EPM7064AELI44-7 [ALTERA]

EE PLD, 7.5ns, 64-Cell, CMOS, PQCC44, PLASTIC, LCC-44;
EPM7064AELI44-7
型号: EPM7064AELI44-7
厂家: ALTERA CORPORATION    ALTERA CORPORATION
描述:

EE PLD, 7.5ns, 64-Cell, CMOS, PQCC44, PLASTIC, LCC-44

时钟 输入元件 可编程逻辑
文件: 总64页 (文件大小:437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX 7000A  
Programmable Logic  
Device  
Includes  
MAX 7000AE  
®
September 2003, ver. 4.5  
Data Sheet  
High-performance 3.3-V EEPROM-based programmable logic  
devices (PLDs) built on second-generation Multiple Array MatriX  
(MAX®) architecture (see Table 1)  
3.3-V in-system programmability (ISP) through the built-in  
IEEE Std. 1149.1 Joint Test Action Group (JTAG) interface with  
advanced pin-locking capability  
Features...  
MAX 7000AE device in-system programmability (ISP) circuitry  
compliant with IEEE Std. 1532  
EPM7128A and EPM7256A device ISP circuitry compatible with  
IEEE Std. 1532  
Built-in boundary-scan test (BST) circuitry compliant with  
IEEE Std. 1149.1  
Supports JEDEC Jam Standard Test and Programming Language  
(STAPL) JESD-71  
Enhanced ISP features  
Enhanced ISP algorithm for faster programming (excluding  
EPM7128A and EPM7256A devices)  
ISP_Done bit to ensure complete programming (excluding  
EPM7128A and EPM7256A devices)  
Pull-up resistor on I/O pins during in-system programming  
Pin-compatible with the popular 5.0-V MAX 7000S devices  
High-density PLDs ranging from 600 to 10,000 usable gates  
Extended temperature range  
For information on in-system programmable 5.0-V MAX 7000 or 2.5-V  
MAX 7000B devices, see the MAX 7000 Programmable Logic Device Family  
Data Sheet or the MAX 7000B Programmable Logic Device Family Data Sheet.  
f
Altera Corporation  
1
DS-M7000A-4.5  
MAX 7000A Programmable Logic Device Data Sheet  
Table 1. MAX 7000A Device Features  
Feature  
EPM7032AE  
EPM7064AE  
EPM7128AE  
EPM7256AE  
EPM7512AE  
Usable gates  
Macrocells  
600  
32  
2
1,250  
64  
2,500  
128  
8
5,000  
256  
16  
10,000  
512  
Logic array blocks  
4
32  
Maximum user I/O  
pins  
36  
68  
100  
164  
212  
t
PD (ns)  
4.5  
2.9  
4.5  
2.8  
5.0  
3.3  
5.5  
3.9  
7.5  
5.6  
tSU (ns)  
tFSU (ns)  
2.5  
2.5  
2.5  
2.5  
3.0  
tCO1 (ns)  
3.0  
3.1  
3.4  
3.5  
4.7  
fCNT (MHz)  
227.3  
222.2  
192.3  
172.4  
116.3  
4.5-ns pin-to-pin logic delays with counter frequencies of up to  
227.3 MHz  
...and More  
Features  
MultiVoltTM I/O interface enables device core to run at 3.3 V, while  
I/O pins are compatible with 5.0-V, 3.3-V, and 2.5-V logic levels  
Pin counts ranging from 44 to 256 in a variety of thin quad flat pack  
(TQFP), plastic quad flat pack (PQFP), ball-grid array (BGA), space-  
saving FineLine BGATM, and plastic J-lead chip carrier (PLCC)  
packages  
Supports hot-socketing in MAX 7000AE devices  
Programmable interconnect array (PIA) continuous routing structure  
for fast, predictable performance  
PCI-compatible  
Bus-friendly architecture, including programmable slew-rate control  
Open-drain output option  
Programmable macrocell registers with individual clear, preset,  
clock, and clock enable controls  
Programmable power-up states for macrocell registers in  
MAX 7000AE devices  
Programmable power-saving mode for 50% or greater power  
reduction in each macrocell  
Configurable expander product-term distribution, allowing up to  
32 product terms per macrocell  
Programmable security bit for protection of proprietary designs  
6 to 10 pin- or logic-driven output enable signals  
Two global clock signals with optional inversion  
Enhanced interconnect resources for improved routability  
Fast input setup times provided by a dedicated path from I/O pin to  
macrocell registers  
Programmable output slew-rate control  
Programmable ground pins  
2
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Software design support and automatic place-and-route provided by  
Altera’s development systems for Windows-based PCs and Sun  
SPARCstation, and HP 9000 Series 700/800 workstations  
Additional design entry and simulation support provided by EDIF  
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM),  
Verilog HDL, VHDL, and other interfaces to popular EDA tools from  
manufacturers such as Cadence, Exemplar Logic, Mentor Graphics,  
OrCAD, Synopsys, Synplicity, and VeriBest  
Programming support with Altera’s Master Programming Unit  
(MPU), MasterBlasterTM serial/universal serial bus (USB)  
communications cable, ByteBlasterMVTM parallel port download  
cable, and BitBlasterTM serial download cable, as well as  
programming hardware from third-party manufacturers and any  
JamTM STAPL File (.jam), Jam Byte-Code File (.jbc), or Serial Vector  
Format File- (.svf) capable in-circuit tester  
MAX 7000A (including MAX 7000AE) devices are high-density, high-  
performance devices based on Altera’s second-generation MAX  
architecture. Fabricated with advanced CMOS technology, the EEPROM-  
based MAX 7000A devices operate with a 3.3-V supply voltage and  
provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns,  
and counter speeds of up to 227.3 MHz. MAX 7000A devices in the -4, -5,  
-6, -7, and some -10 speed grades are compatible with the timing  
requirements for 33 MHz operation of the PCI Special Interest Group (PCI  
SIG) PCI Local Bus Specification, Revision 2.2. See Table 2.  
General  
Description  
Table 2. MAX 7000A Speed Grades  
Device  
Speed Grade  
-4  
-5  
-6  
-7  
-10  
-12  
EPM7032AE  
EPM7064AE  
EPM7128A  
EPM7128AE  
EPM7256A  
EPM7256AE  
EPM7512AE  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Altera Corporation  
3
 
MAX 7000A Programmable Logic Device Data Sheet  
The MAX 7000A architecture supports 100% transistor-to-transistor logic  
(TTL) emulation and high-density integration of SSI, MSI, and LSI logic  
functions. It easily integrates multiple devices including PALs, GALs, and  
22V10s devices. MAX 7000A devices are available in a wide range of  
packages, including PLCC, BGA, FineLine BGA, Ultra FineLine BGA,  
PQFP, and TQFP packages. See Table 3 and Table 4.  
Table 3. MAX 7000A Maximum User I/O Pins  
Note (1)  
Device  
44-Pin PLCC 44-Pin TQFP 49-Pin Ultra 84-Pin PLCC  
100-Pin  
TQFP  
100-Pin  
FineLine  
BGA (3)  
FineLine  
BGA (2)  
EPM7032AE  
EPM7064AE  
EPM7128A  
EPM7128AE  
EPM7256A  
EPM7256AE  
EPM7512AE  
36  
36  
36  
36  
41  
68  
84  
84  
84  
84  
68  
84  
84  
68  
68  
84  
Table 4. MAX 7000A Maximum User I/O Pins  
Note (1)  
Device  
144-Pin TQFP  
169-Pin Ultra  
FineLine BGA (2)  
208-Pin PQFP 256-Pin BGA 256-Pin FineLine  
BGA (3)  
EPM7032AE  
EPM7064AE  
EPM7128A  
EPM7128AE  
EPM7256A  
EPM7256AE  
EPM7512AE  
100  
100  
120  
120  
120  
100  
100  
100  
164  
164  
176  
164  
164  
212  
212  
Notes to tables:  
(1) When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O  
pins become JTAG pins.  
(2) All Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM feature. Therefore, designers can  
design a board to support a variety of devices, providing a flexible migration path across densities and pin counts.  
Device migration is fully supported by Altera development tools. See “SameFrame Pin-Outs” on page 15 for more  
details.  
(3) All FineLine BGA packages are footprint-compatible via the SameFrame feature. Therefore, designers can design a  
board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device  
migration is fully supported by Altera development tools. See “SameFrame Pin-Outs” on page 15 for more details.  
4
Altera Corporation  
 
 
MAX 7000A Programmable Logic Device Data Sheet  
MAX 7000A devices use CMOS EEPROM cells to implement logic  
functions. The user-configurable MAX 7000A architecture accommodates  
a variety of independent combinatorial and sequential logic functions.  
The devices can be reprogrammed for quick and efficient iterations  
during design development and debug cycles, and can be programmed  
and erased up to 100 times.  
MAX 7000A devices contain from 32 to 512 macrocells that are combined  
into groups of 16 macrocells, called logic array blocks (LABs). Each  
macrocell has a programmable-AND/fixed-ORarray and a configurable  
register with independently programmable clock, clock enable, clear, and  
preset functions. To build complex logic functions, each macrocell can be  
supplemented with both shareable expander product terms and high-  
speed parallel expander product terms, providing up to 32 product terms  
per macrocell.  
MAX 7000A devices provide programmable speed/power optimization.  
Speed-critical portions of a design can run at high speed/full power,  
while the remaining portions run at reduced speed/low power. This  
speed/power optimization feature enables the designer to configure one  
or more macrocells to operate at 50% or lower power while adding only a  
nominal timing delay. MAX 7000A devices also provide an option that  
reduces the slew rate of the output buffers, minimizing noise transients  
when non-speed-critical signals are switching. The output drivers of all  
MAX 7000A devices can be set for 2.5 V or 3.3 V, and all input pins are  
2.5-V, 3.3-V, and 5.0-V tolerant, allowing MAX 7000A devices to be used  
in mixed-voltage systems.  
MAX 7000A devices are supported by Altera development systems,  
which are integrated packages that offer schematic, text—including  
VHDL, Verilog HDL, and the Altera Hardware Description Language  
(AHDL)—and waveform design entry, compilation and logic synthesis,  
simulation and timing analysis, and device programming. The software  
provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other  
interfaces for additional design entry and simulation support from other  
industry-standard PC- and UNIX-workstation-based EDA tools. The  
software runs on Windows-based PCs, as well as Sun SPARCstation, and  
HP 9000 Series 700/800 workstations.  
For more information on development tools, see the MAX+PLUS II  
Programmable Logic Development System & Software Data Sheet and the  
Quartus Programmable Logic Development System & Software Data Sheet.  
f
Altera Corporation  
5
MAX 7000A Programmable Logic Device Data Sheet  
The MAX 7000A architecture includes the following elements:  
Functional  
Description  
Logic array blocks (LABs)  
Macrocells  
Expander product terms (shareable and parallel)  
Programmable interconnect array  
I/O control blocks  
The MAX 7000A architecture includes four dedicated inputs that can be  
used as general-purpose inputs or as high-speed, global control signals  
(clock, clear, and two output enable signals) for each macrocell and I/O  
pin. Figure 1 shows the architecture of MAX 7000A devices.  
6
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 1. MAX 7000A Device Block Diagram  
INPUT/GCLK1  
INPUT/OE2/GCLK2  
INPUT/OE1  
INPUT/GCLRn  
6 or 10 Output Enables (1)  
6 or 10 Output Enables (1)  
LAB A  
LAB B  
2 to 16  
2 to 16  
2 to 16  
2 to 16  
36  
36  
Macrocells  
1 to 16  
Macrocells  
17 to 32  
I/O  
I/O  
2 to 16 I/O  
Control  
Block  
Control  
Block  
2 to 16 I/O  
16  
16  
6
2 to 16  
2 to 16  
6
LAB C  
LAB D  
2 to 16  
2 to 16  
PIA  
2 to 16  
2 to 16  
36  
36  
Macrocells  
33 to 48  
Macrocells  
49 to 64  
I/O  
Control  
Block  
I/O  
Control  
Block  
2 to 16 I/O  
2 to 16 I/O  
16  
16  
6
6
2 to 16  
2 to 16  
Note:  
(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enables.  
EPM7512AE devices have 10 output enables.  
Logic Array Blocks  
The MAX 7000A device architecture is based on the linking of  
high-performance LABs. LABs consist of 16-macrocell arrays, as shown in  
Figure 1. Multiple LABs are linked together via the PIA, a global bus that  
is fed by all dedicated input pins, I/O pins, and macrocells.  
Each LAB is fed by the following signals:  
36 signals from the PIA that are used for general logic inputs  
Global controls that are used for secondary register functions  
Direct input paths from I/O pins to the registers that are used for fast  
setup times  
Altera Corporation  
7
 
MAX 7000A Programmable Logic Device Data Sheet  
Macrocells  
MAX 7000A macrocells can be individually configured for either  
sequential or combinatorial logic operation. The macrocells consist of  
three functional blocks: the logic array, the product-term select matrix,  
and the programmable register. Figure 2 shows a MAX 7000A macrocell.  
Figure 2. MAX 7000A Macrocell  
Global Global  
LAB Local Array  
Clear  
Clocks  
From  
2
I/O pin  
Parallel Logic  
Expanders  
(from other  
macrocells)  
Fast Input  
Select  
Programmable  
Register  
Register  
Bypass  
To I/O  
Control  
Block  
PRN  
D/T  
Q
Clock/  
Enable  
Select  
Product-  
Term  
Select  
Matrix  
ENA  
CLRN  
VCC  
Clear  
Select  
To PIA  
Shared Logic  
Expanders  
36 Signals  
from PIA  
16 Expander  
Product Terms  
Combinatorial logic is implemented in the logic array, which provides  
five product terms per macrocell. The product-term select matrix allocates  
these product terms for use as either primary logic inputs (to the ORand  
XORgates) to implement combinatorial functions, or as secondary inputs  
to the macrocell’s register preset, clock, and clock enable control  
functions.  
Two kinds of expander product terms (“expanders”) are available to  
supplement macrocell logic resources:  
Shareable expanders, which are inverted product terms that are fed  
back into the logic array  
Parallel expanders, which are product terms borrowed from adjacent  
macrocells  
The Altera development system automatically optimizes product-term  
allocation according to the logic requirements of the design.  
8
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
For registered functions, each macrocell flipflop can be individually  
programmed to implement D, T, JK, or SR operation with programmable  
clock control. The flipflop can be bypassed for combinatorial operation.  
During design entry, the designer specifies the desired flipflop type; the  
Altera software then selects the most efficient flipflop operation for each  
registered function to optimize resource utilization.  
Each programmable register can be clocked in three different modes:  
Global clock signal. This mode achieves the fastest clock-to-output  
performance.  
Global clock signal enabled by an active-high clock enable. A clock  
enable is generated by a product term. This mode provides an enable  
on each flipflop while still achieving the fast clock-to-output  
performance of the global clock.  
Array clock implemented with a product term. In this mode, the  
flipflop can be clocked by signals from buried macrocells or I/O pins.  
Two global clock signals are available in MAX 7000A devices. As shown  
in Figure 1, these global clock signals can be the true or the complement of  
either of the global clock pins, GCLK1or GCLK2.  
Each register also supports asynchronous preset and clear functions. As  
shown in Figure 2, the product-term select matrix allocates product terms  
to control these operations. Although the product-term-driven preset and  
clear from the register are active high, active-low control can be obtained  
by inverting the signal within the logic array. In addition, each register  
clear function can be individually driven by the active-low dedicated  
global clear pin (GCLRn). Upon power-up, each register in a MAX 7000AE  
device may be set to either a high or low state. This power-up state is  
specified at design entry. Upon power-up, each register in EPM7128A and  
EPM7256A devices are set to a low state.  
All MAX 7000A I/O pins have a fast input path to a macrocell register.  
This dedicated path allows a signal to bypass the PIA and combinatorial  
logic and be clocked to an input D flipflop with an extremely fast (as low  
as 2.5 ns) input setup time.  
Altera Corporation  
9
MAX 7000A Programmable Logic Device Data Sheet  
Expander Product Terms  
Although most logic functions can be implemented with the five product  
terms available in each macrocell, more complex logic functions require  
additional product terms. Another macrocell can be used to supply the  
required logic resources. However, the MAX 7000A architecture also  
offers both shareable and parallel expander product terms that provide  
additional product terms directly to any macrocell in the same LAB. These  
expanders help ensure that logic is synthesized with the fewest possible  
logic resources to obtain the fastest possible speed.  
Shareable Expanders  
Each LAB has 16 shareable expanders that can be viewed as a pool of  
uncommitted single product terms (one from each macrocell) with  
inverted outputs that feed back into the logic array. Each shareable  
expander can be used and shared by any or all macrocells in the LAB to  
build complex logic functions. A small delay (tSEXP) is incurred when  
shareable expanders are used. Figure 3 shows how shareable expanders  
can feed multiple macrocells.  
Figure 3. MAX 7000A Shareable Expanders  
Shareable expanders can be shared by any or all macrocells in an LAB.  
Macrocell  
Product-Term  
Logic  
Product-Term Select Matrix  
Macrocell  
Product-Term  
Logic  
36 Signals  
from PIA  
16 Shared  
Expanders  
10  
Altera Corporation  
 
MAX 7000A Programmable Logic Device Data Sheet  
Parallel Expanders  
Parallel expanders are unused product terms that can be allocated to a  
neighboring macrocell to implement fast, complex logic functions.  
Parallel expanders allow up to 20 product terms to directly feed the  
macrocell ORlogic, with five product terms provided by the macrocell and  
15 parallel expanders provided by neighboring macrocells in the LAB.  
The compiler can allocate up to three sets of up to five parallel expanders  
to the macrocells that require additional product terms. Each set of five  
parallel expanders incurs a small, incremental timing delay (tPEXP). For  
example, if a macrocell requires 14 product terms, the compiler uses the  
five dedicated product terms within the macrocell and allocates two sets  
of parallel expanders; the first set includes five product terms, and the  
second set includes four product terms, increasing the total delay by  
2 × tPEXP  
.
Two groups of eight macrocells within each LAB (e.g., macrocells 1  
through 8 and 9 through 16) form two chains to lend or borrow parallel  
expanders. A macrocell borrows parallel expanders from lower-  
numbered macrocells. For example, macrocell 8 can borrow parallel  
expanders from macrocell 7, from macrocells 7 and 6, or from macrocells  
7, 6, and 5. Within each group of eight, the lowest-numbered macrocell  
can only lend parallel expanders, and the highest-numbered macrocell  
can only borrow them. Figure 4 shows how parallel expanders can be  
borrowed from a neighboring macrocell.  
Altera Corporation  
11  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 4. MAX 7000A Parallel Expanders  
Unused product terms in a macrocell can be allocated to a neighboring macrocell.  
From  
Previous  
Macrocell  
Preset  
Product-  
Term  
Select  
Matrix  
Macrocell  
Product-  
Term Logic  
Clock  
Clear  
Preset  
Product-  
Term  
Select  
Matrix  
Macrocell  
Product-  
Term Logic  
Clock  
Clear  
To Next  
Macrocell  
36 Signals 16 Shared  
from PIA Expanders  
Programmable Interconnect Array  
Logic is routed between LABs on the PIA. This global bus is a  
programmable path that connects any signal source to any destination on  
the device. All MAX 7000A dedicated inputs, I/O pins, and macrocell  
outputs feed the PIA, which makes the signals available throughout the  
entire device. Only the signals required by each LAB are actually routed  
from the PIA into the LAB. Figure 5 shows how the PIA signals are routed  
into the LAB. An EEPROM cell controls one input to a 2-input ANDgate,  
which selects a PIA signal to drive into the LAB.  
12  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 5. MAX 7000A PIA Routing  
To LAB  
PIA Signals  
While the routing delays of channel-based routing schemes in masked or  
FPGAs are cumulative, variable, and path-dependent, the MAX 7000A  
PIA has a predictable delay. The PIA makes a design’s timing  
performance easy to predict.  
I/O Control Blocks  
The I/O control block allows each I/O pin to be individually configured  
for input, output, or bidirectional operation. All I/O pins have a tri-state  
buffer that is individually controlled by one of the global output enable  
signals or directly connected to ground or VCC. Figure 6 shows the I/O  
control block for MAX 7000A devices. The I/O control block has 6 or  
10 global output enable signals that are driven by the true or complement  
of two output enable signals, a subset of the I/O pins, or a subset of the  
I/O macrocells.  
Altera Corporation  
13  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 6. I/O Control Block of MAX 7000A Devices  
6 or 10 Global  
Output Enable Signals  
(1)  
PIA  
OE Select Multiplexer  
VCC  
To Other I/O Pins  
GND  
From  
Macrocell  
Open-Drain Output  
Slew-Rate Control  
Fast Input to  
Macrocell  
Register  
To PIA  
Note:  
(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enable  
signals. EPM7512AE devices have 10 output enable signals.  
When the tri-state buffer control is connected to ground, the output is  
tri-stated (high impedance) and the I/O pin can be used as a dedicated  
input. When the tri-state buffer control is connected to VCC, the output is  
enabled.  
The MAX 7000A architecture provides dual I/O feedback, in which  
macrocell and pin feedbacks are independent. When an I/O pin is  
configured as an input, the associated macrocell can be used for buried  
logic.  
14  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
MAX 7000A devices support the SameFrame pin-out feature for  
FineLine BGA packages. The SameFrame pin-out feature is the  
arrangement of balls on FineLine BGA packages such that the lower-ball-  
count packages form a subset of the higher-ball-count packages.  
SameFrame pin-outs provide the flexibility to migrate not only from  
device to device within the same package, but also from one package to  
another. A given printed circuit board (PCB) layout can support multiple  
device density/package combinations. For example, a single board layout  
can support a range of devices from an EPM7128AE device in a 100-pin  
FineLine BGA package to an EPM7512AE device in a 256-pin  
FineLine BGA package.  
SameFrame  
Pin-Outs  
The Altera design software provides support to design PCBs with  
SameFrame pin-out devices. Devices can be defined for present and future  
use. The software generates pin-outs describing how to lay out a board to  
take advantage of this migration (see Figure 7).  
Figure 7. SameFrame Pin-Out Example  
Printed Circuit Board  
Designed for 256-Pin FineLine BGA Package  
100-Pin  
FineLine  
BGA  
256-Pin  
FineLine  
BGA  
100-Pin FineLine BGA Package  
(Reduced I/O Count or  
256-Pin FineLine BGA Package  
(Increased I/O Count or  
Logic Requirements)  
Logic Requirements)  
Altera Corporation  
15  
 
MAX 7000A Programmable Logic Device Data Sheet  
MAX 7000A devices can be programmed in-system via an industry-  
In-System  
Programma-  
bility  
standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient  
iterations during design development and debugging cycles. The  
MAX 7000A architecture internally generates the high programming  
voltages required to program EEPROM cells, allowing in-system  
programming with only a single 3.3-V power supply. During in-system  
programming, the I/O pins are tri-stated and weakly pulled-up to  
eliminate board conflicts. The pull-up value is nominally 50 k.  
MAX 7000AE devices have an enhanced ISP algorithm for faster  
programming. These devices also offer an ISP_Done bit that provides safe  
operation when in-system programming is interrupted. This ISP_Done  
bit, which is the last bit programmed, prevents all I/O pins from driving  
until the bit is programmed. This feature is only available in EPM7032AE,  
EPM7064AE, EPM7128AE, EPM7256AE, and EPM7512AE devices.  
ISP simplifies the manufacturing flow by allowing devices to be mounted  
on a PCB with standard pick-and-place equipment before they are  
programmed. MAX 7000A devices can be programmed by downloading  
the information via in-circuit testers, embedded processors, the Altera  
MasterBlaster serial/USB communications cable, ByteBlasterMV parallel  
port download cable, and BitBlaster serial download cable. Programming  
the devices after they are placed on the board eliminates lead damage on  
high-pin-count packages (e.g., QFP packages) due to device handling.  
MAX 7000A devices can be reprogrammed after a system has already  
shipped to the field. For example, product upgrades can be performed in  
the field via software or modem.  
In-system programming can be accomplished with either an adaptive or  
constant algorithm. An adaptive algorithm reads information from the  
unit and adapts subsequent programming steps to achieve the fastest  
possible programming time for that unit. A constant algorithm uses a pre-  
defined (non-adaptive) programming sequence that does not take  
advantage of adaptive algorithm programming time improvements.  
Some in-circuit testers cannot program using an adaptive algorithm.  
Therefore, a constant algorithm must be used. MAX 7000AE devices can  
be programmed with either an adaptive or constant (non-adaptive)  
algorithm. EPM7128A and EPM7256A device can only be programmed  
with an adaptive algorithm; users programming these two devices on  
platforms that cannot use an adaptive algorithm should use EPM7128AE  
and EPM7256AE devices.  
The Jam Standard Test and Programming Language (STAPL), JEDEC  
standard JESD 71, can be used to program MAX 7000A devices with in-  
circuit testers, PCs, or embedded processors.  
16  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
For more information on using the Jam STAPL language, see Application  
Note 88 (Using the Jam Language for ISP & ICR via an Embedded Processor)  
and Application Note 122 (Using Jam STAPL for ISP & ICR via an Embedded  
Processor).  
f
ISP circuitry in MAX 7000AE devices is compliant with the IEEE Std. 1532  
specification. The IEEE Std. 1532 is a standard developed to allow  
concurrent ISP between multiple PLD vendors.  
Programming Sequence  
During in-system programming, instructions, addresses, and data are  
shifted into the MAX 7000A device through the TDIinput pin. Data is  
shifted out through the TDOoutput pin and compared against the  
expected data.  
Programming a pattern into the device requires the following six ISP  
stages. A stand-alone verification of a programmed pattern involves only  
stages 1, 2, 5, and 6.  
1. Enter ISP. The enter ISP stage ensures that the I/O pins transition  
smoothly from user mode to ISP mode. The enter ISP stage requires  
1 ms.  
2. Check ID. Before any program or verify process, the silicon ID is  
checked. The time required to read this silicon ID is relatively small  
compared to the overall programming time.  
3. Bulk Erase. Erasing the device in-system involves shifting in the  
instructions to erase the device and applying one erase pulse of  
100 ms.  
4. Program. Programming the device in-system involves shifting in the  
address and data and then applying the programming pulse to  
program the EEPROM cells. This process is repeated for each  
EEPROM address.  
5. Verify. Verifying an Altera device in-system involves shifting in  
addresses, applying the read pulse to verify the EEPROM cells, and  
shifting out the data for comparison. This process is repeated for  
each EEPROM address.  
6. Exit ISP. An exit ISP stage ensures that the I/O pins transition  
smoothly from ISP mode to user mode. The exit ISP stage requires  
1 ms.  
Altera Corporation  
17  
MAX 7000A Programmable Logic Device Data Sheet  
Programming Times  
The time required to implement each of the six programming stages can  
be broken into the following two elements:  
A pulse time to erase, program, or read the EEPROM cells.  
A shifting time based on the test clock (TCK) frequency and the  
number of TCKcycles to shift instructions, address, and data into the  
device.  
By combining the pulse and shift times for each of the programming  
stages, the program or verify time can be derived as a function of the TCK  
frequency, the number of devices, and specific target device(s). Because  
different ISP-capable devices have a different number of EEPROM cells,  
both the total fixed and total variable times are unique for a single device.  
Programming a Single MAX 7000A Device  
The time required to program a single MAX 7000A device in-system can  
be calculated from the following formula:  
Cycle  
PTCK  
t
= t  
+ -------------------------------  
PROG  
PPULSE  
f
TCK  
where: tPROG  
= Programming time  
= Sum of the fixed times to erase, program, and  
verify the EEPROM cells  
tPPULSE  
CyclePTCK = Number of TCKcycles to program a device  
fTCK = TCKfrequency  
The ISP times for a stand-alone verification of a single MAX 7000A device  
can be calculated from the following formula:  
Cycle  
VTCK  
t
= t  
+ --------------------------------  
VER  
VPULSE  
f
TCK  
where: tVER  
tVPULSE  
CycleVTCK = Number of TCKcycles to verify a device  
= Verify time  
= Sum of the fixed times to verify the EEPROM cells  
18  
Altera Corporation  
 
MAX 7000A Programmable Logic Device Data Sheet  
The programming times described in Tables 5 through 7 are associated  
with the worst-case method using the enhanced ISP algorithm.  
Table 5. MAX 7000A tPULSE & CycleTCK Values  
Device  
Programming  
Stand-Alone Verification  
tVPULSE (s) CycleVTCK  
t
PPULSE (s)  
CyclePTCK  
EPM7032AE  
EPM7064AE  
EPM7128AE  
EPM7256AE  
EPM7512AE  
EPM7128A (1)  
EPM7256A (1)  
2.00  
2.00  
2.00  
2.00  
2.00  
5.11  
6.43  
55,000  
105,000  
205,000  
447,000  
890,000  
832,000  
1,603,000  
0.002  
0.002  
0.002  
0.002  
0.002  
0.03  
18,000  
35,000  
68,000  
149,000  
297,000  
528,000  
1,024,000  
0.03  
Tables 6 and 7 show the in-system programming and stand alone  
verification times for several common test clock frequencies.  
Table 6. MAX 7000A In-System Programming Times for Different Test Clock Frequencies  
Device  
fTCK  
Units  
10 MHz 5 MHz  
2 MHz  
1 MHz 500 kHz 200 kHz 100 kHz 50 kHz  
EPM7032AE  
EPM7064AE  
EPM7128AE  
EPM7256AE  
EPM7512AE  
EPM7128A (1)  
EPM7256A (1)  
2.01  
2.01  
2.02  
2.05  
2.09  
5.19  
6.59  
2.01  
2.02  
2.04  
2.09  
2.18  
5.27  
6.75  
2.03  
2.05  
2.10  
2.23  
2.45  
5.52  
7.23  
2.06  
2.11  
2.21  
2.45  
2.89  
5.94  
8.03  
2.11  
2.21  
2.41  
2.90  
3.78  
6.77  
9.64  
2.28  
2.53  
3.03  
4.24  
6.45  
9.27  
14.45  
2.55  
3.05  
3.10  
4.10  
s
s
s
s
s
s
s
4.05  
6.10  
6.47  
10.94  
19.80  
21.75  
38.49  
10.90  
13.43  
22.46  
Altera Corporation  
19  
 
MAX 7000A Programmable Logic Device Data Sheet  
Table 7. MAX 7000A Stand-Alone Verification Times for Different Test Clock Frequencies  
Device  
fTCK  
Units  
10 MHz 5 MHz  
2 MHz  
1 MHz 500 kHz 200 kHz 100 kHz 50 kHz  
EPM7032AE  
EPM7064AE  
EPM7128AE  
EPM7256AE  
EPM7512AE  
EPM7128A (1)  
EPM7256A (1)  
0.00  
0.01  
0.01  
0.02  
0.03  
0.08  
0.13  
0.01  
0.01  
0.02  
0.03  
0.06  
0.14  
0.24  
0.01  
0.02  
0.04  
0.08  
0.15  
0.29  
0.54  
0.02  
0.04  
0.07  
0.15  
0.30  
0.56  
1.06  
0.04  
0.07  
0.14  
0.30  
0.60  
1.09  
2.08  
0.09  
0.18  
0.34  
0.75  
1.49  
2.67  
5.15  
0.18  
0.35  
0.68  
1.49  
2.97  
5.31  
10.27  
0.36  
0.70  
s
s
s
s
s
s
s
1.36  
2.98  
5.94  
10.59  
20.51  
Note to tables:  
(1) EPM7128A and EPM7256A devices can only be programmed with an adaptive algorithm; users programming these  
two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices.  
MAX 7000A devices can be programmed on Windows-based PCs with an  
Altera Logic Programmer card, the MPU, and the appropriate device  
adapter. The MPU performs continuity checks to ensure adequate  
electrical contact between the adapter and the device.  
Programming  
with External  
Hardware  
For more information, see the Altera Programming Hardware Data Sheet.  
f
The Altera software can use text- or waveform-format test vectors created  
with the Altera Text Editor or Waveform Editor to test the programmed  
device. For added design verification, designers can perform functional  
testing to compare the functional device behavior with the results of  
simulation.  
Data I/O, BP Microsystems, and other programming hardware  
manufacturers provide programming support for Altera devices.  
For more information, see Programming Hardware Manufacturers.  
f
MAX 7000A devices include the JTAG BST circuitry defined by IEEE Std.  
1149.1. Table 8 describes the JTAG instructions supported by MAX 7000A  
devices. The pin-out tables, available from the Altera web site  
(http://www.altera.com), show the location of the JTAG control pins for  
IEEE Std.  
1149.1 (JTAG)  
Boundary-Scan  
each device. If the JTAG interface is not required, the JTAG pins are  
Support  
available as user I/O pins.  
20  
Altera Corporation  
 
MAX 7000A Programmable Logic Device Data Sheet  
Table 8. MAX 7000A JTAG Instructions  
JTAG Instruction  
Description  
SAMPLE/PRELOAD Allows a snapshot of signals at the device pins to be captured and examined during  
normal device operation, and permits an initial data pattern output at the device pins  
EXTEST  
Allows the external circuitry and board-level interconnections to be tested by forcing a  
test pattern at the output pins and capturing test results at the input pins  
BYPASS  
Places the 1-bit bypass register between the TDIand TDOpins, which allows the BST  
data to pass synchronously through a selected device to adjacent devices during normal  
device operation  
IDCODE  
Selects the IDCODE register and places it between the TDIand TDOpins, allowing the  
IDCODE to be serially shifted out of TDO  
USERCODE  
Selects the 32-bit USERCODE register and places it between the TDIand TDOpins,  
allowing the USERCODE value to be shifted out of TDO. The USERCODE instruction is  
available for MAX 7000AE devices only  
UESCODE  
These instructions select the user electronic signature (UESCODE) and allow the  
UESCODE to be shifted out of TDO. UESCODE instructions are available for EPM7128A  
and EPM7256A devices only.  
ISP Instructions  
These instructions are used when programming MAX 7000A devices via the JTAG ports  
with the MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or using a Jam  
STAPL File, JBC File, or SVF File via an embedded processor or test equipment.  
Altera Corporation  
21  
MAX 7000A Programmable Logic Device Data Sheet  
The instruction register length of MAX 7000A devices is 10 bits. The user  
electronic signature (UES) register length in MAX 7000A devices is 16 bits.  
The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10  
show the boundary-scan register length and device IDCODE information  
for MAX 7000A devices.  
Table 9. MAX 7000A Boundary-Scan Register Length  
Device  
Boundary-Scan Register Length  
EPM7032AE  
EPM7064AE  
EPM7128A  
EPM7128AE  
EPM7256A  
EPM7256AE  
EPM7512AE  
96  
192  
288  
288  
480  
480  
624  
Table 10. 32-Bit MAX 7000A Device IDCODE Note (1)  
Device  
IDCODE (32 Bits)  
Version  
(4 Bits)  
Part Number (16 Bits) Manufacturer’s 1 (1 Bit)  
Identity (11 Bits)  
(2)  
EPM7032AE  
EPM7064AE  
EPM7128A  
EPM7128AE  
EPM7256A  
EPM7256AE  
EPM7512AE  
0001  
0001  
0000  
0001  
0000  
0001  
0001  
0111 0000 0011 0010 00001101110  
0111 0000 0110 0100 00001101110  
0111 0001 0010 1000 00001101110  
0111 0001 0010 1000 00001101110  
0111 0010 0101 0110 00001101110  
0111 0010 0101 0110 00001101110  
0111 0101 0001 0010 00001101110  
1
1
1
1
1
1
1
Notes:  
(1) The most significant bit (MSB) is on the left.  
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.  
See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera  
Devices) for more information on JTAG BST.  
f
22  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 8 shows timing information for the JTAG signals.  
Figure 8. MAX 7000A JTAG Waveforms  
TMS  
TDI  
tJCP  
tJCH  
t JCL  
tJPH  
tJPSU  
TCK  
TDO  
tJPXZ  
tJPZX  
tJPCO  
tJSSU  
tJSH  
Signal  
to Be  
Captured  
tJSCO  
tJSZX  
tJSXZ  
Signal  
to Be  
Driven  
Table 11 shows the JTAG timing parameters and values for MAX 7000A  
devices.  
Table 11. JTAG Timing Parameters & Values for MAX 7000A Devices Note (1)  
Symbol  
Parameter  
Min Max Unit  
tJCP  
TCKclock period  
TCKclock high time  
TCKclock low time  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJCH  
tJCL  
50  
tJPSU  
tJPH  
JTAG port setup time  
20  
JTAG port hold time  
45  
tJPCO  
tJPZX  
tJPXZ  
tJSSU  
tJSH  
JTAG port clock to output  
25  
25  
25  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
Capture register setup time  
20  
45  
Capture register hold time  
tJSCO  
tJSZX  
tJSXZ  
Update register clock to output  
Update register high impedance to valid output  
Update register valid output to high impedance  
25  
25  
25  
Note:  
(1) Timing parameters shown in this table apply for all specified VCCIO levels.  
Altera Corporation  
23  
MAX 7000A Programmable Logic Device Data Sheet  
MAX 7000A devices offer a power-saving mode that supports low-power  
Programmable  
Speed/Power  
Control  
operation across user-defined signal paths or the entire device. This  
feature allows total power dissipation to be reduced by 50% or more  
because most logic applications require only a small fraction of all gates to  
operate at maximum frequency.  
The designer can program each individual macrocell in a MAX 7000A  
device for either high-speed (i.e., with the Turbo BitTM option turned on)  
or low-power operation (i.e., with the Turbo Bit option turned off). As a  
result, speed-critical paths in the design can run at high speed, while the  
remaining paths can operate at reduced power. Macrocells that run at low  
power incur a nominal timing delay adder (tLPA) for the tLAD, tLAC, tIC  
,
tEN, tSEXP, tACL, and tCPPW parameters.  
MAX 7000A device outputs can be programmed to meet a variety of  
system-level requirements.  
Output  
Configuration  
MultiVolt I/O Interface  
The MAX 7000A device architecture supports the MultiVolt I/O interface  
feature, which allows MAX 7000A devices to connect to systems with  
differing supply voltages. MAX 7000A devices in all packages can be set  
for 2.5-V, 3.3-V, or 5.0-V I/O pin operation. These devices have one set of  
VCCpins for internal operation and input buffers (VCCINT), and another  
set for I/O output drivers (VCCIO).  
The VCCIOpins can be connected to either a 3.3-V or 2.5-V power supply,  
depending on the output requirements. When the VCCIOpins are  
connected to a 2.5-V power supply, the output levels are compatible with  
2.5-V systems. When the VCCIOpins are connected to a 3.3-V power  
supply, the output high is at 3.3 V and is therefore compatible with 3.3-V  
or 5.0-V systems. Devices operating with VCCIO levels lower than 3.0 V  
incur a slightly greater timing delay of tOD2 instead of tOD1. Inputs can  
always be driven by 2.5-V, 3.3-V, or 5.0-V signals.  
Table 12 describes the MAX 7000A MultiVolt I/O support.  
Table 12. MAX 7000A MultiVolt I/O Support  
VCCIO Voltage  
Input Signal (V)  
3.3  
Output Signal (V)  
2.5  
5.0  
2.5  
3.3  
5.0  
2.5  
3.3  
v
v
v
v
v
v
v
v
v
24  
Altera Corporation  
 
MAX 7000A Programmable Logic Device Data Sheet  
Open-Drain Output Option  
MAX 7000A devices provide an optional open-drain (equivalent to  
open-collector) output for each I/O pin. This open-drain output enables  
the device to provide system-level control signals (e.g., interrupt and  
write enable signals) that can be asserted by any of several devices. This  
output can also provide an additional wired-ORplane.  
Open-drain output pins on MAX 7000A devices (with a pull-up resistor to  
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a high  
VIH. When the open-drain pin is active, it will drive low. When the pin is  
inactive, the resistor will pull up the trace to 5.0 V to meet CMOS VOH  
requirements. The open-drain pin will only drive low or tri-state; it will  
never drive high. The rise time is dependent on the value of the pull-up  
resistor and load impedance. The IOL current specification should be  
considered when selecting a pull-up resistor.  
Programmable Ground Pins  
Each unused I/O pin on MAX 7000A devices may be used as an  
additional ground pin. In EPM7128A and EPM7256A devices, utilizing  
unused I/O pins as additional ground pins requires using the associated  
macrocell. In MAX 7000AE devices, this programmable ground feature  
does not require the use of the associated macrocell; therefore, the buried  
macrocell is still available for user logic.  
Slew-Rate Control  
The output buffer for each MAX 7000A I/O pin has an adjustable output  
slew rate that can be configured for low-noise or high-speed performance.  
A faster slew rate provides high-speed transitions for high-performance  
systems. However, these fast transitions may introduce noise transients  
into the system. A slow slew rate reduces system noise, but adds a  
nominal delay of 4 to 5 ns. When the configuration cell is turned off, the  
slew rate is set for low-noise performance. Each I/O pin has an individual  
EEPROM bit that controls the slew rate, allowing designers to specify the  
slew rate on a pin-by-pin basis. The slew rate control affects both the rising  
and falling edges of the output signal.  
Altera Corporation  
25  
MAX 7000A Programmable Logic Device Data Sheet  
Because MAX 7000A devices can be used in a mixed-voltage environment,  
Power  
Sequencing &  
Hot-Socketing  
they have been designed specifically to tolerate any possible power-up  
sequence. The VCCIO and VCCINT power planes can be powered in any  
order.  
Signals can be driven into MAX 7000AE devices before and during power-  
up (and power-down) without damaging the device. Additionally,  
MAX 7000AE devices do not drive out during power-up. Once operating  
conditions are reached, MAX 7000AE devices operate as specified by the  
user.  
MAX 7000AE device I/O pins will not source or sink more than 300 µA of  
DC current during power-up. All pins can be driven up to 5.75 V during  
hot-socketing, except the OE1and GLCRnpins. The OE1and GLCRnpins  
can be driven up to 3.6 V during hot-socketing. After VCCINT and VCCIO  
reach the recommended operating conditions, these two pins are 5.0-V  
tolerant.  
EPM7128A and EPM7256A devices do not support hot-socketing and may  
drive out during power-up.  
All MAX 7000A devices contain a programmable security bit that controls  
access to the data programmed into the device. When this bit is  
programmed, a design implemented in the device cannot be copied or  
retrieved. This feature provides a high level of design security because  
programmed data within EEPROM cells is invisible. The security bit that  
controls this function, as well as all other programmed data, is reset only  
when the device is reprogrammed.  
Design Security  
Generic Testing  
MAX 7000A devices are fully tested. Complete testing of each  
programmable EEPROM bit and all internal logic elements ensures 100%  
programming yield. AC test measurements are taken under conditions  
equivalent to those shown in Figure 9. Test patterns can be used and then  
erased during early stages of the production flow.  
26  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 9. MAX 7000A AC Test Conditions  
Power supply transients can affect AC  
measurements. Simultaneous transitions  
of multiple outputs should be avoided for  
accurate measurement. Threshold tests  
must not be performed under AC  
conditions. Large-amplitude, fast-ground-  
current transients normally occur as the  
device outputs discharge the load  
VCC  
703  
[521 ]  
Device  
Output  
To Test  
System  
capacitances. When these transients flow  
through the parasitic inductance between  
the device ground pin and the test system  
ground, significant reductions in  
observable noise immunity can result.  
Numbers in brackets are for 2.5-V  
outputs. Numbers without brackets are for  
3.3-V outputs.  
586 Ω  
[481 ]  
C1 (includes jig  
capacitance)  
Device input  
rise and fall  
times < 2 ns  
Tables 13 through 16 provide information on absolute maximum ratings,  
recommended operating conditions, operating conditions, and  
capacitance for MAX 7000A devices.  
Operating  
Conditions  
Table 13. MAX 7000A Device Absolute Maximum Ratings  
Note (1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
VI  
Supply voltage  
With respect to ground (2)  
–0.5  
–2.0  
–25  
–65  
–65  
4.6  
5.75  
25  
V
DC input voltage  
V
IOUT  
TSTG  
TA  
DC output current, per pin  
Storage temperature  
Ambient temperature  
Junction temperature  
mA  
° C  
° C  
° C  
No bias  
150  
135  
135  
Under bias  
TJ  
BGA, FineLine BGA, PQFP, and  
TQFP packages, under bias  
Altera Corporation  
27  
 
MAX 7000A Programmable Logic Device Data Sheet  
Table 14. MAX 7000A Device Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VCCINT Supply voltage for internal logic (3), (13)  
3.0  
3.6  
V
and input buffers  
VCCIO Supply voltage for output  
drivers, 3.3-V operation  
(3)  
(3)  
3.0  
2.3  
3.0  
3.6  
2.7  
3.6  
V
V
V
Supply voltage for output  
drivers, 2.5-V operation  
VCCISP Supply voltage during in-  
system programming  
VI  
Input voltage  
(4)  
–0.5  
0
5.75  
VCCIO  
70  
V
VO  
TA  
Output voltage  
V
Ambient temperature  
Commercial range  
Industrial range (5)  
Commercial range  
Industrial range (5)  
Extended range (5)  
0
° C  
° C  
° C  
° C  
° C  
ns  
–40  
0
85  
TJ  
Junction temperature  
90  
–40  
–40  
105  
130  
40  
tR  
tF  
Input rise time  
Input fall time  
40  
ns  
28  
Altera Corporation  
 
MAX 7000A Programmable Logic Device Data Sheet  
Table 15. MAX 7000A Device DC Operating Conditions  
Note (6)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.7  
–0.5  
2.4  
5.75  
0.8  
V
V
V
VOH  
3.3-V high-level TTL output  
voltage  
IOH = –8 mA DC, VCCIO = 3.00 V (7)  
3.3-V high-level CMOS output  
voltage  
I
OH = –0.1 mA DC, VCCIO = 3.00 V  
VCCIO – 0.2  
2.1  
V
V
(7)  
2.5-V high-level output voltage IOH = –100 µA DC, VCCIO = 2.30 V  
(7)  
I
I
OH = –1 mA DC, VCCIO = 2.30 V (7)  
OH = –2 mA DC, VCCIO = 2.30 V (7)  
2.0  
1.7  
V
V
V
VOL  
3.3-V low-level TTL output  
voltage  
IOL = 8 mA DC, VCCIO = 3.00 V (8)  
0.45  
0.2  
3.3-V low-level CMOS output  
voltage  
I
OL = 0.1 mA DC, VCCIO = 3.00 V (8)  
OL = 100 µA DC, VCCIO = 2.30 V (8)  
V
2.5-V low-level output voltage  
Input leakage current  
I
0.2  
0.4  
0.7  
10  
V
V
IOL = 1 mA DC, VCCIO = 2.30 V (8)  
OL = 2 mA DC, VCCIO = 2.30 V (8)  
I
V
II  
VI = –0.5 to 5.5 V (9)  
VI = –0.5 to 5.5 V (9)  
–10  
–10  
µA  
µA  
IOZ  
Tri-state output off-state  
current  
10  
RISP  
Value of I/O pin pull-up resistor  
during in-system programming  
or during power-up  
V
CCIO = 3.0 to 3.6 V (10)  
VCCIO = 2.3 to 2.7 V (10)  
CCIO = 2.3 to 3.6 V (11)  
20  
30  
20  
50  
80  
74  
kΩ  
kΩ  
kΩ  
V
Table 16. MAX 7000A Device Capacitance  
Note (12)  
Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
CIN  
Input pin capacitance  
I/O pin capacitance  
VIN = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
8
8
pF  
pF  
CI/O  
Altera Corporation  
29  
MAX 7000A Programmable Logic Device Data Sheet  
Notes to tables:  
(1) See the Operating Requirements for Altera Devices Data Sheet.  
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents  
less than 100 mA and periods shorter than 20 ns.  
(3) For EPM7128A and EPM7256A devices only, V must rise monotonically.  
CC  
(4) In MAX 7000AE devices, all pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before  
V
and V  
are powered.  
CCINT  
CCIO  
(5) These devices support in-system programming for –40° to 100° C. For in-system programming support between  
–40° and 0° C, contact Altera Applications.  
(6) These values are specified under the recommended operating conditions shown in Table 14 on page 28.  
(7) The parameter is measured with 50% of the outputs each sourcing the specified current. The I  
parameter refers  
OH  
to high-level TTL or CMOS output current.  
(8) The parameter is measured with 50% of the outputs each sinking the specified current. The I parameter refers to  
OL  
low-level TTL or CMOS output current.  
(9) This value is specified for normal device operation. For MAX 7000AE devices, the maximum leakage current during  
power-up is 300 µA. For EPM7128A and EPM7256A devices, leakage current during power-up is not specified.  
(10) For EPM7128A and EPM7256A devices, this pull-up exists while a device is programmed in-system.  
(11) For MAX 7000AE devices, this pull-up exists while devices are programmed in-system and in unprogrammed  
devices during power-up.  
(12) Capacitance is measured at 25 °C and is sample-tested only. The OE1pin (high-voltage pin during programming)  
has a maximum capacitance of 20 pF.  
(13) The POR time for MAX 7000AE devices (except MAX 7128A and MAX 7256A devices) does not exceed 100 µs. The  
sufficient V  
voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V  
CCINT  
CCINT  
reaches the sufficient POR voltage level.  
30  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 10 shows the typical output drive characteristics of MAX 7000A  
devices.  
Figure 10. Output Drive Characteristics of MAX 7000A Devices  
3.3 V  
2.5 V  
MAX 7000AE Devices  
MAX 7000AE Devices  
150  
150  
IOL  
IOL  
100  
50  
100  
50  
Typical IO  
Output  
Current (mA)  
Typical IO  
Output  
Current (mA)  
VCCINT = 3.3 V  
VCCIO = 3.3 V  
VCCINT = 3.3 V  
VCCIO = 2.5 V  
Temperature  
= 25 OC  
= 25 OC  
Temperature  
IOH  
IOH  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
VO Output Voltage (V)  
VO Output Voltage (V)  
EPM7128A & EPM7256A Devices  
3.3 V  
2.5 V  
EPM7128A & EPM7256A Devices  
120  
120  
IOL  
IOL  
80  
40  
80  
40  
Typical IO  
Output  
Current (mA)  
Typical IO  
Output  
Current (mA)  
VCCINT = 3.3 V  
VCCIO = 3.3 V  
VCCINT = 3.3 V  
VCCIO = 2.5 V  
= 25OC  
= 25 OC  
Temperature  
Temperature  
IOH  
IOH  
0
0
0
1
2
3
4
5
1
2
3
4
5
VO Output Voltage (V)  
VO Output Voltage (V)  
MAX 7000A device timing can be analyzed with the Altera software, a  
variety of popular industry-standard EDA simulators and timing  
analyzers, or with the timing model shown in Figure 11. MAX 7000A  
devices have predictable internal delays that enable the designer to  
determine the worst-case timing of any design. The software provides  
timing simulation, point-to-point delay prediction, and detailed timing  
analysis for device-wide performance evaluation.  
Timing Model  
Altera Corporation  
31  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 11. MAX 7000A Timing Model  
Internal Output  
Enable Delay  
tIOE  
Global Control  
Delay  
Input  
Delay  
t I N  
Output  
Delay  
tGLOB  
Register  
Delay  
tSU  
Parallel  
Expander Delay  
tPEXP  
Logic Array  
Delay  
t LAD  
tOD1  
tOD2  
tOD3  
tXZ  
tZX1  
tZX2  
tZX3  
PIA  
Delay  
tPIA  
tH  
tPRE  
tCLR  
tRD  
tCOMB  
tFSU  
tFH  
Register  
Control Delay  
tLAC  
tIC  
tEN  
I/O  
Delay  
tIO  
Shared  
Expander Delay  
tSEXP  
Fast  
Input Delay  
tFIN  
The timing characteristics of any signal path can be derived from the  
timing model and parameters of a particular device. External timing  
parameters, which represent pin-to-pin timing delays, can be calculated  
as the sum of internal parameters. Figure 12 shows the timing relationship  
between internal and external delay parameters.  
See Application Note 94 (Understanding MAX 7000 Timing) for more  
information.  
f
32  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 12. MAX 7000A Switching Waveforms  
tR & tF < 2 ns. Inputs are  
driven at 3 V for a logic  
high and 0 V for a logic  
low. All timing  
characteristics are  
measured at 1.5 V.  
Combinatorial Mode  
tIN  
Input Pin  
I/O Pin  
tIO  
tPIA  
PIA Delay  
tSEXP  
Shared Expander  
Delay  
tLAC , tLAD  
Logic Array  
Input  
tPEXP  
Parallel Expander  
Delay  
tCOMB  
Logic Array  
Output  
tOD  
Output Pin  
Global Clock Mode  
tR  
tCH  
tCL  
tF  
Global  
Clock Pin  
tIN  
tGLOB  
Global Clock  
at Register  
tSU  
tH  
Data or Enable  
(Logic Array Output)  
Array Clock Mode  
tR  
tACH  
tACL  
tF  
Input or I/O Pin  
Clock into PIA  
tIN  
tIO  
tPIA  
Clock into  
Logic Array  
tIC  
tSU  
Clock at  
Register  
tH  
Data from  
Logic Array  
tRD  
tPIA  
tPIA  
tCLR , tPRE  
Register to PIA  
to Logic Array  
tOD  
tOD  
Register Output  
to Pin  
Altera Corporation  
33  
 
MAX 7000A Programmable Logic Device Data Sheet  
Tables 17 through 30 show EPM7032AE, EPM7064AE, EPM7128AE,  
EPM7256AE, EPM7512AE, EPM7128A, and EPM7256A timing  
information.  
Table 17. EPM7032AE External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-4  
-10  
Min  
Max  
Min  
Max  
Min  
Max  
tPD1  
tPD2  
Input to non-registered  
output  
C1 = 35 pF (2)  
4.5  
7.5  
10  
ns  
ns  
I/O input to non-registered C1 = 35 pF (2)  
4.5  
7.5  
10  
output  
tSU  
tH  
Global clock setup time  
Global clock hold time  
(2)  
(2)  
2.9  
0.0  
2.5  
4.7  
0.0  
3.0  
6.3  
0.0  
3.0  
ns  
ns  
ns  
tFSU  
Global clock setup time of  
fast input  
tFH  
Global clock hold time of  
fast input  
0.0  
0.0  
0.0  
ns  
tCO1  
tCH  
Global clock to output delay C1 = 35 pF  
Global clock high time  
1.0  
2.0  
2.0  
1.6  
0.3  
1.0  
2.0  
2.0  
2.0  
3.0  
4.3  
1.0  
3.0  
3.0  
2.5  
0.5  
1.0  
3.0  
3.0  
3.0  
5.0  
7.2  
1.0  
4.0  
4.0  
3.6  
0.5  
1.0  
4.0  
4.0  
4.0  
6.7  
9.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCL  
Global clock low time  
tASU  
tAH  
Array clock setup time  
Array clock hold time  
(2)  
(2)  
tACO1  
tACH  
tACL  
tCPPW  
Array clock to output delay C1 = 35 pF (2)  
Array clock high time  
Array clock low time  
Minimum pulse width for  
clear and preset  
(3)  
tCNT  
fCNT  
Minimum global clock  
period  
(2)  
4.4  
4.4  
7.2  
7.2  
9.7  
9.7  
ns  
Maximum internal global  
clock frequency  
(2), (4)  
227.3  
227.3  
138.9  
138.9  
103.1  
103.1  
MHz  
tACNT  
fACNT  
Minimum array clock period (2)  
ns  
Maximum internal array  
clock frequency  
(2), (4)  
MHz  
34  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 18. EPM7032AE Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-4  
-10  
Min  
Max Min  
Max  
Min Max  
tIN  
tIO  
Input pad and buffer delay  
0.7  
0.7  
1.2  
1.2  
1.5  
1.5  
ns  
ns  
I/O input pad and buffer  
delay  
tFIN  
Fast input delay  
2.3  
1.9  
0.5  
1.5  
0.6  
0.0  
0.8  
2.8  
3.1  
0.8  
2.5  
1.0  
0.0  
1.3  
3.4  
4.0  
1.0  
3.3  
1.2  
0.0  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad  
C1 = 35 pF  
C1 = 35 pF  
delay, slow slew rate = off  
V
CCIO = 3.3 V  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
Output buffer and pad  
1.3  
5.8  
4.0  
4.5  
9.0  
1.8  
6.3  
4.0  
4.5  
9.0  
4.0  
2.3  
6.8  
ns  
ns  
ns  
ns  
ns  
delay, slow slew rate = off (5)  
VCCIO = 2.5 V  
Output buffer and pad  
delay, slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
C1 = 35 pF  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
5.0  
VCCIO = 3.3 V  
Output buffer enable delay, C1 = 35 pF  
5.5  
slow slew rate = off  
VCCIO = 2.5 V  
(5)  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = on  
10.0  
V
CCIO = 3.3 V  
tXZ  
tSU  
tH  
Output buffer disable delay C1 = 5 pF  
Register setup time  
4.0  
2.0  
1.0  
1.5  
5.0  
ns  
ns  
ns  
ns  
1.3  
0.6  
1.0  
2.8  
1.3  
1.5  
Register hold time  
tFSU  
Register setup time of fast  
input  
tFH  
Register hold time of fast  
input  
1.5  
1.5  
1.5  
ns  
tRD  
Register delay  
0.7  
0.6  
1.2  
1.0  
1.5  
1.3  
ns  
ns  
tCOMB  
Combinatorial delay  
Altera Corporation  
35  
MAX 7000A Programmable Logic Device Data Sheet  
Table 18. EPM7032AE Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-4  
-10  
Min  
Max Min  
Max  
Min  
Max  
tIC  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
1.2  
0.6  
0.8  
1.2  
1.2  
0.9  
2.5  
2.0  
1.0  
1.3  
1.9  
1.9  
1.5  
4.0  
2.5  
1.2  
1.9  
2.6  
2.6  
2.1  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
(2)  
(6)  
tLPA  
Low-power adder  
36  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 19. EPM7064AE External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-4  
-10  
Min  
Max  
Min  
Max  
Min  
Max  
tPD1  
tPD2  
tSU  
Input to non-  
C1 = 35 pF  
4.5  
7.5  
10.0  
ns  
ns  
ns  
registered output  
(2)  
I/O input to non-  
registered output  
C1 = 35 pF  
4.5  
7.5  
10.0  
(2)  
Global clock setup  
time  
(2)  
2.8  
4.7  
6.2  
tH  
Global clock hold time (2)  
0.0  
2.5  
0.0  
3.0  
0.0  
3.0  
ns  
ns  
tFSU  
Global clock setup  
time of fast input  
tFH  
Global clock hold time  
of fast input  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
tCO1  
Global clock to output C1 = 35 pF  
delay  
3.1  
4.3  
5.1  
7.2  
7.0  
9.6  
tCH  
Global clock high time  
2.0  
2.0  
1.6  
0.3  
1.0  
3.0  
3.0  
2.6  
0.4  
1.0  
4.0  
4.0  
3.6  
0.6  
1.0  
ns  
ns  
ns  
ns  
ns  
tCL  
Global clock low time  
tASU  
tAH  
Array clock setup time (2)  
Array clock hold time (2)  
Array clock to output C1 = 35 pF  
tACO1  
delay  
(2)  
tACH  
tACL  
Array clock high time  
Array clock low time  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
tCPPW  
Minimum pulse width (3)  
for clear and preset  
tCNT  
Minimum global clock (2)  
4.5  
4.5  
7.4  
7.4  
10.0  
10.0  
ns  
MHz  
ns  
period  
fCNT  
Maximum internal  
(2), (4)  
222.2  
222.2  
135.1  
135.1  
100.0  
100.0  
global clock frequency  
tACNT  
fACNT  
Minimum array clock (2)  
period  
Maximum internal  
(2), (4)  
MHz  
array clock frequency  
Altera Corporation  
37  
MAX 7000A Programmable Logic Device Data Sheet  
Table 20. EPM7064AE Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-4  
-10  
Min  
Max Min  
Max  
Min Max  
tIN  
tIO  
Input pad and buffer delay  
0.6  
0.6  
1.1  
1.1  
1.4  
1.4  
ns  
ns  
I/O input pad and buffer  
delay  
tFIN  
Fast input delay  
2.5  
1.8  
0.4  
1.5  
0.6  
0.0  
0.8  
3.0  
3.0  
0.7  
2.5  
1.0  
0.0  
1.3  
3.7  
3.9  
0.9  
3.2  
1.2  
0.0  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad  
C1 = 35 pF  
C1 = 35 pF  
delay, slow slew rate = off  
V
CCIO = 3.3 V  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
Output buffer and pad  
1.3  
5.8  
4.0  
4.5  
9.0  
1.8  
6.3  
4.0  
4.5  
9.0  
4.0  
2.3  
6.8  
ns  
ns  
ns  
ns  
ns  
delay, slow slew rate = off (5)  
VCCIO = 2.5 V  
Output buffer and pad  
delay, slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
C1 = 35 pF  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
5.0  
VCCIO = 3.3 V  
Output buffer enable delay, C1 = 35 pF  
5.5  
slow slew rate = off  
VCCIO = 2.5 V  
(5)  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = on  
10.0  
V
CCIO = 3.3 V  
tXZ  
tSU  
tH  
Output buffer disable delay C1 = 5 pF  
Register setup time  
4.0  
2.0  
1.0  
1.5  
5.0  
ns  
ns  
ns  
ns  
1.3  
0.6  
1.0  
2.9  
1.3  
1.5  
Register hold time  
tFSU  
Register setup time of fast  
input  
tFH  
Register hold time of fast  
input  
1.5  
1.5  
1.5  
ns  
tRD  
Register delay  
0.7  
0.6  
1.2  
1.2  
0.9  
1.9  
1.6  
1.3  
2.5  
ns  
ns  
ns  
tCOMB  
tIC  
Combinatorial delay  
Array clock delay  
38  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 20. EPM7064AE Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-4  
-10  
Min  
Max Min  
Max  
Min Max  
tEN  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
0.6  
1.0  
1.3  
1.3  
1.0  
3.5  
1.0  
1.5  
2.1  
2.1  
1.7  
4.0  
1.2  
2.2  
2.9  
2.9  
2.3  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
tGLOB  
tPRE  
tCLR  
tPIA  
(2)  
(6)  
tLPA  
Low-power adder  
Altera Corporation  
39  
MAX 7000A Programmable Logic Device Data Sheet  
Table 21. EPM7128AE External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max  
Min  
Max  
Min  
Max  
tPD1  
tPD2  
tSU  
Input to non-  
C1 = 35 pF  
5.0  
7.5  
10  
ns  
ns  
ns  
registered output  
(2)  
I/O input to non-  
registered output  
C1 = 35 pF  
5.0  
7.5  
10  
(2)  
Global clock setup  
time  
(2)  
3.3  
4.9  
6.6  
tH  
Global clock hold time (2)  
0.0  
2.5  
0.0  
3.0  
0.0  
3.0  
ns  
ns  
tFSU  
Global clock setup  
time of fast input  
tFH  
Global clock hold time  
of fast input  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
tCO1  
Global clock to output C1 = 35 pF  
delay  
3.4  
4.9  
5.0  
7.1  
6.6  
9.4  
tCH  
Global clock high time  
2.0  
2.0  
1.8  
0.2  
1.0  
3.0  
3.0  
2.8  
0.3  
1.0  
4.0  
4.0  
3.8  
0.4  
1.0  
ns  
ns  
ns  
ns  
ns  
tCL  
Global clock low time  
tASU  
tAH  
Array clock setup time (2)  
Array clock hold time (2)  
Array clock to output C1 = 35 pF  
tACO1  
delay  
(2)  
tACH  
tACL  
Array clock high time  
Array clock low time  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
tCPPW  
Minimum pulse width (3)  
for clear and preset  
tCNT  
Minimum global clock (2)  
5.2  
5.2  
7.7  
7.7  
10.2  
10.2  
ns  
MHz  
ns  
period  
fCNT  
Maximum internal  
(2), (4)  
192.3  
192.3  
129.9  
129.9  
98.0  
98.0  
global clock frequency  
tACNT  
fACNT  
Minimum array clock (2)  
period  
Maximum internal  
(2), (4)  
MHz  
array clock frequency  
40  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 22. EPM7128AE Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max Min  
Max  
Min Max  
tIN  
tIO  
Input pad and buffer delay  
0.7  
0.7  
1.0  
1.0  
1.4  
1.4  
ns  
ns  
I/O input pad and buffer  
delay  
tFIN  
Fast input delay  
2.5  
2.0  
0.4  
1.6  
0.7  
0.0  
0.8  
3.0  
2.9  
0.7  
2.4  
1.0  
0.0  
1.2  
3.4  
3.8  
0.9  
3.1  
1.3  
0.0  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad  
C1 = 35 pF  
C1 = 35 pF  
delay, slow slew rate = off  
V
CCIO = 3.3 V  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
Output buffer and pad  
1.3  
5.8  
4.0  
4.5  
9.0  
1.7  
6.2  
4.0  
4.5  
9.0  
4.0  
2.1  
6.6  
ns  
ns  
ns  
ns  
ns  
delay, slow slew rate = off (5)  
VCCIO = 2.5 V  
Output buffer and pad  
delay, slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
C1 = 35 pF  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
5.0  
VCCIO = 3.3 V  
Output buffer enable delay, C1 = 35 pF  
5.5  
slow slew rate = off  
VCCIO = 2.5 V  
(5)  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = on  
10.0  
V
CCIO = 3.3 V  
tXZ  
tSU  
tH  
Output buffer disable delay C1 = 5 pF  
Register setup time  
4.0  
2.1  
1.0  
1.6  
5.0  
ns  
ns  
ns  
ns  
1.4  
0.6  
1.1  
2.9  
1.3  
1.6  
Register hold time  
tFSU  
Register setup time of fast  
input  
tFH  
Register hold time of fast  
input  
1.4  
1.4  
1.4  
ns  
tRD  
Register delay  
0.8  
0.5  
1.2  
1.2  
0.9  
1.7  
1.6  
1.3  
2.2  
ns  
ns  
ns  
tCOMB  
tIC  
Combinatorial delay  
Array clock delay  
Altera Corporation  
41  
MAX 7000A Programmable Logic Device Data Sheet  
Table 22. EPM7128AE Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max Min  
Max  
Min  
Max  
tEN  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
0.7  
1.1  
1.4  
1.4  
1.4  
4.0  
1.0  
1.6  
2.0  
2.0  
2.0  
4.0  
1.3  
2.0  
2.7  
2.7  
2.6  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
tGLOB  
tPRE  
tCLR  
tPIA  
(2)  
(6)  
tLPA  
Low-power adder  
42  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 23. EPM7256AE External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max  
Min  
Max  
Min  
Max  
tPD1  
tPD2  
tSU  
Input to non-  
C1 = 35 pF  
5.5  
7.5  
10  
ns  
ns  
ns  
registered output  
(2)  
I/O input to non-  
registered output  
C1 = 35 pF  
5.5  
7.5  
10  
(2)  
Global clock setup  
time  
(2)  
3.9  
5.2  
6.9  
tH  
Global clock hold time (2)  
0.0  
2.5  
0.0  
3.0  
0.0  
3.0  
ns  
ns  
tFSU  
Global clock setup  
time of fast input  
tFH  
Global clock hold time  
of fast input  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
tCO1  
Global clock to output C1 = 35 pF  
delay  
3.5  
5.4  
4.8  
7.3  
6.4  
9.7  
tCH  
Global clock high time  
2.0  
2.0  
2.0  
0.2  
1.0  
3.0  
3.0  
2.7  
0.3  
1.0  
4.0  
4.0  
3.6  
0.5  
1.0  
ns  
ns  
ns  
ns  
ns  
tCL  
Global clock low time  
tASU  
tAH  
Array clock setup time (2)  
Array clock hold time (2)  
Array clock to output C1 = 35 pF  
tACO1  
delay  
(2)  
tACH  
tACL  
Array clock high time  
Array clock low time  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
tCPPW  
Minimum pulse width (3)  
for clear and preset  
tCNT  
Minimum global clock (2)  
5.8  
5.8  
7.9  
7.9  
10.5  
10.5  
ns  
MHz  
ns  
period  
fCNT  
Maximum internal  
(2), (4)  
172.4  
172.4  
126.6  
126.6  
95.2  
95.2  
global clock frequency  
tACNT  
fACNT  
Minimum array clock (2)  
period  
Maximum internal  
(2), (4)  
MHz  
array clock frequency  
Altera Corporation  
43  
MAX 7000A Programmable Logic Device Data Sheet  
Table 24. EPM7256AE Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max Min  
Max  
Min  
Max  
tIN  
tIO  
Input pad and buffer delay  
0.7  
0.7  
0.9  
0.9  
1.2  
1.2  
ns  
ns  
I/O input pad and buffer  
delay  
tFIN  
Fast input delay  
2.4  
2.1  
0.3  
1.7  
0.8  
0.0  
0.9  
2.9  
2.8  
0.5  
2.2  
1.0  
0.0  
1.2  
3.4  
3.7  
0.6  
2.8  
1.3  
0.0  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad  
C1 = 35 pF  
C1 = 35 pF  
delay, slow slew rate = off  
VCCIO = 3.3 V  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
Output buffer and pad  
1.4  
5.9  
4.0  
4.5  
9.0  
1.7  
6.2  
4.0  
4.5  
9.0  
4.0  
2.1  
6.6  
5.0  
ns  
ns  
ns  
ns  
ns  
delay, slow slew rate = off (5)  
VCCIO = 2.5 V  
Output buffer and pad  
delay, slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
C1 = 35 pF  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
VCCIO = 3.3 V  
Output buffer enable delay, C1 = 35 pF  
5.5  
slow slew rate = off  
CCIO = 2.5 V  
(5)  
V
Output buffer enable delay, C1 = 35 pF  
slow slew rate = on  
10.0  
5.0  
VCCIO = 3.3 V  
tXZ  
tSU  
tH  
Output buffer disable delay C1 = 5 pF  
Register setup time  
4.0  
2.1  
0.9  
1.6  
ns  
ns  
ns  
ns  
1.5  
0.7  
1.1  
2.9  
1.2  
1.6  
Register hold time  
tFSU  
Register setup time of fast  
input  
tFH  
Register hold time of fast  
input  
1.4  
1.4  
1.4  
ns  
tRD  
Register delay  
0.9  
0.5  
1.2  
0.8  
1.6  
1.2  
ns  
ns  
tCOMB  
Combinatorial delay  
44  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 24. EPM7256AE Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max Min  
Max  
Min Max  
tIC  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
1.2  
0.8  
1.0  
1.6  
1.6  
1.7  
4.0  
1.6  
1.0  
1.5  
2.3  
2.3  
2.4  
4.0  
2.1  
1.3  
2.0  
3.0  
3.0  
3.2  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
(2)  
(6)  
tLPA  
Low-power adder  
Altera Corporation  
45  
MAX 7000A Programmable Logic Device Data Sheet  
Table 25. EPM7512AE External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-10  
Unit  
-7  
-12  
Min  
Max  
Min  
Max  
Min  
Max  
tPD1  
tPD2  
tSU  
Input to non-  
C1 = 35 pF  
7.5  
10.0  
12.0  
ns  
ns  
ns  
registered output  
(2)  
I/O input to non-  
registered output  
C1 = 35 pF  
7.5  
10.0  
12.0  
(2)  
Global clock setup  
time  
(2)  
5.6  
7.6  
9.1  
tH  
Global clock hold time (2)  
0.0  
3.0  
0.0  
3.0  
0.0  
3.0  
ns  
ns  
tFSU  
Global clock setup  
time of fast input  
tFH  
Global clock hold time  
of fast input  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
tCO1  
Global clock to output C1 = 35 pF  
delay  
4.7  
7.8  
6.3  
7.5  
tCH  
Global clock high time  
3.0  
3.0  
2.5  
0.2  
1.0  
4.0  
4.0  
3.5  
0.3  
1.0  
5.0  
5.0  
4.1  
0.4  
1.0  
ns  
ns  
ns  
ns  
ns  
tCL  
Global clock low time  
tASU  
tAH  
Array clock setup time (2)  
Array clock hold time (2)  
Array clock to output C1 = 35 pF  
tACO1  
10.4  
12.5  
delay  
(2)  
tACH  
tACL  
Array clock high time  
Array clock low time  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
tCPPW  
Minimum pulse width (3)  
for clear and preset  
tCNT  
Minimum global clock (2)  
8.6  
8.6  
11.5  
11.5  
13.9  
13.9  
ns  
MHz  
ns  
period  
fCNT  
Maximum internal  
(2), (4)  
116.3  
116.3  
87.0  
87.0  
71.9  
71.9  
global clock frequency  
tACNT  
fACNT  
Minimum array clock (2)  
period  
Maximum internal  
(2), (4)  
MHz  
array clock frequency  
46  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 26. EPM7512AE Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-10  
Unit  
-7  
-12  
Min  
Max Min  
Max  
Min Max  
tIN  
tIO  
Input pad and buffer delay  
0.7  
0.7  
0.9  
0.9  
1.0  
1.0  
ns  
ns  
I/O input pad and buffer  
delay  
tFIN  
Fast input delay  
3.1  
2.7  
0.4  
2.2  
1.0  
0.0  
1.0  
3.6  
3.5  
0.5  
2.8  
1.3  
0.0  
1.5  
4.1  
4.4  
0.6  
3.5  
1.7  
0.0  
1.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad  
C1 = 35 pF  
C1 = 35 pF  
delay, slow slew rate = off  
V
CCIO = 3.3 V  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
Output buffer and pad  
1.5  
6.0  
4.0  
4.5  
9.0  
2.0  
6.5  
5.0  
5.5  
2.2  
6.7  
ns  
ns  
ns  
ns  
ns  
delay, slow slew rate = off (5)  
VCCIO = 2.5 V  
Output buffer and pad  
delay, slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
C1 = 35 pF  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
5.0  
VCCIO = 3.3 V  
Output buffer enable delay, C1 = 35 pF  
5.5  
slow slew rate = off  
VCCIO = 2.5 V  
(5)  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = on  
10.0  
5.0  
10.0  
V
CCIO = 3.3 V  
tXZ  
tSU  
tH  
Output buffer disable delay C1 = 5 pF  
Register setup time  
4.0  
3.0  
0.8  
1.6  
5.0  
ns  
ns  
ns  
ns  
2.1  
0.6  
1.6  
3.5  
1.0  
1.6  
Register hold time  
tFSU  
Register setup time of fast  
input  
tFH  
Register hold time of fast  
input  
1.4  
1.4  
1.4  
ns  
tRD  
Register delay  
1.3  
0.6  
1.7  
0.8  
2.1  
1.0  
ns  
ns  
tCOMB  
Combinatorial delay  
Altera Corporation  
47  
MAX 7000A Programmable Logic Device Data Sheet  
Table 26. EPM7512AE Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-10  
Unit  
-7  
-12  
Min  
Max Min  
Max  
Min  
Max  
tIC  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
1.8  
1.0  
1.7  
1.0  
1.0  
3.0  
4.5  
2.3  
1.3  
2.2  
1.4  
1.4  
4.0  
5.0  
2.9  
1.7  
2.7  
1.7  
1.7  
4.8  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
(2)  
(6)  
tLPA  
Low-power adder  
48  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 27. EPM7128A External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7 -10  
Min Max Min Max Min Max Min Max  
Unit  
-6  
-12  
tPD1  
tPD2  
Input to non-registered  
output  
C1 = 35 pF  
6.0  
7.5  
10.0  
12.0 ns  
(2)  
I/O input to non-  
registered output  
C1 = 35 pF  
6.0  
7.5  
10.0  
12.0 ns  
(2)  
tSU  
tH  
Global clock setup time (2)  
4.2  
0.0  
2.5  
5.3  
0.0  
3.0  
7.0  
0.0  
3.0  
8.5  
0.0  
3.0  
ns  
ns  
ns  
Global clock hold time  
(2)  
tFSU  
Global clock setup time  
of fast input  
tFH  
Global clock hold time of  
fast input  
0.0  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
tCO1  
Global clock to output  
delay  
C1 = 35 pF 1.0  
3.7  
6.0  
4.6  
7.5  
6.1  
7.3  
ns  
tCH  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
3.0  
3.0  
3.0  
3.0  
2.4  
2.2  
1.0  
4.0  
4.0  
3.1  
3.3  
5.0  
5.0  
3.8  
4.3  
ns  
ns  
ns  
ns  
tCL  
tASU  
tAH  
(2)  
(2)  
1.9  
1.5  
tACO1  
Array clock to output  
delay  
C1 = 35 pF 1.0  
1.0 10.0 1.0 12.0 ns  
(2)  
tACH  
tACL  
Array clock high time  
Array clock low time  
3.0  
3.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
tCPPW  
Minimum pulse width for (3)  
3.0  
clear and preset  
tCNT  
Minimum global clock  
period  
(2)  
6.9  
6.9  
8.6  
8.6  
11.5  
11.5  
13.8 ns  
MHz  
fCNT  
Maximum internal global (2), (4)  
144.9  
144.9  
116.3  
116.3  
87.0  
87  
72.5  
72.5  
clock frequency  
tACNT  
fACNT  
Minimum array clock  
period  
(2)  
13.8 ns  
MHz  
Maximum internal array (2), (4)  
clock frequency  
Altera Corporation  
49  
MAX 7000A Programmable Logic Device Data Sheet  
Table 28. EPM7128A Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
-6  
-7  
-10  
-12  
Min Max Min Max Min Max Min Max  
tIN  
tIO  
Input pad and buffer delay  
0.6  
0.6  
0.7  
0.7  
0.9  
0.9  
1.1  
1.1  
ns  
ns  
I/O input pad and buffer  
delay  
tFIN  
Fast input delay  
2.7  
2.5  
0.7  
2.4  
2.4  
0.0  
3.1  
3.2  
0.8  
3.0  
3.0  
0.0  
3.6  
4.3  
1.1  
4.1  
4.1  
0.0  
3.9  
5.1  
1.3  
4.9  
4.9  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable  
delay  
tOD1  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
tXZ  
Output buffer and pad  
delay, slow slew rate = off  
VCCIO = 3.3 V  
C1 = 35 pF  
C1 = 35 pF  
0.4  
0.9  
5.4  
4.0  
4.5  
9.0  
4.0  
0.6  
1.1  
5.6  
4.0  
4.5  
9.0  
4.0  
0.7  
1.2  
5.7  
5.0  
5.5  
10.0  
5.0  
0.9  
1.4  
5.9  
5.0  
5.5  
ns  
ns  
ns  
ns  
ns  
Output buffer and pad  
delay, slow slew rate = off (5)  
VCCIO = 2.5 V  
Output buffer and pad  
delay, slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
C1 = 35 pF  
Output buffer enable  
C1 = 35 pF  
C1 = 35 pF  
delay, slow slew rate = off  
V
CCIO = 3.3 V  
Output buffer enable  
delay, slow slew rate = off (5)  
VCCIO = 2.5 V  
Output buffer enable  
delay, slow slew rate = on  
VCCIO = 3.3 V  
C1 = 35 pF  
10.0 ns  
Output buffer disable  
delay  
C1 = 5 pF  
5.0  
ns  
tSU  
tH  
Register setup time  
Register hold time  
1.9  
1.5  
0.8  
2.4  
2.2  
1.1  
3.1  
3.3  
1.1  
3.8  
4.3  
1.1  
ns  
ns  
ns  
tFSU  
Register setup time of fast  
input  
tFH  
Register hold time of fast  
input  
1.7  
1.9  
1.9  
1.9  
ns  
50  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 28. EPM7128A Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
-6  
-7  
-10  
-12  
Min Max Min Max Min Max Min Max  
tRD  
Register delay  
1.7  
1.7  
2.4  
2.4  
1.0  
3.1  
3.1  
0.9  
11.0  
2.1  
2.1  
3.0  
3.0  
1.2  
3.9  
3.9  
1.1  
10.0  
2.8  
2.8  
4.1  
4.1  
1.7  
5.2  
5.2  
1.5  
10.0  
3.3  
3.3  
4.9  
4.9  
2.0  
6.2  
6.2  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCOMB  
tIC  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
(2)  
(6)  
tLPA  
Low-power adder  
10.0 ns  
Altera Corporation  
51  
MAX 7000A Programmable Logic Device Data Sheet  
Table 29. EPM7256A External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7 -10  
Min Max Min Max Min Max Min Max  
Unit  
-6  
-12  
tPD1  
tPD2  
Input to non-registered  
output  
C1 = 35 pF  
6.0  
7.5  
10.0  
12.0 ns  
(2)  
I/O input to non-  
registered output  
C1 = 35 pF  
6.0  
7.5  
10.0  
12.0 ns  
(2)  
tSU  
tH  
Global clock setup time (2)  
3.7  
0.0  
2.5  
4.6  
0.0  
3.0  
6.2  
0.0  
3.0  
7.4  
0.0  
3.0  
ns  
ns  
ns  
Global clock hold time  
(2)  
tFSU  
Global clock setup time  
of fast input  
tFH  
Global clock hold time of  
fast input  
0.0  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
tCO1  
Global clock to output  
delay  
C1 = 35 pF 1.0  
3.3  
6.2  
4.2  
7.8  
5.5  
6.6  
ns  
tCH  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
3.0  
3.0  
3.0  
3.0  
1.0  
2.7  
1.0  
4.0  
4.0  
1.4  
4.0  
4.0  
4.0  
1.6  
5.1  
ns  
ns  
ns  
ns  
tCL  
tASU  
tAH  
(2)  
(2)  
0.8  
1.9  
tACO1  
Array clock to output  
delay  
C1 = 35 pF 1.0  
1.0 10.3 1.0 12.4 ns  
(2)  
tACH  
tACL  
Array clock high time  
Array clock low time  
3.0  
3.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
tCPPW  
Minimum pulse width for (3)  
3.0  
clear and preset  
tCNT  
Minimum global clock  
period  
(2)  
6.4  
6.4  
8.0  
8.0  
10.7  
10.7  
12.8 ns  
MHz  
fCNT  
Maximum internal global (2), (4)  
156.3  
156.3  
125.0  
125.0  
93.5  
93.5  
78.1  
78.1  
clock frequency  
tACNT  
fACNT  
Minimum array clock  
period  
(2)  
12.8 ns  
MHz  
Maximum internal array (2), (4)  
clock frequency  
52  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Table 30. EPM7256A Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
-6  
-7  
-10  
-12  
Min Max Min Max Min Max Min Max  
tIN  
tIO  
Input pad and buffer delay  
0.3  
0.3  
0.4  
0.4  
0.5  
0.5  
0.6  
0.6  
ns  
ns  
I/O input pad and buffer  
delay  
tFIN  
Fast input delay  
2.4  
2.8  
0.5  
2.5  
2.5  
0.2  
3.0  
3.5  
0.6  
3.1  
3.1  
0.3  
3.4  
4.7  
0.8  
4.2  
4.2  
0.4  
3.8  
5.6  
1.0  
5.0  
5.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable  
delay  
tOD1  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
tXZ  
Output buffer and pad  
delay, slow slew rate = off  
VCCIO = 3.3 V  
C1 = 35 pF  
C1 = 35 pF  
0.3  
0.8  
5.3  
4.0  
4.5  
9.0  
4.0  
0.4  
0.9  
5.4  
4.0  
4.5  
9.0  
4.0  
0.5  
1.0  
5.5  
5.0  
5.5  
10.0  
5.0  
0.6  
1.1  
5.6  
5.0  
5.5  
ns  
ns  
ns  
ns  
ns  
Output buffer and pad  
delay, slow slew rate = off (5)  
VCCIO = 2.5 V  
Output buffer and pad  
delay slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
C1 = 35 pF  
Output buffer enable  
C1 = 35 pF  
C1 = 35 pF  
delay slow slew rate = off  
V
CCIO = 3.3 V  
Output buffer enable  
delay slow slew rate = off (5)  
VCCIO = 2.5 V  
Output buffer enable  
C1 = 35 pF  
10.0 ns  
delay slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
Output buffer disable  
delay  
C1 = 5 pF  
5.0  
ns  
tSU  
tH  
Register setup time  
Register hold time  
1.0  
1.7  
1.2  
1.3  
2.4  
1.4  
1.7  
3.7  
1.4  
2.0  
4.7  
1.4  
ns  
ns  
ns  
tFSU  
Register setup time of fast  
input  
tFH  
tRD  
Register hold time of fast  
input  
1.3  
1.6  
1.6  
1.6  
ns  
ns  
Register delay  
1.6  
2.0  
2.7  
3.2  
Altera Corporation  
53  
MAX 7000A Programmable Logic Device Data Sheet  
Table 30. EPM7256A Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
-6  
-7  
-10  
-12  
Min Max Min Max Min Max Min Max  
tCOMB  
tIC  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
1.6  
2.7  
2.5  
1.1  
2.3  
2.3  
1.3  
11.0  
2.0  
3.4  
3.1  
1.4  
2.9  
2.9  
1.6  
10.0  
2.7  
4.5  
4.2  
1.8  
3.8  
3.8  
2.1  
10.0  
3.2  
5.4  
5.0  
2.2  
4.6  
4.6  
2.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
(2)  
(6)  
tLPA  
Low-power adder  
10.0 ns  
Notes to tables:  
(1) These values are specified under the recommended operating conditions shown in Table 14 on page 28. See  
Figure 12 for more information on switching waveforms.  
(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t  
parameter  
LPA  
must be added to this minimum width if the clear or reset signal incorporates the t  
parameter into the signal  
LAD  
path.  
(4) This parameter is measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(5) Operating conditions: V = 2.5 ± 0.2 V for commercial and industrial use.  
CCIO  
(6) The t  
parameter must be added to the t  
, t  
, t , t , t  
, t  
, and t  
parameters for macrocells  
LPA  
LAD LAC IC EN SEXP ACL  
CPPW  
running in low-power mode.  
Supply power (P) versus frequency (fMAX, in MHz) for MAX 7000A  
devices is calculated with the following equation:  
Power  
Consumption  
P = PINT + PIO = ICCINT × VCC + PIO  
The PIO value, which depends on the device output load characteristics  
and switching frequency, can be calculated using the guidelines given in  
Application Note 74 (Evaluating Power for Altera Devices).  
The ICCINT value depends on the switching frequency and the application  
logic. The ICCINT value is calculated with the following equation:  
ICCINT  
=
(A × MCTON) + [B × (MCDEV – MCTON)] + (C × MCUSED × fMAX × togLC  
)
54  
Altera Corporation  
 
 
MAX 7000A Programmable Logic Device Data Sheet  
The parameters in this equation are:  
MCTON  
=
Number of macrocells with the Turbo Bit option turned  
on, as reported in the MAX+PLUS II Report File (.rpt)  
Number of macrocells in the device  
Total number of macrocells in the design, as reported in  
the Report File  
MCDEV  
MCUSED  
=
=
fMAX  
togLC  
=
=
Highest clock frequency to the device  
Average percentage of logic cells toggling at each clock  
(typically 12.5%)  
A, B, C  
=
Constants, shown in Table 31  
Table 31. MAX 7000A ICC Equation Constants  
Device  
A
B
C
EPM7032AE  
EPM7064AE  
EPM7128A  
EPM7128AE  
EPM7256A  
EPM7256AE  
EPM7512AE  
0.71  
0.71  
0.71  
0.71  
0.71  
0.71  
0.71  
0.30  
0.30  
0.30  
0.30  
0.30  
0.30  
0.30  
0.014  
0.014  
0.014  
0.014  
0.014  
0.014  
0.014  
This calculation provides an ICC estimate based on typical conditions  
using a pattern of a 16-bit, loadable, enabled, up/down counter in each  
LAB with no output load. Actual ICC should be verified during operation  
because this measurement is sensitive to the actual pattern in the device  
and the environmental operating conditions.  
Altera Corporation  
55  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 13 shows the typical supply current versus frequency for  
MAX 7000A devices.  
Figure 13. ICC vs. Frequency for MAX 7000A Devices (Part 1 of 2)  
EPM7064AE  
EPM7032AE  
40  
35  
30  
80  
70  
60  
VCC = 3.3 V  
Room Temperature  
VCC = 3.3 V  
Room Temperature  
227.3 MHz  
222.2 MHz  
High Speed  
25  
50  
40  
30  
High Speed  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
20  
15  
144.9 MHz  
125.0 MHz  
20  
10  
10  
5
Low Power  
Low Power  
0
50  
100  
150  
0
50  
100  
150  
200  
250  
200  
250  
Frequency (MHz)  
Frequency (MHz)  
EPM7128A & EPM7128AE  
160  
VCC = 3.3 V  
Room Temperature  
140  
120  
192.3 MHz  
100  
80  
60  
40  
20  
High Speed  
Typical ICC  
Active (mA)  
108.7 MHz  
Low Power  
0
50  
100  
150  
200  
250  
Frequency (MHz)  
56  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 13. ICC vs. Frequency for MAX 7000A Devices (Part 2 of 2)  
EPM7512AE  
EPM7256A & EPM7256AE  
600  
300  
VCC = 3.3 V  
Room Temperature  
VCC = 3.3 V  
Room Temperature  
500  
400  
300  
200  
100  
250  
200  
172.4 MHz  
116.3 MHz  
High Speed  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
High Speed  
150  
100  
50  
102.0 MHz  
76.3 MHz  
Low Power  
Low Power  
0
20  
40  
60  
80  
100  
120  
140  
0
50  
100  
150  
200  
Frequency (MHz)  
Frequency (MHz)  
See the Altera web site (http://www.altera.com) or the Altera Digital  
Library for pin-out information.  
Device  
Pin-Outs  
Figures 14 through 23 show the package pin-out diagrams for  
MAX 7000A devices.  
Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram  
Package outlines not drawn to scale.  
Pin 34  
Pin 1  
6
5
4
3
2
1 44 43 42 41 40  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
I/O  
I/O/TDI  
I/O  
I/O/TDI  
I/O  
I/O  
8
I/O/TDO  
I/O  
I/O/TDO  
9
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
VCC  
I/O  
EPM7032AE  
EPM7064AE  
EPM7032AE  
EPM7064AE  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O/TMS  
I/O  
I/O  
I/O/TMS  
I/O  
I/O/TCK  
I/O  
I/O/TCK  
I/O  
VCC  
I/O  
VCC  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
18 19 20 21 22 23 24 25 26 27 28  
Pin 12  
Pin 23  
44-Pin PLCC  
44-Pin TQFP  
Altera Corporation  
57  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 15. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram  
Package outlines not drawn to scale.  
A1 Ball  
Pad Corner  
Indicates  
location of  
Ball A1  
A
B
C
D
E
F
EPM7064AE  
G
7
6
5
4
3
2
1
Figure 16. 84-Pin PLCC Package Pin-Out Diagram  
Package outline not drawn to scale.  
I/O  
VCCIO  
I/O/TDI  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O/TMS  
I/O  
I/O  
VCCIO  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
I/O  
I/O  
GND  
I/O/TDO  
I/O  
I/O  
I/O  
I/O  
VCCIO  
I/O  
I/O  
I/O  
I/O/TCK  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
EPM7128A  
EPM7128AE  
I/O  
58  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 17. 100-Pin TQFP Package Pin-Out Diagram  
Package outline not drawn to scale.  
Pin 1  
Pin 76  
EPM7064AE  
EPM7128A  
EPM7128AE  
EPM7256A  
EPM7256AE  
Pin 26  
Pin 51  
Figure 18. 100-Pin FineLine BGA Package Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
Indicates  
location of  
Ball A1  
A
B
C
D
E
F
G
H
EPM7064AE  
EPM7128A  
EPM7128AE  
EPM7256AE  
J
K
10  
9
8
7
6
5
4
3
2
1
Altera Corporation  
59  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 19. 144-Pin TQFP Package Pin-Out Diagram  
Package outline not drawn to scale.  
Indicates location  
of Pin 1  
Pin 1  
Pin 109  
EPM7128A  
EPM7128AE  
EPM7256A  
EPM7256AE  
EPM7512AE  
Pin 37  
Pin 73  
Figure 20. 169-Pin Ultra FineLine BGA Package Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
Indicates  
location of  
Ball A1  
A
B
C
D
E
F
G
H
EPM7064AE  
EPM7128A  
EPM7128AE  
EPM7256AE  
J
K
10  
9
8
7
6
5
4
3
2
1
60  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 21. 208-Pin PQFP Package Pin-Out Diagram  
Package outline not drawn to scale.  
Pin 1  
Pin 157  
EPM7256A  
EPM7256AE  
EPM7512AE  
Pin 53  
Pin 105  
Altera Corporation  
61  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 22. 256-Pin BGA Package Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
Indicates  
Location of  
Ball A1  
A
B
C
D
E
F
G
H
J
K
L
M
N
EPM7512AE  
P
R
T
U
V
W
Y
20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
62  
Altera Corporation  
MAX 7000A Programmable Logic Device Data Sheet  
Figure 23. 256-Pin FineLine BGA Package Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
A
Indicates  
Location of  
Ball A1  
B
C
D
E
F
G
H
J
EPM7128A  
EPM7128AE  
EPM7256A  
EPM7256AE  
EPM7512AE  
K
L
M
N
P
R
T
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
The information contained in the MAX 7000A Programmable Logic Device  
Data Sheet version 4.5 supersedes information published in previous  
versions.  
Revision  
History  
Version 4.5  
The following changes were made in the MAX 7000A Programmable Logic  
Device Data Sheet version 4.5:  
Updated text in the “Power Sequencing & Hot-Socketing” section.  
Version 4.4  
The following changes were made in the MAX 7000A Programmable Logic  
Device Data Sheet version 4.4:  
Added Tables 5 through 7.  
Added “Programming Sequence” on page 17 and “Programming  
Times” on page 18.  
Altera Corporation  
63  
MAX 7000A Programmable Logic Device Data Sheet  
Version 4.3  
The following changes were made in the MAX 7000A Programmable Logic  
Device Data Sheet version 4.3:  
Added extended temperature devices to document  
Updated Table 14.  
Version 4.2  
The following changes were made in the MAX 7000A Programmable Logic  
Device Data Sheet version 4.2:  
Removed Note (1) from Table 2.  
Removed Note (4) from Tables 3 and 4.  
Version 4.1  
The following changes were made in the MAX 7000A Programmable Logic  
Device Data Sheet version 4.1:  
Updated leakage current information in Table 15.  
Updated Note (9) of Table 15.  
Updated Note (1) of Tables 17 through 30.  
®
Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the  
stylized Altera logo, specific device designations, and all other words and logos that are identified as  
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera  
Corporation in the U.S. and other countries. All other product or service names are the property of their  
respective holders. Altera products are protected under numerous U.S. and foreign patents and pending  
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to  
current specifications in accordance with Altera's standard warranty, but reserves the right  
to make changes to any products and services at any time without notice. Altera assumes no  
responsibility or liability arising out of the application or use of any information, product, or  
service described herein except as expressly agreed to in writing by Altera Corporation.  
Altera customers are advised to obtain the latest version of device specifications before  
relying on any published information and before placing orders for products or services.  
101 Innovation Drive  
San Jose, CA 95134  
(408) 544-7000  
http://www.altera.com  
Applications Hotline:  
(800) 800-EPLD  
Literature Services:  
lit_req@altera.com  
64  
Altera Corporation  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY