N: Lead-free devices  
Device Type  
5
8
Speed Grade  
6, 7, or 8, with 6 being the fastest  
15  
20  
35  
50  
70  
Fast-On  
Indicates devices with fast  
POR (Power on Reset) time.  
Operating Temperature  
C: Commercial temperature (t = 0° C to 85° C)  
J
I:  
Industrial temperature (t = -40° C to 100° C)  
J
Package Type  
Pin Count  
Number of pins for a particular package  
T: Thin quad flat pack (TQFP)  
Q: Plastic quad flat pack (PQFP)  
F: FineLine BGA  
U: Ultra FineLine BGA  
Table 6–1 shows the revision history for this document.  
Document  
Revision History  
Table 6–1. Document Revision History  
Date &  
Document  
Version  
Changes Made  
Summary of Changes  
February 2007  
v1.5  
Added document revision history.  
Updated Figure 6–1.  
Added Ultra FineLine BGA  
detail in UBGA Package  
information in Figure 6–1.  
November 2005 Updated software introduction.  
v1.2  
November 2004 Updated Figure 6–1.  
v1.1  
June 2004 v1.0 Added document to the Cyclone II Device Handbook.  
6–2  
Altera Corporation  
February 2007  
Cyclone II Device Handbook, Volume 1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY