AM29DL320GB40EF [AMD]

32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory; 32兆位( 4米×8位/ 2的M× 16位) CMOS 3.0伏只,同时操作闪存
AM29DL320GB40EF
型号: AM29DL320GB40EF
厂家: AMD    AMD
描述:

32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory
32兆位( 4米×8位/ 2的M× 16位) CMOS 3.0伏只,同时操作闪存

闪存
文件: 总58页 (文件大小:1190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Am29DL320G  
Data Sheet  
RETIRED  
PRODUCT  
This product has been retired and is not recommended for designs. For new and current designs,  
S29JL032H (for TSOP packages) and S29PL032J (for FBGA packages) supersede AM29DL320G as  
the factory-recommended migration path. Please refer to each respective datasheets for specifica-  
tions and ordering information. Availability of this document is retained for reference and historical  
purposes only.  
April 2005  
The following document specifies Spansion memory products that are now offered by both Advanced  
Micro Devices and Fujitsu. Although the document is marked with the name of the company that  
originally developed the specification, these products will be offered to customers of both AMD and  
Fujitsu.  
Continuity of Specifications  
There is no change to this datasheet as a result of offering the device as a Spansion product. Any  
changes that have been made are the result of normal datasheet improvement and are noted in the  
document revision summary, where supported. Future routine revisions will occur when appro-  
priate, and changes will be noted in a revision summary.  
For More Information  
Please contact your local AMD or Fujitsu sales office for additional information about Spansion  
memory solutions.  
Publication Number 25769 Revision C Amendment +3 Issue Date May 25, 2005  
THIS PAGE LEFT INTENTIONALLY BLANK.  
Am29DL320G  
32 Megabit (4 M x 8-Bit/2 M x 16-Bit)  
CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory  
This product has been retired and is not recommended for designs. For new and current designs, S29JL032H (for TSOP packages) and S29PL032J (for FBGA packages) supersede  
AM29DL320G as the factory-recommended migration path. Please refer to each respective datasheets for specifications and ordering information. Availability of this document is re-  
tained for reference and historical purposes only.  
DISTINCTIVE CHARACTERISTICS  
ARCHITECTURAL ADVANTAGES  
„
„
Minimum 1 million write cycles guaranteed per sector  
„
Simultaneous Read/Write operations  
20 year data retention at 125°C  
— Data can be continuously read from one bank while  
executing erase/program functions in another bank  
— Reliable operation for the life of the system  
SOFTWARE FEATURES  
— Zero latency between read and write operations  
Flexible BankTM architecture  
„
Data Management Software (DMS)  
„
— AMD-supplied software manages data programming,  
enabling EEPROM emulation  
— Read may occur in any of the three banks not being  
written or erased.  
— Eases historical sector erase flash limitations  
— Four banks may be grouped by customer to achieve  
desired bank divisions.  
„
„
Supports Common Flash Memory Interface (CFI)  
„
256-byte SecSi(Secured Silicon) Sector  
Erase Suspend/Erase Resume  
Factory locked and identifiable: 16 bytes available for  
secure, random factory Electronic Serial Number;  
verifiable as factory locked through autoselect  
function. ExpressFlash option allows entire sector to  
be available for factory-secured data  
— Suspends erase operations to allow reading from  
other sectors in the same bank  
„
„
Data# Polling and Toggle Bits  
— Provides a software method of detecting the status of  
program or erase cycles  
Customer lockable: One time programmable. Once  
Unlock Bypass Program command  
locked, data cannot be changed.  
— Reduces overall programming time when issuing  
multiple program command sequences  
„
„
Zero Power Operation  
— Sophisticated power management circuits reduce  
power consumed during inactive periods to nearly  
zero  
HARDWARE FEATURES  
„
„
Any combination of sectors can be erased  
Package options  
— 63-ball FBGA  
— 48-ball FBGA  
— 48-pin TSOP  
Ready/Busy# output (RY/BY#)  
— Hardware method for detecting program or erase  
cycle completion  
„
„
Hardware reset pin (RESET#)  
— Hardware method of resetting the internal state  
machine to the read mode  
— 64-ball Fortified BGA  
„
„
„
Top or bottom boot blocks  
WP#/ACC input pin  
Manufactured on 0.17 µm process technology  
Compatible with JEDEC standards  
— Write protect (WP#) function allows protection of two  
outermost boot sectors, regardless of sector protect  
status  
— Pinout and software compatible with  
single-power-supply flash standard  
— Acceleration (ACC) function accelerates program  
timing  
PERFORMANCE CHARACTERISTICS  
„
Sector protection  
„
High performance  
— Access time as fast 70 ns  
— Hardware method of locking a sector, either  
in-system or using programming equipment, to  
prevent any program or erase operation within that  
sector  
— Program time: 4 µs/word typical utilizing Accelerate  
function  
„
Ultra low power consumption (typical values)  
— 2 mA active read current at 1 MHz  
Temporary Sector Unprotect allows changing data in  
protected sectors in-system  
— 10 mA active read current at 5 MHz  
— 200 nA in standby or automatic sleep mode  
Publication# 25769  
Rev: C Amendment/3  
Issue Date: May 25, 2005  
Refer to AMD’s Website (www.amd.com) for the latest information.  
GENERAL DESCRIPTION  
The Am29DL320G is a 32 megabit, 3.0 volt-only flash  
memory device, organized as 2,097,152 words of 16  
bits each or 4,194,304 bytes of 8 bits each. Word  
mode data appears on DQ15–DQ0; byte mode data  
appears on DQ7–DQ0. The device is designed to be  
programmed in-system with the standard 3.0 volt VCC  
supply, and can also be programmed in standard  
EPROM programmers.  
32 Mbit Am29DL32x devices had a larger SecSi  
Sector. Factory locked parts provide several options.  
The SecSi Sector may store a secure, random 16 byte  
ESN (Electronic Serial Number), customer code (pro-  
grammed through AMD’s ExpressFlash service), or  
both.  
DMS (Data Management Software) allows systems  
to remove EEPROM devices. by simplifying system  
software: DMS performs all functions necessary to  
modify data in file structures, instead of using sin-  
gle-byte modifications. To write or update a particular  
piece of data (a phone number or configuration data,  
for example), the user only needs to state which piece  
of data is to be updated, and where the updated data  
is located in the system. This is an advantage com-  
pared to systems where user-written software must  
keep track of the old data location, status, logical to  
physical translation of the data onto the Flash memory  
device (or memory devices), and more. Using DMS,  
user-written software does not need to interface with  
the Flash memory directly. Instead, the user's software  
accesses the Flash memory by calling one of only six  
functions. AMD provides this software to simplify sys-  
tem design and software integration efforts.  
The device is available with an access time of 70, 90,  
or 120 ns. The devices are offered in 48-pin TSOP,  
48-ball or 63-ball FBGA packages, and 64-ball Forti-  
fied BGA. Standard control pins—chip enable (CE#),  
write enable (WE#), and output enable (OE#)—control  
normal read and write operations, and avoid bus con-  
tention issues.  
The device requires only a single 3.0 volt power sup-  
ply for both read and write functions. Internally gener-  
ated and regulated voltages are provided for the  
program and erase operations.  
Simultaneous Read/Write Operations with  
Zero Latency  
The Simultaneous Read/Write architecture provides  
simultaneous operation by dividing the memory  
space into four banks, two 4 Mb banks with small and  
large sectors, and two 12 Mb banks of large sectors.  
Sector addresses are fixed, system software can be  
used to form user-defined bank groups.  
The device offers complete compatibility with the  
JEDEC single-power-supply Flash command set  
standard. Commands are written to the command  
register using standard microprocessor write timings.  
Reading data out of the device is similar to reading  
from other Flash or EPROM devices.  
During an Erase/Program operation, any of the three  
non-busy banks may be read from. Note that only two  
banks can operate simultaneously. The device allows  
a host system to program or erase in one bank, then  
immediately and simultaneously read from the other  
bank, with zero latency. This releases the system from  
waiting for the completion of program or erase  
operations.  
The host system can detect whether a program or  
erase operation is complete by using the device sta-  
tus bits: RY/BY# pin, DQ7 (Data# Polling) and  
DQ6/DQ2 (toggle bits). After a program or erase cycle  
has been completed, the device automatically returns  
to the read mode.  
The sector erase architecture allows memory sec-  
tors to be erased and reprogrammed without affecting  
the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
The Am29DL320G can be organized as either a top or  
bottom boot sector configuration.  
Bank  
Megabits  
Sector Sizes  
Eight 8 Kbyte/4 Kword,  
Seven 64 Kbyte/32 Kword  
Bank 1  
4 Mb  
Hardware data protection measures include a low  
VCC detector that automatically inhibits write opera-  
tions during power transitions. The hardware sector  
protection feature disables both program and erase  
operations in any combination of the sectors of mem-  
ory. This can be achieved in-system or via program-  
ming equipment.  
Bank 2  
Bank 3  
Bank 4  
12 Mb  
12 Mb  
4 Mb  
Twenty-four 64 Kbyte/32 Kword  
Twenty-four 64 Kbyte/32 Kword  
Eight 64 Kbyte/32 Kword  
Am29DL320G Features  
The SecSiTM (Secured Silicon) Sector is an 256 byte  
extra sector capable of being permanently locked by  
AMD or customers. The SecSi Indicator Bit (DQ7) is  
permanently set to a 1 if the part is factory locked,  
and set to a 0 if customer lockable. This way, cus-  
tomer lockable parts can never be used to replace a  
factory locked part. Note that some previous AMD  
The device offers two power-saving features. When  
addresses have been stable for a specified amount of  
time, the device enters the automatic sleep mode.  
The system can also place the device into the  
standby mode. Power consumption is greatly re-  
duced in both modes.  
2
Am29DL320G  
TABLE OF CONTENTS  
Sector Erase Command Sequence ..............................................26  
Erase Suspend/Erase Resume Commands ................................27  
Figure 5. Erase Operation .................................................................... 27  
Table 13. Command Definitions ........................................................... 28  
DQ7: Data# Polling ......................................................................29  
Figure 6. Data# Polling Algorithm......................................................... 29  
RY/BY#: Ready/Busy# ................................................................. 30  
DQ6: Toggle Bit I ..........................................................................30  
Figure 7. Toggle Bit Algorithm .............................................................. 30  
DQ2: Toggle Bit II .........................................................................31  
Reading Toggle Bits DQ6/DQ2 ....................................................31  
DQ5: Exceeded Timing Limits ......................................................31  
DQ3: Sector Erase Timer .............................................................31  
Table 14. Write Operation Status .........................................................32  
Figure 8. Maximum Negative Overshoot Waveform............................. 33  
Figure 9. Maximum Positive Overshoot Waveform .............................. 33  
Figure 10. ICC1 Current vs. Time (Showing Active and  
Automatic Sleep Currents).................................................................... 35  
Figure 11. Typical ICC1 vs. Frequency................................................... 35  
Figure 12. Test Setup .......................................................................... 36  
Figure 13. Input Waveforms and Measurement Levels ........................ 36  
Figure 14. Read Operation Timings...................................................... 37  
Figure 15. Reset Timings...................................................................... 38  
Word/Byte Configuration (BYTE#) ...............................................39  
Figure 16. BYTE# Timings for Read Operations .................................. 39  
Figure 17. BYTE# Timings for Write Operations .................................. 39  
Erase and Program Operations ...................................................40  
Figure 18. Program Operation Timings ................................................ 41  
Figure 19. Accelerated Program Timing Diagram ................................ 41  
Figure 20. Chip/Sector Erase Operation Timings ................................. 42  
Figure 21. Back-to-back Read/Write Cycle Timings ............................. 43  
Figure 22. Data# Polling Timings (During Embedded Algorithms) ....... 43  
Figure 23. Toggle Bit Timings (During Embedded Algorithms) ............ 44  
Figure 24. DQ2 vs. DQ6 ....................................................................... 44  
Temporary Sector Unprotect ........................................................45  
Figure 25. Temporary Sector Unprotect Timing Diagram..................... 45  
Figure 26. Sector/Sector Block Protect and Unprotect Timing Diagram 46  
Alternate CE# Controlled Erase and Program Operations ...........47  
Figure 27. Alternate CE# Controlled Write (Erase/Program)  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Special Package Handling Instructions ..........................................6  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Device Bus Operations .............................................................9  
Word/Byte Configuration ................................................................ 9  
Requirements for Reading Array Data ...........................................9  
Writing Commands/Command Sequences ..................................10  
Simultaneous Read/Write Operations  
with Zero Latency .........................................................................10  
Standby Mode .............................................................................. 10  
Automatic Sleep Mode .................................................................10  
RESET#: Hardware Reset Pin .....................................................11  
Output Disable Mode ...................................................................11  
Table 2. Top Boot Sector Addresses ...................................................12  
Table 3. Top Boot SecSiTM Sector Addresses ..................................... 13  
Table 4. Bottom Boot Sector Addresses ...............................................14  
Table 5. Bottom Boot SecSiTM Sector Addresses................................ 15  
Autoselect Mode .......................................................................... 16  
Table 6. Autoselect Codes, (High Voltage Method) .............................16  
Sector/Sector Block Protection and Unprotection ........................ 17  
Table 7. Top Boot Sector/Sector Block Addresses  
for Protection/Unprotection ...................................................................17  
Table 8. Bottom Boot Sector/Sector Block Addresses  
for Protection/Unprotection ...................................................................17  
Write Protect (WP#) .....................................................................18  
Temporary Sector Unprotect ........................................................18  
Figure 1. Temporary Sector Unprotect Operation................................. 18  
Figure 2. In-System Sector Protection/  
Sector Unprotection Algorithms ............................................................ 19  
SecSiTM (Secured Silicon) Sector  
Flash Memory Region ..................................................................20  
Figure 3. SecSi Sector Protect Verify.................................................... 21  
Hardware Data Protection ............................................................21  
Common Flash Memory Interface (CFI) . . . . . . . 21  
Table 9. CFI Query Identification String................................................ 22  
Table 10. System Interface String......................................................... 22  
Table 11. Device Geometry Definition .................................................. 23  
Table 12. Primary Vendor-Specific Extended Query ............................ 23  
Reading Array Data ......................................................................24  
Reset Command ..........................................................................24  
Autoselect Command Sequence ..................................................24  
Enter SecSiTM Sector/Exit SecSi Sector  
Command Sequence ...................................................................25  
Byte/Word Program Command Sequence ...................................25  
Figure 4. Program Operation ................................................................ 26  
Chip Erase Command Sequence .................................................26  
Operation Timings ................................................................................ 48  
Latchup Characteristics. . . . . . . . . . . . . . . . . . . . 49  
TSOP And SO Pin Capacitance . . . . . . . . . . . . . . 49  
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
FBD06363-ball Fine-Pitch Ball Grid Array (FBGA) 8 x 14 mm .50  
FBD048Fine-Pitch Ball Grid Array, 6 x 12 mm .........................51  
TS 048Thin Small Outline Package ..........................................52  
Am29DL320G  
3
PRODUCT SELECTOR GUIDE  
Part Number  
Am29DL320G  
Speed Rating  
Standard Voltage Range: VCC = 2.7–3.6 V  
70  
70  
70  
30  
90  
90  
90  
40  
120  
120  
120  
50  
Max Access Time (ns)  
CE# Access (ns)  
OE# Access (ns)  
BLOCK DIAGRAM  
V
V
CC  
OE# BYTE#  
SS  
Mux  
Bank 1  
Bank 1 Address  
A20–A0  
X-Decoder  
Bank 2 Address  
RY/BY#  
Bank 2  
X-Decoder  
A20–A0  
RESET#  
STATE  
CONTROL  
&
Status  
WE#  
DQ15–DQ0  
COMMAND  
REGISTER  
CE#  
BYTE#  
WP#/ACC  
Control  
Mux  
DQ15–DQ0  
X-Decoder  
Bank 3  
Bank 3 Address  
Bank 4 Address  
X-Decoder  
Bank 4  
A20–A0  
Mux  
4
Am29DL320G  
CONNECTION DIAGRAMS  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE#  
VSS  
DQ15/A-1  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
VSS  
CE#  
A0  
48-Pin Standard TSOP  
A19  
A20  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
WE#  
RESET#  
NC  
WP#/ACC  
RY/BY#  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
63-Ball Fine-pitch BGA (8 x 14 mm)  
L8  
M8  
A8  
B8  
Top View, Balls Facing Down  
NC  
NC  
NC*  
NC*  
A7  
B7  
C7  
D7  
E7  
F7  
G7  
H7  
J7  
K7  
L7  
M7  
VSS  
NC  
NC  
NC*  
NC*  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1  
C6  
A9  
D6  
A8  
E6  
F6  
G6  
H6  
J6  
K6  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
C5  
D5  
E5  
F5  
G5  
H5  
J5  
K5  
VCC  
WE# RESET#  
NC  
A19  
DQ5  
DQ12  
DQ4  
C4 D4  
E4  
F4  
G4  
H4  
J4  
K4  
RY/BY# WP#/ACC A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
C3  
A7  
D3  
E3  
A6  
F3  
A5  
G3  
H3  
J3  
K3  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
C2  
A3  
D2  
A4  
E2  
A2  
F2  
A1  
G2  
A0  
H2  
J2  
K2  
L2  
M2  
A2  
VSS  
CE#  
OE#  
NC*  
NC*  
NC*  
A1  
B1  
L1  
M1  
* Balls are shorted together via the substrate but not connected to the die.  
NC*  
NC*  
NC*  
NC*  
Am29DL320G  
5
CONNECTION DIAGRAMS  
48-Ball Fine-pitch BGA (6 x 12 mm)  
Top View, Balls Facing Down  
C7  
D7  
E7  
F7  
G7  
H7  
J7  
K7  
VSS  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1  
C6  
A9  
D6  
A8  
E6  
F6  
G6  
H6  
J6  
K6  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
C5  
D5  
E5  
F5  
G5  
H5  
J5  
K5  
VCC  
WE# RESET#  
NC  
A19  
DQ5  
DQ12  
DQ4  
C4 D4  
E4  
F4  
G4  
H4  
J4  
K4  
RY/BY# WP#/ACC A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
C3  
A7  
D3  
E3  
A6  
F3  
A5  
G3  
H3  
J3  
K3  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
C2  
A3  
D2  
A4  
E2  
A2  
F2  
A1  
G2  
A0  
H2  
J2  
K2  
VSS  
CE#  
OE#  
64-Ball Fortified BGA (11 x 13 mm)  
Top View, Balls Facing Down  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
H8  
RFU  
RFU  
RFU  
VIO  
VSS  
RFU  
RFU  
RFU  
A7  
B7  
C7  
D7  
E7  
F7  
G7  
H7  
A13  
A12  
A14  
A15  
A16  
BYTE#  
DQ15  
VSS  
A6  
A9  
B6  
A8  
C6  
D6  
E6  
F6  
G6  
H6  
DQ6  
A10  
A11  
DQ7  
DQ14  
DQ13  
A5  
B5  
C5  
D5  
E5  
F5  
G5  
H5  
WE# RESET#  
A21  
A19  
DQ5  
DQ12  
VCC  
DQ4  
A4 B4  
C4  
D4  
E4  
F4  
G4  
H4  
RY/BY# WP#/ACC A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A3  
A7  
B3  
C3  
A6  
D3  
A5  
E3  
F3  
G3  
H3  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A2  
A3  
B2  
A4  
C2  
A2  
D2  
A1  
E2  
A0  
F2  
G2  
H2  
CE#  
OE#  
VSS  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
H1  
RFU  
RFU  
RFU  
RFU  
RFU  
VIO  
RFU  
RFU  
compromised if the package body is exposed to  
temperatures above 150°C for prolonged periods of  
time.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products  
in molded packages (TSOP, BGA, SSOP, PLCC,  
PDIP). The package and/or data integrity may be  
6
Am29DL320G  
PIN DESCRIPTION  
LOGIC SYMBOL  
A20–A0  
= 21 Addresses  
21  
DQ14–DQ0 = 15 Data Inputs/Outputs  
A20–A0  
16 or 8  
DQ15/A-1  
= DQ15 (Data Input/Output, word  
mode), A-1 (LSB Address Input, byte  
mode)  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
CE#  
OE#  
WE#  
= Chip Enable  
= Output Enable  
= Write Enable  
WE#  
WP#/ACC  
RESET#  
BYTE#  
WP#/ACC = Hardware Write Protect/  
Acceleration Pin  
RY/BY#  
RESET#  
BYTE#  
RY/BY#  
VCC  
= Hardware Reset Pin, Active Low  
= Selects 8-bit or 16-bit mode  
= Ready/Busy Output  
= 3.0 volt-only single power supply  
(see Product Selector Guide for speed  
options and voltage supply tolerances)  
VSS  
NC  
= Device Ground  
= Pin Not Connected Internally  
Am29DL320G  
7
ORDERING INFORMATION  
Standard Products  
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is  
formed by a combination of the following:  
Am29DL320G  
T
70  
E
I
OPTIONAL PROCESSING  
Blank = Standard Processing  
N
=
16-byte ESN devices  
(Contact an AMD representative for more information)  
TEMPERATURE RANGE  
I
=
=
Industrial (–40°C to +85°C)  
Industrial (–40°C to +85°C) with Pb-free Package  
F
PACKAGE TYPE  
E
=
=
=
=
48-Pin Thin Small Outline Package  
(TSOP) Standard Pinout (TS 048)  
WD  
WM  
PC  
63-Ball Fine-Pitch Ball Grid Array (FBGA)  
0.80 mm pitch, 8 x 14 mm package (FBD063)  
48-Ball Fine-Pitch Ball Grid Array (FBGA)  
0.80 mm pitch, 6 x 12 mm package (FBD048)  
64-Ball Fortified-Pitch Ball Grid Array (FBGA)  
1.00 mm pitch, 11 x 13 mm package (LAA064)  
SPEED OPTION  
See Product Selector Guide and Valid Combinations  
BOOT CODE SECTOR ARCHITECTURE  
T
B
=
=
Top boot sectors  
Bottom boot sectors  
DEVICE NUMBER/DESCRIPTION  
Am29DL320G  
32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS Flash Memory  
3.0 Volt-only Read, Program, and Erase  
Valid Combinations for TSOP Packages  
Valid Combinations for FBGA Packages  
Order Number Package Marking  
AM29DL320GT70,  
AM29DL320GT70,  
AM29DL320GB70  
D320GT70V,  
D320GB70V  
AM29DL320GT90,  
AM29DL320GB90  
AM29DL320GB70  
WDI,  
EI, EIN, EF  
AM29DL320GT90,  
AM29DL320GB90  
WDIN, D320GT90V,  
I, F  
AM29DL320GT120,  
AM29DL320GB120  
WDF,  
D320GB90V  
WDFN  
AM29DL320GT120,  
AM29DL320GB120  
D320GT12V,  
D320GB12V  
Valid Combinations  
AM29DL320GT70,  
AM29DL320GB70  
D320GT70U,  
D320GB70U  
Valid Combinations list configurations planned to be supported in  
volume for this device. Consult the local AMD sales office to con-  
firm availability of specific valid combinations and to check on  
newly released combinations.  
WMI,  
AM29DL320GT90,  
AM29DL320GB90  
WMIN,D320GT90U,  
WMF, D320GB90U  
I, F  
WMFN  
AM29DL320GT120,  
AM29DL320GB120  
D320GT12U,  
D320GB12U  
Valid Combinations for Fortified BGA Packages  
Order Number Package Marking  
AM29DL320GT70, D320GT70P,  
AM29DL320GB70  
D320GB70P  
AM29DL320GT90,  
AM29DL320GB90  
PCI,  
PCF  
D320GT90P,  
D320GB90P  
I, F  
AM29DL320GT120,  
AM29DL320GB120  
D320GT12P,  
D320GB12P  
8
Am29DL320G  
DEVICE BUS OPERATIONS  
This section describes the requirements and use of  
the device bus operations, which are initiated through  
the internal command register. The command register  
itself does not occupy any addressable memory loca-  
tion. The register is a latch used to store the com-  
mands, along with the address and data information  
needed to execute the command. The contents of the  
register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the in-  
puts and control levels they require, and the resulting  
output. The following subsections describe each of  
these operations in further detail.  
Table 1. Device Bus Operations  
DQ15–DQ8  
BYTE#  
Addresses  
(Note 2)  
BYTE#  
= VIH  
DQ7–  
DQ0  
Operation  
CE# OE# WE# RESET# WP#/ACC  
= VIL  
Read  
Write  
L
L
L
H
L
H
H
L/H  
AIN  
AIN  
DOUT  
DIN  
DOUT  
DIN  
DQ8–DQ14 =  
High-Z, DQ15 = A-1  
H
(Note 3)  
VCC  
0.3 V  
±
VCC ±  
0.3 V  
Standby  
X
X
H
X
High-Z  
High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
L/H  
L/H  
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
X
SA, A6 = L,  
A1 = H, A0 = L  
Sector Protect (Note 2)  
L
L
X
H
H
X
L
L
X
VID  
VID  
VID  
L/H  
X
X
X
X
DIN  
DIN  
DIN  
SA, A6 = H,  
A1 = H, A0 = L  
Sector Unprotect (Note 2)  
(Note 3)  
(Note 3)  
Temporary Sector  
Unprotect  
AIN  
DIN  
High-Z  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 8.5–12.5 V, VHH = 9.0 ± 0.5 V, X = Don’t Care, SA = Sector Address,  
AIN = Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. Addresses are A20:A0 in word mode (BYTE# = VIH), A20:A-1 in byte mode (BYTE# = VIL).  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector/Sector  
Block Protection and Unprotection” section.  
3. If WP#/ACC = VIL, the two outermost boot sectors remain protected. If WP#/ACC = VIH, the two outermost boot sector  
protection depends on whether they were last protected or unprotected using the method described in “Sector/Sector Block  
Protection and Unprotection”. If WP#/ACC = VHH, all sectors will be unprotected.  
Word/Byte Configuration  
Requirements for Reading Array Data  
The BYTE# pin controls whether the device data I/O  
pins operate in the byte or word configuration. If the  
BYTE# pin is set at logic ‘1’, the device is in word con-  
figuration, DQ15–DQ0 are active and controlled by  
CE# and OE#.  
To read array data from the outputs, the system must  
drive the CE# and OE# pins to VIL. CE# is the power  
control and selects the device. OE# is the output con-  
trol and gates array data to the output pins. WE#  
should remain at VIH. The BYTE# pin determines  
whether the device outputs array data in words or  
bytes.  
If the BYTE# pin is set at logic ‘0’, the device is in byte  
configuration, and only data I/O pins DQ7–DQ0 are  
active and controlled by CE# and OE#. The data I/O  
pins DQ8–DQ14 are tri-stated, and the DQ15 pin is  
used as an input for the LSB (A-1) address function.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory  
content occurs during the power transition. No com-  
mand is necessary in this mode to obtain array data.  
Standard microprocessor read cycles that assert valid  
Am29DL320G  
9
addresses on the device address inputs produce valid  
data on the device data outputs. Each bank remains  
enabled for read access until the command register  
contents are altered.  
mal operation. Note that the WP#/ACC pin must not be  
at VHH for operations other than accelerated program-  
ming, or device damage may result. In addition, the  
WP#/ACC pin must not be left floating or unconnected;  
inconsistent behavior of the device may result.  
See “Requirements for Reading Array Data” for more  
information. Refer to the AC Read-Only Operations  
table for timing specifications and to Figure 14 for the  
timing diagram. ICC1 in the DC Characteristics table  
represents the active current specification for reading  
array data.  
Autoselect Functions  
If the system writes the autoselect command se-  
quence, the device enters the autoselect mode. The  
system can then read autoselect codes from the inter-  
nal register (which is separate from the memory array)  
on DQ7–DQ0. Standard read cycle timings apply in  
this mode. Refer to the Autoselect Mode and Autose-  
lect Command Sequence sections for more informa-  
tion.  
Writing Commands/Command Sequences  
To write a command or command sequence (which in-  
cludes programming data to the device and erasing  
sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH.  
Simultaneous Read/Write Operations  
with Zero Latency  
For program operations, the BYTE# pin determines  
whether the device accepts program data in bytes or  
words. Refer to “Word/Byte Configuration” for more in-  
formation.  
This device is capable of reading data from one bank  
of memory while programming or erasing in the other  
bank of memory. An erase operation may also be sus-  
pended to read from or program to another location  
within the same bank (except the sector being  
erased). Figure 21 shows how read and write cycles  
may be initiated for simultaneous operation with zero  
latency. ICC6 and ICC7 in the DC Characteristics table  
represent the current specifications for read-while-pro-  
gram and read-while-erase, respectively.  
The device features an Unlock Bypass mode to facili-  
tate faster programming. Once a bank enters the Un-  
lock Bypass mode, only two write cycles are required  
to program a word or byte, instead of four. The  
“Word/Byte Configuration” section has details on pro-  
gramming data to the device using both standard and  
Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. Table 2 indicates the address  
space that each sector occupies. The device address  
space is divided into two banks: Bank 1 contains the  
boot/parameter sectors, and Bank 2 contains the  
larger, code sectors of uniform size. A “bank address”  
is the address bits required to uniquely select a bank.  
Similarly, a sector address” is the address bits re-  
quired to uniquely select a sector.  
Standby Mode  
When the system is not reading or writing to the de-  
vice, it can place the device in the standby mode. In  
this mode, current consumption is greatly reduced,  
and the outputs are placed in the high impedance  
state, independent of the OE# input.  
The device enters the CMOS standby mode when the  
CE# and RESET# pins are both held at VCC ± 0.3 V.  
(Note that this is a more restricted voltage range than  
VIH.) If CE# and RESET# are held at VIH, but not within  
VCC ± 0.3 V, the device will be in the standby mode,  
but the standby current will be greater. The device re-  
quires standard access time (tCE) for read access  
when the device is in either of these standby modes,  
before it is ready to read data.  
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The AC  
Characteristics section contains timing specification  
tables and timing diagrams for write operations.  
Accelerated Program Operation  
The device offers accelerated program operations  
through the ACC function. This is one of two functions  
provided by the WP#/ACC pin. This function is prima-  
rily intended to allow faster manufacturing throughput  
at the factory.  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
ICC3 in the DC Characteristics table represents the  
standby current specification.  
If the system asserts VHH on this pin, the device auto-  
matically enters the aforementioned Unlock Bypass  
mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the  
time required for program operations. The system  
would use a two-cycle program command sequence  
as required by the Unlock Bypass mode. Removing  
VHH from the WP#/ACC pin returns the device to nor-  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device en-  
ergy consumption. The device automatically enables  
this mode when addresses remain stable for tACC  
30 ns. The automatic sleep mode is independent of  
the CE#, WE#, and OE# control signals. Standard ad-  
+
10  
Am29DL320G  
dress access timings provide new data when ad-  
dresses are changed. While in sleep mode, output  
data is latched and always available to the system.  
ICC5 in the DC Characteristics table represents the  
automatic sleep mode current specification.  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
If RESET# is asserted during a program or erase op-  
eration, the RY/BY# pin remains a “0” (busy) until the  
internal reset operation is complete, which requires a  
time of tREADY (during Embedded Algorithms). The sys-  
tem can thus monitor RY/BY# to determine whether  
the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing  
(RY/BY# pin is “1”), the reset operation is completed  
within a time of tREADY (not during Embedded Algo-  
rithms). The system can read data tRH after the RE-  
SET# pin returns to VIH.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of re-  
setting the device to reading array data. When the RE-  
SET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in  
progress, tristates all output pins, and ignores all  
read/write commands for the duration of the RESET#  
pulse. The device also resets the internal state ma-  
chine to reading array data. The operation that was in-  
terrupted should be reinitiated once the device is  
ready to accept another command sequence, to en-  
sure data integrity.  
ICC4 in the DC Characteristics table represents the  
reset current. Also refer to AC Characteristics tables  
for RESET# timing parameters and to Figure 15 for the  
timing diagram.  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at VSS±0.3 V, the device  
draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current will  
be greater.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is  
disabled. The output pins are placed in the high  
impedance state.  
Am29DL320G  
11  
Table 2. Top Boot Sector Addresses  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
Address Range  
SA0  
SA1  
000000xxx  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
000000h–07FFFh  
008000h–0FFFFh  
010000h–17FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
12  
Am29DL320G  
Table 2. Top Boot Sector Addresses (Continued)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
Address Range  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3F1FFFh  
3F2000h–3F3FFFh  
3F4000h–3F5FFFh  
3F6000h–3F7FFFh  
3F8000h–3F9FFFh  
3FA000h–3FBFFFh  
3FC000h–3FDFFFh  
3FE000h–3FFFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F8FFFh  
1F9000h–1F9FFFh  
1FA000h–1FAFFFh  
1FB000h–1FBFFFh  
1FC000h–1FCFFFh  
1FD000h–1FDFFFh  
1FE000h–1FEFFFh  
1FF000h–1FFFFFh  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Note: The address range is A20:A-1 in byte mode (BYTE#=VIL) or A20:A0 in word mode (BYTE#=VIH). The bank address bits are A20–A18 for  
Am29DL322, A20 and A19 for Am29DL323, and A20 for Am29DL324.  
Table 3. Top Boot SecSiTM Sector Addresses  
Sector Address  
A20–A12  
Sector Size  
(Bytes/Words)  
(x8)  
(x16)  
Address Range  
Device  
Address Range  
Am29DL32xGT  
111111xxx  
256/128  
3FE000h–3FE0FFh  
1FF000h–1FF07Fh  
Am29DL320G  
13  
Table 4. Bottom Boot Sector Addresses  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
Address Range  
SA0  
SA1  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
8/4  
000000h–001FFFh  
002000h–003FFFh  
004000h–005FFFh  
006000h–007FFFh  
008000h–009FFFh  
00A000h–00BFFFh  
00C000h–00DFFFh  
00E000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
8/4  
SA2  
8/4  
SA3  
8/4  
SA4  
8/4  
SA5  
8/4  
SA6  
8/4  
SA7  
8/4  
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
14  
Am29DL320G  
Table 4. Bottom Boot Sector Addresses (Continued)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
Address Range  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
111000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Note: The address range is A20:A-1 in byte mode (BYTE#=VIL) or A20:A0 in word mode (BYTE#=VIH). The bank address bits  
are A20–A18 for Am29DL322, A20 and A19 for Am29DL323, and A20 for Am29DL324.  
Table 5. Bottom Boot SecSiTM Sector Addresses  
Sector Address  
A20–A12  
Sector Size  
(Bytes/Words)  
(x8)  
(x16)  
Address Range  
Device  
Address Range  
Am29DL32xGB  
000000xxx  
256/128  
000000h–0000FFh  
00000h–00007Fh  
Am29DL320G  
15  
Table 6. In addition, when verifying sector protection,  
the sector address must appear on the appropriate  
highest order address bits (see Table 2). Table 6  
shows the remaining address bits that are don’t care.  
When all necessary bits have been set as required,  
the programming equipment may then read the corre-  
sponding identifier code on DQ7–DQ0.  
Autoselect Mode  
The autoselect mode provides manufacturer and de-  
vice identification, and sector protection verification,  
through identifier codes output on DQ7–DQ0. This  
mode is primarily intended for programming equip-  
ment to automatically match a device to be pro-  
grammed with its corresponding programming  
algorithm. However, the autoselect codes can also be  
accessed in-system through the command register.  
To access the autoselect codes in-system, the host  
system can issue the autoselect command via the  
command register, as shown in Table 13. This method  
does not require VID. Refer to the Autoselect Com-  
mand Sequence section for more information.  
When using programming equipment, the autoselect  
mode requires VID (8.5 V to 12.5 V) on address pin A9.  
Address pins A6, A1, and A0 must be as shown in  
Table 6. Autoselect Codes, (High Voltage Method)  
DQ15 to DQ8  
A20 A11  
to to  
A8  
to  
A5  
to  
DQ7  
to  
BYTE# BYTE#  
Description  
CE# OE# WE# A12 A10 A9 A7 A6 A4  
A1 A0  
= VIH  
= VIL  
DQ0  
A3  
A2  
Manufacturer ID:  
AMD  
VID  
L
L
H
BA  
X
X
L
X
X
X
L
L
X
X
01h  
VID  
VID  
VID  
Read Cycle 1  
Read Cycle 2  
Read Cycle 3  
L
L
L
L
L
L
H
H
H
BA  
BA  
BA  
X
X
X
X
X
X
L
L
L
X
X
X
L
H
H
L
H
H
L
H
H
H
L
22h  
22h  
22h  
X
X
X
7Eh  
0Ah  
H
01h (T), 00h (B)  
Sector Protection  
Verification  
01h (protected),  
00h (unprotected)  
VID  
VID  
L
L
L
L
H
H
SA  
BA  
X
X
X
X
L
L
X
X
X
X
X
X
H
H
L
X
X
X
X
82h (factory locked),  
02h (not factory  
locked)  
SecSiIndicator  
Bit (DQ7)  
H
Legend: T = Top Boot Block, B = Bottom Boot Block, L = Logic Low = VIL, H = Logic High = VIH, BA = Bank Address, SA = Sector Address, X =  
Don’t care.  
Notes:  
1. The bank address bits are A20–A18.  
2. The device ID must be read across three cycles.  
16  
Am29DL320G  
Table 8. Bottom Boot Sector/Sector Block  
Addresses for Protection/Unprotection  
Sector/Sector Block Protection and  
Unprotection  
Sector/Sector Block  
(Note: For the following discussion, the term “sector”  
applies to both sectors and sector blocks. A sector  
block consists of two or more adjacent sectors that are  
protected or unprotected at the same time (see Tables  
2 and 4).  
Sector  
A20–A12  
Size  
SA70  
111111XXX  
64 Kbytes  
111110XXX,  
111101XXX,  
111100XXX  
SA69-SA67  
192 (3x64) Kbytes  
The hardware sector protection feature disables both  
program and erase operations in any sector. The hard-  
ware sector unprotection feature re-enables both pro-  
gram and erase operations in previously protected  
sectors. Sector protection/unprotection can be imple-  
mented via two methods.  
SA66-SA63  
SA62-SA59  
SA58-SA55  
SA54-SA51  
SA50-SA47  
SA46-SA43  
SA42-SA39  
SA38-SA35  
SA34-SA31  
SA30-SA27  
SA26-SA23  
SA22–SA19  
SA18-SA15  
SA14-SA11  
1110XXXXX  
1101XXXXX  
1100XXXXX  
1011XXXXX  
1010XXXXX  
1001XXXXX  
1000XXXXX  
0111XXXXX  
0110XXXXX  
0101XXXXX  
0100XXXXX  
0011XXXXX  
0010XXXXX  
0001XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
Table 7. Top Boot Sector/Sector Block Addresses  
for Protection/Unprotection  
Sector/  
Sector  
A20–A12  
Sector Block Size  
SA0  
000000XXX  
64 Kbytes  
000001XXX,  
000010XXX  
000011XXX  
SA1-SA3  
192 (3x64) Kbytes  
SA4-SA7  
0001XXXXX  
0010XXXXX  
0011XXXXX  
0100XXXXX  
0101XXXXX  
0110XXXXX  
0111XXXXX  
1000XXXXX  
1001XXXXX  
1010XXXXX  
1011XXXXX  
1100XXXXX  
1101XXXXX  
1110XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
000011XXX,  
000010XXX,  
000001XXX  
SA8-SA11  
SA10-SA8  
192 (3x64) Kbytes  
SA12-SA15  
SA16-SA19  
SA20-SA23  
SA24-SA27  
SA28-SA31  
SA32-SA35  
SA36-SA39  
SA40-SA43  
SA44-SA47  
SA48-SA51  
SA52-SA55  
SA56-SA59  
SA7  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0  
000000111  
000000110  
000000101  
000000100  
000000011  
000000010  
000000001  
000000000  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
The primary method requires VID on the RESET# pin  
only, and can be implemented either in-system or via  
programming equipment. Figure 2 shows the algo-  
rithms and Figure 26 shows the timing diagram. This  
method uses standard microprocessor bus cycle tim-  
ing. For sector unprotect, all unprotected sectors must  
first be protected prior to the first sector unprotect  
write cycle.  
111100XXX,  
111101XXX,  
111110XXX  
SA60-SA62  
192 (3x64) Kbytes  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
The sector unprotect algorithm unprotects all sectors  
in parallel. All previously protected sectors must be in-  
dividually re-protected. To change data in protected  
sectors efficiently, the temporary sector unprotect  
function is available. See “Temporary Sector Unpro-  
tect”.  
Am29DL320G  
17  
The alternate method intended only for programming  
equipment requires VID on address pin A9 and OE#.  
This method is compatible with programmer routines  
written for earlier 3.0 volt-only AMD flash devices.  
Publication number 22244 contains further details;  
contact an AMD representative to request a copy.  
Temporary Sector Unprotect  
(Note: For the following discussion, the term “sector”  
applies to both sectors and sector blocks. A sector  
block consists of two or more adjacent sectors that are  
protected or unprotected at the same time (Tables 2  
and 4).  
The device is shipped with all sectors unprotected.  
AMD offers the option of programming and protecting  
sectors at its factory prior to shipping the device  
through AMD’s ExpressFlash™ Service. Contact an  
AMD representative for details.  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RE-  
SET# pin to VID. During this mode, formerly protected  
sectors can be programmed or erased by selecting the  
sector addresses. Once VID is removed from the RE-  
SET# pin, all the previously protected sectors are  
protected again. Figure 1 shows the algorithm, and  
Figure 25 shows the timing diagrams, for this feature.  
It is possible to determine whether a sector is pro-  
tected or unprotected. See the Autoselect Mode sec-  
tion for details.  
Write Protect (WP#)  
The Write Protect function provides a hardware  
method of protecting certain boot sectors without  
using VID. This function is one of two provided by the  
WP#/ACC pin.  
START  
If the system asserts VIL on the WP#/ACC pin, the de-  
vice disables program and erase functions in the two  
“outermost” 8 Kbyte boot sectors independently of  
whether those sectors were protected or unprotected  
using the method described in “Sector/Sector Block  
Protection and Unprotection”. The two outermost 8  
Kbyte boot sectors are the two sectors containing the  
lowest addresses in a bottom-boot-configured device,  
or the two sectors containing the highest addresses in  
a top-boot-configured device.  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
If the system asserts VIH on the WP#/ACC pin, the de-  
vice reverts to whether the two outermost 8K Byte  
boot sectors were last set to be protected or unpro-  
tected. That is, sector protection or unprotection for  
these two sectors depends on whether they were last  
protected or unprotected using the method described  
in “Sector/Sector Block Protection and Unprotection”.  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
Note that the WP#/ACC pin must not be left floating or  
unconnected; inconsistent behavior of the device may  
result.  
1. All protected sectors unprotected (If WP#/ACC = VIL,  
outermost boot sectors will remain protected).  
2. All previously protected sectors are protected once  
again.  
Figure 1. Temporary Sector Unprotect Operation  
18  
Am29DL320G  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
unprotected sectors  
prior to issuing the  
first sector  
Wait 1 μs  
Wait 1 μs  
unprotect address  
No  
First Write  
No  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unprotect:  
Write 60h to any  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Wait 150 µs  
Verify Sector  
Protect: Write 40h  
to sector address  
with A6 = 0,  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
A1 = 1, A0 = 0  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Read from  
sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Increment  
PLSCNT  
No  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A6 = 1,  
Data = 01h?  
Yes  
A1 = 1, A0 = 0  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Device failed  
Write reset  
command  
Yes  
Remove VID  
Sector Unprotect  
Algorithm  
from RESET#  
Sector Protect  
Algorithm  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotect  
complete  
Figure 2. In-System Sector Protection/  
Sector Unprotection Algorithms  
Am29DL320G  
19  
SecSiTM (Secured Silicon) Sector  
Flash Memory Region  
In devices that have an ESN, a Bottom Boot device will  
have the 16-byte ESN at addresses  
000000h–000007h  
in  
word  
mode  
(or  
The SecSi (Secured Silicon) Sector feature provides a  
256-byte Flash memory region that enables perma-  
nent part identification through an Electronic Serial  
Number (ESN). The SecSi Sector uses a SecSi Sector  
Indicator Bit (DQ7) to indicate whether or not the  
SecSi Sector is locked when shipped from the factory.  
This bit is permanently set at the factory and cannot  
be changed, which prevents cloning of a factory locked  
part. This ensures the security of the ESN once the  
product is shipped to the field.  
000000h–00000Fh in byte mode). In the Top Boot de-  
vice the ESN will be at addresses  
1FF000h–1FF007Fh in word mode (or addresses  
3FE000h–3FE0FFh in byte mode).  
Customers may opt to have their code programmed by  
AMD through the AMD ExpressFlash service. AMD  
programs the customer’s code, with or without the ran-  
dom ESN. The devices are then shipped from AMD’s  
factory with the SecSi Sector permanently locked.  
Contact an AMD representative for details on using  
AMD’s ExpressFlash service.  
AMD offers the device with the SecSi Sector either  
factory locked or customer lockable. The fac-  
tory-locked version is always protected when shipped  
from the factory, and has the SecSi (Secured Silicon)  
Sector Indicator Bit permanently set to a “1.The cus-  
tomer-lockable version is shipped with the SecSi Sec-  
tor unprotected, allowing customers to utilize the that  
sector in any manner they choose. The customer-lock-  
able version has the SecSi (Secured Silicon) Sector  
Indicator Bit permanently set to a “0.Thus, the SecSi  
Sector Indicator Bit prevents customer-lockable de-  
vices from being used to replace devices that are fac-  
tory locked.  
Customer Lockable: SecSi Sector NOT  
Programmed or Protected At the Factory  
If the security feature is not required, the SecSi Sector  
can be treated as an additional 256-byte Flash mem-  
ory space, expanding the size of the available Flash  
array. Additionally, note the difference in the loca-  
tion of the ESN compared to previous Am29DL32x  
top boot factory locked devices. The SecSi Sector  
is one-time programmable, may not be erased, and  
can be locked only once. Note that the accelerated  
programming (ACC) and unlock bypass functions are  
not available when programming the SecSi Sector.  
The system accesses the SecSi Sector through a  
command sequence (see “Enter SecSiTM Sector/Exit  
SecSi Sector Command Sequence”). After the system  
has written the Enter SecSi Sector command se-  
quence, it may read the SecSi Sector by using the ad-  
dresses normally occupied by the boot sectors. This  
mode of operation continues until the system issues  
the Exit SecSi Sector command sequence, or until  
power is removed from the device. On power-up, or  
following a hardware reset, the device reverts to send-  
ing commands to the boot sectors.  
The SecSi Sector area can be protected using one of  
the following procedures:  
Write the three-cycle Enter SecSi Sector Region  
command sequence, and then follow the in-system  
sector protect algorithm as shown in Figure 2, ex-  
cept that RESET# may be at either VIH or VID. This  
allows in-system protection of the SecSi Sector  
without raising any device pin to a high voltage.  
Note that this method is only applicable to the SecSi  
Sector  
Factory Locked: SecSi Sector Programmed and  
Protected At the Factory  
To verify the protect/unprotect status of the SecSi  
Sector, follow the algorithm shown in Figure 3.  
In a factory locked device, the SecSi Sector is pro-  
tected when the device is shipped from the factory.  
The SecSi Sector cannot be modified in any way. The  
device is available preprogrammed with one of the fol-  
lowing:  
Once the SecSi Sector is locked and verified, the sys-  
tem must write the Exit SecSi Sector Region com-  
mand sequence to return to reading and writing the  
remainder of the array.  
The SecSi Sector protection must be used with cau-  
tion since, once protected, there is no procedure avail-  
able for unprotecting the SecSi Sector area and none  
of the bits in the SecSi Sector memory space can be  
modified in any way.  
A random, secure ESN only  
Customer code through the ExpressFlash service  
Both a random, secure ESN and customer code  
through the ExpressFlash service.  
20  
Am29DL320G  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# =  
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,  
CE# and WE# must be a logical zero while OE# is a  
logical one.  
START  
If data = 00h,  
SecSi Sector is  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
RESET# =  
VIH or VID  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up,  
the device does not accept commands on the rising  
edge of WE#. The internal state machine is automati-  
cally reset to the read mode on power-up.  
Wait 1 μs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
COMMON FLASH MEMORY INTERFACE  
(CFI)  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
Write reset  
command  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-inde-  
pendent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device  
families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
A1 = 1, A0 = 0  
SecSi Sector  
Protect Verify  
complete  
Read from SecSi  
Sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
This device enters the CFI Query mode when the sys-  
tem writes the CFI Query command, 98h, to address  
55h in word mode (or address AAh in byte mode), any  
time the device is ready to read array data. The  
system can read CFI information at the addresses  
given in Tables 912. To terminate reading CFI data,  
the system must write the reset command. The CFI  
Query mode is not accessible when the device is exe-  
cuting an Embedded Program or Embedded Erase al-  
gorithm.  
Figure 3. SecSi Sector Protect Verify  
Hardware Data Protection  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
against inadvertent writes (refer to Table 13 for com-  
mand definitions). In addition, the following hardware  
data protection measures prevent accidental erasure  
or programming, which might otherwise be caused by  
spurious system level signals during VCC power-up  
and power-down transitions, or from system noise.  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 912. The  
system must write the reset command to return the  
device to reading array data.  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down. The command register  
and all internal program/erase circuits are disabled,  
and the device resets to the read mode. Subsequent  
writes are ignored until VCC is greater than VLKO. The  
system must provide the proper signals to the control  
pins to prevent unintentional writes when VCC is  
For further information, please refer to the CFI Specifi-  
cation and CFI Publication 100, available via the World  
Wide Web at http://www.amd.com/flash/cfi. Alterna-  
tively, contact an AMD representative for copies of  
these documents.  
greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE#  
or WE# do not initiate a write cycle.  
Am29DL320G  
21  
Table 9. CFI Query Identification String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Table 10. System Interface String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data Description  
VCC Min. (write/erase)  
0027h  
1Bh  
1Ch  
36h  
38h  
D7–D4: volt, D3–D0: 100 millivolt  
VCC Max. (write/erase)  
0036h  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0004h  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
22  
Am29DL320G  
Table 11. Device Geometry Definition  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
27h  
4Eh  
0016h  
Device Size = 2N byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of bytes in multi-byte write = 2N  
(00h = not supported)  
2Ch  
58h  
0002h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
003Eh  
0000h  
0000h  
0001h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0000h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
Table 12. Primary Vendor-Specific Extended Query  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Silicon Revision Number  
00h = 0.23 µm, 01h = 0.17 µm  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
8Ah  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
0001h  
0002h  
0001h  
0001h  
0004h  
0038h  
0000h  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
04 = 29LV800 mode  
Simultaneous Operation  
Number of Sectors (excluding Bank 1)  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Am29DL320G  
23  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
4Ch  
4Dh  
98h  
9Ah  
0000h  
ACC (Acceleration) Supply Minimum  
0085h  
0095h  
000Xh  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
4Eh  
4Fh  
9Ch  
9Eh  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
02h = Bottom Boot Device, 03h = Top Boot Device  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device op-  
erations. Table 13 defines the valid register command  
sequences. Writing incorrect address and data val-  
ues or writing them in the improper sequence may  
place the device in an unknown state. A reset com-  
mand is required to return the device to reading array  
data.  
Reset Command  
Writing the reset command resets the banks to the  
read or erase-suspend-read mode. Address bits are  
don’t cares for this command.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure be-  
gins, however, the device ignores reset commands  
until the operation is complete.  
All addresses are latched on the falling edge of WE#  
or CE#, whichever happens later. All data is latched on  
the rising edge of WE# or CE#, whichever happens  
first. Refer to the AC Characteristics section for timing  
diagrams.  
The reset command may be written between the  
sequence cycles in a program command sequence  
before programming begins. This resets the bank to  
which the system was writing to the read mode. If the  
program command sequence is written to a bank that  
is in the Erase Suspend mode, writing the reset  
command returns that bank to the erase-sus-  
pend-read mode. Once programming begins, however,  
the device ignores reset commands until the operation  
is complete.  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded  
Erase algorithm.  
After the device accepts an Erase Suspend command,  
the corresponding bank enters the erase-sus-  
pend-read mode, after which the system can read  
data from any non-erase-suspended sector within the  
same bank. After completing a programming operation  
in the Erase Suspend mode, the system may once  
again read array data with the same exception. See  
the Erase Suspend/Erase Resume Commands sec-  
tion for more information.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command  
must be written to return to the read mode. If a bank  
entered the autoselect mode while in the Erase Sus-  
pend mode, writing the reset command returns that  
bank to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the banks to the  
read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend).  
The system must issue the reset command to return a  
bank to the read (or erase-suspend-read) mode if DQ5  
goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See the  
next section, Reset Command, for more information.  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to access the manufacturer and device codes,  
and determine whether or not a sector is protected.  
Table 13 shows the address and data requirements.  
This method is an alternative to that shown in Table 6,  
which is intended for PROM programmers and re-  
quires VID on address pin A9. The autoselect com-  
See also Requirements for Reading Array Data in the  
Device Bus Operations section for more information.  
The Read-Only Operations table provides the read pa-  
rameters, and Figure 14 shows the timing diagram.  
24  
Am29DL320G  
mand sequence may be written to an address within a  
bank that is either in the read or erase-suspend-read  
mode. The autoselect command may not be written  
while the device is actively programming or erasing in  
the other bank.  
system is not required to provide further controls or  
timings. The device automatically provides internally  
generated program pulses and verifies the pro-  
grammed cell margin. Table 13 shows the address and  
data requirements for the byte program command se-  
quence.  
The autoselect command sequence is initiated by first  
writing two unlock cycles. This is followed by a third  
write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autose-  
lect mode. The system may read at any address within  
the same bank any number of times without initiating  
another autoselect command sequence:  
When the Embedded Program algorithm is complete,  
that bank then returns to the read mode and ad-  
dresses are no longer latched. The system can deter-  
mine the status of the program operation by using  
DQ7, DQ6, or RY/BY#. Refer to the Write Operation  
Status section for information on these status bits.  
A read cycle at address (BA)XX00h (where BA is  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program  
operation. The program command sequence should  
be reinitiated once that bank has returned to the read  
mode, to ensure data integrity.  
the bank address) returns the manufacturer code.  
A read cycle at address (BA)XX01h in word mode  
(or (BA)XX02h in byte mode) returns the device  
code.  
A read cycle to an address containing a sector ad-  
dress (SA) within the same bank, and the address  
02h on A7–A0 in word mode (or the address 04h on  
A6–A-1 in byte mode) returns 01h if the sector is  
protected, or 00h if it is unprotected. (Refer to Table  
2 for valid sector addresses).  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed  
from “0” back to a “1.Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and  
DQ6 status bits to indicate the operation was success-  
ful. However, a succeeding read will show that the  
data is still “0.Only erase operations can convert a “0”  
to a “1.”  
The system must write the reset command to return to  
the read mode (or erase-suspend-read mode if the  
bank was previously in Erase Suspend).  
Unlock Bypass Command Sequence  
Enter SecSiTM Sector/Exit SecSi Sector  
Command Sequence  
The unlock bypass feature allows the system to pro-  
gram bytes or words to a bank faster than using the  
standard program command sequence. The unlock  
bypass command sequence is initiated by first writing  
two unlock cycles. This is followed by a third write  
cycle containing the unlock bypass command, 20h.  
That bank then enters the unlock bypass mode. A  
two-cycle unlock bypass program command sequence  
is all that is required to program in this mode. The first  
cycle in this sequence contains the unlock bypass pro-  
gram command, A0h; the second cycle contains the  
program address and data. Additional data is pro-  
grammed in the same manner. This mode dispenses  
with the initial two unlock cycles required in the stan-  
dard program command sequence, resulting in faster  
total programming time. Table 13 shows the require-  
ments for the command sequence.  
The SecSi Sector region provides a secured data area  
containing a random, sixteen-byte electronic serial  
number (ESN). The system can access the SecSi  
Sector region by issuing the three-cycle Enter SecSi  
Sector command sequence. The device continues to  
access the SecSi Sector region until the system is-  
sues the four-cycle Exit SecSi Sector command se-  
quence. The Exit SecSi Sector command sequence  
returns the device to normal operation. The SecSi  
Sector is not accessible when the device is executing  
an Embedded Program or Embedded Erase algo-  
rithm. Table 13 shows the address and data require-  
ments for both command sequences. See also  
“SecSiT M (Secured Silicon) Sector Flash  
Memory Region” for further information. Note that the  
ACC function and unlock bypass modes are unavail-  
able when the SecSi Sector is enabled.  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence. The first cycle must contain the bank  
address and the data 90h. The second cycle need  
only contain the data 00h. The bank then returns to  
the read mode.  
Byte/Word Program Command Sequence  
The system may program the device by word or byte,  
depending on the state of the BYTE# pin. Program-  
ming is a four-bus-cycle operation. The program com-  
mand sequence is initiated by writing two unlock write  
cycles, followed by the program set-up command. The  
program address and data are written next, which in  
turn initiate the Embedded Program algorithm. The  
The device offers accelerated program operations  
through the WP#/ACC pin. When the system asserts  
Am29DL320G  
25  
V
HH on the WP#/ACC pin, the device automatically en-  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Table 13  
shows the address and data requirements for the chip  
erase command sequence.  
ters the Unlock Bypass mode. The system may then  
write the two-cycle Unlock Bypass program command  
sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that  
the WP#/ACC pin must not be at VHH any operation  
other than accelerated programming, or device dam-  
age may result. In addition, the WP#/ACC pin must not  
be left floating or unconnected; inconsistent behavior  
of the device may result.  
When the Embedded Erase algorithm is complete,  
that bank returns to the read mode and addresses are  
no longer latched. The system can determine the sta-  
tus of the erase operation by using DQ7, DQ6, DQ2,  
or RY/BY#. Refer to the Write Operation Status sec-  
tion for information on these status bits.  
Figure 4 illustrates the algorithm for the program oper-  
ation. Refer to the Erase and Program Operations  
table in the AC Characteristics section for parameters,  
and Figure 18 for timing diagrams.  
Any commands written during the chip erase operation  
are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that oc-  
curs, the chip erase command sequence should be  
reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
START  
Figure 5 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations ta-  
bles in the AC Characteristics section for parameters,  
and Figure 20 section for timing diagrams.  
Write Program  
Command Sequence  
Data Poll  
from System  
Sector Erase Command Sequence  
Embedded  
Program  
algorithm  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock cycles are written, and are then fol-  
lowed by the address of the sector to be erased, and  
the sector erase command. Table 13 shows the ad-  
dress and data requirements for the sector erase com-  
mand sequence.  
in progress  
Verify Data?  
No  
Yes  
No  
The device does not require the system to preprogram  
prior to erase. The Embedded Erase algorithm auto-  
matically programs and verifies the entire memory for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
After the command sequence is written, a sector erase  
time-out of 50 µs occurs. During the time-out period,  
additional sector addresses and sector erase com-  
mands (for sectors within the same bank) may be writ-  
ten. Loading the sector erase buffer may be done in  
any sequence, and the number of sectors may be from  
one sector to all sectors. The time between these ad-  
ditional cycles must be less than 50 µs, otherwise era-  
sure may begin. Any sector erase address and  
command following the exceeded time-out may or may  
not be accepted. It is recommended that processor in-  
terrupts be disabled during this time to ensure all com-  
mands are accepted. The interrupts can be re-enabled  
after the last Sector Erase command is written. Any  
command other than Sector Erase or Erase Sus-  
Note: See Table 13 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
26  
Am29DL320G  
pend during the time-out period resets that bank  
to the read mode. The system must rewrite the com-  
mand sequence and any additional addresses and  
commands.  
duces status information on DQ7–DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
Refer to the Write Operation Status section for infor-  
mation on these status bits.  
The system can monitor DQ3 to determine if the sec-  
tor erase timer has timed out (See the section on DQ3:  
Sector Erase Timer.). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command  
sequence.  
After an erase-suspended program operation is com-  
plete, the bank returns to the erase-suspend-read  
mode. The system can determine the status of the  
program operation using the DQ7 or DQ6 status bits,  
just as in the standard Byte Program operation.  
Refer to the Write Operation Status section for more  
information.  
When the Embedded Erase algorithm is complete, the  
bank returns to reading array data and addresses are  
no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read  
data from the non-erasing bank. The system can de-  
termine the status of the erase operation by reading  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer  
to the Write Operation Status section for information  
on these status bits.  
In the erase-suspend-read mode, the system can also  
issue the autoselect command sequence. Refer to the  
Autoselect Mode and Autoselect Command Sequence  
sections for details.  
To resume the sector erase operation, the system  
must write the Erase Resume command. The bank  
address of the erase-suspended bank is required  
when writing this command. Further writes of the Re-  
sume command are ignored. Another Erase Suspend  
command can be written after the chip has resumed  
erasing.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other com-  
mands are ignored. However, note that a hardware  
reset immediately terminates the erase operation. If  
that occurs, the sector erase command sequence  
should be reinitiated once that bank has returned to  
reading array data, to ensure data integrity.  
Figure 5 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations ta-  
bles in the AC Characteristics section for parameters,  
and Figure 20 section for timing diagrams.  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Erase Suspend/Erase Resume  
Commands  
The Erase Suspend command, B0h, allows the sys-  
tem to interrupt a sector erase operation and then read  
data from, or program data to, any sector not selected  
for erasure. The bank address is required when writing  
this command. This command is valid only during the  
sector erase operation, including the 50 µs time-out  
period during the sector erase command sequence.  
The Erase Suspend command is ignored if written dur-  
ing the chip erase operation or Embedded Program  
algorithm.  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
When the Erase Suspend command is written during  
the sector erase operation, the device requires a max-  
imum of 20 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written  
during the sector erase time-out, the device immedi-  
ately terminates the time-out period and suspends the  
erase operation.  
Yes  
Erasure Completed  
Notes:  
1. See Table 13 for erase command sequence.  
After the erase operation has been suspended, the  
bank enters the erase-suspend-read mode. The sys-  
tem can read data from or program data to any sector  
not selected for erasure. (The device “erase sus-  
pends” all sectors selected for erasure.) Reading at  
any address within erase-suspended sectors pro-  
2. See the section on DQ3 for information on the sector  
erase timer.  
Figure 5. Erase Operation  
Am29DL320G  
27  
Table 13. Command Definitions  
Bus Cycles (Notes 2–5)  
Third Fourth  
Addr Addr Data  
Command  
Sequence  
(Note 1)  
First  
Second  
Fifth  
Sixth  
Addr  
Addr Data Addr Data  
Data  
Addr Data  
Data  
Read (Note 6)  
Reset (Note 7)  
1
1
RA  
XXX  
555  
AAA  
555  
AAA  
555  
AAA  
555  
RD  
F0  
Word  
Byte  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
(BA)555  
(BA)AAA  
(BA)555  
(BA)AAA  
(BA)555  
(BA)AAA  
(BA)555  
Manufacturer ID  
4
4
4
AA  
AA  
AA  
55  
55  
55  
90 (BA)X00 01  
(BA)X01  
Word  
Byte  
(BA)X0E  
0A  
(BA)X0F  
(BA)X1E  
00/  
01  
Device ID (Note 9)  
90  
7E  
(BA)X02  
(BA)X03  
(BA)X06  
(SA)X02  
(BA)X1C  
Word  
Byte  
SecSiSector Factory  
Protect (Note 10)  
90  
82/02  
Sector/Sector Block  
Protect Verify  
(Note 11)  
Word  
4
AA  
55  
90  
00/01  
Byte  
AAA  
555  
(BA)AAA  
(SA)X04  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
555  
AAA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
PA  
555  
AAA  
555  
Enter SecSi Sector Region  
Exit SecSi Sector Region  
Program  
3
4
4
3
AA  
AA  
AA  
AA  
55  
55  
55  
55  
88  
90  
A0  
20  
XXX  
PA  
00  
AAA  
555  
AAA  
555  
PD  
AAA  
555  
AAA  
555  
Unlock Bypass  
AAA  
XXX  
AAA  
Unlock Bypass Program (Note 12)  
Unlock Bypass Reset (Note 13)  
A0  
90  
PD  
00  
2
2
BA  
555  
AAA  
555  
AAA  
BA  
XXX  
2AA  
555  
2AA  
555  
Word  
555  
AAA  
555  
555  
AAA  
555  
2AA  
55  
555  
Chip Erase  
6
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
10  
30  
Byte  
Word  
Byte  
555  
AAA  
2AA  
55  
Sector Erase  
SA  
AAA  
AAA  
555  
Erase Suspend (Note 14)  
Erase Resume (Note 15)  
1
1
B0  
30  
BA  
Word  
Byte  
55  
CFI Query (Note 16)  
1
98  
AA  
Legend:  
X = Don’t care  
PD = Data to be programmed at location PA. Data latches on the rising  
edge of WE# or CE# pulse, whichever happens first.  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
SA = Address of the sector to be verified (in autoselect mode) or  
erased. Address bits A20–A12 uniquely select any sector.  
BA = Address of the bank that is being switched to autoselect mode, is  
in bypass mode, or is being erased.  
PA = Address of the memory location to be programmed. Addresses  
latch on the falling edge of the WE# or CE# pulse, whichever happens  
later.  
Notes:  
1. See Table 1 for description of bus operations.  
9. The device ID must be read across three cycles. The device ID is  
00h for bottom boot devices, and 01h for top boot devices.  
2. All values are in hexadecimal.  
10. The data is 82h for factory locked and 02h for not factory locked.  
3. Except for the read cycle and the fourth cycle of the autoselect  
command sequence, all bus cycles are write cycles.  
11. The data is 00h for an unprotected sector/sector block and 01h for  
a protected sector/sector block.  
4. Data bits DQ15–DQ8 are don’t care in command sequences,  
except for RD and PD.  
12. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
5. Unless otherwise noted, address bits A20–A11 are don’t cares.  
13. The Unlock Bypass Reset command is required to return to the  
read mode when the bank is in the unlock bypass mode.  
6. No unlock or command cycles required when bank is reading  
array data.  
14. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend mode.  
The Erase Suspend command is valid only during a sector erase  
operation, and requires the bank address.  
7. The Reset command is required to return to the read mode (or to  
the erase-suspend-read mode if previously in Erase Suspend)  
when a bank is in the autoselect mode, or if DQ5 goes high (while  
the bank is providing status information).  
15. The Erase Resume command is valid only during the Erase  
Suspend mode, and requires the bank address.  
8. The fourth cycle of the autoselect command sequence is a read  
cycle. The system must provide the bank address to obtain the  
manufacturer ID, device ID, or SecSi Sector factory protect  
information. Data bits DQ15–DQ8 are don’t care. See the  
Autoselect Command Sequence section for more information.  
16. Command is valid when device is ready to read array data or when  
device is in autoselect mode.  
28  
Am29DL320G  
WRITE OPERATION STATUS  
The device provides several bits to determine the status of a  
program or erase operation: DQ2, DQ3, DQ5, DQ6, and  
DQ7. Table 14 and the following subsections describe the  
function of these bits. DQ7 and DQ6 each offer a method for  
determining whether a program or erase operation is com-  
plete or in progress. The device also provides a hard-  
ware-based output signal, RY/BY#, to determine whether  
an Embedded Program or Erase operation is in progress or  
has been completed.  
invalid. Valid data on DQ7–DQ0 will appear on suc-  
cessive read cycles.  
Table 14 shows the outputs for Data# Polling on DQ7.  
Figure 6 shows the Data# Polling algorithm. Figure 22  
in the AC Characteristics section shows the Data#  
Polling timing diagram.  
START  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system  
whether an Embedded Program or Erase algorithm is in  
progress or completed, or whether a bank is in Erase Sus-  
pend. Data# Polling is valid after the rising edge of the final  
WE# pulse in the command sequence.  
Read DQ7–DQ0  
Addr = VA  
During the Embedded Program algorithm, the device out-  
puts on DQ7 the complement of the datum programmed to  
DQ7. This DQ7 status also applies to programming during  
Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to  
DQ7. The system must provide the program address to  
read valid status information on DQ7. If a program address  
falls within a protected sector, Data# Polling on DQ7 is ac-  
tive for approximately 1 µs, then that bank returns to the  
read mode.  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
During the Embedded Erase algorithm, Data# Polling  
produces a “0” on DQ7. When the Embedded Erase  
algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7.  
The system must provide an address within any of the  
sectors selected for erasure to read valid status infor-  
mation on DQ7.  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data# Poll-  
ing on DQ7 is active for approximately 100 µs, then the  
bank returns to the read mode. If not all selected sec-  
tors are protected, the Embedded Erase algorithm  
erases the unprotected sectors, and ignores the se-  
lected sectors that are protected. However, if the sys-  
tem reads DQ7 at an address within a protected  
sector, the status may not be valid.  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is any sector address  
within the sector being erased. During chip erase, a  
valid address is any non-protected sector address.  
Just prior to the completion of an Embedded Program  
or Erase operation, DQ7 may change asynchronously  
with DQ0–DQ6 while Output Enable (OE#) is asserted  
low. That is, the device may change from providing  
status information to valid data on DQ7. Depending on  
when the system samples the DQ7 output, it may read  
the status or valid data. Even if the device has com-  
pleted the program or erase operation and DQ7 has  
valid data, the data outputs on DQ0–DQ6 may be still  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
Figure 6. Data# Polling Algorithm  
Am29DL320G  
29  
Table 14 shows the outputs for Toggle Bit I on DQ6.  
Figure 7 shows the toggle bit algorithm. Figure 23 in  
the “AC Characteristics” section shows the toggle bit  
timing diagrams. Figure 24 shows the differences be-  
tween DQ2 and DQ6 in graphical form. See also the  
subsection on DQ2: Toggle Bit II.  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin  
which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, sev-  
eral RY/BY# pins can be tied together in parallel with a  
pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively eras-  
ing or programming. (This includes programming in  
the Erase Suspend mode.) If the output is high  
(Ready), the device is in the read mode, the standby  
mode, or one of the banks is in the erase-sus-  
pend-read mode.  
START  
Read DQ7–DQ0  
Table 14 shows the outputs for RY/BY#.  
Read DQ7–DQ0  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or com-  
plete, or whether the device has entered the Erase  
Suspend mode. Toggle Bit I may be read at any ad-  
dress, and is valid after the rising edge of the final  
WE# pulse in the command sequence (prior to the  
program or erase operation), and during the sector  
erase time-out.  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
During an Embedded Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
DQ6 to toggle. The system may use either OE# or  
CE# to control the read cycles. When the operation is  
complete, DQ6 stops toggling.  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Twice  
After an erase command sequence is written, if all sectors  
selected for erasing are protected, DQ6 toggles for approxi-  
mately 100 µs, then returns to reading array data. If not all  
selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the se-  
lected sectors that are protected.  
Toggle Bit  
= Toggle?  
No  
The system can use DQ6 and DQ2 together to determine  
whether a sector is actively erasing or is erase-suspended.  
When the device is actively erasing (that is, the Embedded  
Erase algorithm is in progress), DQ6 toggles. When the de-  
vice enters the Erase Suspend mode, DQ6 stops toggling.  
However, the system must also use DQ2 to determine  
which sectors are erasing or erase-suspended. Alterna-  
tively, the system can use DQ7 (see the subsection on  
DQ7: Data# Polling).  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note: The system should recheck the toggle bit even if DQ5  
= “1” because the toggle bit may stop toggling as DQ5  
changes to “1.See the subsections on DQ6 and DQ2 for  
more information.  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
DQ6 also toggles during the erase-suspend-program  
mode, and stops toggling once the Embedded Pro-  
gram algorithm is complete.  
Figure 7. Toggle Bit Algorithm  
30  
Am29DL320G  
the toggle bit and DQ5 through successive read cy-  
cles, determining the status as described in the previ-  
ous paragraph. Alternatively, it may choose to perform  
other system tasks. In this case, the system must start  
at the beginning of the algorithm when it returns to de-  
termine the status of the operation (top of Figure 7).  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
DQ5: Exceeded Timing Limits  
DQ2 toggles when the system reads at addresses  
within those sectors that have been selected for era-  
sure. (The system may use either OE# or CE# to con-  
trol the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sector and  
mode information. Refer to Table 14 to compare out-  
puts for DQ2 and DQ6.  
DQ5 indicates whether the program or erase time has  
exceeded a specified internal pulse count limit. Under these  
conditions DQ5 produces a “1,indicating that the program  
or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries  
to program a “1” to a location that was previously pro-  
grammed to “0.Only an erase operation can  
change a “0” back to a “1.Under this condition, the  
device halts the operation, and when the timing limit  
has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write  
the reset command to return to the read mode (or to  
the erase-suspend-read mode if a bank was previ-  
ously in the erase-suspend-program mode).  
Figure 7 shows the toggle bit algorithm in flowchart  
form, and the section “DQ2: Toggle Bit II” explains the  
algorithm. See also the DQ6: Toggle Bit I subsection.  
Figure 23 shows the toggle bit timing diagram. Figure  
24 shows the differences between DQ2 and DQ6 in  
graphical form.  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional  
sectors are selected for erasure, the entire time-out  
also applies after each additional sector erase com-  
mand. When the time-out period is complete, DQ3  
switches from a “0” to a “1.If the time between addi-  
tional sector erase commands from the system can be  
assumed to be less than 50 µs, the system need not  
monitor DQ3. See also the Sector Erase Command  
Sequence section.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 7 for the following discussion. When-  
ever the system initially begins reading toggle bit sta-  
tus, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically,  
the system would note and store the value of the tog-  
gle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device  
has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the fol-  
lowing read cycle.  
After the sector erase command is written, the system  
should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is  
“1,the Embedded Erase algorithm has begun; all fur-  
ther commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the  
device will accept additional sector erase commands.  
To ensure the command has been accepted, the sys-  
tem software should check the status of DQ3 prior to  
and following each subsequent sector erase com-  
mand. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is tog-  
gling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer  
toggling, the device has successfully completed the  
program or erase operation. If it is still toggling, the de-  
vice did not completed the operation successfully, and  
the system must write the reset command to return to  
reading array data.  
Table 14 shows the status of DQ3 relative to the other  
status bits.  
The remaining scenario is that the system initially de-  
termines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor  
Am29DL320G  
31  
Table 14. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
Erase-Suspend-  
Read  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.  
Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm  
is in progress. The device outputs array data if the system addresses a non-busy bank.  
32  
Am29DL320G  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C  
20 ns  
20 ns  
Ambient Temperature  
with Power Applied. . . . . . . . . . . . . . –65°C to +125°C  
+0.8 V  
Voltage with Respect to Ground  
–0.5 V  
–2.0 V  
VCC (Note 1) . . . . . . . . . . . . . . . . .0.5 V to +4.0 V  
A9, OE#, and RESET#  
(Note 2). . . . . . . . . . . . . . . . . . . .0.5 V to +12.5 V  
20 ns  
WP#/ACC . . . . . . . . . . . . . . . . . .0.5 V to +10.5 V  
All other pins (Note 1). . . . . . 0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Figure 8. Maximum Negative  
Overshoot Waveform  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V.  
During voltage transitions, input or I/O pins may  
overshoot VSS to –2.0 V for periods of up to 20 ns.  
Maximum DC voltage on input or I/O pins is VCC +0.5 V.  
See Figure 8. During voltage transitions, input or I/O pins  
may overshoot to VCC +2.0 V for periods up to 20 ns. See  
Figure 9.  
20 ns  
VCC  
+2.0 V  
VCC  
+0.5 V  
2. Minimum DC input voltage on pins A9, OE#, RESET#,  
and WP#/ACC is –0.5 V. During voltage transitions, A9,  
OE#, WP#/ACC, and RESET# may overshoot VSS to  
–2.0 V for periods of up to 20 ns. See Figure 8. Maximum  
DC input voltage on pin A9 is +12.5 V which may  
overshoot to +14.0 V for periods up to 20 ns. Maximum  
DC input voltage on WP#/ACC is +9.5 V which may  
overshoot to +12.0 V for periods up to 20 ns.  
2.0 V  
20 ns  
20 ns  
Figure 9. Maximum Positive  
Overshoot Waveform  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater  
than one second.  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This  
is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied.  
Exposure of the device to absolute maximum rating  
conditions for extended periods may affect device reliability.  
OPERATING RANGES  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C  
V
CC Supply Voltages  
VCC for standard voltage range . . . . . . .2.7 V to 3.6 V  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
Am29DL320G  
33  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
IN = VSS to VCC  
Min  
Typ  
Max  
±1.0  
35  
Unit  
µA  
V
,
ILI  
Input Load Current  
VCC = VCC max  
ILIT  
A9 Input Load Current  
Output Leakage Current  
Reset# Input Load Current  
VCC = VCC max; A9 = 12.5 V  
OUT = VSS to VCC  
VCC = VCC max  
µA  
V
,
ILO  
±1.0  
µA  
ILR  
VCC = VCC max, RESET#= 12.5 V  
35  
16  
4
µA  
5 MHz  
10  
2
CE# = VIL, OE# = VIH,  
Byte Mode  
1 MHz  
VCC Active Read Current  
(Notes 1, 2)  
ICC1  
mA  
5 MHz  
10  
2
16  
4
CE# = VIL, OE# = VIH,  
Word Mode  
1 MHz  
ICC2  
ICC3  
ICC4  
VCC Active Write Current (Notes 2, 3) CE# = VIL, OE# = VIH, WE# = VIL  
15  
0.2  
0.2  
30  
5
mA  
µA  
µA  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
CE#, RESET# = VCC ± 0.3 V  
RESET# = VSS ± 0.3 V  
5
V
IH = VCC ± 0.3 V;  
ICC5  
Automatic Sleep Mode (Notes 2, 4)  
0.2  
5
µA  
VIL = VSS ± 0.3 V  
Byte  
Word  
Byte  
21  
21  
21  
21  
45  
45  
45  
45  
VCC Active Read-While-Program  
Current (Notes 1, 2)  
ICC6  
CE# = VIL, OE# = VIH  
mA  
VCC Active Read-While-Erase  
Current (Notes 1, 2)  
ICC7  
ICC8  
IACC  
CE# = VIL, OE# = VIH  
CE# = VIL, OE# = VIH  
CE# = VIL, OE# = VIH  
mA  
mA  
Word  
VCC Active  
Program-While-Erase-Suspended  
Current (Notes 2, 5)  
17  
35  
ACC pin  
VCC pin  
5
10  
30  
mA  
mA  
V
ACC Accelerated Program Current,  
Word or Byte  
15  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
0.7 x VCC  
VCC + 0.3  
V
Voltage for WP#/ACC Sector  
Protect/Unprotect and Program  
Acceleration  
VHH  
VCC = 3.0 V ± 10%  
8.5  
8.5  
9.5  
V
V
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
VCC = 3.0 V ± 10%  
12.5  
0.45  
VOL  
VOH1  
VOH2  
VLKO  
Output Low Voltage  
IOL = 4.0 mA, VCC = VCC min  
IOH = –2.0 mA, VCC = VCC min  
IOH = –100 µA, VCC = VCC min  
V
V
0.85 VCC  
VCC–0.4  
2.3  
Output High Voltage  
Low VCC Lock-Out Voltage (Note 5)  
2.5  
V
Notes:  
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH.  
2. Maximum ICC specifications are tested with VCC = VCCmax.  
3. ICC active while Embedded Erase or Embedded Program is in progress.  
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep mode current is  
200 nA.  
5. Not 100% tested.  
34  
Am29DL320G  
DC CHARACTERISTICS  
Zero-Power Flash  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note: Addresses are switching at 1 MHz  
Figure 10. ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)  
12  
10  
8
3.6 V  
2.7 V  
6
4
2
0
1
2
3
4
5
Frequency in MHz  
Note: T = 25 °C  
Figure 11. Typical ICC1 vs. Frequency  
Am29DL320G  
35  
TEST CONDITIONS  
Table 15. Test Specifications  
3.3 V  
Test Condition  
70, 90  
120  
Unit  
Output Load  
1 TTL gate  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
100  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
5
0.0–3.0  
ns  
V
C
L
6.2 kΩ  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent  
Figure 12. Test Setup  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 13. Input Waveforms and Measurement Levels  
36  
Am29DL320G  
AC CHARACTERISTICS  
Read-Only Operations  
Parameter  
Speed Options  
JEDEC Std. Description  
Test Setup  
70  
90  
90  
90  
90  
40  
16  
16  
120  
Unit  
ns  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tRC Read Cycle Time (Note 1)  
Min  
Max  
Max  
Max  
Max  
Max  
70  
70  
70  
30  
120  
120  
120  
50  
tACC Address to Output Delay  
CE#, OE# = VIL  
OE# = VIL  
ns  
tCE Chip Enable to Output Delay  
ns  
tOE Output Enable to Output Delay  
tDF Chip Enable to Output High Z (Note 1)  
tDF Output Enable to Output High Z (Note 1)  
ns  
ns  
ns  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
Output Enable Hold Time  
tOEH  
Toggle and  
Data# Polling  
(Note 1)  
10  
Notes:  
1. Not 100% tested.  
2. See Figure 12 and Table 15 for test specifications.  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 14. Read Operation Timings  
Am29DL320G  
37  
AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 15. Reset Timings  
38  
Am29DL320G  
AC CHARACTERISTICS  
Word/Byte Configuration (BYTE#)  
Parameter  
Speed Options  
JEDEC  
Std  
tELFL/tELFH  
tFLQZ  
Description  
70  
90  
5
120  
Unit  
ns  
CE# to BYTE# Switching Low or High  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
Max  
Max  
Min  
16  
90  
ns  
tFHQV  
70  
120  
ns  
CE#  
OE#  
BYTE#  
tELFL  
Data Output  
(DQ14–DQ0)  
Data Output  
(DQ7–DQ0)  
BYTE#  
DQ14–DQ0  
Switching  
from word  
to byte  
Address  
Input  
DQ15  
Output  
mode  
DQ15/A-1  
BYTE#  
tFLQZ  
tELFH  
BYTE#  
Switching  
from byte  
to word  
Data Output  
(DQ7–DQ0)  
Data Output  
(DQ14–DQ0)  
DQ14–DQ0  
DQ15/A-1  
mode  
Address  
Input  
DQ15  
Output  
tFHQV  
Figure 16. BYTE# Timings for Read Operations  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
tSET  
(tAS  
)
tHOLD (tAH  
)
Note: Refer to the Erase/Program Operations table for tAS and tAH specifications.  
Figure 17. BYTE# Timings for Write Operations  
Am29DL320G  
39  
AC CHARACTERISTICS  
Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
70  
90  
90  
0
120  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
70  
120  
tAVWL  
ns  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
45  
15  
ns  
tWLAX  
45  
0
50  
50  
ns  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
Min  
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Data Hold Time  
Min  
Min  
35  
45  
0
ns  
ns  
20  
tOEPH  
Output Enable High during toggle bit polling  
Min  
Min  
ns  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
0
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
ns  
CE# Hold Time  
tWP  
Write Pulse Width  
30  
35  
30  
0
50  
tWPH  
tSR/W  
Write Pulse Width High  
Latency Between Read and Write Operations  
Byte  
5
tWHWH1  
tWHWH1 Programming Operation (Note 2)  
µs  
µs  
Word  
7
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
tWHWH1  
Typ  
4
tWHWH2 Sector Erase Operation (Note 2)  
Typ  
Min  
Min  
Min  
0.4  
50  
0
sec  
µs  
tVCS  
tRB  
VCC Setup Time (Note 1)  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
ns  
tBUSY  
90  
ns  
Notes:  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
40  
Am29DL320G  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 18. Program Operation Timings  
VHH  
VIL or VIH  
WP#/ACC  
VIL or VIH  
tVHH  
tVHH  
Figure 19. Accelerated Program Timing Diagram  
Am29DL320G  
41  
AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”.  
2. These waveforms are for the word mode.  
Figure 20. Chip/Sector Erase Operation Timings  
42  
Am29DL320G  
AC CHARACTERISTICS  
tWC  
Valid PA  
tWC  
tRC  
tWC  
Valid PA  
Valid RA  
Valid PA  
Addresses  
tAH  
tCPH  
tACC  
tCE  
CE#  
tCP  
tOE  
OE#  
tOEH  
tGHWL  
tWP  
WE#  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
Data  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# Controlled Write Cycles  
Figure 21. Back-to-back Read/Write Cycle Timings  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ0–DQ6  
Valid Data  
Status Data  
True  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 22. Data# Polling Timings (During Embedded Algorithms)  
Am29DL320G  
43  
AC CHARACTERISTICS  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#  
tOEH  
WE#  
tCEPH  
tOEPH  
OE#  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read  
cycle, and array data read cycle  
Figure 23. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle  
DQ2 and DQ6.  
Figure 24. DQ2 vs. DQ6  
44  
Am29DL320G  
AC CHARACTERISTICS  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VSS, VIL,  
or VIH  
VSS, VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 25. Temporary Sector Unprotect Timing Diagram  
Am29DL320G  
45  
AC CHARACTERISTICS  
VID  
VIH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector/Sector Block Protect or Unprotect  
60h 60h  
Verify  
40h  
Data  
Sector/Sector Block Protect: 150 µs,  
Sector/Sector Block Unprotect: 15 ms  
1 µs  
CE#  
WE#  
OE#  
* For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 26. Sector/Sector Block Protect and Unprotect Timing Diagram  
46  
Am29DL320G  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
70  
90  
90  
0
120  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
70  
120  
tAVWL  
tELAX  
tDVEH  
tEHDX  
ns  
tAH  
tDS  
tDH  
45  
35  
45  
45  
0
50  
50  
ns  
ns  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
30  
35  
30  
5
50  
tCPH  
Byte  
Programming Operation  
(Note 2)  
tWHWH1  
tWHWH1  
µs  
Word  
7
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH1  
tWHWH2  
Typ  
Typ  
4
µs  
tWHWH2  
Notes:  
Sector Erase Operation (Note 2)  
0.4  
sec  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
Am29DL320G  
47  
AC CHARACTERISTICS  
555 for program  
PA for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
4. Waveforms are for the word mode.  
Figure 27. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
48  
Am29DL320G  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1) Max (Note 2)  
Unit  
sec  
sec  
µs  
Comments  
Sector Erase Time  
0.4  
28  
5
5
Excludes 00h programming  
prior to erasure (Note 4)  
Chip Erase Time  
Byte Program Time  
Accelerated Byte/Word Program Time  
Word Program Time  
150  
120  
210  
63  
4
µs  
Excludes system level  
overhead (Note 5)  
7
µs  
Byte Mode  
Word Mode  
21  
14  
Chip Program Time  
(Note 3)  
sec  
42  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 1,000,000 cycles. Additionally,  
programming typicals assume checkerboard pattern.  
2. Under worst case conditions of 90°C, VCC = 2.7 V (3.0 V for regulated devices), 1,000,000 cycles.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table  
13 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 1,000,000 cycles.  
LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to VSS on all pins except I/O pins  
(including A9, OE#, and RESET#)  
–1.0 V  
12.5 V  
Input voltage with respect to VSS on all I/O pins  
VCC Current  
–1.0 V  
VCC + 1.0 V  
+100 mA  
–100 mA  
Note: Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.  
TSOP AND SO PIN CAPACITANCE  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
VIN = 0  
Typ  
6
Max  
7.5  
12  
Unit  
pF  
CIN  
COUT  
CIN2  
Output Capacitance  
Control Pin Capacitance  
VOUT = 0  
VIN = 0  
8.5  
7.5  
pF  
9
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
DATA RETENTION  
Parameter Description  
Test Conditions  
150°C  
Min  
10  
Unit  
Years  
Years  
Minimum Pattern Data Retention Time  
125°C  
20  
Am29DL320G  
49  
PHYSICAL DIMENSIONS  
FBD063—63-ball Fine-Pitch Ball Grid Array (FBGA) 8 x 14 mm  
Dwg rev AF; 10/99  
50  
Am29DL320G  
PHYSICAL DIMENSIONS  
FBD048—Fine-Pitch Ball Grid Array, 6 x 12 mm  
Dwg rev AG; 7/2000  
FBD 048  
6.00 mm x 12.00 mm  
PACKAGE  
1.20  
0.20  
0.84  
12.00 BSC  
0.94  
6.00 BSC  
5.60 BSC  
4.00 BSC  
8
6
48  
0.25 0.30  
0.35  
0.80 BSC  
0.40 BSC  
Am29DL320G  
51  
PHYSICAL DIMENSIONS  
TS 048—Thin Small Outline Package  
Dwg rev AA; 10/99  
52  
Am29DL320G  
PHYSICAL DIMENSIONS  
LAA064—64-ball Fortified Ball Grid Array (FBGA)  
11 x 13 mm package  
Am29DL320G  
53  
REVISION SUMMARY  
Revision A (December 6, 2001)  
Initial release.  
Replaced second bullet, added the two paragraphs  
under bullet and Figure 3.  
Common Flash Memory Interface (CFI)  
Modified third and fourth paragraphs.  
Command Definitions  
Revision A+1 (February 19, 2002)  
Ordering Information  
Corrected package marking for 6 x 12 mm FBGA  
package.  
Modified information for array data.  
Enter SecSi Sector/Exit SecSi Sector Command  
Sequence  
Revision B (July 31, 2002)  
Global  
Added ACC function note to end of paragraph.  
Table 13 Command Definitions  
Changed fourth data from 81/01 to 82/02.  
Operating Ranges  
Added LAA064 package.  
Ordering Information  
Corrected package marking for FBGA.  
AC Characteristics  
Removed extended (E) devices information.  
DC characteristics - CMOS Compatible  
Added ILR information.  
Added 70 ns speed grade to Test Specifications and  
Read-Only Operations  
Revision C (October 13, 2003)  
Global  
Trademarks  
Changed Advance Information datasheet status to  
Final.  
Updated to 2003 standards.  
Revision C + 1 (May 27, 2004)  
Ordering Information  
Ordering Information  
Removed standard products E temperature range,  
and EE & EEN from Valid Combinations for TSOP  
packages.  
Added Lead-free (Pb-free) options to the Temperature  
range breakout of the OPN Table and the Valid Combi-  
nations table.  
Table 6 Autoselect Codes  
Revision C + 2 (September 27, 2004)  
Cover sheet and title page  
Changed SecSi Indicator Bit (DQ7) for BYTE# = VIL  
from X to 82, and DQ7 to Q10 to 82h (factory locked),  
02h (not factory locked).  
Added notation to superseding documents.  
Customer Lockable: SecSi Sector NOT Pro-  
grammed or Protected At the Factory  
Revision C + 3 (May 25, 2005)  
Cover sheet and title page  
Added notation to superseding documents.  
54  
Am29DL320G  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limita-  
tion, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as con-  
templated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to  
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor de-  
vices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design mea-  
sures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating  
conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign  
Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks  
Copyright © 2004 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.  
ExpressFlash is a trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
Am29DL320G  
55  
Representatives in U.S. and Canada  
Sales Offices and Representatives  
ARIZONA,  
North America  
Tempe - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(480)839-2320  
CALIFORNIA,  
ALABAMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(256)830-9192  
ARIZONA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(602)242-4400  
CALIFORNIA,  
Calabasas - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(818)878-5800  
Irvine - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (949)261-2123  
San Diego - Centaur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(858)278-4950  
Santa Clara - Fourfront. . . . . . . . . . . . . . . . . . . . . . . . . . . .(408)350-4800  
CANADA,  
Burnaby, B.C. - Davetek Marketing. . . . . . . . . . . . . . . . . . . .(604)430-3680  
Calgary,Alberta - Davetek Marketing. . . . . . . . . . . . . . . . .(403)283-3577  
Kanata, Ontario - J-Squared Tech. . . . . . . . . . . . . . . . . . . .(613)592-9540  
Mississauga, Ontario - J-Squared Tech. . . . . . . . . . . . . . . . . .(905)672-2030  
St Laurent, Quebec - J-Squared Tech. . . . . . . . . . . . . . . . ( 5 1 4 ) 74 7 - 1 2 1 1  
COLORADO,  
Irvine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(949)450-7500  
Sunnyvale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(408)732-2400  
COLORADO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(303)741-2900  
CONNECTICUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(203)264-7800  
FLORIDA,  
Clearwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(727)793-0055  
Miami (Lakes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 0 5 ) 8 2 0 - 1 1 1 3  
GEORGIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(770)814-0224  
ILLINOIS,  
Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(630)773-4422  
MASSACHUSETTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (781)213-6400  
MICHIGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(248)471-6294  
MINNESOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(612)745-0005  
NEW JERSEY,  
Chatham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 97 3 ) 7 0 1 - 1 7 7 7  
NEWYORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(716)425-8050  
NORTH CAROLINA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(919)840-8080  
OREGON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(503)245-0080  
PENNSYLVANIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 1 5 ) 3 4 0 - 1 1 8 7  
SOUTH DAKOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(605)692-5777  
TEXAS,  
Golden - Compass Marketing . . . . . . . . . . . . . . . . . . . . . .(303)277-0456  
FLORIDA,  
Melbourne - Marathon Technical Sales . . . . . . . . . . . . . . . .(321)728-7706  
Ft. Lauderdale - Marathon Technical Sales . . . . . . . . . . . . . .(954)527-4949  
Orlando - Marathon Technical Sales . . . . . . . . . . . . . . . . . .(407)872-5775  
St. Petersburg - Marathon Technical Sales . . . . . . . . . . . . . .(727)894-3603  
GEORGIA,  
Duluth - Quantum Marketing . . . . . . . . . . . . . . . . . . . . . (678)584-1128  
ILLINOIS,  
Skokie - Industrial Reps, Inc. . . . . . . . . . . . . . . . . . . . . . . . .(847)967-8430  
INDIANA,  
Kokomo - SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (765)457-7241  
IOWA,  
Cedar Rapids - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . (319)294-1000  
KANSAS,  
Lenexa - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . . . . ( 9 1 3 ) 4 69 - 1 3 1 2  
MASSACHUSETTS,  
Austin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (512)346-7830  
Dallas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(972)985-1344  
Houston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(281)376-8084  
VIRGINIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(703)736-9568  
Burlington - Synergy Associates . . . . . . . . . . . . . . . . . . . . .(781)238-0870  
MICHIGAN,  
Brighton - SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(810)227-0007  
MINNESOTA,  
St. Paul - Cahill, Schmitz & Cahill, Inc. . . . . . . . . . . . . . . . . .(651)699-0200  
MISSOURI,  
St. Louis - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . . . . . (314)997-4558  
NEW JERSEY,  
International  
AUSTRALIA, North Ryde . . . . . . . . . . . . . . . . . . . . . . .TEL(61)2-88-777-222  
BELGIUM,Antwerpen . . . . . . . . . . . . . . . . . . . . . . . .TEL(32)3-248-43-00  
BRAZIL, San Paulo . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(55)11-5501-2105  
CHINA,  
Beijing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(86)10-6510-2188  
Shanghai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(86)21-635-00838  
Shenzhen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(86)755-246-1550  
FINLAND, Helsinki . . . . . . . . . . . . . . . . . . . . . . T E L ( 3 5 8 ) 8 8 1 - 3 1 1 7  
FRANCE, Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 3 3 ) - 1 - 4 975 1 0 1 0  
GERMANY,  
Bad Homburg . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(49)-6172-92670  
Munich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 4 9 ) - 8 9 - 4 5 0 5 3 0  
HONG KONG, Causeway Bay . . . . . . . . . . . . . . . . . . .TEL(85)2-2956-0388  
ITALY, Milan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 3 9 ) - 0 2 - 3 8 1 9 6 1  
INDIA, New Delhi . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 9 1 ) 1 1 - 62 3 - 8 62 0  
JAPAN,  
es  
Mt. Laurel - SJ Associates . . . . . . . . . . . . . . . . . . . . . . . . .(856)866-1234  
NEWYORK,  
Buffalo - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . ( 7 1 6 ) 74 1 - 7 1 1 6  
East Syracuse - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . (315)437-8343  
Pittsford - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . (716)586-3660  
Rockville Centre - SJ Associates . . . . . . . . . . . . . . . . . . . . (516)536-4242  
NORTH CAROLINA,  
Raleigh - Quantum Marketing . . . . . . . . . . . . . . . . . . . . . .(919)846-5728  
OHIO,  
Middleburg Hts - Dolfuss Root & Co. . . . . . . . . . . . . . . . . (440)816-1660  
Powell - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . . . . . (614)781-0725  
Vandalia - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . . . .(937)898-9610  
Westerville - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . (614)523-1990  
OREGON,  
Lake Oswego - I Squared, Inc. . . . . . . . . . . . . . . . . . . . . . .(503)670-0557  
UTAH,  
Murray - Front Range Marketing . . . . . . . . . . . . . . . . . . . .(801)288-2500  
VIRGINIA,  
Osaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(81)6-6243-3250  
Tokyo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(81)3-3346-7600  
KOREA, Seoul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(82)2-3468-2600  
RUSSIA, Moscow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(7)-095-795-06-22  
SWEDEN, Stockholm . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(46)8-562-540-00  
TAIWAN,Taipei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(886)2-8773-1555  
UNITED KINGDOM,  
Frimley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(44)1276-803100  
Haydock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(44)1942-272888  
Glen Burnie - Coherent Solution, Inc. . . . . . . . . . . . . . . . . ( 4 1 0 ) 76 1 - 2 2 5 5  
WASHINGTON,  
Kirkland - I Squared, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . .(425)822-9220  
WISCONSIN,  
Pewaukee - Industrial Representatives . . . . . . . . . . . . . . . .(262)574-9393  
Advanced Micro Devices reserves the right to make changes in its product without notice  
in order to improve design or performance characteristics.The performance  
characteristics listed in this document are guaranteed by specific tests, guard banding,  
design and other practices common to the industry. For specific testing details, contact  
your local AMD sales representative.The company assumes no responsibility for the use of  
any circuits described herein.  
Representatives in Latin America  
ARGENTINA,  
Capital Federal Argentina/WW Rep. . . . . . . . . . . . . . . . . . . .54-11)4373-0655  
CHILE,  
Santiago - LatinRep/WWRep. . . . . . . . . . . . . . . . . . . . . . . . . .(+562)264-0993  
COLUMBIA,  
Bogota - Dimser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 5 7 1 ) 4 1 0 - 4 1 8 2  
MEXICO,  
Guadalajara - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . .(523)817-3900  
Mexico City - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . .(525)752-2727  
Monterrey - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . . .(528)369-6828  
PUERTO RICO,  
© Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD Arrow logo and combination thereof, are trademarks of  
Advanced Micro Devices, Inc. Other product names are for informational purposes only  
and may be trademarks of their respective companies.  
Boqueron - Infitronics. . . . . . . . . . . . . . . . . . . . . . . . . . . .(787)851-6000  
One AMD Place, P.O. Box 3453, Sunnyvale, CA 94088-3453 408-732-2400  
TWX 910-339-9280 TELEX 34-6306 800-538-8450 http://www.amd.com  
©2003 Advanced Micro Devices, Inc.  
01/03  
Printed in USA  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY