A43E26161V-75F [AMICC]

Synchronous DRAM, 4MX16, 6ns, CMOS, PDSO54, TSOP2-54;
A43E26161V-75F
型号: A43E26161V-75F
厂家: AMIC TECHNOLOGY    AMIC TECHNOLOGY
描述:

Synchronous DRAM, 4MX16, 6ns, CMOS, PDSO54, TSOP2-54

时钟 动态存储器 光电二极管 内存集成电路
文件: 总45页 (文件大小:538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A43E26161  
1M X 16 Bit X 4 Banks Low Power Synchronous DRAM  
Document Title  
1M X 16 Bit X 4 Banks Low Power Synchronous DRAM  
Revision History  
Rev. No. History  
Issue Date  
Remark  
0.0  
1.0  
1.1  
Initial issue  
September 13, 2004 Preliminary  
Final version release  
December 15, 2004  
June 14, 2005  
Final  
Add 133MHz (-75 grade)  
Modify ICC7 specification to “10uA”  
Modify 54B CSP outline drawing symbol “A1” and “b”  
Add 54L Pb-Free TSOP package type  
Add 54B Pb-Free CSP package type  
Modify tSS from 3ns to 2ns  
1.2  
1.3  
July 11, 2005  
Modify –75 grade speed from 133MHz to 135MHz  
tCC, tCDL, tBDL and tCCD of –75 modify from 7.5ns to 7.4ns  
Modify 54 balls CSP outline drawing and dimensions  
Erase non-Pb-free package type  
November 2, 2005  
1.4  
1.5  
November 25, 2005  
March 14, 2007  
Modify 54 balls CSP package information  
1.6  
January 24, 2008  
Modify VDD and VDDQ MAX. voltage from 1.95V to 2.0V  
Add part numbering scheme  
1.7  
1.8  
July 2, 2008  
Add –I grade spec.  
October 2, 2009  
Change ICC7 from 10uA to 30uA  
(October, 2009, Version 1.8)  
AMIC Technology, Corp.  
A43E26161  
1M X 16 Bit X 4 Banks Low Power Synchronous DRAM  
Features  
„ Low power supply  
„ Self refresh with programmable refresh period through  
- VDD: 1.8V VDDQ : 1.8V  
EMRS cycle  
„ LVCMOS compatible with multiplexed address  
„ Programmable Power Reduction Feature by partial  
array activation during Self-refresh through EMRS  
cycle  
„ Industrial operating temperature range: -40ºC to +85ºC  
for -U series  
„ Industrial operating temperature range: -25ºC to +85ºC  
for -I series  
„ Available in 54 Balls CSP (8mm X 8mm) and 54-pin  
TSOP(II) packages  
„ Four banks / Pulse RAS  
„ MRS cycle with address key programs  
- CAS Latency (2 & 3)  
- Burst Length (1,2,4,8 & full page)  
- Burst Type (Sequential & Interleave)  
„ All inputs are sampled at the positive going edge of the  
system clock  
„ Deep Power Down Mode  
„ DQM for masking  
„ Auto & self refresh  
„ Package is available to lead free (-F series)  
„ All Pb-free (Lead-free) products are RoHS compliant  
„ 64ms refresh period (4K cycle)  
„ Clock Frequency (max) : 105MHz @ CL=3 (-95)  
135MHz @ CL=3 (-75)  
General Description  
The A43E26161 is 67,108,864 bits Low Power  
synchronous high data rate Dynamic RAM organized as 4  
X 1,048,576 words by 16 bits, fabricated with AMIC’s high  
performance CMOS technology. Synchronous design  
allows precise cycle control with the use of system clock.  
I/O transactions are possible on every clock cycle. Range  
of operating frequencies, programmable latencies allows  
the same device to be useful for a variety of high  
bandwidth,  
high  
performance  
memory  
system  
applications.  
Pin Configuration  
„ 54 Balls CSP (8 mm x 8 mm)  
Top View  
54 Ball (6X9) CSP  
1
2
3
7
8
9
A
B
C
D
E
F
VSS  
DQ15  
DQ13  
DQ11  
DQ9  
NC  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSS  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDD  
DQ0  
DQ2  
VDD  
DQ1  
DQ3  
DQ5  
DQ7  
DQ14  
DQ12  
DQ10  
DQ8  
DQ4  
DQ6  
LDQM  
UDQM  
CLK  
CKE  
CAS  
BA0  
RAS  
BA1  
WE  
G
NC  
A11  
A9  
CS  
A10  
VDD  
H
J
A8  
A7  
A5  
A6  
A4  
A0  
A3  
A1  
A2  
VSS  
(October, 2009, Version 1.8)  
1
AMIC Technology, Corp.  
A43E26161  
Pin Configuration (continued)  
„ 54 TSOP (II)  
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28  
A43E26161V  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
Block Diagram  
LWE  
Data Input Register  
Bank Select  
DQM  
1M X 16  
1M X 16  
1M X 16  
CLK  
DQi  
1M X 16  
Column Decoder  
ADD  
Latency & Burst Length  
LRAS  
Programming Register  
LWCBR  
LCAS  
DQM  
LRAS  
LCBR LWE  
Timing Register  
RAS  
DQM  
CLK  
CKE  
CS  
CAS  
WE  
(October, 2009, Version 1.8)  
2
AMIC Technology, Corp.  
A43E26161  
Pin Descriptions  
Symbol  
Name  
Description  
CLK  
CS  
System Clock  
Chip Select  
Active on the positive going edge to sample all inputs.  
Disables or Enables device operation by masking or enabling all inputs except  
CLK, CKE and L(U)DQM  
Masks system clock to freeze operation from the next clock cycle.  
CKE should be enabled at least one clock + tss prior to new command.  
Disable input buffers for power down in standby.  
CKE  
Clock Enable  
Row / Column addresses are multiplexed on the same pins.  
Row address : RA0~RA11, Column address: CA0~CA7  
Selects bank to be activated during row address latch time.  
Selects band for read/write during column address latch time.  
A0~A11  
Address  
BS0, BS1  
Bank Select Address  
Row Address Strobe  
Latches row addresses on the positive going edge of the CLK with RAS low.  
Enables row access & precharge.  
RAS  
CAS  
Latches column addresses on the positive going edge of the CLK with CAS low.  
Enables column access.  
Column Address  
Strobe  
Write Enable  
Enables write operation and Row precharge.  
WE  
Makes data output Hi-Z, t SHZ after the clock and masks the output.  
Blocks data input when L(U)DQM active.  
Data Input/Output  
Mask  
L(U)DQM  
DQ0-15  
Data Input/Output  
Data inputs/outputs are multiplexed on the same pins.  
Power  
Supply/Ground  
VDD/VSS  
Power Supply: +1.7V ~ 2.0V/Ground  
Data Output  
Power/Ground  
VDDQ/VSSQ  
NC/RFU  
Provide isolated Power/Ground to DQs for improved noise immunity.  
No Connection  
(October, 2009, Version 1.8)  
3
AMIC Technology, Corp.  
A43E26161  
Absolute Maximum Ratings*  
*Comments  
Voltage on any pin relative to VSS (Vin, Vout ) . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +2.6V  
Voltage on VDD supply relative to VSS (VDD, VDDQ )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-1.0V to + 2.6V  
Storage Temperature (TSTG) . . . . . . . . . . -55°C to +150°C  
Soldering Temperature X Time (TSLODER) . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C X 10sec  
Power Dissipation (PD) . . . . . . . . . . . . . . . . . . . . . . . . 0.8W  
Short Circuit Current (Ios) . . . . . . . . . . . . . . . . . . . . 50mA  
Permanent device damage may occur if “Absolute  
Maximum Ratings” are exceeded.  
Functional operation should be restricted to recommended  
operating condition.  
Exposure to higher than recommended voltage for  
extended periods of time could affect device reliability.  
Capacitance (TA=25°C, f=1MHz)  
Parameter  
Input Capacitance  
Symbol  
CI1  
Condition  
Min  
2.0  
2.0  
3.5  
Max  
4.0  
4.0  
6.0  
Unit  
pF  
A0 to A11, BS0, BS1  
CLK, CKE,  
CI2  
,
,
, WE , DQM  
pF  
CS RAS CAS  
Data Input/Output Capacitance  
CI/O  
DQ0 to DQ15  
pF  
DC Electrical Characteristics  
Recommend operating conditions  
(Voltage referenced to VSS=0V, TA = 0ºC to +70ºC for commercial, TA = -40ºC to +85ºC for -U or TA =-25ºC to +85ºC for -I)  
Parameter  
Supply Voltage  
Symbol  
VDD  
VDDQ  
VIH  
Min  
Typ  
Max  
Unit  
V
Note  
1.7  
1.8  
2.0  
DQ Supply Voltage  
Input High Voltage  
1.7  
1.8  
2.0  
V
0.8*VDDQ  
-
-
-
-
-
-
VDDQ+0.3  
V
Input Low Voltage  
VIL  
-0.3  
0.3  
-
V
Note 1  
IOH = -0.1mA  
IOL = 0.1mA  
Note 2  
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
Output Leakage Current  
Output Loading Condition  
VOH  
VDDQ - 0.2  
V
VOL  
-
0.2  
1
V
IIL  
-1  
μA  
μA  
IOL  
-1.5  
1.5  
Note 3  
See Fig. 1 (Page 6)  
Note: 1. VIL (min) = -1.5V AC (pulse width 5ns).  
2. Any input 0V VIN VDD + 0.3V, all other pins are not under test = 0V  
3. Dout is disabled, 0V Vout VDD  
(October, 2009, Version 1.8)  
4
AMIC Technology, Corp.  
A43E26161  
Decoupling Capacitance Guide Line  
Recommended decoupling capacitance added to power line at board.  
Parameter  
Symbol  
Value  
Unit  
μF  
Decoupling Capacitance between VDD and VSS  
Decoupling Capacitance between VDDQ and VSSQ  
CDC1  
CDC2  
0.1 + 0.01  
0.1 + 0.01  
μF  
Note: 1. VDD and VDDQ pins are separated each other.  
All VDD pins are connected in chip. All VDDQ pins are connected in chip.  
2. VSS and VSSQ pins are separated each other  
All VSS pins are connected in chip. All VSSQ pins are connected in chip.  
DC Electrical Characteristics  
(Recommended operating condition unless otherwise noted, TA = 0ºC to +70ºC for commercial, TA = -40ºC to +85ºC for -U or TA  
=-25ºC to +85ºC for -I)  
Speed  
Units Note  
Symbol  
Parameter  
Test Conditions  
Burst Length = 1  
-75  
-95  
Operating Current  
(One Bank Active)  
40  
Icc1  
mA  
mA  
1
tRC tRC(min), tCC tCC(min), IOL = 0mA  
Icc2 P  
0.3  
0.5  
CKE VIL(max), tCC = 15ns  
Precharge Standby Current  
in power-down mode  
Icc2 PS  
CKE VIL(max), tCC = ∞  
CKE VIH(min), CS VIH(min), tCC = 15ns  
Input signals are changed one time during 30ns  
ICC2N  
5.5  
Precharge Standby Current  
in non power-down mode  
mA  
mA  
CKE VIH(min), CLK VIL(max), tCC = ∞  
Input signals are stable.  
ICC2NS  
2
ICC3P  
ICC3N  
Active Standby current in  
non power-down mode  
(One Bank Active)  
1.5  
CKE VIL(max), tCC = 15ns  
CKE VIH(min),  
CS VIH(min), tCC = 15ns  
12  
50  
Input signals are changed one time during 30ns  
Operating Current  
(Burst Mode)  
IOL = 0mA, Page Burst  
All bank Activated, tCCD = tCCD (min)  
ICC4  
ICC5  
mA  
mA  
1
2
90  
Refresh Current  
tRC tRC (min)  
TCSR Range  
4 Banks  
<45°C  
<70°C  
<85°C  
300  
170  
110  
80  
350  
200  
130  
100  
80  
400  
220  
140  
100  
80  
ICC6  
Self Refresh Current  
CKE 0.2V  
2 Banks  
1 Banks  
1/2 Bank  
1/4 Bank  
uA  
uA  
70  
30  
ICC7  
Deep Power Down Current  
CKE 0.2V  
Note: 1. Measured with outputs open. Addresses are changed only one time during tCC(min).  
2. Refresh period is 64ms. Addresses are changed only one time during tCC(min).  
(October, 2009, Version 1.8)  
5
AMIC Technology, Corp.  
A43E26161  
AC Operating Test Conditions  
(VDD = 1.7V~2.0V, TA = 0ºC to +70ºC for commercial, TA = -40ºC to +85ºC for -U or TA =-25ºC to +85ºC for -I)  
Parameter  
Value  
Unit  
V
AC input levels  
0.9 x VDDQ/0.2  
0.5 x VDDQ  
tr/tf = 1/1  
Input timing measurement reference level  
Input rise and all time (See note3)  
Output timing measurement reference level  
Output load condition  
V
ns  
V
0.5 x VDDQ  
See Fig.2  
1.8V  
VOH(DC) = VDDQ-0.2V, IOH = -0.1mA  
13.9KΩ VOL(DC) = 0.2V, IOL = 0.1mA  
VTT =0.5V x VDDQ  
50Ω  
Output  
ZO=50Ω  
OUTPUT  
30pF  
10.6KΩ  
30pF  
(Fig. 2) AC Output Load Circuit  
(Fig. 1) DC Output Load Circuit  
AC Characteristics  
(AC operating conditions unless otherwise noted)  
-75  
-95  
Symbol  
Parameter  
Unit  
Note  
Min  
7.4  
12  
-
Max  
Min  
Max  
CL=3  
CL=2  
CL=3  
CL=2  
9.5  
15  
-
tCC  
CLK cycle time  
1000  
1000  
ns  
1
6
9
-
7
8
-
CLK to valid  
Output delay  
tSAC  
tOH  
tCH  
ns  
ns  
ns  
1,2  
2
-
-
Output data hold time  
2.5  
3
2.5  
3.5  
3.5  
3.5  
3.5  
2
CL=3  
CL=2  
CL=3  
CL=2  
CL=3  
CL=2  
-
-
CLK high pulse width  
3
3
-
-
3
-
-
tCL  
tSS  
CLK low pulse width  
Input setup time  
ns  
ns  
3
3
3
-
-
2
-
-
2
-
2
-
tSH  
Input hold time  
1.5  
1
-
1.5  
1
-
ns  
ns  
3
2
tSLZ  
CLK to output in Low-Z  
-
-
CL=3  
CL=2  
-
6
8
-
7
8
tSHZ  
CLK to output in Hi-Z  
ns  
-
-
CL=CAS Latency.  
*All AC parameters are measured from half to half.  
Note : 1. Parameters depend on programmed CAS latency.  
2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.  
3. Assumed input rise and fall time (tr & tf) = 1ns.  
If tr & tf is longer than 1ns, transient time compensation should be considered,  
i.e., [(tr + tf)/2-1]ns should be added to the parameter.  
(October, 2009, Version 1.8)  
6
AMIC Technology, Corp.  
A43E26161  
Operating AC Parameter  
(AC operating conditions unless otherwise noted)  
Version  
Symbol  
Parameter  
Unit  
Note  
-75  
2
-95  
2
tRRD(min)  
tRCD(min)  
Row active to row active delay  
CLK  
ns  
1
1
27  
28.5  
RAS to  
delay  
CAS  
tRP(min)  
tRAS(min)  
tRAS(max)  
tRC(min)  
Row precharge time  
Row active time  
27  
57  
28.5  
57  
ns  
ns  
μs  
ns  
1
1
100  
84  
100  
85.5  
Row cycle time  
1
tCDL(min)  
tRDL(min)  
tBDL(min)  
tCCD(min)  
Last data in new col. Address delay  
Last data in row precharge  
7.4  
2
8.5  
2
ns  
CLK  
ns  
2
1,2  
2
Last data in to burst stop  
7.4  
7.4  
9.5  
9.5  
Col. Address to col. Address delay  
ns  
Note: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and  
then rounding off to the next higher integer.  
2. Minimum delay is required to complete write.  
(October, 2009, Version 1.8)  
7
AMIC Technology, Corp.  
A43E26161  
Simplified Truth Table  
Command  
CKEn-1 CKEn CS RAS  
DQM BS0 A10 A9~A0, Notes  
CAS  
WE  
BS1 /AP  
A11  
Register  
Mode Register Set  
1,2  
H
H
X
X
L
L
L
L
L
L
L
L
X
L
OP CODE  
Extended Mode Register Set  
OP CODE  
X
1,2  
3
Refresh  
Auto Refresh  
Self  
H
L
H
L
L
L
L
H
H
X
Entry  
Exit  
3
H
H
3
Refresh  
L
H
X
X
X
X
H
L
X
L
X
H
X
H
3
4
Bank Active & Row Addr.  
H
V
V
Row Addr.  
Read &  
Column Addr.  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
L
H
L
Column  
Addr.  
4
H
X
L
H
L
H
X
4,5  
4
Write &  
Column  
Addr.  
H
H
X
X
L
L
H
H
L
L
L
X
X
V
Column Addr.  
H
4,5  
Burst Stop  
Precharge  
H
X
Bank Selection  
Both Banks  
V
X
L
H
X
L
L
H
L
X
X
H
L
H
X
L
H
X
X
H
X
V
X
X
H
X
H
X
H
X
X
H
X
V
X
H
X
X
H
X
V
X
Entry  
H
L
L
H
L
X
X
X
Clock Suspend or  
Active Power Down  
X
X
Exit  
Entry  
H
H
L
Precharge Power Down Mode  
Exit  
L
H
H
H
X
X
V
X
H
DQM  
X
X
6
7
L
H
L
H
X
H
X
H
X
L
No Operation Command  
Deep Power Down Entry  
Deep Power Down Exit  
H
L
L
X
X
X
X
H
X
X
(V = Valid, X = Don’t Care, H = Logic High, L = Logic Low)  
Note : 1. OP Code: Operand Code  
A0~A11, BS0, BS1: Program keys. (@MRS, EMRS)  
2. MRS can be issued only when all banks are at precharge state.  
A new command can be issued after 2 clock cycle of MRS, EMRS.  
3. Auto refresh functions is same as CBR refresh of DRAM.  
The automatical precharge without Row precharge command is meant by “Auto”.  
Auto/Self refresh can be issued only when all banks are at precharge state.  
4. BS0, BS1 : Bank select address.  
If both BS1 and BS0 are “Low” at read, write, row active and precharge, bank A is selected.  
If both BS1 is “Low” and BS0 is “High” at read, write, row active and precharge, bank B is selected.  
If both BS1 is “High” and BS0 is “Low” at read, write, row active and precharge, bank C is selected.  
If both BS1 and BS0 are “High” at read, write, row active and precharge, bank D is selected.  
If A10/AP is “High” at row precharge, BS1 and BS0 is ignored and all banks are selected.  
5. During burst read or write with auto precharge, new read/write command cannot be issued.  
Another bank read/write command can be issued at every burst length.  
6. DQM sampled at positive going edge of a CLK masks the data-in at the very CLK (Write DQM latency is 0)  
but masks the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2)  
7. After Deep Power Down mode exit, a full new initialization of the memory device is mandatory.  
(October, 2009, Version 1.8)  
8
AMIC Technology, Corp.  
A43E26161  
Mode Register Filed Table to Program Modes  
Register Programmed with MRS  
Address  
BS1  
BS0  
A11,A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Function  
0
0
RFU  
W.B.L  
TM  
CAS Latency  
BT  
Burst Length  
(Note 3)  
(Note 1)  
(Note 2)  
Test Mode  
Type  
CAS Latency  
A6 A5 A4 Latency  
Burst Type  
Burst Length  
A8 A7  
A3  
Type  
A2 A1 A0  
BT=0  
BT=1  
0
0
1
0
1
0
Mode Register Set  
0
0
0
0
0
1
0
1
0
Reserved  
0
1
Sequential  
Interleave  
0
0
0
0
0
1
0
1
0
1
2
4
1
2
4
Vendor  
Use  
-
2
Only  
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
3
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
8
8
Reserved  
Reserved  
Reserved  
Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
256(Full) Reserved  
Write Burst Length  
Length  
A9  
0
Burst  
1
Single Bit  
Note : 1. RFU(Reserved for Future Use) should stay “0” during MRS cycle.  
2. If A9 is high during MRS cycle, “Burst Read Single Bit Write” function will be enabled.  
3. BS0, BS1 must be 0,0 to select the Mode Register (vs. the Extended Mode Register).  
Extended Mode Register Table  
BS1  
BS0 A11, A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Bus (Ax)  
1
0
TCSR  
PASR  
All have to be set to “0”  
DS  
(Note)  
Driver Strength  
Temperature-Compensated Self-Refresh:  
Partial-Array Self Refresh:  
Driver Strength  
A4  
A3  
Max. Case Temp.  
A2  
A1  
A0  
Banks to be Self-Refreshed  
0
0
1
1
0
1
0
1
70°C  
45°C  
15°C  
85°C  
A6 A5 Driver Strength  
0
0
1
0
1
0
Full  
1/2  
1/4  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
All banks  
Bank A, Bank B  
Bank A  
Reserved  
Reserved  
1/2 of Bank A  
1/4 of Bank A  
Reserved  
Note: BS1 and BS0 must be 1, 0 to select the Extended Mode Register (vs. the Mode Register)  
(October, 2009, Version 1.8)  
9
AMIC Technology, Corp.  
A43E26161  
Power Up Sequence  
1. Apply power and start clock, Attempt to maintain CKE = “H”, DQM = “H” and the other pins are NOP condition at inputs.  
2. Maintain stable power, stable clock and NOP input condition for a minimum of 200μs.  
3. Issue precharge commands for all banks of the devices.  
4. Issue 2 or more auto-refresh commands.  
5. Issue a mode register set command to initialize the mode register. The device is now ready for normal operation.  
6. Issue a extended mode register set command to define DS or PASR operating type of the device after normal MRS.  
cf.) Sequence of 4 & 5 may be changed.  
EMRS cycle is not mandatory and the EMRS command needs to be issued only when DS or PASR is used.  
The default state without EMRS command issued is the half driver strength and full array refreshed.  
The device is now ready for the operation selected by EMRS.  
For operating with DS or PASR, set DS or PASR mode in EMRS setting stage.  
In order to adjust another mode in the state of DS or PASR mode, additional EMRS set is required but power up sequence is not  
needed again at this time. In that case, all banks have to be in idle state prior to adjusting EMRS set.  
Burst Sequence (Burst Length = 4)  
Initial address  
Sequential  
Interleave  
A1  
0
A0  
0
0
1
2
3
1
2
3
0
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
0
1
3
2
1
0
0
1
1
0
1
1
Burst Sequence (Burst Length = 8)  
Initial address  
Sequential  
Interleave  
A2  
A1  
A0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
7
1
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
6
7
0
1
2
3
4
0
1
2
3
4
5
6
0
3
2
5
4
7
6
(October, 2009, Version 1.8)  
10  
AMIC Technology, Corp.  
A43E26161  
The clock signal must also be asserted at the same time.  
2. After VDD reaches the desired voltage, a minimum pause  
of 200 microseconds is required with inputs in NOP  
condition.  
3. All banks must be precharged now.  
4. Perform a minimum of 2 Auto refresh cycles to stabilize  
the internal circuitry.  
5. Perform a MODE REGISTER SET cycle to program the  
CAS latency, burst length and burst type as the default  
value of mode register is undefined.  
Device Operations  
Clock (CLK)  
The clock input is used as the reference for all SDRAM  
operations. All operations are synchronized to the positive  
going edge of the clock. The clock transitions must be  
monotonic between VIL and VIH. During operation with CKE  
high all inputs are assumed to be in valid state (low or high)  
for the duration of set up and hold time around positive edge  
of the clock for proper functionality and ICC specifications.  
At the end of one clock cycle from the mode register set  
cycle, the device is ready for operation.  
Clock Enable (CKE)  
When the above sequence is used for Power-up, all the  
out-puts will be in high impedance state. The high  
impedance of outputs is not guaranteed in any other  
power-up sequence.  
The clock enable (CKE) gates the clock onto SDRAM. If  
CKE goes low synchronously with clock (set-up and hold  
time same as other inputs), the internal clock is suspended  
from the next clock cycle and the state of output and burst  
address is frozen as long as the CKE remains low. All other  
inputs are ignored from the next clock cycle after CKE goes  
low. When all banks are in the idle state and CKE goes low  
synchronously with clock, the SDRAM enters the power  
down mode from the next clock cycle. The SDRAM remains  
in the power down mode ignoring the other inputs as long as  
CKE remains low. The power down exit is synchronous as  
the internal clock is suspended. When CKE goes high at  
least “tSS + 1 CLOCK” before the high going edge of the  
clock, then the SDRAM becomes active from the same clock  
edge accepting all the input commands.  
cf.) Sequence of 4 & 5 may be changed.  
Mode Register Set (MRS)  
The mode register stores the data for controlling the various  
operation modes of SDRAM. It programs the CAS latency,  
addressing mode, burst length, test mode and various  
vendor specific options to make SDRAM useful for variety of  
different applications. The default value of the mode register  
is not defined, therefore the mode register must be written  
after power up to operate the SDRAM. The mode register is  
written by asserting low on  
,
,
,
(The  
WE  
CAS  
CS RAS  
SDRAM should be in active mode with CKE already high  
prior to writing the mode register). The state of address pins  
A0~A11, BS0 and BS1 in the same cycle as  
Bank Select (BS0, BS1)  
This SDRAM is organized as 4 independent banks of  
1,048,576 words X 16 bits memory arrays. The BS0, BS1  
,
,
,
going low is the data written in the  
WE  
CS RAS CAS  
inputs is latched at the time of assertion of  
and  
CAS  
RAS  
mode register. One clock cycle is required to complete the  
write in the mode register. The mode register contents can  
be changed using the same command and clock cycle  
requirements during operation as long as all banks are in the  
idle state. The mode register is divided into various fields  
depending on functionality. The burst length field uses  
A0~A2, burst type uses A3, addressing mode uses A4~A6,  
A7~A8, A9, BS0 and BS1 are used for vendor specific  
options or test mode. And the write burst length is  
programmed using A9. A7~A8, A10~A11, BS0 and BS1  
must be set to low for normal SDRAM operation.  
to select the bank to be used for the operation. The bank  
select BS0, BS1 is latched at bank activate, read, write  
mode register set and precharge operations.  
Address Input (A0 ~ A11)  
The 20 address bits required to decode the 1,048,576 word  
locations are multiplexed into 12 address input pins  
(A0~A11). The 12 bit row address is latched along with  
, BS0 and BS1 during bank activate command. The 8  
RAS  
Refer to table for specific codes for various burst length,  
addressing modes and CAS latencies. BS0 and BS1 have to  
be set to “0” to enter the Mode Register.  
bit column address is latched along with  
and BS1during read or write command.  
,
, BS0  
WE  
CAS  
NOP and Device Deselect  
Extended Mode Register (EMRS)  
The Extended Mode Register controls functions beyond  
those controlled by the Mode Register. These additional  
functions are unique to AMIC’s Low Power SDRAM and  
includes a Refresh Period field (TCSR) for temperature  
compensated self-refresh and a Partial-Array Self Refresh  
field (PASR). The PASR field is used to specify whether only  
bank A and bank B,or bank A,or 1/2 of bank A,or 1/4 of bank  
A be refreshed. Disable banks will not be refreshed in Self-  
Refresh mode and written data will be lost. When only bank  
A is selected it is possible to partial select only half or one  
quarter of bank A. The TCR field has four entries to set  
Refresh Period during self-refresh depending on the case  
temperature of the Low Power devices.  
When  
,
and  
are high, the SDRAM  
WE  
CAS  
RAS  
performs no operation (NOP). NOP does not initiate any new  
operation, but is needed to complete operations which  
require more than single clock like bank activate, burst read,  
auto refresh, etc. The device deselect is also a NOP and is  
entered by asserting  
high.  
high disables the  
CS  
CS  
command decoder so that  
the address inputs are ignored.  
,
and , and all  
WE  
CAS  
RAS  
Power-Up  
The following sequence is recommended for POWER UP  
1. Power must be applied to either CKE and DQM inputs to  
pull them high and other pins are NOP condition at the  
inputs before or along with VDD (and VDDQ) supply.  
The Extended Mode Register is programmed via the Mode  
Register Set command (with BS0=0 and BS1=1) and retains  
(October, 2009, Version 1.8)  
11  
AMIC Technology, Corp.  
A43E26161  
the stored information until it is programmed again or the  
device loses power. The Extended Mode Register must be  
loaded when all banks are idle, and the controller must wait  
the specified time before initiating any subsequent operation.  
Violating either these requirements result in unspecified  
operation. Unused bit A7 to A11 have to be set to “0”.  
cycles in adjacent addresses depending on burst length and  
burst sequence. By asserting low on  
,
and  
WE  
CS CAS  
with valid column address, a write burst is initiated. The data  
inputs are provided for the initial address in the same clock  
cycle as the burst write command. The input buffer is  
deselected at the end of the burst length, even though the  
internal writing may not have been completed yet. The burst  
write can be terminated by issuing a burst read and DQM for  
blocking data inputs or burst write in the same or the other  
active bank. The burst stop command is valid only at full  
page burst length where the writing continues at the end of  
burst and the burst is wrap around. The write burst can also  
be terminated by using DQM for blocking data and  
precharging the bank “tRDL” after the last data input to be  
written into the active row. See DQM OPERATION also.  
Bank Activate  
The bank activate command is used to select a random row  
in an idle bank. By asserting low on  
and  
with  
CS  
RAS  
desired row and bank addresses, a row access is initiated.  
The read or write operation can occur after a time delay of  
tRCD(min) from the time of bank activation. tRCD(min) is an  
internal timing parameter of SDRAM, therefore it is  
dependent on operating clock frequency. The minimum  
number of clock cycles required between bank activate and  
read or write command should be calculated by dividing  
tRCD(min) with cycle time of the clock and then rounding off  
the result to the next higher integer. The SDRAM has 4  
internal banks on the same chip and shares part of the  
internal circuitry to reduce chip area, therefore it restricts the  
activation of all banks simultaneously. Also the noise  
generated during sensing of each bank of SDRAM is high  
requiring some time for power supplies to recover before the  
other bank can be sensed reliably. tRRD(min) specifies the  
minimum time required between activating different banks.  
The number of clock cycles required between different bank  
activation must be calculated similar to tRCD specification.  
The minimum time required for the bank to be active to  
initiate sensing and restoring the complete row of dynamic  
cells is determined by tRAS(min) specification before a  
precharge command to that active bank can be asserted.  
The maximum time any bank can be in the active state is  
determined by tRAS(max). The number of cycles for both  
tRAS(min) and tRAS(max) can be calculated similar to tRCD  
specification.  
DQM Operation  
The DQM is used to mask input and output operation. It  
works similar to  
during read operation and inhibits  
OE  
writing during write operation. The read latency is two cycles  
from DQM and zero cycle for write, which means DQM  
masking occurs two cycles later in the read cycle and occurs  
in the same cycle during write cycle. DQM operation is  
synchronous with the clock, therefore the masking occurs for  
a complete cycle. The DQM signal is important during burst  
interrupts of write with read or precharge in the SDRAM. Due  
to asynchronous nature of the internal write, the DQM  
operation is critical to avoid unwanted or incomplete writes  
when the complete burst write is not required.  
Precharge  
The precharge operation is performed on an active bank by  
asserting low on  
,
,
and A10/AP with valid BA  
WE  
CS RAS  
of the bank to be precharged. The precharge command can  
be asserted anytime after tRAS(min) is satisfied from the bank  
activate command in the desired bank. “tRP” is defined as the  
minimum time required to precharge a bank.  
Burst Read  
The minimum number of clock cycles required to complete  
row precharge is calculated by dividing “tRP” with clock cycle  
time and rounding up to the next higher integer. Care should  
be taken to make sure that burst write is completed or DQM  
is used to inhibit writing before precharge command is  
asserted. The maximum time any bank can be active is  
specified by tRAS(max). Therefore, each bank has to be  
precharged within tRAS(max) from the bank activate  
command. At the end of precharge, the bank enters the idle  
state and is ready to be activated again.  
The burst read command is used to access burst of data on  
consecutive clock cycles from an active row in an active  
bank. The burst read command is issued by asserting low on  
and  
with  
being high on the positive edge of  
WE  
CS  
CAS  
the clock. The bank must be active for at least tRCD(min)  
before the burst read command is issued. The first output  
appears CAS latency number of clock cycles after the issue  
of burst read command. The burst length, burst sequence  
and latency from the burst read command is determined by  
the mode register which is already programmed. The burst  
read can be initiated on any column address of the active  
row. The address wraps around if the initial address does not  
start from a boundary such that number of outputs from each  
I/O are equal to the burst length programmed in the mode  
register. The output goes into high-impedance at the end of  
the burst, unless a new burst read was initiated to keep the  
data output gapless. The burst read can be terminated by  
issuing another burst read or burst write in the same bank or  
the other active bank or a precharge command to the same  
bank. The burst stop command is valid at every page burst  
length.  
Entry to Power Down, Auto refresh, Self refresh and Mode  
register Set etc, is possible only when all banks are in idle  
state.  
Auto Precharge  
The precharge operation can also be performed by using  
auto precharge. The SDRAM internally generates the timing  
to satisfy tRAS(min) and “tRP” for the programmed burst length  
and CAS latency. The auto precharge command is issued at  
the same time as burst read or burst write by asserting high  
on A10/AP. If burst read or burst write command is issued  
with low on A10/AP, the bank is left active until a new  
command is asserted. Once auto precharge command is  
given, no new commands are possible to that particular bank  
until the bank achieves idle state.  
Burst Write  
The burst write command is similar to burst read command,  
and is used to write data into the SDRAM consecutive clock  
(October, 2009, Version 1.8)  
12  
AMIC Technology, Corp.  
A43E26161  
Self Refresh  
All Banks Precharge  
The self refresh is another refresh mode available in the  
SDRAM. The self refresh is the preferred refresh mode for  
data retention and low power operation of SDRAM. In self  
refresh mode, the SDRAM disables the internal clock and all  
the input buffers except CKE. The refresh addressing and  
timing is internally generated to reduce power consumption.  
The self refresh mode is entered from all banks idle state by  
All banks can be precharged at the same time by using  
Precharge all command. Asserting low on  
,
and  
CS RAS  
with high on A10/AP after both banks have satisfied  
WE  
tRAS(min) requirement, performs precharge on all banks. At  
the end of tRP after performing precharge all, all banks are  
in idle state.  
asserting low on  
,
,
and CKE with high on  
CS RAS CAS  
Auto Refresh  
. Once the self refresh mode is entered, only CKE state  
being low matters, all the other inputs including clock are  
ignored to remain in the self refresh.  
The self refresh is exited by restarting the external clock and  
then asserting high on CKE. This must be followed by NOP’s  
for a minimum time of “tRC” before the SDRAM reaches idle  
state to begin normal operation. If the system uses burst  
auto refresh during normal operation, it is recommended to  
used burst 4096 auto refresh cycles immediately after exiting  
self refresh.  
WE  
The storage cells of SDRAM need to be refreshed every  
64ms to maintain data. An auto refresh cycle accomplishes  
refresh of a single row of storage cells. The internal counter  
increments automatically on every auto refresh cycle to  
refresh all the rows. An auto refresh command is issued by  
asserting low on  
,
and  
with high on CKE  
CAS  
CS RAS  
and  
. The auto refresh command can only be asserted  
WE  
with all banks being in idle state and the device is not in  
power down mode (CKE is high in the previous cycle). The  
time required to complete the auto refresh operation is  
specified by “tRC(min)”. The minimum number of clock cycles  
required can be calculated by dividing “tRC” with clock cycle  
time and then rounding up to the next higher integer. The  
auto refresh command must be followed by NOP’s until the  
auto refresh operation is completed. All banks will be in the  
idle state at the end of auto refresh operation. The auto  
refresh is the preferred refresh mode when the SDRAM is  
being used for normal data transactions. The auto refresh  
cycle can be performed once in 15.6us or a burst of 4096  
auto refresh cycles once in 64ms.  
Deep Power Down Mode  
The Deep Power Down Mode is an unique function on Low  
Power SDRAMs with very low standby currents. All internal  
voltage generators inside the Low Power SDRAMs are  
stopped and all memory data will be lost in this mode. To  
enter the Deep Power Down Mode all banks must be  
precharged and the necessary Precharged Delay tRP must  
occur.  
(October, 2009, Version 1.8)  
13  
AMIC Technology, Corp.  
A43E26161  
Basic feature And Function Descriptions  
1. CLOCK Suspend  
1) Click Suspended During Write (BL=4)  
2) Clock Suspended During Read (BL=4)  
CLK  
CMD  
CKE  
WR  
RD  
Masked by CKE  
Masked by CKE  
Internal  
CLK  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
Not Written  
Suspended Dout  
Note: CLK to CLK disable/enable=1 clock  
2. DQM Operation  
2) Read Mask (BL=4)  
1) Write Mask (BL=4)  
CLK  
CMD  
WR  
RD  
DQM  
Masked by CKE  
D3  
Masked by CKE  
Q2  
Hi-Z  
Hi-Z  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
Q0  
Q3  
Q2  
D3  
Q1  
Q3  
DQM to Data-in Mask = 0CLK  
DQM to Data-out Mask = 2  
2) Read Mask (BL=4)  
CLK  
CMD  
CKE  
RD  
DQM  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Q0  
Q2  
Q1  
Q4  
Q3  
Q6  
Q5  
Q7  
Q6  
Q8  
Q7  
DQ(CL2)  
DQ(CL3)  
Hi-Z  
* Note : 1. DQM makes data out Hi-Z after 2 clocks which should masked by CKE “L”.  
2. DQM masks both data-in and data-out.  
(October, 2009, Version 1.8)  
14  
AMIC Technology, Corp.  
A43E26161  
3. CAS Interrupt (I)  
1) Read interrupted by Read (BL=4)Note 1  
CLK  
CMD  
RD  
A
RD  
B
ADD  
DQ(CL2)  
DQ(CL3)  
QA0 QB0 QB1 QB2 QB3  
QA0 QB0 QB1 QB2 QB3  
t
CCD  
Note2  
2) Write interrupted by Write (BL =2)  
3) Write interrupted by Read (BL =2)  
CLK  
WR WR  
WR  
RD  
CMD  
t
CCD  
tCCD  
Note2  
Note2  
ADD  
DQ  
A
B
A
B
DA0 DB0 DB1  
DQ(CL2)  
DQ(CL3)  
DA0  
QB0 QB1  
t
CDL  
Note3  
DA0  
QB0 QB1  
t
CDL  
Note3  
Note : 1. By “Interrupt”, It is possible to stop burst read/write by external command before the end of burst.  
By “ Interrupt”, to stop burst read/write by access; read, write and block write.  
CAS  
2. tCCD :  
CAS  
to  
delay. (=1CLK)  
CAS  
CAS  
3. tCDL : Last data in to new column address delay. (= 1CLK).  
(October, 2009, Version 1.8)  
15  
AMIC Technology, Corp.  
A43E26161  
4. CAS Interrupt (II) : Read Interrupted Write & DQM  
(1) CL=2, BL=4  
CLK  
i) CMD  
RD  
RD  
WR  
D0  
DQM  
DQ  
ii) CMD  
D1  
D2  
D3  
D2  
WR  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
D1  
RD  
RD  
WR  
iii) CMD  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
iv) CMD  
WR  
DQM  
DQ  
Hi-Z  
Note 1  
Q0  
D0  
D3  
(2) CL=3, BL=4  
CLK  
i) CMD  
DQM  
RD  
RD  
RD  
RD  
WR  
D0  
DQ  
D1  
D2  
D3  
D2  
ii) CMD  
WR  
DQM  
DQ  
D0  
D1  
D3  
D2  
iii) CMD  
WR  
DQM  
DQ  
D0  
D1  
D3  
D2  
D1  
iv) CMD  
WR  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
v) CMD  
RD  
WR  
DQM  
DQ  
Hi-Z  
Q0  
D0  
D3  
Note 2  
* Note : 1. To prevent bus contention, there should be at least one gap between data in and data out.  
2. To prevent bus contention, DQM should be issued which makes a least one gap between data in and data out.  
(October, 2009, Version 1.8)  
16  
AMIC Technology, Corp.  
A43E26161  
5. Write Interrupted by Precharge & DQM  
CLK  
Note 2  
CMD  
WR  
D0  
PRE  
Note 1  
DQM  
DQ  
D1  
D2 D3  
Masked by DQM  
Note : 1. To inhibit invalid write, DQM should be issued.  
2. This precharge command and burst write command should be of the same bank, otherwise it is not precharge  
interrupt but only another bank precharge of dual banks operation.  
6. Precharge  
1 ) N o rm a l W rite (B L = 4 )  
C L K  
C M D  
D Q  
W R  
D 0  
P R E  
D 1  
D 2  
D 3  
tR D L  
2 ) R e a d (B L = 4 )  
C L K  
C M D  
R D  
P R E  
Q 2  
D Q (C L 2 )  
Q 0  
Q 1  
Q 0  
Q 3  
Q 2  
D Q (C L 3 )  
Q 1  
Q 3  
7. Auto Precharge  
1) Normal Write (BL=4)  
CLK  
CMD  
DQ  
WR  
D0  
D1  
D2  
D3  
Note 1  
Auto Precharge Starts  
2) Read (BL=4)  
CLK  
CMD  
DQ(CL2)  
DQ(CL3)  
RD  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
Note 1  
Auto Precharge Starts  
* Note : 1. The row active command of the precharge bank can be issued after tRP from this point.  
The new read/write command of other active bank can be issued from this point.  
At burst read/write with auto precharge,  
interrupt of the same/another bank is illegal.  
CAS  
(October, 2009, Version 1.8)  
17  
AMIC Technology, Corp.  
A43E26161  
8. Burst Stop & Interrupted by Precharge  
1) Normal Write (BL=4)  
CLK  
2) Write Burst Stop (BL=8)  
CLK  
CMD  
CMD  
WR  
PRE  
WR  
STOP  
DQM  
DQ  
DQM  
DQ  
D0  
D1  
D2  
D3  
D0  
D1  
D2  
D3  
D4  
D5  
tRDL Note 1  
t
BDL Note 2  
1) Read Interrupted by Precharge (BL=4)  
CLK  
4) Read Burst Stop (BL=4)  
CLK  
CMD  
CMD  
RD  
PRE  
Q0  
RD  
STOP  
Q0  
Note 3  
1
1
DQ(CL2)  
DQ(CL3)  
Q1  
Q0  
DQ(CL2)  
DQ(CL3)  
Q1  
Q0  
2
2
Q1  
Q1  
9. MRS  
Mode Register Set  
CLK  
Note 1  
PRE  
MRS  
ACT  
CMD  
t
RP  
2CLK  
Note : 1. tRDL: 1CLK  
2. tBDL: 1CLK; Last data in to burst stop delay.  
Read or write burst stop command is valid at every burst length.  
3. Number of valid output data after row precharge or burst stop: 1,2 for CAS latency = 2, 3 respectively.  
4. PRE: All banks precharge if necessary.  
MRS can be issued only when all banks are in precharged state.  
(October, 2009, Version 1.8)  
18  
AMIC Technology, Corp.  
A43E26161  
10. Clock Suspend Exit & Power Down Exit  
1) Clock Suspend (=Active Power Down) Exit  
CLK  
2) Power Down (=Precharge Power Down) Exit  
CLK  
CKE  
CKE  
t
SS  
t
SS  
Note 2  
Note 1  
Internal  
CLK  
Internal  
CLK  
NOP  
ACT  
RD  
CMD  
CMD  
11. Auto Refresh & Self Refresh  
Note 3  
1) Auto Refresh  
CLK  
Note 4  
Note 5  
CKE  
PRE  
Internal  
CLK  
AR  
CMD  
CMD  
t
RP  
tRC  
Note 6  
2) Self Refresh  
CLK  
Note 4  
CMD  
CKE  
PRE  
SR  
CMD  
t
RP  
tRC  
* Note : 1. Active power down : one or more bank active state.  
2. Precharge power down : both bank precharge state.  
3. The auto refresh is the same as CBR refresh of conventional DRAM.  
No precharge commands are required after Auto Refresh command.  
During tRC from auto refresh command, other command can not be accepted.  
4. Before executing auto/self refresh command, both banks must be idle state.  
5. MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.  
6. During self refresh mode, refresh interval and refresh operation are performed internally.  
After self refresh entry, self refresh mode is kept while CKE is LOW.  
During self refresh mode, all inputs expect CKE will be don’t cared, and outputs will be in Hi-Z state.  
During tRC from self refresh exit command, any other command can not be accepted.  
Before/After self refresh mode, burst auto refresh cycle (4K cycles ) is recommended.  
(October, 2009, Version 1.8)  
19  
AMIC Technology, Corp.  
A43E26161  
12. About Burst Type Control  
At MRS A3=”0”. See the BURST SEQUENCE TABE.(BL=4,8)  
BL=1,2,4,8 and full page wrap around.  
At MRS A3=” 1”. See the BURST SEQUENCE TABE.(BL=4,8)  
BL=4,8 At BL=1,2 Interleave Counting = Sequential Counting  
Sequential counting  
Basic  
MODE  
Interleave counting  
Every cycle Read/Write Command with random column address can realize  
Random Column Access.  
That is similar to Extended Data Out (EDO) Operation of convention DRAM.  
Random  
MODE  
Random column Access  
tCCD = 1 CLK  
13. About Burst Length Control  
At MRS A2,1,0 = “000”.  
At auto precharge, tRAS should not be violated.  
1
Basic  
MODE  
At MRS A2,1,0 = “001”.  
At auto precharge, tRAS should not be violated.  
At MRS A2,1,0 = “010”  
2
4
8
At MRS A2,1,0 = “011”.  
At MRS A9=”1”.  
Read burst = 1,2,4,8, full page/write Burst =1  
At auto precharge of write, tRAS should not be violated.  
Before the end of burst, Row precharge command of the same bank  
Stops read/write burst with Row precharge.  
Special  
BRSW  
MODE  
Interrupt  
RAS  
(Interrupted by Precharge)  
tRDL= 2 with DQM, valid DQ after burst stop is 1,2 for CL=2,3 respectively  
Interrupt  
MODE  
During read/write burst with auto precharge,  
Before the end of burst, new read/write stops read/write burst and starts new  
read/write burst or block write.  
interrupt cannot be issued.  
RAS  
Interrupt  
CAS  
During read/write burst with auto precharge,  
interrupt can not be issued.  
CAS  
(October, 2009, Version 1.8)  
20  
AMIC Technology, Corp.  
A43E26161  
Power On Sequence for Low Power SDRAM  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
CS  
RAS  
CAS  
ADDR  
KEY  
KEY  
Ra  
BS0  
BS1  
Ra  
A10/AP  
WE  
DQM  
DQ  
High level is necessary  
High-Z  
t
PR  
t
RC  
tRC  
Precharge  
(All Banks)  
Normal  
MRS  
Extended  
MRS  
Row Active  
(A-Bank)  
Auto Refresh  
Auto Refresh  
: Don't care  
(October, 2009, Version 1.8)  
21  
AMIC Technology, Corp.  
A43E26161  
Single Bit Read-Write-Read Cycles (Same Page) @CAS Latency=3, Burst Length=1  
t
CH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
t
CL  
t
CC  
High  
t
RAS  
t
RC  
t
SH  
*Note 1  
CS  
t
SS  
t
RCD  
t
RP  
t
SH  
RAS  
t
SS  
t
CCD  
t
SH  
CAS  
ADDR  
t
SS  
t
SH  
tSS  
Ra  
Ca  
Cb  
Cc  
Rb  
t
SS  
t
SH  
*Note 2,3  
*Note 2,3  
*Note 2,3 *Note 4  
*Note 2  
*Note 2  
BS0, BS1  
A10/AP  
BS  
BS  
BS  
BS  
BS  
BS  
*Note 3  
*Note 3  
*Note 3 *Note 4  
Ra  
Rb  
t
SH  
WE  
t
t
SS  
SS  
t
t
SH  
SH  
DQM  
DQ  
t
RA  
C
t
SA  
C
Qa  
Db  
Qc  
t
SLZ  
t
SS  
t
OH  
t
SHZ  
Read  
Write  
Row Active  
Read  
Row Active  
Precharge  
: Don't care  
(October, 2009, Version 1.8)  
22  
AMIC Technology, Corp.  
A43E26161  
* Note : 1. All inputs can be don’t care when  
is high at the CLK high going edge.  
CS  
2. Bank active & read/write are controlled by BS0, BS1.  
BS1  
BS0  
Active & Read/Write  
Bank A  
0
0
1
1
0
1
0
1
Bank B  
Bank C  
Bank D  
3. Enable and disable auto precharge function are controlled by A10/AP in read/write command.  
A10/AP BS1  
BS0  
0
Operation  
0
0
Disable auto precharge, leave bank A active at end of burst.  
Disable auto precharge, leave bank B active at end of burst.  
Disable auto precharge, leave bank C active at end of burst.  
Disable auto precharge, leave bank D active at end of burst.  
Enable auto precharge, precharge bank A at end of burst.  
Enable auto precharge, precharge bank B at end of burst.  
Enable auto precharge, precharge bank C at end of burst.  
Enable auto precharge, precharge bank D at end of burst.  
1
0
1
0
1
0
0
1
0
1
1
1
0
1
1
4. A10/AP and BS0, BS1 control bank precharge when precharge command is asserted.  
A10/AP  
BS1  
0
BS0  
0
Precharge  
Bank A  
0
0
0
0
1
0
1
Bank B  
1
0
Bank C  
1
1
Bank D  
X
X
All Banks  
(October, 2009, Version 1.8)  
23  
AMIC Technology, Corp.  
A43E26161  
Read & Write Cycle at Same Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
*Note 1  
RC  
t
CS  
t
RCD  
RAS  
CAS  
*Note 2  
ADDR  
Ra  
Ca0  
Rb  
Cb0  
BS0  
BS1  
A10/AP  
WE  
Ra  
Rb  
DQM  
t
OH  
DQ  
(CL = 2)  
Qa0  
Qa1  
Qa2  
Qa3  
Db0  
Db0  
Db1  
Db2  
Db3  
t
RAC  
*Note 4  
t
RDL  
t
SAC  
tSHZ  
*Note 3  
t
OH  
DQ  
(CL = 3)  
Qa0  
Qa1  
Qa2  
Qa3  
Db1  
Db2  
t
Db3  
t
RAC  
*Note 4  
RDL  
t
SHZ  
t
SAC  
*Note 3  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. Minimum row cycle times is required to complete internal DRAM operation.  
2. Row precharge can interrupt burst on any cycle. [CAS latency-1] valid output data available after Row  
enters precharge. Last valid output will be Hi-Z after tSHZ from the clock.  
3. Access time from Row address. tCC*(tRCD + CAS latency-1) + tSAC  
4. Output will be Hi-Z after the end of burst. (1,2,4 & 8)  
(October, 2009, Version 1.8)  
24  
AMIC Technology, Corp.  
A43E26161  
Page Read & Write Cycle at Same Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
t
RCD  
RAS  
CAS  
*Note 2  
ADDR  
BS0  
Ra  
Ca  
Cb  
Cc  
Cd  
BS1  
A10/AP  
WE  
Ra  
t
RDL  
t
CDL  
*Note1  
*Note3  
DQM  
DQ  
(CL=2)  
Qb2  
Qb1  
Qa0  
Qa1  
Qb0  
Qb1  
Qb0  
Dc0  
Dc0  
Dc1  
Dc1  
Dd0  
Dd0  
Dd1  
Dd1  
DQ  
(CL=3)  
Qa0  
Qa1  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Write  
(A-Bank)  
Read  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. To write data before burst read ends, DQM should be asserted three cycle prior to write  
command to avoid bus contention.  
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge, will be written.  
3. DQM should mask invalid input data on precharge command cycle when asserting precharge  
before end of burst. Input data after Row precharge cycle will be masked internally.  
(October, 2009, Version 1.8)  
25  
AMIC Technology, Corp.  
A43E26161  
Page Read Cycle at Different Bank @Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
*Note 1  
CS  
*Note 2  
RAS  
CAS  
RAa  
RBb  
CAa  
RCc  
CBb  
RDd  
CCc  
CDd  
ADDR  
BS1  
BS0  
A10/AP  
WE  
RAa  
RBb  
RCc  
RDd  
DQM  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QBb0 QBb1 QBb2 QCc0 QCc1 QCc2 QDd0 QDd1 QDd2  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QBb0 QBb1 QBb2 QCc0 QCc1 QCc2 QDd0 QDd1 QDd2  
Read  
(C-Bank)  
Row Active  
(D-Bank)  
Read  
(D-Bank)  
Precharge  
(D-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
Precharge  
(B-Bank)  
Precharge  
(C-Bank)  
Row Active  
(B-Bank)  
Row Active  
(C-Bank)  
: Don't care  
* Note : 1.  
can be don’t care when  
, and  
RAS CAS  
are high at the clock high going edge.  
WE  
CS  
2. To interrupt a burst read by row precharge, both the read and the precharge banks must be the same.  
(October, 2009, Version 1.8)  
26  
AMIC Technology, Corp.  
A43E26161  
Page Write Cycle at Different Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
*Note 2  
CCc  
CDd  
RAa  
RBb  
CAa  
CBb  
RCc  
RDd  
ADDR  
BS1  
BS0  
A10/AP  
RAa  
RBb  
RCc  
RDd  
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DCc0 DCc1 DDd0 DDd1 CDd2  
DQ  
t
RDL  
t
CDL  
WE  
*Note 1  
DQM  
Precharge  
(All Banks)  
Write  
(A-Bank)  
Write  
(B-Bank)  
Row Active  
(D-Bank)  
Write  
(D-Bank)  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Row Active  
(C-Bank)  
Write  
(C-Bank)  
: Don't care  
* Note:  
1. To interrupt burst write by Row precharge, DQM should be asserted to mask invalid input data.  
2. To interrupt burst write by Row precharge, both the write and precharge banks must be the same.  
(October, 2009, Version 1.8)  
27  
AMIC Technology, Corp.  
A43E26161  
Read & Write Cycle at Different Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
RAa  
CAa  
RDb  
CDb  
RBc  
CBc  
ADDR  
BS1  
BS0  
A10/AP  
RAa  
RDb  
RBC  
t
CDL  
*Note 1  
WE  
DQM  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QAa3  
DDb0 DDb1 DDb2 DDb3  
DDb0 DDb1 DDb2 DDb3  
QBc0 QBc1 QBc2  
QBc0 QBc1  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Write  
(D-Bank)  
Read  
(B-Bank)  
Row Active  
(D-Bank)  
Row Active  
(B-Bank)  
: Don't care  
* Note : tCDL should be met to complete write.  
(October, 2009, Version 1.8)  
28  
AMIC Technology, Corp.  
A43E26161  
Read & Write Cycle with Auto Precharge @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
RAa  
RBb  
CAa  
CBb  
ADDR  
BS1  
BS0  
RAa  
RBb  
A10/AP  
WE  
DQM  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QAa3  
DDb0 DDb1 DDb2 DDb3  
DDb0 DDb1 DDb2 DDb3  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3  
Row Active  
(A-Bank)  
Auto Precharge  
Start Point  
(A-Bank/CL=3)  
Auto Precharge  
Start Point  
(D-Bank)  
Read with  
Auto Precharge  
(A-Bank)  
Write with  
Auto Precharge  
(D-Bank)  
Auto Precharge  
Start Point  
(A-Bank/CL=2)  
Row Active  
(D-Bank)  
: Don't care  
*Note : tRCD should be controlled to meet minimum tRAS before internal precharge start.  
(In the case of Burst Length=1 & 2, BRSW mode)  
(October, 2009, Version 1.8)  
29  
AMIC Technology, Corp.  
A43E26161  
Clock Suspension & DQM Operation Cycle @CAS Latency = 2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
CS  
RAS  
CAS  
ADDR  
BS1  
Ra  
Ca  
Cc  
Cb  
BS0  
A10/AP  
Ra  
WE  
* Note 1  
DQM  
DQ  
Qa0  
Qa1  
Qb0  
Qb1  
Dc0  
Dc2  
Qa2  
Qa3  
t
SHZ  
tSHZ  
Read  
Bank 0  
Read  
Bank 0  
Clock  
Suspension  
Write  
DQM  
Row Active  
Read DQM  
Write  
Bank 0  
Clock  
Suspension  
: Don't care  
* Note : DQM needed to prevent bus contention.  
(October, 2009, Version 1.8)  
30  
AMIC Technology, Corp.  
A43E26161  
Read Interrupted by Precharge Command & Read Burst Stop Cycle @Burst Length=Full Page  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
RAa  
CAa  
CAb  
ADDR  
BS1  
BS0  
RAa  
A10/AP  
WE  
DQM  
1
1
DQ  
(CL=2)  
QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
QAa0  
2
2
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
Read  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
: Don't care  
* Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. About the valid DQ’s after burst stop, it is same as the case of  
interrupt.  
RAS  
Both cases are illustrated above timing diagram. See the label 1,2 on them.  
But at burst write, burst stop and interrupt should be compared carefully.  
RAS  
Refer the timing diagram of “Full page write burst stop cycle”.  
3. Burst stop is valid at every burst length.  
(October, 2009, Version 1.8)  
31  
AMIC Technology, Corp.  
A43E26161  
Write Interrupted by Precharge Command & Write Burst Stop Cycle @ Burst Length = Full Page  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
ADDR  
BS1  
RAa  
CAa  
CAb  
BS0  
A10/AP  
RAa  
t
RDL  
t
BDL  
* Note 2  
WE  
DQM  
DQ  
DAa0 DAa1 DAa2 DAa3 DAa4  
DAb0 DAb1 DAb2 DAb3 DAb4 DAb5  
Write  
(A-Bank)  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
: Don't care  
* Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. Data-in at the cycle of interrupted by precharge cannot be written into the corresponding memory cell.  
It is defined by AC parameter of tRDL(=2CLK).  
DQM at write interrupted by precharge command is needed to prevent invalid write.  
DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst.  
Input data after Row precharge cycle will be masked internally.  
3. Burst stop is valid at every burst length.  
(October, 2009, Version 1.8)  
32  
AMIC Technology, Corp.  
A43E26161  
Active/Precharge Power Down Mode @CAS Lantency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
* Note 2  
SS  
t
SS  
t
t
SS  
tSS  
* Note 1  
*Note 3  
CS  
RAS  
CAS  
Ra  
Ca  
ADDR  
BS1  
BS0  
Ra  
A10/AP  
WE  
DQM  
DQ  
t
SHZ  
Qa0  
Qa1  
Qa2  
Precharge  
Power-down  
Exit  
Precharge  
Power-down  
Entry  
Read  
Precharge  
Row  
Active  
Active  
Active  
Power-down  
Exit  
Power-down  
Entry  
: Don't care  
* Note : 1. All banks should be in idle state prior to entering precharge power down mode.  
2. CKE should be set high at least “1CLK + tSS” prior to Row active command.  
3. Cannot violate minimum refresh specification. (64ms)  
(October, 2009, Version 1.8)  
33  
AMIC Technology, Corp.  
A43E26161  
Self Refresh Entry & Exit Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
* Note 4  
* Note 2  
t
RC  
min.  
t
SS  
* Note 6  
* Note 1  
* Note 3  
t
SS  
* Note 5  
CS  
RAS  
CAS  
* Note 7  
* Note 7  
ADDR  
BS0, BS1  
A10/AP  
WE  
DQM  
DQ  
Hi-Z  
Hi-Z  
Self Refresh Exit  
Auto Refresh  
Self Refresh Entry  
: Don't care  
* Note : TO ENTER SELF REFRESH MODE  
1. and CKE should be low at the same clock cycle.  
CS RAS CAS  
,
&
2. After 1 clock cycle, all the inputs including the system clock can be don’t care except for CKE.  
3. The device remains in self refresh mode as long as CKE stays “Low”.  
(cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.  
TO EXIT SELF REFRESH MODE  
4. System clock restart and be stable before returning CKE high.  
5.  
starts from high.  
CS  
6. Minimum tRC is required after CKE going high to complete self refresh exit.  
7. 4K cycle of burst auto refresh is required before self refresh entry and after self refresh exit.  
If the system uses burst refresh.  
(October, 2009, Version 1.8)  
34  
AMIC Technology, Corp.  
A43E26161  
Mode Register Set Cycle  
Auto Refresh Cycle  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
CLOCK  
CKE  
High  
High  
*Note 2  
CS  
t
RC  
RAS  
CAS  
* Note 1  
* Note 3  
Key  
Ra  
ADDR  
WE  
DQM  
DQ  
Hi-Z  
Hi-Z  
MRS  
Auto Refresh  
New Command  
: Don't care  
New  
Command  
* All banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.  
MODE REGISTER SET CYCLE  
* Note : 1.  
,
,
&
activation at the same clock cycle with address key will set internal  
WE  
CS RAS CAS  
mode register.  
2. Minimum 2 clock cycles is required before new  
3. Please refer to Mode Register Set table.  
activation.  
RAS  
(October, 2009, Version 1.8)  
35  
AMIC Technology, Corp.  
A43E26161  
Deep Power Down Mode Entry  
CLK  
CKE  
CS  
WE  
CAS  
RAS  
ADDR  
DQM  
DQ  
input  
DQ  
output  
High-Z  
t
RP  
Precharge Command  
Normal Mode  
Deep Power Down Entry  
Deep Power Down Mode  
(October, 2009, Version 1.8)  
36  
AMIC Technology, Corp.  
A43E26161  
Deep Power Down Mode Exit  
CLK  
CKE  
CS  
RAS  
CAS  
WE  
200 us  
t
RP  
tRC  
New  
Mode  
Register Mode  
Set Register Set  
Extended  
Deep Power  
Down Exit  
All Banks  
Precharge Refresh  
Auto  
Auto  
Refresh  
Command  
Accepted  
Here  
The deep power down mode is exited by asserting CKE high. After the exit, the following sequence is needed to enter a new  
command:  
1. Maintain NOP input conditions for a minimum of 200μs  
2. Issue precharge commands for all banks of the device  
3. Issue eight or more auto-refresh commands  
4. Issue a mode register set command to initialize the mode register  
5. Issue an extended mode register set command to initialize the extended mode register  
(October, 2009, Version 1.8)  
37  
AMIC Technology, Corp.  
A43E26161  
Function Truth Table (Table 1)  
Current  
CS RAS  
BS  
Address  
Action  
Note  
CAS  
WE  
State  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP  
NOP  
X
ILLEGAL  
2
2
X
H
L
BS  
BS  
BS  
X
CA, A10/AP ILLEGAL  
IDLE  
H
H
L
RA  
A10/AP  
X
Row Active; Latch Row Address  
L
NOP  
4
5
5
L
H
L
Auto Refresh or Self Refresh  
L
L
OP Code  
Mode Register Access  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP  
NOP  
Row  
X
ILLEGAL  
2
2
Active  
H
L
BS  
BS  
BS  
BS  
X
CA,A10/AP Begin Read; Latch CA; Determine AP  
CA,A10/AP Begin Write; Latch CA; Determine AP  
L
H
H
L
H
L
RA  
PA  
X
ILLEGAL  
L
Precharge  
L
X
X
H
L
ILLEGAL  
X
H
H
H
H
L
X
H
H
L
X
X
NOP(Continue Burst to End Row Active)  
NOP(Continue Burst to End Row Active)  
Term burst Row Active  
X
X
X
X
H
L
BS  
BS  
BS  
BS  
X
CA,A10/AP Term burst; Begin Read; Latch CA; Determine AP  
CA,A10/AP Term burst; Begin Write; Latch CA; Determine AP  
3
3
2
3
Read  
L
H
H
L
H
L
RA  
ILLEGAL  
L
A10/AP  
Term Burst; Precharge timing for Reads  
ILLEGAL  
L
X
X
H
L
X
X
X
X
X
H
H
H
H
L
X
H
H
L
X
NOP(Continue Burst to EndRow Active)  
NOP(Continue Burst to EndRow Active)  
Term burst Row Active  
X
X
H
L
BS  
BS  
BS  
BS  
X
CA,A10/AP Term burst; Begin Read; Latch CA; Determine AP  
CA,A10/AP Term burst; Begin Write; Latch CA; Determine AP  
3
3
2
3
Write  
L
H
H
L
H
L
RA  
ILLEGAL  
L
A10/AP  
Term Burst; Precharge timing for Writes  
ILLEGAL  
L
X
X
H
L
X
X
X
X
X
H
H
H
H
L
X
H
H
L
X
NOP(Continue Burst to EndPrecharge)  
NOP(Continue Burst to EndPrecharge)  
ILLEGAL  
X
Read with  
Auto  
Precharge  
X
H
L
BS  
BS  
BS  
X
CA,A10/AP ILLEGAL  
CA,A10/AP ILLEGAL  
2
2
L
H
L
X
X
RA, PA  
X
ILLEGAL  
ILLEGAL  
L
2
(October, 2009, Version 1.8)  
38  
AMIC Technology, Corp.  
A43E26161  
Function Truth Table (Table 1, Continued)  
Current  
CS  
BS  
Address  
Action  
Note  
CAS  
WE  
RAS  
State  
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP(Continue Burst to EndPrecharge)  
NOP(Continue Burst to EndPrecharge)  
ILLEGAL  
Write with  
Auto  
X
H
L
BS  
BS  
BS  
X
CA,A10/AP ILLEGAL  
CA,A10/AP ILLEGAL  
2
2
Precharge  
L
H
L
X
X
X
H
L
RA, PA  
ILLEGAL  
L
X
X
X
X
ILLEGAL  
2
X
H
H
H
L
X
H
H
L
X
NOPIdle after tRP  
NOPIdle after tRP  
ILLEGAL  
X
X
Precharge  
X
H
L
BS  
BS  
BS  
X
CA,A10/AP ILLEGAL  
2
2
2
4
H
H
L
RA  
ILLEGAL  
L
A10/AP  
NOPIdle after tRP  
ILLEGAL  
L
X
X
H
L
X
X
X
X
X
H
H
H
L
X
H
H
L
X
NOPRow Active after tRCD  
NOPRow Active after tRCD  
ILLEGAL  
X
X
Row  
Activating  
X
H
L
BS  
BS  
BS  
X
CA,A10/AP ILLEGAL  
2
2
2
2
H
H
L
RA  
ILLEGAL  
L
A10/AP  
ILLEGAL  
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ILLEGAL  
X
H
H
L
X
H
L
X
NOPIdle after tRC  
NOPIdle after tRC  
ILLEGAL  
X
Refreshing  
X
H
L
X
ILLEGAL  
L
X
ILLEGAL  
X
X
X
NOPIdle after 2 clocks  
L
L
L
L
H
H
H
L
H
H
L
H
L
H
X
X
X
X
X
X
X
NOPIdle after 2 clocks  
ILLEGAL  
Mode  
Register  
Accessing  
X
X
ILLEGAL  
X
ILLEGAL  
Abbreviations  
RA = Row Address  
NOP = No Operation Command  
BS = Bank Address  
CA = Column Address  
AP = Auto Precharge  
PA = Precharge All  
Note: 1. All entries assume that CKE was active (High) during the preceding clock cycle and the current clock cycle.  
2. Illegal to bank in specified state: Function may be legal in the bank indicated by BA, depending on the state of that bank.  
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
4. NOP to bank precharging or in idle state. May precharge bank indicated by BS (and PA).  
5. Illegal if any banks is not idle.  
(October, 2009, Version 1.8)  
39  
AMIC Technology, Corp.  
A43E26161  
Function Truth Table for CKE (Table 2)  
Current  
State  
CKE CKE  
CS  
RAS  
Address  
Action  
Note  
CAS  
WE  
n-1  
n
H
X
X
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
RA  
X
INVALID  
L
L
H
H
H
H
H
L
6
6
Exit Self RefreshABI after tRC  
Exit Self RefreshABI after tRC  
ILLEGAL  
Self  
L
L
Refresh  
L
L
X
X
X
X
X
H
L
ILLEGAL  
L
L
X
X
X
X
H
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
NOP(Maintain Self Refresh)  
INVALID  
H
L
X
H
H
H
H
H
L
7
7
Exit Power DownABI  
Exit Power DownABI  
ILLEGAL  
Both  
Bank  
Precharge  
Power  
L
L
L
L
L
X
X
X
X
X
H
L
ILLEGAL  
Down  
L
L
X
X
X
X
H
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
NOP(Maintain Power Down Mode)  
Refer to Table 1  
Enter Power Down  
Enter Power Down  
ILLEGAL  
H
H
H
H
H
H
H
H
L
H
L
8
8
L
All  
Banks  
Idle  
L
L
L
L
X
H
H
L
ILLEGAL  
L
L
H
L
Row (& Bank ) Active  
Enter Self Refresh  
L
L
L
8
L
L
L
L
OPCODE MRS  
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
H
H
L
H
L
Refer to Operations in Table 1  
Begin Clock Suspend next cycle  
Exit Clock Suspend next cycle  
Maintain clock Suspend  
Any State  
Other than  
Listed  
9
9
H
L
Above  
L
Abbreviations : ABI = All Banks Idle  
Note: 6. After CKE’s low to high transition to exit self refresh mode, a minimum of tRC(min) has to be elapse before issuing a  
new command.  
7. CKE low to high transition is asynchronous as if it restarts internal clock.  
A minimum setup time “tSS + one clock” must be satisfied before any command can be issued other than exit.  
8. Power-down and self refresh can be entered only when all the banks are in idle state.  
9. Must be a legal command.  
(October, 2009, Version 1.8)  
40  
AMIC Technology, Corp.  
A43E26161  
Part Numbering Scheme  
X
X XX X X X X X  
XX  
A43  
Package Material  
Blank: normal  
F: PB free  
Temperature  
Blank : 0°C ~ 70°C  
U:-40°C ~ 85°C Industrial gra  
Automative  
A :-40°C ~ 85°C  
Speed  
95: 105 MHz  
75: 133 MHz  
7: 143 MHz  
6: 166 MHz  
55: 183 MHz  
5: 200 MHz  
Package Type  
V: TSOP  
G: CSP  
Device Version*  
Mobile Function*  
I/O Width  
08: 8 I/O  
16: 16 I/O  
32: 32 I/O  
Device Density  
06: 1M  
16: 2M  
26: 4M  
36: 8M  
46: 16M  
56: 32M  
83: 256K  
Operating Vcc  
L: 3V~3.6V  
P: 2.3V~2.7V  
E: 1.7V~2.0V  
Device Type  
A43: AMIC SDRAM  
* Optional  
(October, 2009, Version 1.8)  
41  
AMIC Technology, Corp.  
A43E26161  
Ordering Information  
Part No.  
Min. Cycle Time  
(ns)  
Max. Clock Frequency  
(MHz)  
Access Time  
Package  
A43E26161G-75F  
A43E26161G-75UF  
A43E26161G-75IF  
A43E26161V-75F  
A43E26161V-75UF  
A43E26161V-75IF  
A43E26161G-95F  
A43E26161G-95UF  
A43E26161G-95IF  
A43E26161V-95F  
A43E26161V-95UF  
A43E26161V-95IF  
54B Pb-Free CSP  
54B Pb-Free CSP  
54B Pb-Free CSP  
7.4  
135  
6 ns  
54 Pb-Free TSOP (II)  
54 Pb-Free TSOP (II)  
54 Pb-Free TSOP (II)  
54B Pb-Free CSP  
54B Pb-Free CSP  
54B Pb-Free CSP  
9.5  
105  
7 ns  
54 Pb-Free TSOP (II)  
54 Pb-Free TSOP (II)  
54 Pb-Free TSOP (II)  
Note: -U is for industrial operating temperature range -40ºC to +85ºC.  
-I is for industrial operating temperature range -25 ºC to +85ºC.  
(October, 2009, Version 1.8)  
42  
AMIC Technology, Corp.  
A43E26161  
Package Information  
54 Balls CSP (8 x 8 mm) Outline Dimensions  
unit: mm  
8.00 ± 0.10  
0.40 ± 0.05  
(October, 2009, Version 1.8)  
43  
AMIC Technology, Corp.  
A43E26161  
Package Information  
TSOP 54L (Type II) Outline Dimensions  
unit: inches/mm  
Detail "A"  
R1  
54  
28  
0.21 REF  
R2  
0.665 REF  
θ
L
L
1
1
27  
D
Detail "A"  
S
-C-  
e
b
0.1  
Seating Plane  
Dimensions in inches  
Dimensions in mm  
Symbol  
Min  
-
Nom  
Max  
Min  
-
Nom  
Max  
1.20  
0.15  
1.05  
0.45  
0.21  
A
A1  
A2  
b
-
0.047  
0.006  
0.041  
0.018  
0.008  
-
0.002  
0.037  
0.012  
0.005  
0.004  
0.05  
0.95  
0.30  
0.12  
-
0.039  
1.00  
-
-
c
-
-
D
0.875 BSC  
0.028 REF  
0.463 BSC  
0.400 BSC  
0.031 BSC  
0.020  
22.22 BSC  
0.71 REF  
11.76 BSC  
10.16 BSC  
0.80 BSC  
0.50  
S
E
E1  
e
L
0.016  
0.024  
0.40  
0.60  
L1  
R1  
R2  
θ
0.031 REF  
-
0.80 REF  
-
0.005  
0.005  
0°  
-
0.12  
0.12  
0°  
-
-
0.010  
8°  
-
0.25  
8°  
-
-
Notes:  
1. The maximum value of dimension D includes end flash.  
2. Dimension E does not include resin fins.  
3. Dimension S includes end flash.  
(October, 2009, Version 1.8)  
44  
AMIC Technology, Corp.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY