EPM7160SQI100-10 [ALTERA]

Programmable Logic Device Family; 可编程逻辑器件系列
EPM7160SQI100-10
型号: EPM7160SQI100-10
厂家: ALTERA CORPORATION    ALTERA CORPORATION
描述:

Programmable Logic Device Family
可编程逻辑器件系列

可编程逻辑器件 输入元件 LTE 时钟
文件: 总66页 (文件大小:1128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX 7000  
Programmable Logic  
Device Family  
®
September 2005, ver. 6.7  
Data Sheet  
High-performance, EEPROM-based programmable logic devices  
(PLDs) based on second-generation MAX® architecture  
5.0-V in-system programmability (ISP) through the built-in  
IEEE Std. 1149.1 Joint Test Action Group (JTAG) interface available in  
MAX 7000S devices  
Features...  
ISP circuitry compatible with IEEE Std. 1532  
Includes 5.0-V MAX 7000 devices and 5.0-V ISP-based MAX 7000S  
devices  
Built-in JTAG boundary-scan test (BST) circuitry in MAX 7000S  
devices with 128 or more macrocells  
Complete EPLD family with logic densities ranging from 600 to  
5,000 usable gates (see Tables 1 and 2)  
5-ns pin-to-pin logic delays with up to 175.4-MHz counter  
frequencies (including interconnect)  
PCI-compliant devices available  
For information on in-system programmable 3.3-V MAX 7000A or 2.5-V  
MAX 7000B devices, see the MAX 7000A Programmable Logic Device Family  
Data Sheet or the MAX 7000B Programmable Logic Device Family Data  
Sheet.  
f
Table 1. MAX 7000 Device Features  
Feature  
EPM7032  
EPM7064  
EPM7096 EPM7128E EPM7160E EPM7192E EPM7256E  
Usable  
600  
1,250  
1,800  
2,500  
3,200  
3,750  
5,000  
gates  
Macrocells  
32  
2
64  
4
96  
6
128  
8
160  
10  
192  
12  
256  
16  
Logic array  
blocks  
Maximum  
36  
68  
76  
100  
104  
124  
164  
user I/O pins  
t
PD (ns)  
tSU (ns)  
FSU (ns)  
tCO1 (ns)  
CNT (MHz)  
6
5
6
5
7.5  
6
7.5  
6
10  
12  
7
12  
7
7
3
t
2.5  
4
2.5  
4
3
3
3
3
4.5  
125.0  
4.5  
125.0  
5
6
6
f
151.5  
151.5  
100.0  
90.9  
90.9  
Altera Corporation  
1
DS-MAX7000-6.7  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 2. MAX 7000S Device Features  
Feature  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
Usable gates  
Macrocells  
600  
32  
2
1,250  
64  
2,500  
128  
8
3,200  
160  
10  
3,750  
192  
12  
5,000  
256  
16  
Logic array  
blocks  
4
Maximum  
36  
68  
100  
104  
124  
164  
user I/O pins  
t
PD (ns)  
SU (ns)  
5
2.9  
5
2.9  
6
3.4  
2.5  
4
6
3.4  
7.5  
4.1  
7.5  
3.9  
t
tFSU (ns)  
CO1 (ns)  
fCNT (MHz)  
2.5  
2.5  
2.5  
3
3
t
3.2  
3.2  
3.9  
4.7  
4.7  
175.4  
175.4  
147.1  
149.3  
125.0  
128.2  
Open-drain output option in MAX 7000S devices  
Programmable macrocell flipflops with individual clear, preset,  
clock, and clock enable controls  
Programmable power-saving mode for a reduction of over 50% in  
each macrocell  
Configurable expander product-term distribution, allowing up to  
32 product terms per macrocell  
...and More  
Features  
44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic  
pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat  
pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages  
Programmable security bit for protection of proprietary designs  
3.3-V or 5.0-V operation  
MultiVoltTM I/O interface operation, allowing devices to  
interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is  
not available in 44-pin packages)  
Pin compatible with low-voltage MAX 7000A and MAX 7000B  
devices  
Enhanced features available in MAX 7000E and MAX 7000S devices  
Six pin- or logic-driven output enable signals  
Two global clock signals with optional inversion  
Enhanced interconnect resources for improved routability  
Fast input setup times provided by a dedicated path from I/O  
pin to macrocell registers  
Programmable output slew-rate control  
Software design support and automatic place-and-route provided by  
Altera’s development system for Windows-based PCs and Sun  
SPARCstation, and HP 9000 Series 700/800 workstations  
2
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Additional design entry and simulation support provided by EDIF  
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM),  
Verilog HDL, VHDL, and other interfaces to popular EDA tools from  
manufacturers such as Cadence, Exemplar Logic, Mentor Graphics,  
OrCAD, Synopsys, and VeriBest  
Programming support  
Altera’s Master Programming Unit (MPU) and programming  
hardware from third-party manufacturers program all  
MAX 7000 devices  
The BitBlasterTM serial download cable, ByteBlasterMVTM  
parallel port download cable, and MasterBlasterTM  
serial/universal serial bus (USB) download cable program MAX  
7000S devices  
The MAX 7000 family of high-density, high-performance PLDs is based  
on Altera’s second-generation MAX architecture. Fabricated with  
advanced CMOS technology, the EEPROM-based MAX 7000 family  
provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns,  
and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6,  
-7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in  
-5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest  
Group (PCI SIG) PCI Local Bus Specification, Revision 2.2. See Table 3  
for available speed grades.  
General  
Description  
Table 3. MAX 7000 Speed Grades  
Device  
Speed Grade  
-5  
-6  
-7  
-10P  
-10  
-12P  
-12  
-15  
-15T  
-20  
EPM7032  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
EPM7032S  
EPM7064  
v
v
v
v
EPM7064S  
EPM7096  
v
v
v
v
v
v
v
v
v
v
v
EPM7128E  
EPM7128S  
EPM7160E  
EPM7160S  
EPM7192E  
EPM7192S  
EPM7256E  
EPM7256S  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Altera Corporation  
3
MAX 7000 Programmable Logic Device Family Data Sheet  
The MAX 7000E devices—including the EPM7128E, EPM7160E,  
EPM7192E, and EPM7256E devices—have several enhanced features:  
additional global clocking, additional output enable controls, enhanced  
interconnect resources, fast input registers, and a programmable slew  
rate.  
In-system programmable MAX 7000 devices—called MAX 7000S  
devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S,  
EPM7192S, and EPM7256S devices. MAX 7000S devices have the  
enhanced features of MAX 7000E devices as well as JTAG BST circuitry in  
devices with 128 or more macrocells, ISP, and an open-drain output  
option. See Table 4.  
Table 4. MAX 7000 Device Features  
Feature  
EPM7032  
EPM7064  
EPM7096  
All  
All  
MAX 7000E  
Devices  
MAX 7000S  
Devices  
ISP via JTAG interface  
JTAG BST circuitry  
Open-drain output option  
Fast input registers  
Six global output enables  
Two global clocks  
v
v(1)  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Slew-rate control  
MultiVolt interface (2)  
Programmable register  
Parallel expanders  
v
v
v
v
v
v
v
Shared expanders  
Power-saving mode  
Security bit  
PCI-compliant devices available  
Notes:  
(1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.  
(2) The MultiVolt I/O interface is not available in 44-pin packages.  
4
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
The MAX 7000 architecture supports 100% TTL emulation and  
high-density integration of SSI, MSI, and LSI logic functions. The  
MAX 7000 architecture easily integrates multiple devices ranging from  
PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices  
are available in a wide range of packages, including PLCC, PGA, PQFP,  
RQFP, and TQFP packages. See Table 5.  
Table 5. MAX 7000 Maximum User I/O Pins  
Note (1)  
Device  
44-  
Pin  
44-  
Pin  
44-  
Pin  
68-  
Pin  
84- 100- 100-  
160-  
Pin  
160- 192-  
208-  
Pin  
208-  
Pin  
Pin  
Pin  
Pin  
Pin  
Pin  
PLCC PQFP TQFP PLCC PLCC PQFP TQFP PQFP PGA  
PGA  
PQFP RQFP  
EPM7032  
36  
36  
36  
36  
36  
36  
36  
36  
36  
EPM7032S  
EPM7064  
52  
52  
68  
68  
64  
68  
68  
64  
64  
68  
EPM7064S  
EPM7096  
68  
76  
84  
EPM7128E  
EPM7128S  
EPM7160E  
EPM7160S  
EPM7192E  
EPM7192S  
EPM7256E  
EPM7256S  
100  
84 84 (2) 100  
84  
104  
84 (2) 104  
124  
124  
124  
132 (2)  
164  
164  
164 (2)  
164  
Notes:  
(1) When the JTAG interface in MAX 7000S devices is used for either boundary-scan testing or for ISP, four I/O pins  
become JTAG pins.  
(2) Perform a complete thermal analysis before committing a design to this device package. For more information, see  
the Operating Requirements for Altera Devices Data Sheet.  
MAX 7000 devices use CMOS EEPROM cells to implement logic  
functions. The user-configurable MAX 7000 architecture accommodates a  
variety of independent combinatorial and sequential logic functions. The  
devices can be reprogrammed for quick and efficient iterations during  
design development and debug cycles, and can be programmed and  
erased up to 100 times.  
Altera Corporation  
5
MAX 7000 Programmable Logic Device Family Data Sheet  
MAX 7000 devices contain from 32 to 256 macrocells that are combined  
into groups of 16 macrocells, called logic array blocks (LABs). Each  
macrocell has a programmable-AND/fixed-ORarray and a configurable  
register with independently programmable clock, clock enable, clear, and  
preset functions. To build complex logic functions, each macrocell can be  
supplemented with both shareable expander product terms and high-  
speed parallel expander product terms to provide up to 32 product terms  
per macrocell.  
The MAX 7000 family provides programmable speed/power  
optimization. Speed-critical portions of a design can run at high  
speed/full power, while the remaining portions run at reduced  
speed/low power. This speed/power optimization feature enables the  
designer to configure one or more macrocells to operate at 50% or lower  
power while adding only a nominal timing delay. MAX 7000E and  
MAX 7000S devices also provide an option that reduces the slew rate of  
the output buffers, minimizing noise transients when non-speed-critical  
signals are switching. The output drivers of all MAX 7000 devices (except  
44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing  
MAX 7000 devices to be used in mixed-voltage systems.  
The MAX 7000 family is supported byAltera development systems, which  
are integrated packages that offer schematic, text—including VHDL,  
Verilog HDL, and the Altera Hardware Description Language (AHDL)—  
and waveform design entry, compilation and logic synthesis, simulation  
and timing analysis, and device programming. The software provides  
EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for  
additional design entry and simulation support from other industry-  
standard PC- and UNIX-workstation-based EDA tools. The software runs  
on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series  
700/800 workstations.  
For more information on development tools, see the MAX+PLUS II  
Programmable Logic Development System & Software Data Sheet and the  
Quartus Programmable Logic Development System & Software Data Sheet.  
f
The MAX 7000 architecture includes the following elements:  
Functional  
Description  
Logic array blocks  
Macrocells  
Expander product terms (shareable and parallel)  
Programmable interconnect array  
I/O control blocks  
6
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
The MAX 7000 architecture includes four dedicated inputs that can  
be used as general-purpose inputs or as high-speed, global control  
signals (clock, clear, and two output enable signals) for each  
macrocell and I/O pin. Figure 1 shows the architecture of EPM7032,  
EPM7064, and EPM7096 devices.  
Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram  
INPUT/GLCK1  
INPUT/GCLRn  
INPUT/OE1  
INPUT/OE2  
LAB A  
LAB B  
8 to 16  
8 to 16  
36  
36  
Macrocells  
1 to 16  
Macrocells  
17 to 32  
I/O  
Control  
Block  
I/O  
Control  
Block  
8 to 16  
I/O pins  
8 to 16  
I/O pins  
16  
16  
8 to 16  
8 to 16  
LAB C  
LAB D  
PIA  
8 to 16  
8 to 16  
36  
36  
Macrocells  
33 to 48  
Macrocells  
49 to 64  
I/O  
Control  
Block  
I/O  
Control  
Block  
8 to 16  
I/O pins  
8 to 16  
I/O pins  
16  
16  
8 to 16  
8 to 16  
Altera Corporation  
7
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.  
Figure 2. MAX 7000E & MAX 7000S Device Block Diagram  
INPUT/GCLK1  
INPUT/OE2/GCLK2  
INPUT/OE1  
INPUT/GCLRn  
6 Output Enables  
6 Output Enables  
LAB B  
LAB A  
6 to16  
6 to16  
6 to16  
6 to16  
36  
36  
Macrocells  
17 to 32  
Macrocells  
1 to 16  
I/O  
Control  
Block  
I/O  
Control  
Block  
6 to 16 I/O Pins  
6 to 16 I/O Pins  
16  
16  
6
6 to16  
6 to16  
6
PIA  
LAB D  
LAB C  
6 to16  
6 to16  
6 to16  
6 to16  
36  
36  
Macrocells  
33 to 48  
Macrocells  
49 to 64  
I/O  
Control  
Block  
I/O  
Control  
Block  
6 to 16 I/O Pins  
6 to 16 I/O Pins  
16  
16  
6
6
6 to16  
6 to16  
Logic Array Blocks  
The MAX 7000 device architecture is based on the linking of high-  
performance, flexible, logic array modules called logic array blocks  
(LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2.  
Multiple LABs are linked together via the programmable interconnect  
array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and  
macrocells.  
8
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Each LAB is fed by the following signals:  
36 signals from the PIA that are used for general logic inputs  
Global controls that are used for secondary register functions  
Direct input paths from I/O pins to the registers that are used  
for fast setup times for MAX 7000E and MAX 7000S devices  
Macrocells  
The MAX 7000 macrocell can be individually configured for either  
sequential or combinatorial logic operation. The macrocell consists  
of three functional blocks: the logic array, the product-term select  
matrix, and the programmable register. The macrocell of EPM7032,  
EPM7064, and EPM7096 devices is shown in Figure 3.  
Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell  
Global Global  
Logic Array  
Clear  
Clocks  
From  
2
I/O pin  
Parallel Logic  
Expanders  
(from other  
macrocells)  
Fast Input Programmable  
Select Register  
Register  
Bypass  
To I/O  
Control  
Block  
PRN  
D/T  
Q
Clock/  
Enable  
Select  
Product-  
Term  
Select  
Matrix  
ENA  
CLRN  
VCC  
Clear  
Select  
to PIA  
Shared Logic  
Expanders  
36 Signals  
from PIA  
16 Expander  
Product Terms  
Altera Corporation  
9
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 4 shows a MAX 7000E and MAX 7000S device macrocell.  
Figure 4. MAX 7000E & MAX 7000S Device Macrocell  
Global Global  
Logic Array  
Clear  
Clocks  
from  
2
I/O pin  
Parallel Logic  
Expanders  
(from other  
macrocells)  
Fast Input Programmable  
Select Register  
Register  
Bypass  
to I/O  
Control  
Block  
PRN  
D/T  
Q
Clock/  
Enable  
Select  
Product-  
Term  
Select  
Matrix  
ENA  
CLRN  
VCC  
Clear  
Select  
to PIA  
Shared Logic  
Expanders  
36 Signals  
from PIA  
16 Expander  
Product Terms  
Combinatorial logic is implemented in the logic array, which provides  
five product terms per macrocell. The product-term select matrix allocates  
these product terms for use as either primary logic inputs (to the ORand  
XORgates) to implement combinatorial functions, or as secondary inputs  
to the macrocell’s register clear, preset, clock, and clock enable control  
functions. Two kinds of expander product terms (“expanders”) are  
available to supplement macrocell logic resources:  
Shareable expanders, which are inverted product terms that are fed  
back into the logic array  
Parallel expanders, which are product terms borrowed from adjacent  
macrocells  
The Altera development system automatically optimizes product-term  
allocation according to the logic requirements of the design.  
For registered functions, each macrocell flipflop can be individually  
programmed to implement D, T, JK, or SR operation with programmable  
clock control. The flipflop can be bypassed for combinatorial operation.  
During design entry, the designer specifies the desired flipflop type; the  
Altera development software then selects the most efficient flipflop  
operation for each registered function to optimize resource utilization.  
10  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Each programmable register can be clocked in three different modes:  
By a global clock signal. This mode achieves the fastest clock-to-  
output performance.  
By a global clock signal and enabled by an active-high clock  
enable. This mode provides an enable on each flipflop while still  
achieving the fast clock-to-output performance of the global  
clock.  
By an array clock implemented with a product term. In this  
mode, the flipflop can be clocked by signals from buried  
macrocells or I/O pins.  
In EPM7032, EPM7064, and EPM7096 devices, the global clock signal  
is available from a dedicated clock pin, GCLK1, as shown in Figure 1.  
In MAX 7000E and MAX 7000S devices, two global clock signals are  
available. As shown in Figure 2, these global clock signals can be the  
true or the complement of either of the global clock pins, GCLK1or  
GCLK2.  
Each register also supports asynchronous preset and clear functions.  
As shown in Figures 3 and 4, the product-term select matrix allocates  
product terms to control these operations. Although the  
product-term-driven preset and clear of the register are active high,  
active-low control can be obtained by inverting the signal within the  
logic array. In addition, each register clear function can be  
individually driven by the active-low dedicated global clear pin  
(GCLRn). Upon power-up, each register in the device will be set to a  
low state.  
All MAX 7000E and MAX 7000S I/O pins have a fast input path to a  
macrocell register. This dedicated path allows a signal to bypass the  
PIA and combinatorial logic and be driven to an input D flipflop with  
an extremely fast (2.5 ns) input setup time.  
Expander Product Terms  
Although most logic functions can be implemented with the five  
product terms available in each macrocell, the more complex logic  
functions require additional product terms. Another macrocell can  
be used to supply the required logic resources; however, the  
MAX 7000 architecture also allows both shareable and parallel  
expander product terms (“expanders”) that provide additional  
product terms directly to any macrocell in the same LAB. These  
expanders help ensure that logic is synthesized with the fewest  
possible logic resources to obtain the fastest possible speed.  
Altera Corporation  
11  
MAX 7000 Programmable Logic Device Family Data Sheet  
Shareable Expanders  
Each LAB has 16 shareable expanders that can be viewed as a pool of  
uncommitted single product terms (one from each macrocell) with  
inverted outputs that feed back into the logic array. Each shareable  
expander can be used and shared by any or all macrocells in the LAB to  
build complex logic functions. A small delay (tSEXP) is incurred when  
shareable expanders are used. Figure 5 shows how shareable expanders  
can feed multiple macrocells.  
Figure 5. Shareable Expanders  
Shareable expanders can be shared by any or all macrocells in an LAB.  
Macrocell  
Product-Term  
Logic  
Product-Term Select Matrix  
Macrocell  
Product-Term  
Logic  
36 Signals  
from PIA  
16 Shared  
Expanders  
Parallel Expanders  
Parallel expanders are unused product terms that can be allocated to a  
neighboring macrocell to implement fast, complex logic functions.  
Parallel expanders allow up to 20 product terms to directly feed the  
macrocell ORlogic, with five product terms provided by the macrocell and  
15 parallel expanders provided by neighboring macrocells in the LAB.  
12  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
The compiler can allocate up to three sets of up to five parallel expanders  
automatically to the macrocells that require additional product terms.  
Each set of five parallel expanders incurs a small, incremental timing  
delay (tPEXP). For example, if a macrocell requires 14 product terms, the  
Compiler uses the five dedicated product terms within the macrocell and  
allocates two sets of parallel expanders; the first set includes five product  
terms and the second set includes four product terms, increasing the total  
delay by 2 × tPEXP  
.
Two groups of 8 macrocells within each LAB (e.g., macrocells  
1 through 8 and 9 through 16) form two chains to lend or borrow parallel  
expanders. A macrocell borrows parallel expanders from lower-  
numbered macrocells. For example, macrocell 8 can borrow parallel  
expanders from macrocell 7, from macrocells 7 and 6, or from macrocells  
7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can  
only lend parallel expanders and the highest-numbered macrocell can  
only borrow them. Figure 6 shows how parallel expanders can be  
borrowed from a neighboring macrocell.  
Figure 6. Parallel Expanders  
Unused product terms in a macrocell can be allocated to a neighboring macrocell.  
From  
Previous  
Macrocell  
Preset  
Product-  
Term  
Select  
Matrix  
Macrocell  
Product-  
Term Logic  
Clock  
Clear  
Preset  
Product-  
Term  
Select  
Matrix  
Macrocell  
Product-  
Term Logic  
Clock  
Clear  
To Next  
Macrocell  
36 Signals 16 Shared  
from PIA  
Expanders  
Altera Corporation  
13  
MAX 7000 Programmable Logic Device Family Data Sheet  
Programmable Interconnect Array  
Logic is routed between LABs via the programmable interconnect array  
(PIA). This global bus is a programmable path that connects any signal  
source to any destination on the device. All MAX 7000 dedicated inputs,  
I/O pins, and macrocell outputs feed the PIA, which makes the signals  
available throughout the entire device. Only the signals required by each  
LAB are actually routed from the PIA into the LAB. Figure 7 shows how  
the PIA signals are routed into the LAB. An EEPROM cell controls one  
input to a 2-input ANDgate, which selects a PIA signal to drive into the  
LAB.  
Figure 7. PIA Routing  
To LAB  
PIA Signals  
While the routing delays of channel-based routing schemes in masked or  
FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA  
has a fixed delay. The PIA thus eliminates skew between signals and  
makes timing performance easy to predict.  
I/O Control Blocks  
The I/O control block allows each I/O pin to be individually configured  
for input, output, or bidirectional operation. All I/O pins have a tri-state  
buffer that is individually controlled by one of the global output enable  
signals or directly connected to ground or VCC. Figure 8 shows the I/O  
control block for the MAX 7000 family. The I/O control block of EPM7032,  
EPM7064, and EPM7096 devices has two global output enable signals that  
are driven by two dedicated active-low output enable pins (OE1and OE2).  
The I/O control block of MAX 7000E and MAX 7000S devices has six  
global output enable signals that are driven by the true or complement of  
two output enable signals, a subset of the I/O pins, or a subset of the I/O  
macrocells.  
14  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 8. I/O Control Block of MAX 7000 Devices  
EPM7032, EPM7064 & EPM7096 Devices  
VCC  
OE1  
OE2  
GND  
From Macrocell  
To PIA  
MAX 7000E & MAX 7000S Devices  
Six Global Output Enable Signals  
PIA  
VCC  
GND  
To Other I/O Pins  
From  
Macrocell  
Open-Drain Output (1)  
Slew-Rate Control  
Fast Input to  
Macrocell  
Register  
To PIA  
Note:  
(1) The open-drain output option is available only in MAX 7000S devices.  
Altera Corporation  
15  
MAX 7000 Programmable Logic Device Family Data Sheet  
When the tri-state buffer control is connected to ground, the output is  
tri-stated (high impedance) and the I/O pin can be used as a dedicated  
input. When the tri-state buffer control is connected to VCC, the output is  
enabled.  
The MAX 7000 architecture provides dual I/O feedback, in which  
macrocell and pin feedbacks are independent. When an I/O pin is  
configured as an input, the associated macrocell can be used for buried  
logic.  
MAX 7000S devices are in-system programmable via an  
In-System  
Programma-  
bility (ISP)  
industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE  
Std. 1149.1-1990). ISP allows quick, efficient iterations during design  
development and debugging cycles. The MAX 7000S architecture  
internally generates the high programming voltage required to program  
EEPROM cells, allowing in-system programming with only a single 5.0 V  
power supply. During in-system programming, the I/O pins are tri-stated  
and pulled-up to eliminate board conflicts. The pull-up value is nominally  
50 k¾.  
ISP simplifies the manufacturing flow by allowing devices to be mounted  
on a printed circuit board with standard in-circuit test equipment before  
they are programmed. MAX 7000S devices can be programmed by  
downloading the information via in-circuit testers (ICT), embedded  
processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster,  
BitBlaster download cables. (The ByteBlaster cable is obsolete and is  
replaced by the ByteBlasterMV cable, which can program and configure  
2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are  
placed on the board eliminates lead damage on high-pin-count packages  
(e.g., QFP packages) due to device handling and allows devices to be  
reprogrammed after a system has already shipped to the field. For  
example, product upgrades can be performed in the field via software or  
modem.  
In-system programming can be accomplished with either an adaptive or  
constant algorithm. An adaptive algorithm reads information from the  
unit and adapts subsequent programming steps to achieve the fastest  
possible programming time for that unit. Because some in-circuit testers  
cannot support an adaptive algorithm, Altera offers devices tested with a  
constant algorithm. Devices tested to the constant algorithm have an “F”  
suffix in the ordering code.  
The JamTM Standard Test and Programming Language (STAPL) can be  
used to program MAX 7000S devices with in-circuit testers, PCs, or  
embedded processor.  
16  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
For more information on using the Jam language, refer to AN 122: Using  
Jam STAPL for ISP & ICR via an Embedded Processor.  
f
The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532  
specification. The IEEE Std. 1532 is a standard developed to allow  
concurrent ISP between multiple PLD vendors.  
Programming Sequence  
During in-system programming, instructions, addresses, and data are  
shifted into the MAX 7000S device through the TDIinput pin. Data is  
shifted out through the TDOoutput pin and compared against the  
expected data.  
Programming a pattern into the device requires the following six ISP  
stages. A stand-alone verification of a programmed pattern involves only  
stages 1, 2, 5, and 6.  
1. Enter ISP. The enter ISP stage ensures that the I/O pins transition  
smoothly from user mode to ISP mode. The enter ISP stage requires  
1 ms.  
2. Check ID. Before any program or verify process, the silicon ID is  
checked. The time required to read this silicon ID is relatively small  
compared to the overall programming time.  
3. Bulk Erase. Erasing the device in-system involves shifting in the  
instructions to erase the device and applying one erase pulse of  
100 ms.  
4. Program. Programming the device in-system involves shifting in the  
address and data and then applying the programming pulse to  
program the EEPROM cells. This process is repeated for each  
EEPROM address.  
5. Verify. Verifying an Altera device in-system involves shifting in  
addresses, applying the read pulse to verify the EEPROM cells, and  
shifting out the data for comparison. This process is repeated for  
each EEPROM address.  
6. Exit ISP. An exit ISP stage ensures that the I/O pins transition  
smoothly from ISP mode to user mode. The exit ISP stage requires  
1 ms.  
Altera Corporation  
17  
MAX 7000 Programmable Logic Device Family Data Sheet  
Programming Times  
The time required to implement each of the six programming stages can  
be broken into the following two elements:  
A pulse time to erase, program, or read the EEPROM cells.  
A shifting time based on the test clock (TCK) frequency and the  
number of TCKcycles to shift instructions, address, and data into the  
device.  
By combining the pulse and shift times for each of the programming  
stages, the program or verify time can be derived as a function of the TCK  
frequency, the number of devices, and specific target device(s). Because  
different ISP-capable devices have a different number of EEPROM cells,  
both the total fixed and total variable times are unique for a single device.  
Programming a Single MAX 7000S Device  
The time required to program a single MAX 7000S device in-system can  
be calculated from the following formula:  
Cycle  
PTCK  
t
= t  
+ -------------------------------  
PROG  
PPULSE  
f
TCK  
where: tPROG  
= Programming time  
= Sum of the fixed times to erase, program, and  
verify the EEPROM cells  
tPPULSE  
CyclePTCK = Number of TCKcycles to program a device  
fTCK = TCKfrequency  
The ISP times for a stand-alone verification of a single MAX 7000S device  
can be calculated from the following formula:  
Cycle  
VTCK  
t
= t  
+ --------------------------------  
VER  
VPULSE  
f
TCK  
where: tVER  
tVPULSE  
CycleVTCK = Number of TCKcycles to verify a device  
= Verify time  
= Sum of the fixed times to verify the EEPROM cells  
18  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
The programming times described in Tables 6 through 8 are associated  
with the worst-case method using the enhanced ISP algorithm.  
Table 6. MAX 7000S tPULSE & CycleTCK Values  
Device  
Programming  
Stand-Alone Verification  
tVPULSE (s) CycleVTCK  
tPPULSE (s)  
CyclePTCK  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
4.02  
4.50  
5.11  
5.35  
5.71  
6.43  
342,000  
504,000  
0.03  
0.03  
0.03  
0.03  
0.03  
0.03  
200,000  
308,000  
528,000  
640,000  
764,000  
1,024,000  
832,000  
1,001,000  
1,192,000  
1,603,000  
Tables 7 and 8 show the in-system programming and stand alone  
verification times for several common test clock frequencies.  
Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies  
Device  
fTCK  
500 kHz 200 kHz 100 kHz 50 kHz  
Units  
10 MHz 5 MHz  
2 MHz  
1 MHz  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
4.06  
4.55  
5.19  
5.45  
5.83  
6.59  
4.09  
4.60  
5.27  
5.55  
5.95  
6.75  
4.19  
4.76  
5.52  
5.85  
6.30  
7.23  
4.36  
5.01  
5.94  
6.35  
6.90  
8.03  
4.71  
5.51  
6.77  
7.35  
8.09  
9.64  
5.73  
7.02  
7.44  
9.54  
10.86  
14.58  
21.75  
25.37  
29.55  
38.49  
s
s
s
s
s
s
9.27  
13.43  
15.36  
17.63  
22.46  
10.35  
11.67  
14.45  
Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies  
Device  
fTCK  
500 kHz 200 kHz 100 kHz 50 kHz  
Units  
10 MHz 5 MHz  
2 MHz  
1 MHz  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
0.05  
0.06  
0.08  
0.09  
0.11  
0.13  
0.07  
0.09  
0.14  
0.16  
0.18  
0.24  
0.13  
0.18  
0.29  
0.35  
0.41  
0.54  
0.23  
0.34  
0.56  
0.67  
0.79  
1.06  
0.43  
0.64  
1.09  
1.31  
1.56  
2.08  
1.03  
1.57  
2.67  
3.23  
3.85  
5.15  
2.03  
3.11  
5.31  
6.43  
7.67  
10.27  
4.03  
6.19  
s
s
s
s
s
s
10.59  
12.83  
15.31  
20.51  
Altera Corporation  
19  
MAX 7000 Programmable Logic Device Family Data Sheet  
MAX 7000 devices offer a power-saving mode that supports low-power  
Programmable  
Speed/Power  
Control  
operation across user-defined signal paths or the entire device. This  
feature allows total power dissipation to be reduced by 50% or more,  
because most logic applications require only a small fraction of all gates to  
operate at maximum frequency.  
The designer can program each individual macrocell in a MAX 7000  
device for either high-speed (i.e., with the Turbo BitTM option turned on)  
or low-power (i.e., with the Turbo Bit option turned off) operation. As a  
result, speed-critical paths in the design can run at high speed, while the  
remaining paths can operate at reduced power. Macrocells that run at low  
power incur a nominal timing delay adder (tLPA) for the tLAD, tLAC, tIC  
,
tEN, and tSEXP, tACL, and tCPPW parameters.  
MAX 7000 device outputs can be programmed to meet a variety of  
system-level requirements.  
Output  
Configuration  
MultiVolt I/O Interface  
MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O  
interface feature, which allows MAX 7000 devices to interface with  
systems that have differing supply voltages. The 5.0-V devices in all  
packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices  
have one set of VCCpins for internal operation and input buffers  
(VCCINT), and another set for I/O output drivers (VCCIO).  
The VCCINTpins must always be connected to a 5.0-V power supply.  
With a 5.0-V VCCINT level, input voltage thresholds are at TTL levels, and  
are therefore compatible with both 3.3-V and 5.0-V inputs.  
The VCCIOpins can be connected to either a 3.3-V or a 5.0-V power  
supply, depending on the output requirements. When the VCCIOpins are  
connected to a 5.0-V supply, the output levels are compatible with 5.0-V  
systems. When VCCIO is connected to a 3.3-V supply, the output high is  
3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices  
operating with VCCIO levels lower than 4.75 V incur a nominally greater  
timing delay of tOD2 instead of tOD1  
.
Open-Drain Output Option (MAX 7000S Devices Only)  
MAX 7000S devices provide an optional open-drain (functionally  
equivalent to open-collector) output for each I/O pin. This open-drain  
output enables the device to provide system-level control signals (e.g.,  
interrupt and write enable signals) that can be asserted by any of several  
devices. It can also provide an additional wired-ORplane.  
20  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
By using an external 5.0-V pull-up resistor, output pins on MAX  
7000S devices can be set to meet 5.0-V CMOS input voltages. When  
VCCIO is 3.3 V, setting the open drain option will turn off the output  
pull-up transistor, allowing the external pull-up resistor to pull the  
output high enough to meet 5.0-V CMOS input voltages. When  
VCCIO is 5.0 V, setting the output drain option is not necessary  
because the pull-up transistor will already turn off when the pin  
exceeds approximately 3.8 V, allowing the external pull-up resistor to  
pull the output high enough to meet 5.0-V CMOS input voltages.  
Slew-Rate Control  
The output buffer for each MAX 7000E and MAX 7000S I/O pin has  
an adjustable output slew rate that can be configured for low-noise  
or high-speed performance. A faster slew rate provides high-speed  
transitions for high-performance systems. However, these fast  
transitions may introduce noise transients into the system. A slow  
slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns.  
In MAX 7000E devices, when the Turbo Bit is turned off, the slew  
rate is set for low noise performance. For MAX 7000S devices, each  
I/O pin has an individual EEPROM bit that controls the slew rate,  
allowing designers to specify the slew rate on a pin-by-pin basis.  
MAX 7000 devices can be programmed on Windows-based PCs with  
the Altera Logic Programmer card, the Master Programming Unit  
(MPU), and the appropriate device adapter. The MPU performs a  
continuity check to ensure adequate electrical contact between the  
adapter and the device.  
Programming with  
External Hardware  
For more information, see the Altera Programming Hardware Data  
Sheet.  
f
The Altera development system can use text- or waveform-format  
test vectors created with the Text Editor or Waveform Editor to test  
the programmed device. For added design verification, designers  
can perform functional testing to compare the functional behavior of  
a MAX 7000 device with the results of simulation. Moreover, Data  
I/O, BP Microsystems, and other programming hardware  
manufacturers also provide programming support for Altera  
devices.  
For more information, see the Programming Hardware Manufacturers.  
f
Altera Corporation  
21  
MAX 7000 Programmable Logic Device Family Data Sheet  
MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std.  
IEEE Std.  
1149.1-1990. Table 9 describes the JTAG instructions supported by the  
MAX 7000 family. The pin-out tables (see the Altera web site  
(http://www.altera.com) or the Altera Digital Library for pin-out  
information) show the location of the JTAG control pins for each device.  
If the JTAG interface is not required, the JTAG pins are available as user  
I/O pins.  
1149.1 (JTAG)  
Boundary-Scan  
Support  
Table 9. MAX 7000 JTAG Instructions  
JTAG Instruction  
Devices  
Description  
SAMPLE/PRELOAD  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
Allows a snapshot of signals at the device pins to be captured and  
examined during normal device operation, and permits an initial data  
pattern output at the device pins.  
EXTEST  
BYPASS  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
Allows the external circuitry and board-level interconnections to be  
tested by forcing a test pattern at the output pins and capturing test  
results at the input pins.  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
Places the 1-bit bypass register between the TDIand TDOpins, which  
allows the BST data to pass synchronously through a selected device  
to adjacent devices during normal device operation.  
IDCODE  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
Selects the IDCODE register and places it between TDIand TDO,  
allowing the IDCODE to be serially shifted out of TDO.  
ISP Instructions  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
These instructions are used when programming MAX 7000S devices  
via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster  
download cable, or using a Jam File (.jam), Jam Byte-Code file (.jbc),  
or Serial Vector Format file (.svf) via an embedded processor or test  
equipment.  
22  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
The instruction register length of MAX 7000S devices is 10 bits. Tables 10  
and 11 show the boundary-scan register length and device IDCODE  
information for MAX 7000S devices.  
Table 10. MAX 7000S Boundary-Scan Register Length  
Device  
Boundary-Scan Register Length  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
1 (1)  
1 (1)  
288  
312  
360  
480  
Note:  
(1) This device does not support JTAG boundary-scan testing. Selecting either the  
EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.  
Table 11. 32-Bit MAX 7000 Device IDCODE  
Note (1)  
Device  
IDCODE (32 Bits)  
Part Number (16 Bits) Manufacturer’s 1 (1 Bit)  
Version  
(4 Bits)  
Identity (11 Bits)  
(2)  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
0000  
0000  
0000  
0000  
0000  
0000  
0111 0000 0011 0010 00001101110  
0111 0000 0110 0100 00001101110  
0111 0001 0010 1000 00001101110  
0111 0001 0110 0000 00001101110  
0111 0001 1001 0010 00001101110  
0111 0010 0101 0110 00001101110  
1
1
1
1
1
1
Notes:  
(1) The most significant bit (MSB) is on the left.  
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.  
Altera Corporation  
23  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 9 shows the timing requirements for the JTAG signals.  
Figure 9. MAX 7000 JTAG Waveforms  
TMS  
TDI  
tJCP  
tJCH  
t JCL  
tJPH  
tJPSU  
TCK  
TDO  
tJPXZ  
tJPZX  
tJPCO  
tJSSU  
tJSH  
Signal  
to Be  
Captured  
tJSCO  
tJSZX  
tJSXZ  
Signal  
to Be  
Driven  
Table 12 shows the JTAG timing parameters and values for MAX 7000S  
devices.  
Table 12. JTAG Timing Parameters & Values for MAX 7000S Devices  
Symbol  
Parameter  
Min Max Unit  
tJCP  
tJCH  
tJCL  
TCKclock period  
TCKclock high time  
TCKclock low time  
100  
50  
50  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJPSU JTAG port setup time  
tJPH JTAG port hold time  
45  
tJPCO JTAG port clock to output  
25  
25  
25  
tJPZX JTAG port high impedance to valid output  
tJPXZ JTAG port valid output to high impedance  
tJSSU Capture register setup time  
20  
45  
tJSH  
Capture register hold time  
tJSCO Update register clock to output  
25  
25  
25  
tJSZX Update register high impedance to valid output  
tJSXZ Update register valid output to high impedance  
For more information, see Application Note 39 (IEEE 1149.1 (JTAG)  
Boundary-Scan Testing in Altera Devices).  
f
24  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
All MAX 7000 devices contain a programmable security bit that controls  
access to the data programmed into the device. When this bit is  
programmed, a proprietary design implemented in the device cannot be  
copied or retrieved. This feature provides a high level of design security  
because programmed data within EEPROM cells is invisible. The security  
bit that controls this function, as well as all other programmed data, is  
reset only when the device is reprogrammed.  
Design Security  
Generic Testing  
Each MAX 7000 device is functionally tested. Complete testing of each  
programmable EEPROM bit and all internal logic elements ensures 100%  
programming yield. AC test measurements are taken under conditions  
equivalent to those shown in Figure 10. Test patterns can be used and then  
erased during early stages of the production flow.  
Figure 10. MAX 7000 AC Test Conditions  
Power supply transients can affect AC  
measurements. Simultaneous  
transitions of multiple outputs should be  
VCC  
avoided for accurate measurement.  
Threshold tests must not be performed  
under AC conditions. Large-amplitude,  
fast ground-current transients normally  
occur as the device outputs discharge  
the load capacitances. When these  
transients flow through the parasitic  
inductance between the device ground  
pin and the test system ground,  
464 Ω  
[703 Ω]  
Device  
Output  
To Test  
System  
250  
Ω
C1 (includes JIG  
capacitance)  
[8.06  
]
KΩ  
significant reductions in observable  
noise immunity can result. Numbers in  
brackets are for 2.5-V devices and  
outputs. Numbers without brackets are  
for 3.3-V devices and outputs.  
Device input  
rise and fall  
times < 3 ns  
MAX 7000 and MAX 7000E devices in QFP packages with 100 or more  
pins are shipped in special plastic carriers to protect the QFP leads. The  
carrier is used with a prototype development socket and special  
programming hardware available from Altera. This carrier technology  
makes it possible to program, test, erase, and reprogram a device without  
exposing the leads to mechanical stress.  
QFP Carrier &  
Development  
Socket  
For detailed information and carrier dimensions, refer to the QFP Carrier  
& Development Socket Data Sheet.  
f
1
MAX 7000S devices are not shipped in carriers.  
Altera Corporation  
25  
MAX 7000 Programmable Logic Device Family Data Sheet  
Tables 13 through 18 provide information about absolute maximum  
ratings, recommended operating conditions, operating conditions, and  
capacitance for 5.0-V MAX 7000 devices.  
Operating  
Conditions  
Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings  
Note (1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
V
Supply voltage  
With respect to ground (2)  
–2.0  
7.0  
V
CC  
V
DC input voltage  
–2.0  
–25  
–65  
–65  
7.0  
25  
V
I
I
DC output current, per pin  
Storage temperature  
Ambient temperature  
Junction temperature  
mA  
° C  
° C  
° C  
° C  
OUT  
T
T
T
No bias  
150  
135  
150  
135  
STG  
AMB  
J
Under bias  
Ceramic packages, under bias  
PQFP and RQFP packages, under bias  
Table 14. MAX 7000 5.0-V Device Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
V
Supply voltage for internal logic and (3), (4), (5)  
input buffers  
4.75  
(4.50)  
5.25  
(5.50)  
V
V
V
CCINT  
V
Supply voltage for output drivers,  
5.0-V operation  
(3), (4)  
(3), (4), (6)  
(7)  
4.75  
(4.50)  
5.25  
(5.50)  
CCIO  
Supply voltage for output drivers,  
3.3-V operation  
3.00  
(3.00)  
3.60  
(3.60)  
V
V
V
Supply voltage during ISP  
Input voltage  
4.75  
5.25  
V
V
CCISP  
–0.5 (8)  
V
+ 0.5  
CCINT  
I
Output voltage  
0
0
V
V
O
A
CCIO  
70  
T
Ambient temperature  
For commercial use  
For industrial use  
For commercial use  
For industrial use  
° C  
° C  
° C  
° C  
ns  
ns  
–40  
0
85  
90  
T
Junction temperature  
J
–40  
105  
40  
t
t
Input rise time  
Input fall time  
R
40  
F
26  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 15. MAX 7000 5.0-V Device DC Operating Conditions  
Note (9)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
V
V
V
High-level input voltage  
2.0  
–0.5 (8)  
2.4  
V
+ 0.5  
CCINT  
V
V
V
V
V
IH  
Low-level input voltage  
0.8  
IL  
5.0-V high-level TTL output voltage  
3.3-V high-level TTL output voltage  
I
I
I
= –4 mA DC, V  
= –4 mA DC, V  
= 4.75 V (10)  
= 3.00 V (10)  
OH  
OH  
CCIO  
CCIO  
2.4  
OH  
OH  
3.3-V high-level CMOS output  
voltage  
= –0.1 mA DC, V  
= 3.0 V (10)  
V
– 0.2  
CCIO  
CCIO  
V
5.0-V low-level TTL output voltage  
3.3-V low-level TTL output voltage  
I
I
I
= 12 mA DC, V  
= 12 mA DC, V  
= 4.75 V (11)  
= 3.00 V (11)  
= 3.0 V(11)  
0.45  
0.45  
0.2  
V
V
V
OL  
OL  
CCIO  
CCIO  
OL  
OL  
3.3-V low-level CMOS output  
voltage  
= 0.1 mA DC, V  
CCIO  
I
I
Leakage current of dedicated input V = –0.5 to 5.5 V (11)  
pins  
–10  
–40  
10  
40  
μA  
μA  
I
I
I/O pin tri-state output off-state  
current  
V = –0.5 to 5.5 V (11), (12)  
I
OZ  
Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices  
Note (13)  
Symbol  
Parameter  
Conditions  
Min  
Min  
Min  
Max  
Unit  
C
C
Input pin capacitance  
I/O pin capacitance  
V
V
= 0 V, f = 1.0 MHz  
12  
12  
pF  
pF  
IN  
IN  
= 0 V, f = 1.0 MHz  
I/O  
OUT  
Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)  
Symbol  
Parameter  
Conditions  
Max  
Unit  
C
C
Input pin capacitance  
I/O pin capacitance  
V
V
= 0 V, f = 1.0 MHz  
15  
15  
pF  
pF  
IN  
IN  
= 0 V, f = 1.0 MHz  
I/O  
OUT  
Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices  
Note (13)  
Symbol  
Parameter  
Conditions  
Max  
Unit  
C
C
Dedicated input pin capacitance  
I/O pin capacitance  
V
V
= 0 V, f = 1.0 MHz  
10  
10  
pF  
pF  
IN  
IN  
= 0 V, f = 1.0 MHz  
I/O  
OUT  
Altera Corporation  
27  
MAX 7000 Programmable Logic Device Family Data Sheet  
Notes to tables:  
(1) See the Operating Requirements for Altera Devices Data Sheet.  
(2) Minimum DC input voltage on I/O pins is –0.5 V and on 4 dedicated input pins is –0.3 V. During transitions, the  
inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than  
20 ns.  
(3) Numbers in parentheses are for industrial-temperature-range devices.  
(4)  
V
must rise monotonically.  
CC  
(5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V  
voltage level for POR is 4.5 V. The  
CCINT  
device is fully initialized within the POR time after V  
reaches the sufficient POR voltage level.  
CCINT  
(6) 3.3-V I/O operation is not available for 44-pin packages.  
(7) The V parameter applies only to MAX 7000S devices.  
CCISP  
(8) During in-system programming, the minimum DC input voltage is –0.3 V.  
(9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26.  
(10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I  
parameter refers  
OH  
to high-level TTL or CMOS output current.  
(11) The parameter is measured with 50% of the outputs each sinking the specified current. The I parameter refers to  
OL  
low-level TTL, PCI, or CMOS output current.  
(12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically  
–60 μA.  
(13) Capacitance is measured at 25° C and is sample-tested only. The OE1pin has a maximum capacitance of 20 pF.  
Figure 11 shows the typical output drive characteristics of MAX 7000  
devices.  
Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices  
150  
120  
90  
150  
120  
90  
IOL  
IOL  
Typical IO  
Output  
Current (mA)  
Typical IO  
Output  
Current (mA)  
VCCIO = 5.0 V  
Room Temperature  
VCCIO = 3.3 V  
Room Temperature  
60  
60  
IOH  
IOH  
30  
30  
3.3  
1
2
3
4
5
1
2
3
4
5
VO Output Voltage (V)  
VO Output Voltage (V)  
MAX 7000 device timing can be analyzed with the Altera software, with a  
variety of popular industry-standard EDA simulators and timing  
analyzers, or with the timing model shown in Figure 12. MAX 7000  
devices have fixed internal delays that enable the designer to determine  
the worst-case timing of any design. The Altera software provides timing  
simulation, point-to-point delay prediction, and detailed timing analysis  
for a device-wide performance evaluation.  
Timing Model  
28  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 12. MAX 7000 Timing Model  
Internal Output  
Enable Delay  
t
IOE (1)  
Global Control  
Delay  
Input  
Delay  
t I N  
Output  
Delay  
tGLOB  
Register  
Delay  
tSU  
Parallel  
Expander Delay  
tPEXP  
Logic Array  
Delay  
t LAD  
tOD1  
PIA  
Delay  
tPIA  
tH  
t
OD2 (2)  
tOD3  
tXZ  
tPRE  
tCLR  
tRD  
tCOMB  
tFSU  
tFH  
Register  
Control Delay  
tLAC  
tZX1  
t
t
ZX2 (2)  
ZX3 (1)  
tIC  
tEN  
I/O  
Delay  
tIO  
Shared  
Expander Delay  
tSEXP  
Fast  
Input Delay  
tFIN  
(1)  
Notes:  
(1) Only available in MAX 7000E and MAX 7000S devices.  
(2) Not available in 44-pin devices.  
The timing characteristics of any signal path can be derived from the  
timing model and parameters of a particular device. External timing  
parameters, which represent pin-to-pin timing delays, can be calculated  
as the sum of internal parameters. Figure 13 shows the internal timing  
relationship of internal and external delay parameters.  
For more infomration, see Application Note 94 (Understanding MAX 7000  
Timing).  
f
Altera Corporation  
29  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 13. Switching Waveforms  
tR & tF < 3 ns.  
Combinatorial Mode  
Inputs are driven at 3 V  
for a logic high and 0 V  
for a logic low. All timing  
characteristics are  
tIN  
Input Pin  
I/O Pin  
tIO  
measured at 1.5 V.  
tPIA  
PIA Delay  
tSEXP  
Shared Expander  
Delay  
tLAC , tLAD  
Logic Array  
Input  
tPEXP  
Parallel Expander  
Delay  
tCOMB  
Logic Array  
Output  
tOD  
Output Pin  
Global Clock Mode  
tR  
tCH  
tCL  
tF  
Global  
Clock Pin  
tIN  
tGLOB  
Global Clock  
at Register  
tSU  
tH  
Data or Enable  
(Logic Array Output)  
Array Clock Mode  
tR  
tACH  
tACL  
tF  
Input or I/O Pin  
Clock into PIA  
tIN  
tIO  
tPIA  
Clock into  
Logic Array  
tIC  
tSU  
Clock at  
Register  
tH  
Data from  
Logic Array  
tRD  
tPIA  
tPIA  
tCLR , tPRE  
Register to PIA  
to Logic Array  
tOD  
tOD  
Register Output  
to Pin  
30  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Tables 19 through 26 show the MAX 7000 and MAX 7000E AC  
operating conditions.  
Table 19. MAX 7000 & MAX 7000E External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
-6 Speed Grade  
-7 Speed Grade  
Unit  
Min  
Max  
Min  
Max  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Input to non-registered output  
I/O input to non-registered output  
Global clock setup time  
C1 = 35 pF  
C1 = 35 pF  
6.0  
6.0  
7.5  
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PD1  
PD2  
SU  
5.0  
0.0  
2.5  
0.5  
6.0  
0.0  
3.0  
0.5  
Global clock hold time  
H
Global clock setup time of fast input (2)  
FSU  
FH  
Global clock hold time of fast input  
Global clock to output delay  
Global clock high time  
Global clock low time  
(2)  
C1 = 35 pF  
4.0  
6.5  
4.5  
7.5  
CO1  
CH  
2.5  
2.5  
2.5  
2.0  
3.0  
3.0  
3.0  
2.0  
CL  
Array clock setup time  
Array clock hold time  
ASU  
AH  
Array clock to output delay  
Array clock high time  
C1 = 35 pF  
ACO1  
ACH  
ACL  
CPPW  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
Array clock low time  
Minimum pulse width for clear and  
preset  
(3)  
t
t
f
Output data hold time after clock  
Minimum global clock period  
C1 = 35 pF (4)  
1.0  
1.0  
ns  
ns  
ODH  
CNT  
CNT  
6.6  
6.6  
8.0  
8.0  
Maximum internal global clock  
frequency  
(5)  
151.5  
125.0  
MHz  
t
f
Minimum array clock period  
ns  
ACNT  
ACNT  
Maximum internal array clock  
frequency  
(5)  
(6)  
151.5  
200  
125.0  
166.7  
MHz  
f
Maximum clock frequency  
MHz  
MAX  
Altera Corporation  
31  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 20. MAX 7000 & MAX 7000E Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade -6 Speed Grade -7  
Unit  
Min  
Max  
Min  
Max  
t
t
t
t
t
t
t
t
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
0.4  
0.4  
0.8  
3.5  
0.8  
2.0  
2.0  
0.5  
0.5  
1.0  
4.0  
0.8  
3.0  
3.0  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
IO  
(2)  
FIN  
Shared expander delay  
Parallel expander delay  
Logic array delay  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay  
(2)  
C1 = 35 pF  
2.0  
2.5  
7.0  
Slow slew rate = off, V  
= 5.0 V  
CCIO  
t
t
Output buffer and pad delay  
Slow slew rate = off, V = 3.3 V  
C1 = 35 pF (7)  
C1 = 35 pF (2)  
2.5  
7.0  
ns  
ns  
OD2  
OD3  
CCIO  
Output buffer and pad delay  
Slow slew rate = on,  
V
= 5.0 V or 3.3 V  
CCIO  
t
t
t
Output buffer enable delay  
Slow slew rate = off, V  
C1 = 35 pF  
4.0  
4.5  
9.0  
4.0  
4.5  
9.0  
ns  
ns  
ns  
ZX1  
ZX2  
ZX3  
= 5.0 V  
= 3.3 V  
CCIO  
Output buffer enable delay  
Slow slew rate = off, V  
C1 = 35 pF (7)  
C1 = 35 pF (2)  
CCIO  
Output buffer enable delay  
Slow slew rate = on  
V
= 5.0 V or 3.3 V  
CCIO  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Output buffer disable delay  
Register setup time  
C1 = 5 pF  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XZ  
3.0  
1.5  
2.5  
0.5  
3.0  
2.0  
3.0  
0.5  
SU  
Register hold time  
H
Register setup time of fast input  
Register hold time of fast input  
Register delay  
(2)  
(2)  
FSU  
FH  
0.8  
0.8  
2.5  
2.0  
0.8  
2.0  
2.0  
0.8  
10.0  
1.0  
1.0  
3.0  
3.0  
1.0  
2.0  
2.0  
1.0  
10.0  
RD  
Combinatorial delay  
Array clock delay  
COMB  
IC  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
EN  
GLOB  
PRE  
CLR  
PIA  
LPA  
Low-power adder  
(8)  
32  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 21. MAX 7000 & MAX 7000E External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
MAX 7000E (-10P) MAX 7000 (-10)  
MAX 7000E (-10)  
Min  
Max  
Min  
Max  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Input to non-registered output  
I/O input to non-registered output  
Global clock setup time  
C1 = 35 pF  
C1 = 35 pF  
10.0  
10.0  
10.0  
10.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PD1  
PD2  
SU  
7.0  
0.0  
3.0  
0.5  
8.0  
0.0  
3.0  
0.5  
Global clock hold time  
H
Global clock setup time of fast input (2)  
Global clock hold time of fast input (2)  
FSU  
FH  
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
Array clock to output delay  
Array clock high time  
Array clock low time  
C1 = 35 pF  
5.0  
5
CO1  
CH  
4.0  
4.0  
2.0  
3.0  
4.0  
4.0  
3.0  
3.0  
CL  
ASU  
AH  
C1 = 35 pF  
10.0  
10.0  
ACO1  
ACH  
ACL  
CPPW  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
Minimum pulse width for clear and (3)  
preset  
t
t
f
Output data hold time after clock  
Minimum global clock period  
C1 = 35 pF (4)  
1.0  
1.0  
ns  
ns  
ODH  
CNT  
CNT  
10.0  
10.0  
10.0  
10.0  
Maximum internal global clock  
frequency  
(5)  
100.0  
100.0  
MHz  
t
f
Minimum array clock period  
ns  
ACNT  
ACNT  
Maximum internal array clock  
frequency  
(5)  
(6)  
100.0  
125.0  
100.0  
125.0  
MHz  
f
Maximum clock frequency  
MHz  
MAX  
Altera Corporation  
33  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 22. MAX 7000 & MAX 7000E Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
MAX 7000E (-10P) MAX 7000 (-10)  
MAX 7000E (-10)  
Min  
Max  
Min  
Max  
t
t
t
t
t
t
t
t
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
0.5  
0.5  
1.0  
5.0  
0.8  
5.0  
5.0  
2.0  
1.5  
1.0  
1.0  
1.0  
5.0  
0.8  
5.0  
5.0  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
IO  
(2)  
(2)  
FIN  
Shared expander delay  
Parallel expander delay  
Logic array delay  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay  
Slow slew rate = off  
C1 = 35 pF  
V
= 5.0 V  
CCIO  
t
t
t
t
t
Output buffer and pad delay  
Slow slew rate = off  
C1 = 35 pF (7)  
C1 = 35 pF (2)  
C1 = 35 pF  
2.0  
5.5  
5.0  
5.5  
9.0  
5.0  
2.5  
6.0  
5.0  
5.5  
9.0  
5.0  
ns  
ns  
ns  
ns  
ns  
OD2  
OD3  
ZX1  
ZX2  
ZX3  
V
= 3.3 V  
CCIO  
Output buffer and pad delay  
Slow slew rate = on  
V
= 5.0 V or 3.3 V  
CCIO  
Output buffer enable delay  
Slow slew rate = off  
V
= 5.0 V  
CCIO  
Output buffer enable delay  
Slow slew rate = off  
C1 = 35 pF (7)  
C1 = 35 pF (2)  
C1 = 5 pF  
V
= 3.3 V  
CCIO  
Output buffer enable delay  
Slow slew rate = on  
V
= 5.0 V or 3.3 V  
CCIO  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Output buffer disable delay  
Register setup time  
Register hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XZ  
2.0  
3.0  
3.0  
0.5  
3.0  
3.0  
3.0  
0.5  
SU  
H
Register setup time of fast input  
Register hold time of fast input  
Register delay  
(2)  
(2)  
FSU  
FH  
2.0  
2.0  
5.0  
5.0  
1.0  
3.0  
3.0  
1.0  
11.0  
1.0  
1.0  
5.0  
5.0  
1.0  
3.0  
3.0  
1.0  
11.0  
RD  
Combinatorial delay  
Array clock delay  
COMB  
IC  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
EN  
GLOB  
PRE  
CLR  
PIA  
LPA  
Low-power adder  
(8)  
34  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 23. MAX 7000 & MAX 7000E External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
MAX 7000E (-12P) MAX 7000 (-12)  
MAX 7000E (-12)  
Min  
Max  
Min  
Max  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Input to non-registered output  
I/O input to non-registered output  
Global clock setup time  
C1 = 35 pF  
C1 = 35 pF  
12.0  
12.0  
12.0  
12.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PD1  
PD2  
SU  
7.0  
0.0  
3.0  
0.0  
10.0  
0.0  
Global clock hold time  
H
Global clock setup time of fast input (2)  
Global clock hold time of fast input (2)  
3.0  
FSU  
FH  
0.0  
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
Array clock to output delay  
Array clock high time  
Array clock low time  
C1 = 35 pF  
6.0  
6.0  
CO1  
CH  
4.0  
4.0  
3.0  
4.0  
4.0  
4.0  
4.0  
4.0  
CL  
ASU  
AH  
C1 = 35 pF  
12.0  
12.0  
ACO1  
ACH  
ACL  
CPPW  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
Minimum pulse width for clear and (3)  
preset  
t
t
f
Output data hold time after clock  
Minimum global clock period  
C1 = 35 pF (4)  
1.0  
1.0  
ns  
ns  
ODH  
CNT  
CNT  
11.0  
11.0  
11.0  
11.0  
Maximum internal global clock  
frequency  
(5)  
90.9  
90.9  
MHz  
t
f
Minimum array clock period  
ns  
ACNT  
ACNT  
Maximum internal array clock  
frequency  
(5)  
(6)  
90.9  
90.9  
MHz  
f
Maximum clock frequency  
125.0  
125.0  
MHz  
MAX  
Altera Corporation  
35  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 24. MAX 7000 & MAX 7000E Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
MAX 7000E (-12P) MAX 7000 (-12)  
MAX 7000E (-12)  
Min  
Max  
Min  
Max  
t
t
t
t
t
t
t
t
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
1.0  
1.0  
1.0  
7.0  
1.0  
7.0  
5.0  
2.0  
1.0  
2.0  
2.0  
1.0  
7.0  
1.0  
5.0  
5.0  
2.0  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
IO  
(2)  
(2)  
FIN  
Shared expander delay  
Parallel expander delay  
Logic array delay  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay  
Slow slew rate = off  
C1 = 35 pF  
V
= 5.0 V  
CCIO  
t
t
t
t
t
Output buffer and pad delay  
Slow slew rate = off  
C1 = 35 pF (7)  
C1 = 35 pF (2)  
C1 = 35 pF  
2.0  
5.0  
4.0  
7.0  
ns  
ns  
ns  
ns  
ns  
OD2  
OD3  
ZX1  
ZX2  
ZX3  
V
= 3.3 V  
CCIO  
Output buffer and pad delay  
Slow slew rate = on  
V
= 5.0 V or 3.3 V  
CCIO  
Output buffer enable delay  
Slow slew rate = off  
6.0  
6.0  
V
= 5.0 V  
CCIO  
Output buffer enable delay  
Slow slew rate = off  
C1 = 35 pF (7)  
C1 = 35 pF (2)  
C1 = 5 pF  
7.0  
7.0  
V
= 3.3 V  
CCIO  
Output buffer enable delay  
Slow slew rate = on  
10.0  
6.0  
10.0  
6.0  
V
= 5.0 V or 3.3 V  
CCIO  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Output buffer disable delay  
Register setup time  
Register hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XZ  
1.0  
6.0  
4.0  
0.0  
4.0  
4.0  
2.0  
2.0  
SU  
H
Register setup time of fast input  
Register hold time of fast input  
Register delay  
(2)  
(2)  
FSU  
FH  
2.0  
2.0  
5.0  
7.0  
2.0  
4.0  
4.0  
1.0  
12.0  
1.0  
1.0  
5.0  
5.0  
0.0  
3.0  
3.0  
1.0  
12.0  
RD  
Combinatorial delay  
Array clock delay  
COMB  
IC  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
EN  
GLOB  
PRE  
CLR  
PIA  
LPA  
Low-power adder  
(8)  
36  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 25. MAX 7000 & MAX 7000E External Timing Parameters  
Symbol Parameter Conditions  
Note (1)  
Speed Grade  
-15T  
Min Max Min Max Min Max  
Unit  
-15  
-20  
t
t
Input to non-registered output C1 = 35 pF  
15.0  
15.0  
15.0  
15.0  
20.0  
20.0  
ns  
ns  
PD1  
PD2  
I/O input to non-registered  
output  
C1 = 35 pF  
t
t
t
Global clock setup time  
Global clock hold time  
11.0  
0.0  
11.0  
0.0  
12.0  
0.0  
ns  
ns  
ns  
SU  
H
Global clock setup time of fast (2)  
3.0  
5.0  
FSU  
input  
t
Global clock hold time of fast  
input  
(2)  
0.0  
0.0  
ns  
FH  
t
t
t
t
t
t
t
t
t
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
Array clock to output delay  
Array clock high time  
Array clock low time  
C1 = 35 pF  
8.0  
8.0  
12.0  
20.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO1  
CH  
5.0  
5.0  
4.0  
4.0  
6.0  
6.0  
4.0  
4.0  
6.0  
6.0  
5.0  
5.0  
CL  
ASU  
AH  
C1 = 35 pF  
15.0  
15.0  
ACO1  
ACH  
ACL  
CPPW  
6.0  
6.0  
6.0  
6.5  
6.5  
6.5  
8.0  
8.0  
8.0  
Minimum pulse width for clear (3)  
and preset  
t
Output data hold time after  
clock  
C1 = 35 pF (4)  
1.0  
1.0  
1.0  
ns  
ODH  
t
f
Minimum global clock period  
13.0  
13.0  
13.0  
13.0  
16.0  
16.0  
ns  
CNT  
CNT  
Maximum internal global clock (5)  
frequency  
76.9  
76.9  
62.5  
MHz  
t
f
Minimum array clock period  
ns  
ACNT  
ACNT  
Maximum internal array clock (5)  
frequency  
76.9  
100  
76.9  
83.3  
62.5  
83.3  
MHz  
f
Maximum clock frequency  
(6)  
MHz  
MAX  
Altera Corporation  
37  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 26. MAX 7000 & MAX 7000E Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-15T  
Min Max Min Max Min Max  
Unit  
-15  
-20  
t
t
t
t
t
t
t
t
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
2.0  
2.0  
2.0  
8.0  
1.0  
6.0  
6.0  
3.0  
4.0  
2.0  
2.0  
3.0  
3.0  
4.0  
9.0  
2.0  
8.0  
8.0  
4.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
IO  
(2)  
(2)  
FIN  
Shared expander delay  
Parallel expander delay  
Logic array delay  
10.0  
1.0  
6.0  
6.0  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay  
Slow slew rate = off  
C1 = 35 pF  
4.0  
V
= 5.0 V  
CCIO  
t
t
t
t
t
Output buffer and pad delay  
Slow slew rate = off  
C1 = 35 pF (7)  
C1 = 35 pF (2)  
C1 = 35 pF  
5.0  
8.0  
6.0  
6.0  
9.0  
ns  
ns  
ns  
ns  
ns  
OD2  
OD3  
ZX1  
ZX2  
ZX3  
V
= 3.3 V  
CCIO  
Output buffer and pad delay  
Slow slew rate = on  
V
= 5.0 V or 3.3 V  
CCIO  
Output buffer enable delay  
Slow slew rate = off  
6.0  
10.0  
11.0  
14.0  
10.0  
V
= 5.0 V  
CCIO  
Output buffer enable delay  
Slow slew rate = off  
C1 = 35 pF (7)  
C1 = 35 pF (2)  
C1 = 5 pF  
7.0  
10.0  
6.0  
V
= 3.3 V  
CCIO  
Output buffer enable delay  
Slow slew rate = on  
V
= 5.0 V or 3.3 V  
CCIO  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Output buffer disable delay  
Register setup time  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XZ  
4.0  
4.0  
2.0  
2.0  
4.0  
4.0  
4.0  
5.0  
4.0  
3.0  
SU  
Register hold time  
H
Register setup time of fast input (2)  
Register hold time of fast input (2)  
Register delay  
FSU  
FH  
1.0  
1.0  
6.0  
6.0  
1.0  
4.0  
4.0  
2.0  
13.0  
1.0  
1.0  
6.0  
6.0  
1.0  
4.0  
4.0  
2.0  
15.0  
1.0  
1.0  
8.0  
8.0  
3.0  
4.0  
4.0  
3.0  
15.0  
RD  
Combinatorial delay  
Array clock delay  
COMB  
IC  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
EN  
GLOB  
PRE  
CLR  
PIA  
LPA  
PIA delay  
Low-power adder  
(8)  
38  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Notes to tables:  
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more  
information on switching waveforms.  
(2) This parameter applies to MAX 7000E devices only.  
(3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t  
parameter  
LPA  
must be added to this minimum width if the clear or reset signal incorporates the t  
parameter into the signal  
LAD  
path.  
(4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This  
parameter applies for both global and array clocking.  
(5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(6) The f  
(7) Operating conditions: V  
values represent the highest frequency for pipelined data.  
MAX  
= 3.3 V ± 10% for commercial and industrial use.  
CCIO  
(8) The t  
parameter must be added to the t  
, t  
, t , t , t  
, t  
, and t  
parameters for macrocells  
CPPW  
LPA  
LAD LAC IC EN SEXP ACL  
running in the low-power mode.  
Tables 27 and 28 show the EPM7032S AC operating conditions.  
Table 27. EPM7032S External Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-6 -7  
Min Max Min Max Min Max Min Max  
Unit  
-5  
-10  
t
t
Input to non-registered output C1 = 35 pF  
5.0  
5.0  
6.0  
6.0  
7.5  
7.5  
10.0  
10.0  
ns  
ns  
PD1  
PD2  
I/O input to non-registered  
output  
C1 = 35 pF  
t
t
t
Global clock setup time  
Global clock hold time  
2.9  
0.0  
2.5  
4.0  
0.0  
2.5  
5.0  
0.0  
2.5  
7.0  
0.0  
3.0  
ns  
ns  
ns  
SU  
H
Global clock setup time of fast  
input  
FSU  
t
Global clock hold time of fast  
input  
0.0  
0.0  
0.0  
0.5  
ns  
FH  
t
t
t
t
t
t
t
t
t
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
Array clock to output delay  
Array clock high time  
Array clock low time  
C1 = 35 pF  
3.2  
5.4  
3.5  
6.6  
4.3  
8.2  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO1  
CH  
2.0  
2.0  
0.7  
1.8  
2.5  
2.5  
0.9  
2.1  
3.0  
3.0  
1.1  
2.7  
4.0  
4.0  
2.0  
3.0  
CL  
ASU  
AH  
C1 = 35 pF  
10.0  
ACO1  
ACH  
ACL  
CPPW  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
Minimum pulse width for clear (2)  
and preset  
t
Output data hold time after  
clock  
C1 = 35 pF (3) 1.0  
1.0  
1.0  
1.0  
ns  
ODH  
t
f
Minimum global clock period  
5.7  
5.7  
7.0  
7.0  
8.6  
8.6  
10.0  
10.0  
ns  
CNT  
CNT  
Maximum internal global clock (4)  
frequency  
175.4  
142.9  
116.3  
100.0  
MHz  
t
Minimum array clock period  
ns  
ACNT  
Altera Corporation  
39  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 27. EPM7032S External Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-6 -7  
Min Max Min Max Min Max Min Max  
Unit  
-5  
-10  
f
f
Maximum internal array clock (4)  
frequency  
175.4  
142.9  
116.3  
100.0  
MHz  
MHz  
ACNT  
MAX  
Maximum clock frequency  
(5)  
250.0  
200.0  
166.7  
125.0  
Table 28. EPM7032S Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
-5  
-6  
-7  
-10  
Min Max Min Max Min Max Min Max  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
0.2  
0.2  
2.2  
3.1  
0.9  
2.6  
2.5  
0.7  
0.2  
0.7  
5.2  
4.0  
4.5  
9.0  
4.0  
0.2  
0.2  
2.1  
3.8  
1.1  
3.3  
3.3  
0.8  
0.3  
0.8  
5.3  
4.0  
4.5  
9.0  
4.0  
0.3  
0.3  
2.5  
4.6  
1.4  
4.0  
4.0  
1.0  
0.4  
0.9  
5.4  
4.0  
4.5  
9.0  
4.0  
0.5  
0.5  
1.0  
5.0  
0.8  
5.0  
5.0  
2.0  
1.5  
2.0  
5.5  
5.0  
5.5  
9.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
IO  
FIN  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
OD2  
OD3  
ZX1  
ZX2  
ZX3  
XZ  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay C1 = 35 pF  
Output buffer and pad delay C1 = 35 pF (6)  
Output buffer and pad delay C1 = 35 pF  
Output buffer enable delay  
Output buffer enable delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF (6)  
C1 = 35 pF  
C1 = 5 pF  
0.8  
1.7  
1.9  
1.0  
2.0  
1.8  
1.3  
2.5  
1.7  
2.0  
3.0  
3.0  
SU  
Register hold time  
H
Register setup time of fast  
input  
FSU  
t
Register hold time of fast  
input  
0.6  
0.7  
0.8  
0.5  
ns  
FH  
t
t
t
t
t
t
t
Register delay  
1.2  
0.9  
2.7  
2.6  
1.6  
2.0  
2.0  
1.6  
1.1  
3.4  
3.3  
1.4  
2.4  
2.4  
1.9  
1.4  
4.2  
4.0  
1.7  
3.0  
3.0  
2.0  
2.0  
5.0  
5.0  
1.0  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
COMB  
IC  
EN  
GLOB  
PRE  
CLR  
40  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 28. EPM7032S Internal Timing Parameters  
Symbol Parameter Conditions  
Note (1)  
Speed Grade  
-6 -7  
Min Max Min Max Min Max Min Max  
Unit  
-5  
-10  
t
PIA delay  
Low-power adder  
(7)  
(8)  
1.1  
1.1  
1.4  
1.0  
ns  
ns  
PIA  
t
12.0  
10.0  
10.0  
11.0  
LPA  
Notes to tables:  
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more  
information on switching waveforms.  
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t  
parameter  
LPA  
must be added to this minimum width if the clear or reset signal incorporates the t  
parameter into the signal  
LAD  
path.  
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This  
parameter applies for both global and array clocking.  
(4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(5) The f  
(6) Operating conditions: V  
values represent the highest frequency for pipelined data.  
MAX  
= 3.3 V ± 10% for commercial and industrial use.  
CCIO  
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,  
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(8) The t  
parameter must be added to the t  
, t  
, t , t , t  
, t  
, and t  
parameters for macrocells  
LPA  
LAD LAC IC EN SEXP ACL  
CPPW  
running in the low-power mode.  
Tables 29 and 30 show the EPM7064S AC operating conditions.  
Table 29. EPM7064S External Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-6 -7  
Min Max Min Max Min Max Min Max  
Unit  
-5  
-10  
t
t
Input to non-registered output C1 = 35 pF  
5.0  
5.0  
6.0  
6.0  
7.5  
7.5  
10.0  
10.0  
ns  
ns  
PD1  
PD2  
I/O input to non-registered  
output  
C1 = 35 pF  
t
t
t
Global clock setup time  
Global clock hold time  
2.9  
0.0  
2.5  
3.6  
0.0  
2.5  
6.0  
0.0  
3.0  
7.0  
0.0  
3.0  
ns  
ns  
ns  
SU  
H
Global clock setup time of fast  
input  
FSU  
t
Global clock hold time of fast  
input  
0.0  
0.0  
0.5  
0.5  
ns  
FH  
t
t
t
t
t
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
C1 = 35 pF  
3.2  
4.0  
4.5  
5.0  
ns  
ns  
ns  
ns  
ns  
CO1  
CH  
2.0  
2.0  
0.7  
1.8  
2.5  
2.5  
0.9  
2.1  
3.0  
3.0  
3.0  
2.0  
4.0  
4.0  
2.0  
3.0  
CL  
ASU  
AH  
Altera Corporation  
41  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 29. EPM7064S External Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-6 -7  
Min Max Min Max Min Max Min Max  
Unit  
-5  
-10  
t
t
t
t
Array clock to output delay  
Array clock high time  
Array clock low time  
C1 = 35 pF  
5.4  
6.7  
7.5  
10.0  
ns  
ns  
ns  
ns  
ACO1  
ACH  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
ACL  
Minimum pulse width for clear (2)  
CPPW  
and preset  
t
Output data hold time after  
clock  
C1 = 35 pF (3)  
1.0  
1.0  
1.0  
1.0  
ns  
ODH  
t
f
Minimum global clock period  
5.7  
5.7  
7.1  
7.1  
8.0  
8.0  
10.0  
10.0  
ns  
CNT  
CNT  
Maximum internal global clock (4)  
frequency  
175.4  
140.8  
125.0  
100.0  
MHz  
t
f
Minimum array clock period  
ns  
ACNT  
ACNT  
Maximum internal array clock (4)  
frequency  
175.4  
250.0  
140.8  
200.0  
125.0  
166.7  
100.0  
125.0  
MHz  
f
Maximum clock frequency  
(5)  
MHz  
MAX  
Table 30. EPM7064S Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-6 -7  
Min Max Min Max Min Max Min Max  
Unit  
-5  
-10  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
0.2  
0.2  
2.2  
3.1  
0.9  
2.6  
2.5  
0.7  
0.2  
0.7  
5.2  
4.0  
4.5  
9.0  
4.0  
0.2  
0.2  
2.6  
3.8  
1.1  
3.2  
3.2  
0.8  
0.3  
0.8  
5.3  
4.0  
4.5  
9.0  
4.0  
0.5  
0.5  
1.0  
4.0  
0.8  
3.0  
3.0  
2.0  
2.0  
2.5  
7.0  
4.0  
4.5  
9.0  
4.0  
0.5  
0.5  
1.0  
5.0  
0.8  
5.0  
5.0  
2.0  
1.5  
2.0  
5.5  
5.0  
5.5  
9.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
IO  
FIN  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
OD2  
OD3  
ZX1  
ZX2  
ZX3  
XZ  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay C1 = 35 pF  
Output buffer and pad delay C1 = 35 pF (6)  
Output buffer and pad delay C1 = 35 pF  
Output buffer enable delay  
Output buffer enable delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF (6)  
C1 = 35 pF  
C1 = 5 pF  
0.8  
1.7  
1.0  
2.0  
3.0  
2.0  
2.0  
3.0  
SU  
Register hold time  
H
42  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 30. EPM7064S Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-6 -7  
Min Max Min Max Min Max Min Max  
Unit  
-5  
-10  
t
Register setup time of fast  
input  
1.9  
1.8  
3.0  
3.0  
ns  
ns  
FSU  
t
Register hold time of fast  
input  
0.6  
0.7  
0.5  
0.5  
FH  
t
t
t
t
t
t
t
t
t
Register delay  
1.2  
0.9  
2.7  
2.6  
1.6  
2.0  
2.0  
1.1  
12.0  
1.6  
1.0  
3.3  
3.2  
1.9  
2.4  
2.4  
1.3  
11.0  
1.0  
1.0  
3.0  
3.0  
1.0  
2.0  
2.0  
1.0  
10.0  
2.0  
2.0  
5.0  
5.0  
1.0  
3.0  
3.0  
1.0  
11.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
COMB  
IC  
EN  
GLOB  
PRE  
CLR  
PIA  
(7)  
(8)  
Low-power adder  
LPA  
Notes to tables:  
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more  
information on switching waveforms.  
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t  
parameter  
LPA  
must be added to this minimum width if the clear or reset signal incorporates the t  
parameter into the signal  
LAD  
path.  
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This  
parameter applies for both global and array clocking.  
(4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(5) The f  
(6) Operating conditions: V  
values represent the highest frequency for pipelined data.  
MAX  
= 3.3 V ± 10% for commercial and industrial use.  
CCIO  
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,  
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(8) The t  
parameter must be added to the t  
, t  
, t , t , t  
, t  
, and t  
parameters for macrocells  
LPA  
LAD LAC IC EN SEXP ACL  
CPPW  
running in the low-power mode.  
Altera Corporation  
43  
MAX 7000 Programmable Logic Device Family Data Sheet  
Tables 31 and 32 show the EPM7128S AC operating conditions.  
Table 31. EPM7128S External Timing Parameters  
Symbol Parameter Conditions  
Note (1)  
Speed Grade  
-7 -10  
Unit  
-6  
-15  
Min Max Min Max Min Max Min Max  
t
t
Input to non-registered output C1 = 35 pF  
6.0  
6.0  
7.5  
7.5  
10.0  
10.0  
15.0  
15.0  
ns  
ns  
PD1  
PD2  
I/O input to non-registered  
output  
C1 = 35 pF  
t
t
t
Global clock setup time  
Global clock hold time  
3.4  
0.0  
2.5  
6.0  
0.0  
3.0  
7.0  
0.0  
3.0  
11.0  
0.0  
ns  
ns  
ns  
SU  
H
Global clock setup time of fast  
input  
3.0  
FSU  
t
Global clock hold time of fast  
input  
0.0  
0.5  
0.5  
0.0  
ns  
FH  
t
t
t
t
t
t
t
t
t
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
Array clock to output delay  
Array clock high time  
Array clock low time  
C1 = 35 pF  
4.0  
6.5  
4.5  
7.5  
5.0  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO1  
CH  
3.0  
3.0  
0.9  
1.8  
3.0  
3.0  
3.0  
2.0  
4.0  
4.0  
2.0  
5.0  
5.0  
5.0  
4.0  
4.0  
CL  
ASU  
AH  
C1 = 35 pF  
10.0  
15.0  
ACO1  
ACH  
ACL  
CPPW  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
Minimum pulse width for clear (2)  
and preset  
t
Output data hold time after  
clock  
C1 = 35 pF (3)  
1.0  
1.0  
1.0  
1.0  
ns  
ODH  
t
f
Minimum global clock period  
6.8  
6.8  
8.0  
8.0  
10.0  
10.0  
13.0  
13.0  
ns  
CNT  
CNT  
Maximum internal global clock (4)  
frequency  
147.1  
125.0  
100.0  
76.9  
MHz  
t
f
Minimum array clock period  
ns  
ACNT  
ACNT  
Maximum internal array clock (4)  
frequency  
147.1  
166.7  
125.0  
166.7  
100.0  
125.0  
76.9  
MHz  
f
Maximum clock frequency  
(5)  
100.0  
MHz  
MAX  
44  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 32. EPM7128S Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7 -10  
Min Max Min Max Min Max Min Max  
Unit  
-6  
-15  
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
0.2  
0.2  
2.6  
3.7  
1.1  
3.0  
3.0  
0.7  
0.4  
0.9  
5.4  
4.0  
4.5  
9.0  
4.0  
0.5  
0.5  
1.0  
4.0  
0.8  
3.0  
3.0  
2.0  
2.0  
2.5  
7.0  
4.0  
4.5  
9.0  
4.0  
0.5  
0.5  
1.0  
5.0  
0.8  
5.0  
5.0  
2.0  
1.5  
2.0  
5.5  
5.0  
5.5  
9.0  
5.0  
2.0  
2.0  
2.0  
8.0  
1.0  
6.0  
6.0  
3.0  
4.0  
5.0  
8.0  
6.0  
7.0  
10.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
IO  
FIN  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
OD2  
OD3  
ZX1  
ZX2  
ZX3  
XZ  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay C1 = 35 pF  
Output buffer and pad delay C1 = 35 pF (6)  
Output buffer and pad delay C1 = 35 pF  
Output buffer enable delay  
Output buffer enable delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF (6)  
C1 = 35 pF  
C1 = 5 pF  
1.0  
1.7  
1.9  
3.0  
2.0  
3.0  
2.0  
5.0  
3.0  
4.0  
4.0  
2.0  
SU  
Register hold time  
H
Register setup time of fast  
input  
FSU  
t
Register hold time of fast  
input  
0.6  
0.5  
0.5  
1.0  
ns  
FH  
t
t
t
t
t
t
t
t
t
Register delay  
1.4  
1.0  
3.1  
3.0  
2.0  
2.4  
2.4  
1.4  
11.0  
1.0  
1.0  
3.0  
3.0  
1.0  
2.0  
2.0  
1.0  
10.0  
2.0  
2.0  
5.0  
5.0  
1.0  
3.0  
3.0  
1.0  
11.0  
1.0  
1.0  
6.0  
6.0  
1.0  
4.0  
4.0  
2.0  
13.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
COMB  
IC  
EN  
GLOB  
PRE  
CLR  
PIA  
(7)  
(8)  
Low-power adder  
LPA  
Altera Corporation  
45  
MAX 7000 Programmable Logic Device Family Data Sheet  
Notes to tables:  
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more  
information on switching waveforms.  
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t  
parameter  
LPA  
must be added to this minimum width if the clear or reset signal incorporates the t  
parameter into the signal  
LAD  
path.  
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This  
parameter applies for both global and array clocking.  
(4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(5) The f  
(6) Operating conditions: V  
values represent the highest frequency for pipelined data.  
MAX  
= 3.3 V ± 10% for commercial and industrial use.  
CCIO  
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,  
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(8) The t  
parameter must be added to the t  
, t  
, t , t , t  
, t  
, and t  
parameters for macrocells  
LPA  
LAD LAC IC EN SEXP ACL  
CPPW  
running in the low-power mode.  
Tables 33 and 34 show the EPM7160S AC operating conditions.  
Table 33. EPM7160S External Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7 -10  
Min Max Min Max Min Max Min Max  
Unit  
-6  
-15  
t
t
Input to non-registered output C1 = 35 pF  
6.0  
6.0  
7.5  
7.5  
10.0  
10.0  
15.0  
15.0  
ns  
ns  
PD1  
PD2  
I/O input to non-registered  
output  
C1 = 35 pF  
t
t
t
Global clock setup time  
Global clock hold time  
3.4  
0.0  
2.5  
4.2  
0.0  
3.0  
7.0  
0.0  
3.0  
11.0  
0.0  
ns  
ns  
ns  
SU  
H
Global clock setup time of fast  
input  
3.0  
FSU  
t
Global clock hold time of fast  
input  
0.0  
0.0  
0.5  
0.0  
ns  
FH  
t
t
t
t
t
t
t
t
t
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
Array clock to output delay  
Array clock high time  
Array clock low time  
C1 = 35 pF  
3.9  
6.4  
4.8  
7.9  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO1  
CH  
3.0  
3.0  
0.9  
1.7  
3.0  
3.0  
1.1  
2.1  
4.0  
4.0  
2.0  
3.0  
5.0  
5.0  
4.0  
4.0  
CL  
ASU  
AH  
C1 = 35 pF  
10.0  
15.0  
ACO1  
ACH  
ACL  
CPPW  
3.0  
3.0  
2.5  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
Minimum pulse width for clear (2)  
and preset  
t
Output data hold time after  
clock  
C1 = 35 pF (3)  
1.0  
1.0  
1.0  
1.0  
ns  
ODH  
t
f
Minimum global clock period  
6.7  
8.2  
10.0  
13.0  
ns  
CNT  
CNT  
Maximum internal global clock (4)  
149.3  
122.0  
100.0  
76.9  
MHz  
frequency  
46  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 33. EPM7160S External Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7 -10  
Min Max Min Max Min Max Min Max  
Unit  
-6  
-15  
t
f
Minimum array clock period  
6.7  
8.2  
10.0  
13.0  
ns  
ACNT  
ACNT  
Maximum internal array clock (4)  
frequency  
149.3  
166.7  
122.0  
166.7  
100.0  
125.0  
76.9  
MHz  
f
Maximum clock frequency  
(5)  
100.0  
MHz  
MAX  
Table 34. EPM7160S Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7 -10  
Min Max Min Max Min Max Min Max  
Unit  
-6  
-15  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
0.2  
0.2  
2.6  
3.6  
1.0  
2.8  
2.8  
0.7  
0.4  
0.9  
5.4  
4.0  
4.5  
9.0  
4.0  
0.3  
0.3  
3.2  
4.3  
1.3  
3.4  
3.4  
0.9  
0.5  
1.0  
5.5  
4.0  
4.5  
9.0  
4.0  
0.5  
0.5  
1.0  
5.0  
0.8  
5.0  
5.0  
2.0  
1.5  
2.0  
5.5  
5.0  
5.5  
9.0  
5.0  
2.0  
2.0  
2.0  
8.0  
1.0  
6.0  
6.0  
3.0  
4.0  
5.0  
8.0  
6.0  
7.0  
10.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
IO  
FIN  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
OD2  
OD3  
ZX1  
ZX2  
ZX3  
XZ  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay C1 = 35 pF  
Output buffer and pad delay C1 = 35 pF (6)  
Output buffer and pad delay C1 = 35 pF  
Output buffer enable delay  
Output buffer enable delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF (6)  
C1 = 35 pF  
C1 = 5 pF  
1.0  
1.6  
1.9  
1.2  
2.0  
2.2  
2.0  
3.0  
3.0  
4.0  
4.0  
2.0  
SU  
Register hold time  
H
Register setup time of fast  
input  
FSU  
t
Register hold time of fast  
input  
0.6  
0.8  
0.5  
1.0  
ns  
FH  
t
t
t
t
t
t
Register delay  
1.3  
1.0  
2.9  
2.8  
2.0  
2.4  
1.6  
1.3  
3.5  
3.4  
2.4  
3.0  
2.0  
2.0  
5.0  
5.0  
1.0  
3.0  
1.0  
1.0  
6.0  
6.0  
1.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
RD  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
COMB  
IC  
EN  
GLOB  
PRE  
Altera Corporation  
47  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 34. EPM7160S Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7 -10  
Min Max Min Max Min Max Min Max  
Unit  
-6  
-15  
t
Register clear time  
PIA delay  
2.4  
1.6  
3.0  
2.0  
3.0  
1.0  
4.0  
2.0  
ns  
ns  
ns  
CLR  
t
t
(7)  
(8)  
PIA  
Low-power adder  
11.0  
10.0  
11.0  
13.0  
LPA  
Notes to tables:  
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more  
information on switching waveforms.  
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t  
parameter  
LPA  
must be added to this minimum width if the clear or reset signal incorporates the t  
parameter into the signal  
LAD  
path.  
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This  
parameter applies for both global and array clocking.  
(4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(5) The f  
(6) Operating conditions:  
values represent the highest frequency for pipelined data.  
MAX  
V
= 3.3 V ± 10% for commercial and industrial use.  
CCIO  
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,  
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(8) The t  
parameter must be added to the t  
, t  
, t , t , t  
, t  
, and t  
parameters for macrocells  
LPA  
LAD LAC IC EN SEXP ACL  
CPPW  
running in the low-power mode.  
Tables 35 and 36 show the EPM7192S AC operating conditions.  
Table 35. EPM7192S External Timing Parameters (Part 1 of 2)  
Symbol Parameter Conditions  
Note (1)  
Speed Grade  
-10  
Min Max Min Max Min Max  
Unit  
-7  
-15  
t
t
Input to non-registered output C1 = 35 pF  
7.5  
7.5  
10.0  
10.0  
15.0  
15.0  
ns  
ns  
PD1  
PD2  
I/O input to non-registered  
output  
C1 = 35 pF  
t
t
t
Global clock setup time  
Global clock hold time  
4.1  
0.0  
3.0  
7.0  
0.0  
3.0  
11.0  
0.0  
ns  
ns  
ns  
SU  
H
Global clock setup time of fast  
input  
3.0  
FSU  
t
Global clock hold time of fast  
input  
0.0  
0.5  
0.0  
ns  
FH  
t
t
t
t
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
C1 = 35 pF  
4.7  
5.0  
8.0  
ns  
ns  
ns  
ns  
CO1  
CH  
3.0  
3.0  
1.0  
4.0  
4.0  
2.0  
5.0  
5.0  
4.0  
CL  
ASU  
48  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 35. EPM7192S External Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-10  
Min Max Min Max Min Max  
Unit  
-7  
-15  
t
t
t
t
t
Array clock hold time  
Array clock to output delay  
Array clock high time  
Array clock low time  
1.8  
3.0  
4.0  
ns  
ns  
ns  
ns  
ns  
AH  
C1 = 35 pF  
7.8  
10.0  
15.0  
ACO1  
ACH  
ACL  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
Minimum pulse width for clear (2)  
CPPW  
and preset  
t
Output data hold time after  
clock  
C1 = 35 pF (3)  
1.0  
1.0  
1.0  
ns  
ODH  
t
f
Minimum global clock period  
8.0  
8.0  
10.0  
10.0  
13.0  
13.0  
ns  
CNT  
CNT  
Maximum internal global clock (4)  
frequency  
125.0  
100.0  
76.9  
MHz  
t
f
Minimum array clock period  
ns  
ACNT  
ACNT  
Maximum internal array clock (4)  
frequency  
125.0  
166.7  
100.0  
125.0  
76.9  
MHz  
f
Maximum clock frequency  
(5)  
100.0  
MHz  
MAX  
Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-10  
Unit  
-7  
-15  
Min Max Min Max Min Max  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
0.3  
0.3  
3.2  
4.2  
1.2  
3.1  
3.1  
0.9  
0.5  
1.0  
5.5  
4.0  
4.5  
9.0  
4.0  
0.5  
0.5  
1.0  
5.0  
0.8  
5.0  
5.0  
2.0  
1.5  
2.0  
5.5  
5.0  
5.5  
9.0  
5.0  
2.0  
2.0  
2.0  
8.0  
1.0  
6.0  
6.0  
3.0  
4.0  
5.0  
7.0  
6.0  
7.0  
10.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
IO  
FIN  
Shared expander delay  
Parallel expander delay  
Logic array delay  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
OD2  
OD3  
ZX1  
ZX2  
ZX3  
XZ  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay C1 = 35 pF  
Output buffer and pad delay C1 = 35 pF (6)  
Output buffer and pad delay C1 = 35 pF  
Output buffer enable delay  
Output buffer enable delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF (6)  
C1 = 35 pF  
C1 = 5 pF  
1.1  
2.0  
4.0  
SU  
Altera Corporation  
49  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-10  
Min Max Min Max Min Max  
Unit  
-7  
-15  
t
Register hold time  
1.7  
2.3  
3.0  
3.0  
4.0  
2.0  
ns  
ns  
H
t
Register setup time of fast  
input  
FSU  
t
Register hold time of fast  
input  
0.7  
0.5  
1.0  
ns  
FH  
t
t
t
t
t
t
t
t
t
Register delay  
1.4  
1.2  
3.2  
3.1  
2.5  
2.7  
2.7  
2.4  
10.0  
2.0  
2.0  
5.0  
5.0  
1.0  
3.0  
3.0  
1.0  
11.0  
1.0  
1.0  
6.0  
6.0  
1.0  
4.0  
4.0  
2.0  
13.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
COMB  
IC  
EN  
GLOB  
PRE  
CLR  
PIA  
(7)  
(8)  
Low-power adder  
LPA  
Notes to tables:  
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more  
information on switching waveforms.  
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t  
parameter  
LPA  
must be added to this minimum width if the clear or reset signal incorporates the t  
parameter into the signal  
LAD  
path.  
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This  
parameter applies for both global and array clocking.  
(4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(5) The f  
(6) Operating conditions: V  
values represent the highest frequency for pipelined data.  
MAX  
= 3.3 V ± 10% for commercial and industrial use.  
CCIO  
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,  
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(8) The t  
parameter must be added to the t  
, t  
, t , t , t  
, t  
, and t parameters for macrocells  
LPA  
LAD LAC IC EN SEXP ACL  
CPPW  
running in the low-power mode.  
50  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Tables 37 and 38 show the EPM7256S AC operating conditions.  
Table 37. EPM7256S External Timing Parameters  
Symbol Parameter Conditions  
Note (1)  
Speed Grade  
-10  
Unit  
-7  
-15  
Min Max Min Max Min Max  
t
t
Input to non-registered output C1 = 35 pF  
7.5  
7.5  
10.0  
10.0  
15.0  
15.0  
ns  
ns  
PD1  
PD2  
I/O input to non-registered  
output  
C1 = 35 pF  
t
t
t
Global clock setup time  
Global clock hold time  
3.9  
0.0  
3.0  
7.0  
0.0  
3.0  
11.0  
0.0  
ns  
ns  
ns  
SU  
H
Global clock setup time of fast  
input  
3.0  
FSU  
t
Global clock hold time of fast  
input  
0.0  
0.5  
0.0  
ns  
FH  
t
t
t
t
t
t
t
t
t
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
Array clock to output delay  
Array clock high time  
Array clock low time  
C1 = 35 pF  
4.7  
7.8  
5.0  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO1  
CH  
3.0  
3.0  
0.8  
1.9  
4.0  
4.0  
2.0  
3.0  
5.0  
5.0  
4.0  
4.0  
CL  
ASU  
AH  
C1 = 35 pF  
10.0  
15.0  
ACO1  
ACH  
ACL  
CPPW  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
Minimum pulse width for clear (2)  
and preset  
t
Output data hold time after  
clock  
C1 = 35 pF (3)  
1.0  
1.0  
1.0  
ns  
ODH  
t
f
Minimum global clock period  
7.8  
7.8  
10.0  
10.0  
13.0  
13.0  
ns  
CNT  
CNT  
Maximum internal global clock (4)  
frequency  
128.2  
100.0  
76.9  
MHz  
t
f
Minimum array clock period  
ns  
ACNT  
ACNT  
Maximum internal array clock (4)  
frequency  
128.2  
166.7  
100.0  
125.0  
76.9  
MHz  
f
Maximum clock frequency  
(5)  
100.0  
MHz  
MAX  
Altera Corporation  
51  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 38. EPM7256S Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-10  
Unit  
-7  
-15  
Min Max Min Max Min Max  
t
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
0.3  
0.3  
3.4  
3.9  
1.1  
2.6  
2.6  
0.8  
0.5  
1.0  
5.5  
4.0  
4.5  
9.0  
4.0  
0.5  
0.5  
1.0  
5.0  
0.8  
5.0  
5.0  
2.0  
1.5  
2.0  
5.5  
5.0  
5.5  
9.0  
5.0  
2.0  
2.0  
2.0  
8.0  
1.0  
6.0  
6.0  
3.0  
4.0  
5.0  
8.0  
6.0  
7.0  
10.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
IO  
FIN  
SEXP  
PEXP  
LAD  
LAC  
IOE  
OD1  
OD2  
OD3  
ZX1  
ZX2  
ZX3  
XZ  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay C1 = 35 pF  
Output buffer and pad delay C1 = 35 pF (6)  
Output buffer and pad delay C1 = 35 pF  
Output buffer enable delay  
Output buffer enable delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF (6)  
C1 = 35 pF  
C1 = 5 pF  
1.1  
1.6  
2.4  
2.0  
3.0  
3.0  
4.0  
4.0  
2.0  
SU  
Register hold time  
H
Register setup time of fast  
input  
FSU  
t
Register hold time of fast  
input  
0.6  
0.5  
1.0  
ns  
FH  
t
t
t
t
t
t
t
t
t
Register delay  
1.1  
1.1  
2.9  
2.6  
2.8  
2.7  
2.7  
3.0  
10.0  
2.0  
2.0  
5.0  
5.0  
1.0  
3.0  
3.0  
1.0  
11.0  
1.0  
1.0  
6.0  
6.0  
1.0  
4.0  
4.0  
2.0  
13.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
COMB  
IC  
EN  
GLOB  
PRE  
CLR  
PIA  
(7)  
(8)  
Low-power adder  
LPA  
52  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Notes to tables:  
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more  
information on switching waveforms.  
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t  
parameter  
LPA  
must be added to this minimum width if the clear or reset signal incorporates the t  
parameter into the signal  
LAD  
path.  
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This  
parameter applies for both global and array clocking.  
(4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(5) The f  
(6) Operating conditions: V  
values represent the highest frequency for pipelined data.  
MAX  
= 3.3 V ± 10% for commercial and industrial use.  
CCIO  
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,  
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(8) The t  
parameter must be added to the t  
, t  
, t , t , t  
, t  
, and t  
parameters for macrocells  
LPA  
LAD LAC IC EN SEXP ACL  
CPPW  
running in the low-power mode.  
Supply power (P) versus frequency (fMAX in MHz) for MAX 7000 devices  
is calculated with the following equation:  
Power  
Consumption  
P = PINT + PIO = ICCINT × VCC + PIO  
The PIO value, which depends on the device output load characteristics  
and switching frequency, can be calculated using the guidelines given in  
Application Note 74 (Evaluating Power for Altera Devices).  
The ICCINT value, which depends on the switching frequency and the  
application logic, is calculated with the following equation:  
ICCINT  
=
A × MCTON + B × (MCDEV – MCTON) + C × MCUSED × fMAX × togLC  
The parameters in this equation are shown below:  
MCTON  
=
Number of macrocells with the Turbo Bit option turned on,  
as reported in the MAX+PLUS II Report File (.rpt)  
Number of macrocells in the device  
Total number of macrocells in the design, as reported  
in the MAX+PLUS II Report File (.rpt)  
Highest clock frequency to the device  
Average ratio of logic cells toggling at each clock  
(typically 0.125)  
MCDEV  
MCUSED  
=
=
fMAX  
togLC  
=
=
A, B, C  
=
Constants, shown in Table 39  
Altera Corporation  
53  
MAX 7000 Programmable Logic Device Family Data Sheet  
Table 39. MAX 7000 ICC Equation Constants  
Device  
A
B
C
EPM7032  
1.87  
1.63  
1.63  
1.17  
1.17  
1.17  
1.17  
0.93  
0.93  
0.93  
0.93  
0.93  
0.93  
0.52  
0.74  
0.74  
0.54  
0.54  
0.54  
0.54  
0.40  
0.40  
0.40  
0.40  
0.40  
0.40  
0.144  
0.144  
0.144  
0.096  
0.096  
0.096  
0.096  
0.040  
0.040  
0.040  
0.040  
0.040  
0.040  
EPM7064  
EPM7096  
EPM7128E  
EPM7160E  
EPM7192E  
EPM7256E  
EPM7032S  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7192S  
EPM7256S  
This calculation provides an ICC estimate based on typical conditions  
using a pattern of a 16-bit, loadable, enabled, up/down counter in each  
LAB with no output load. Actual ICC values should be verified during  
operation because this measurement is sensitive to the actual pattern in  
the device and the environmental operating conditions.  
54  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 14 shows typical supply current versus frequency for  
MAX 7000 devices.  
Figure 14. ICC vs. Frequency for MAX 7000 Devices (Part 1 of 2)  
EPM7064  
EPM7032  
VCC = 5.0 V  
Room Temperature  
V
CC = 5.0 V  
180  
140  
100  
60  
300  
200  
100  
151.5 MHz  
Room Temperature  
151.5 MHz  
High Speed  
High Speed  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
60.2 MHz  
60.2 MHz  
Low Power  
20  
0
Low Power  
0
50  
100  
150  
200  
50  
100  
150  
200  
Frequency (MHz)  
Frequency (MHz)  
EPM7096  
VCC = 5.0 V  
Room Temperature  
450  
350  
250  
150  
125 MHz  
High Speed  
Typical ICC  
Active (mA)  
55.5 MHz  
Low Power  
50  
0
50  
100  
150  
Frequency (MHz)  
Altera Corporation  
55  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 14. ICC vs. Frequency for MAX 7000 Devices (Part 2 of 2)  
EPM7128E  
EPM7160E  
500  
400  
300  
500  
400  
300  
VCC = 5.0 V  
Room Temperature  
VCC = 5.0 V  
Room Temperature  
100 MHz  
125 MHz  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
High Speed  
High Speed  
200  
100  
200  
100  
47.6 MHz  
55.5 MHz  
Low Power  
Low Power  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Frequency (MHz)  
Frequency (MHz)  
EPM7192E  
EPM7256E  
500  
400  
300  
750  
600  
450  
VCC = 5.0 V  
Room Temperature  
VCC = 5.0 V  
Room Temperature  
90.9 MHz  
90.9 MHz  
High Speed  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
High Speed  
43.5 MHz  
200  
100  
300  
150  
43.4 MHz  
Low Power  
Low Power  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
56  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 15 shows typical supply current versus frequency for MAX 7000S  
devices.  
Figure 15. ICC vs. Frequency for MAX 7000S Devices (Part 1 of 2)  
EPM7032S  
EPM7064S  
VCC = 5.0 V  
Room Temperature  
VCC = 5.0 V  
Room Temperature  
60  
50  
120  
100  
175.4 MHz  
142.9 MHz  
40  
30  
20  
80  
60  
40  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
High Speed  
High Speed  
56.5 MHz  
58.8 MHz  
Low Power  
Low Power  
10  
20  
0
50  
100  
150  
0
50  
100  
150  
200  
200  
Frequency (MHz)  
Frequency (MHz)  
EPM7160S  
EPM7128S  
VCC = 5.0 V  
Room Temperature  
VCC = 5.0 V  
Room Temperature  
280  
240  
300  
240  
149.3 MHz  
147.1 MHz  
200  
160  
120  
80  
High Speed  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
180  
120  
60  
High Speed  
56.5 MHz  
Low Power  
100  
56.2 MHz  
Low Power  
40  
0
50  
150  
200  
0
50  
100  
150  
200  
Frequency (MHz)  
Frequency (MHz)  
Altera Corporation  
57  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 15. ICC vs. Frequency for MAX 7000S Devices (Part 2 of 2)  
EPM7192S  
EPM7256S  
VCC = 5.0 V  
V
CC = 5.0 V  
Room Temperature  
Room Temperature  
300  
240  
400  
300  
128.2 MHz  
125.0 MHz  
High Speed  
High Speed  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
180  
120  
60  
200  
100  
56.2 MHz  
55.6 MHz  
Low Power  
Low Power  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
125  
125  
Frequency (MHz)  
Frequency (MHz)  
See the Altera web site (http://www.altera.com) or the Altera Digital  
Library for pin-out information.  
Device  
Pin-Outs  
58  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figures 16 through 22 show the package pin-out diagrams for MAX 7000  
devices.  
Figure 16. 44-Pin Package Pin-Out Diagram  
Package outlines not drawn to scale.  
1()  
1()  
Pin 34  
Pin 1  
6
5
4
3
2
1 44 43 42 41 40  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
I/O  
(2) I/O/(TDI)  
(2) I/O/(TDI)  
I/O  
8
I/O/(TDO) (2)  
I/O  
I/O  
I/O  
I/O/(TDO) (2)  
9
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
I/O  
GND  
GND  
I/O  
I/O  
VCC  
I/O  
EPM7032  
EPM7032S  
EPM7064  
EPM7064S  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
(2) I/O/(TMS)  
I/O  
(2) I/O/(TMS)  
EPM7032  
I/O/(TCK) (2)  
I/O  
VCC  
I/O  
I/O/(TCK) (2)  
I/O  
VCC  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
18 19 20 21 22 23 24 25 26 27 28  
Pin 12  
Pin 23  
44-Pin PLCC  
44-Pin PQFP  
1()  
Pin 34  
Pin 1  
(2) I/O/(TDI)  
I/O  
I/O  
I/O/(TDO) (2)  
I/O  
I/O  
GND  
I/O  
EPM7032  
I/O  
VCC  
EPM7032S  
EPM7064  
EPM7064S  
I/O  
I/O  
I/O  
(2) I/O/(TMS)  
I/O/(TCK) (2)  
I/O  
VCC  
I/O  
I/O  
GND  
I/O  
I/O  
Pin 12  
Pin 23  
44-Pin TQFP  
Notes:  
(1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.  
(2) JTAG ports are available in MAX 7000S devices only.  
Altera Corporation  
59  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 17. 68-Pin Package Pin-Out Diagram  
Package outlines not drawn to scale.  
1()  
I/O  
VCCIO  
(2) I/O/(TDI)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
I/O  
I/O  
GND  
I/O/(TDO) (2)  
I/O  
I/O  
I/O  
VCCIO  
I/O  
I/O  
I/O/(TCK) (2)  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
(2) I/O/(TMS)  
I/O  
VCCIO  
I/O  
I/O  
I/O  
EPM7064  
EPM7096  
I/O  
GND  
I/O  
I/O  
68-Pin PLCC  
Notes:  
(1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX  
7000S devices.  
(2) JTAG ports are available in MAX 7000S devices only.  
60  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 18. 84-Pin Package Pin-Out Diagram  
Package outline not drawn to scale.  
2()  
)
(1)  
I/O  
VCCIO  
(3)I/O/(TDI)  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
I/O  
I/O  
GND  
I/O/(TDO) (3)  
I/O  
I/O  
I/O  
I/O  
VCCIO  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
EPM7064  
EPM7064S  
EPM7096  
(3)I/O/(TMS)  
I/O  
I/O  
I/O  
VCCIO  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O/(TCK) (3)  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
EPM7128E  
EPM7128S  
EPM7160E  
EPM7160S  
)
(1)  
84-Pin PLCC  
Notes:  
(1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.  
(2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.  
(3) JTAG ports are available in MAX 7000S devices only.  
Altera Corporation  
61  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 19. 100-Pin Package Pin-Out Diagram  
Package outline not drawn to scale.  
Pin 1  
Pin 81  
Pin 1  
Pin 76  
EPM7064S  
EPM7128S  
EPM7160S  
EPM7064  
EPM7096  
EPM7128E  
EPM7128S  
EPM7160E  
Pin 31  
Pin 51  
Pin 26  
Pin 51  
100-Pin PQFP  
100-Pin TQFP  
Figure 20. 160-Pin Package Pin-Out Diagram  
Package outline not drawn to scale.  
Pin 121  
Pin 1  
R
P
N
M
L
K
J
EPM7128E  
EPM7128S  
EPM7160E  
EPM7160S  
EPM7192E  
EPM7192S  
EPM7256E  
EPM7192E  
Bottom  
View  
H
G
F
E
D
C
B
A
Pin 81  
Pin 41  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
160-Pin PGA  
160-Pin PQFP  
62  
Altera Corporation  
MAX 7000 Programmable Logic Device Family Data Sheet  
Figure 21. 192-Pin Package Pin-Out Diagram  
Package outline not drawn to scale.  
U
T
R
P
N
M
L
K
J
EPM7256E  
Bottom  
View  
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17  
192-Pin PGA  
Figure 22. 208-Pin Package Pin-Out Diagram  
Package outline not drawn to scale.  
Pin 1  
Pin 157  
EPM7256E  
EPM7256S  
Pin 53  
Pin 105  
208-Pin PQFP/RQFP  
Altera Corporation  
63  
MAX 7000 Programmable Logic Device Family Data Sheet  
The information contained in the MAX 7000 Programmable Logic Device  
Revision  
History  
Family Data Sheet version 6.7 supersedes information published in  
previous versions. The following changes were made in the MAX 7000  
Programmable Logic Device Family Data Sheet version 6.7:  
Version 6.7  
The following changes were made in the MAX 7000 Programmable Logic  
Device Family Data Sheet version 6.7:  
Reference to AN 88: Using the Jam Language for ISP & ICR via an  
Embedded Processor has been replaced by AN 122: Using Jam STAPL for  
ISP & ICR via an Embedded Processor.  
Version 6.6  
The following changes were made in the MAX 7000 Programmable Logic  
Device Family Data Sheet version 6.6:  
Added Tables 6 through 8.  
Added “Programming Sequence” section on page 17 and  
“Programming Times” section on page 18.  
Version 6.5  
The following changes were made in the MAX 7000 Programmable Logic  
Device Family Data Sheet version 6.5:  
Updated text on page 16.  
Version 6.4  
The following changes were made in the MAX 7000 Programmable Logic  
Device Family Data Sheet version 6.4:  
Added Note (5) on page 28.  
Version 6.3  
The following changes were made in the MAX 7000 Programmable Logic  
Device Family Data Sheet version 6.3:  
Updated the “Open-Drain Output Option (MAX 7000S Devices  
Only)” section on page 20.  
64  
Altera Corporation  
Notes:  
Altera Corporation  
65  
MAX 7000 Programmable Logic Device Family Data Sheet  
Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,  
the stylized Altera logo, specific device designations, and all other words and logos that are identified as  
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera  
Corporation in the U.S. and other countries. All other product or service names are the property of their re-  
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending  
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products  
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-  
es to any products and services at any time without notice. Altera assumes no responsibility or liability  
arising out of the application or use of any information, product, or service described  
101 Innovation Drive  
San Jose, CA 95134  
(408) 544-7000  
www.altera.com  
Applications Hotline:  
(800) 800-EPLD  
herein except as expressly agreed to in writing by Altera Corporation. Altera customers  
are advised to obtain the latest version of device specifications before relying on any pub-  
lished information and before placing orders for products or services.  
Literature Services:  
literature@altera.com  
66  
Altera Corporation  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY