A43E2632V-95I [AMICC]

1M X 16 Bit X 4 Banks Synchronous DRAM; 1M ×16位×4银行同步DRAM
A43E2632V-95I
型号: A43E2632V-95I
厂家: AMIC TECHNOLOGY    AMIC TECHNOLOGY
描述:

1M X 16 Bit X 4 Banks Synchronous DRAM
1M ×16位×4银行同步DRAM

动态存储器
文件: 总42页 (文件大小:502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A43L2616B  
1M X 16 Bit X 4 Banks Synchronous DRAM  
Document Title  
1M X 16 Bit X 4 Banks Synchronous DRAM  
Revision History  
Rev. No. History  
Issue Date  
Remark  
0.0  
0.1  
Initial issue  
August 24, 2006  
February 14, 2007  
Preliminary  
Change ICC1 to 70mA  
Change ICC6 to 1.5mA  
Add 54B Pb-Free CSP package type  
Final version release  
0.2  
1.0  
1.1  
1.2  
1.3  
March 15, 2007  
April 3, 2007  
Final  
Change BS0 to BA0, BS1 to BA1  
August 15, 2007  
February 15, 2008  
December 16, 2009  
Add part numbering scheme  
Erase 54B CSP package type  
(December, 2009, Version 1.3)  
AMIC Technology, Corp.  
A43L2616B  
1M X 16 Bit X 4 Banks Synchronous DRAM  
Feature  
„ JEDEC standard 3.3V power supply  
„ LVTTL compatible with multiplexed address  
„ Burst Read Single-bit Write operation  
„ DQM for masking  
„ Auto & self refresh  
„ Four banks / Pulse RAS  
„ 64ms refresh period (4K cycle)  
„ Commercial Temperature Operation : 0°C~70°C  
„ Industrial Temperature Operation : -40°C~85°C for –U  
„ MRS cycle with address key programs  
- CAS Latency (2,3)  
- Burst Length (1,2,4,8 & full page)  
- Burst Type (Sequential & Interleave)  
grade  
„ All inputs are sampled at the positive going edge of the  
system clock  
„ Clock Frequency: 166MHz @ CL=3  
143MHz @ CL=3  
„ Available in 54-pin TSOP(II) package  
„ Package is available to lead free (-F series)  
„ All Pb-free (Lead-free) products are RoHS compliant  
General Description  
The A43L2616B is 67,108,864 bits synchronous high data  
rate Dynamic RAM organized as 4 X 1,048,576 words by  
16 bits, fabricated with AMIC’s high performance CMOS  
technology. Synchronous design allows precise cycle  
control with the use of system clock.  
I/O transactions are possible on every clock cycle. Range  
of operating frequencies, programmable latencies allows  
the same device to be useful for a variety of high  
bandwidth,  
high  
performance  
memory  
system  
applications.  
Pin Configuration  
„ TSOP (II)  
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28  
A43L2616BV  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
(December, 2009, Version 1.3)  
1
AMIC Technology, Corp.  
A43L2616B  
Block Diagram  
LWE  
Data Input Register  
Bank Select  
DQM  
1M X 16  
1M X 16  
1M X 16  
1M X 16  
CLK  
ADD  
DQi  
Column Decoder  
Latency & Burst Length  
LRAS  
Programming Register  
LWCBR  
LCAS  
DQM  
LRAS LCBR LWE  
Timing Register  
DQM  
CLK  
CKE  
CS  
RAS  
CAS  
WE  
(December, 2009, Version 1.3)  
2
AMIC Technology, Corp.  
A43L2616B  
Pin Descriptions  
Symbol  
Name  
Description  
CLK  
CS  
System Clock  
Chip Select  
Active on the positive going edge to sample all inputs.  
Disables or Enables device operation by masking or enabling all inputs except  
CLK, CKE and L(U)DQM  
Masks system clock to freeze operation from the next clock cycle.  
CKE should be enabled at least one clock + tss prior to new command.  
Disable input buffers for power down in standby.  
CKE  
Clock Enable  
Row / Column addresses are multiplexed on the same pins.  
Row address : RA0~RA11, Column address: CA0~CA7  
Selects bank to be activated during row address latch time.  
Selects band for read/write during column address latch time.  
A0~A11  
Address  
BA0, BA1  
Bank Select Address  
Row Address Strobe  
Latches row addresses on the positive going edge of the CLK with RAS low.  
Enables row access & precharge.  
RAS  
CAS  
Latches column addresses on the positive going edge of the CLK with CAS low.  
Enables column access.  
Column Address  
Strobe  
Write Enable  
Enables write operation and Row precharge.  
WE  
Makes data output Hi-Z, t SHZ after the clock and masks the output.  
Blocks data input when L(U)DQM active.  
Data Input/Output  
Mask  
L(U)DQM  
DQ0-15  
Data Input/Output  
Data inputs/outputs are multiplexed on the same pins.  
Power  
Supply/Ground  
VDD/VSS  
Power Supply: +3.3V±0.3V/Ground  
Data Output  
Power/Ground  
VDDQ/VSSQ  
NC/RFU  
Provide isolated Power/Ground to DQs for improved noise immunity.  
No Connection  
(December, 2009, Version 1.3)  
3
AMIC Technology, Corp.  
A43L2616B  
Absolute Maximum Ratings*  
*Comments  
Voltage on any pin relative to VSS (Vin, Vout ) . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +4.6V  
Voltage on VDD supply relative to VSS (VDD, VDDQ )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-1.0V to +4.6V  
Storage Temperature (TSTG) . . . . . . . . . . -55°C to +150°C  
Soldering Temperature X Time (TSOLDER) . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C X 10sec  
Power Dissipation (PD) . . . . . . . . . . . . . . . . . . . . . . . . .1W  
Short Circuit Current (Ios) . . . . . . . . . . . . . . . . . . . . 50mA  
Permanent device damage may occur if “Absolute  
Maximum Ratings” are exceeded.  
Functional operation should be restricted to recommended  
operating condition.  
Exposure to higher than recommended voltage for extended  
periods of time could affect device reliability.  
Capacitance (TA=25°C, f=1MHz)  
Parameter  
Input Capacitance  
Symbol  
CI1  
Condition  
A0 to A11, BA0, BA1  
Min  
2.5  
2.5  
Typ  
Max  
3.8  
Unit  
pF  
CI2  
CLK, CKE,  
DQM  
,
,
, WE ,  
3.8  
pF  
CS RAS CAS  
Data Input/Output Capacitance  
CI/O  
DQ0 to DQ15  
4
6.5  
pF  
DC Electrical Characteristics  
Recommend operating conditions (Voltage referenced to VSS = 0V, TA = 0ºC to +70ºC or TA = -40ºC to +85ºC)  
Parameter  
Supply Voltage  
Symbol  
Min  
3.0  
2.0  
-0.3  
2.4  
-
Typ  
Max  
Unit  
V
Note  
VDD,VDDQ  
3.3  
3.6  
Input High Voltage  
VIH  
VIL  
VOH  
VOL  
IIL  
3.0  
VDD+0.3  
V
Input Low Voltage  
0
-
0.8  
-
V
Note 1  
IOH = -2mA  
IOL = 2mA  
Note 2  
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
Output Leakage Current  
Output Loading Condition  
V
-
0.4  
5
V
-5  
-
μA  
μA  
IOL  
-5  
-
5
Note 3  
See Figure 1  
Note: 1. VIL (min) = -1.5V AC (pulse width 5ns).  
2. Any input 0V VIN VDD + 0.3V, all other pins are not under test = 0V  
3. Dout is disabled, 0V Vout VDD  
(December, 2009, Version 1.3)  
4
AMIC Technology, Corp.  
A43L2616B  
Decoupling Capacitance Guide Line  
Recommended decoupling capacitance added to power line at board.  
Parameter  
Symbol  
Value  
Unit  
μF  
Decoupling Capacitance between VDD and VSS  
Decoupling Capacitance between VDDQ and VSSQ  
CDC1  
CDC2  
0.1 + 0.01  
0.1 + 0.01  
μF  
Note: 1. VDD and VDDQ pins are separated each other.  
All VDD pins are connected in chip. All VDDQ pins are connected in chip.  
2. VSS and VSSQ pins are separated each other  
All VSS pins are connected in chip. All VSSQ pins are connected in chip.  
DC Electrical Characteristics  
(Recommended operating condition unless otherwise noted, TA = 0°C to 70°C TA = -40ºC to +85ºC)  
Speed  
Symbol  
Parameter  
Test Conditions  
Unit Notes  
-6  
-7  
Operating Current  
(One Bank Active)  
Burst Length = 1  
Icc1  
70  
70  
mA  
mA  
1
tRC tRC(min), tCC tCC(min), IOL = 0mA  
Icc2 P  
CKE VIL(max), tCC = 15ns  
2
1
Precharge Standby Current  
in power-down mode  
Icc2 PS  
CKE VIL(max), tCC = ∞  
CKE VIH(min), CS VIH(min), tCC = 15ns  
ICC2N  
20  
15  
Precharge Standby Current  
in non power-down mode  
Input signals are changed one time during 30ns  
mA  
CKE VIH(min), CLK VIL(max), tCC = ∞  
Input signals are stable.  
ICC2NS  
Active Standby current in  
non power-down mode  
(One Bank Active)  
CKE VIH(min), CS VIH(min), tCC = 15ns  
Input signals are changed one time during 30ns  
ICC3N  
ICC4  
30  
mA  
mA  
Operating Current  
(Burst Mode)  
IOL = 0mA, Page Burst  
All bank Activated, tCCD = tCCD (min)  
100  
130  
100  
130  
1
2
ICC5  
ICC6  
Refresh Current  
mA  
mA  
tRC tRC (min)  
CKE 0.2V  
Self Refresh Current  
1.5  
Note: 1. Measured with outputs open. Addresses are changed only one time during tCC(min).  
2. Refresh period is 64ms. Addresses are changed only one time during tCC(min).  
(December, 2009, Version 1.3)  
5
AMIC Technology, Corp.  
A43L2616B  
AC Operating Test Conditions  
(VDD = 3.3V ±0.3V, TA = 0°C to +70°C or TA = -40ºC to +85ºC)  
Parameter  
Value  
AC input levels  
VIH/VIL = 2.4V/0.4V  
1.4V  
Input timing measurement reference level  
Input rise and all time (See note3)  
Output timing measurement reference level  
Output load condition  
tr/tf = 1ns/1ns  
1.4V  
See Fig.2  
3.3V  
VOH(DC) = 2.4V, IOH = -2mA  
VOL(DC) = 0.4V, IOL = 2mA  
VTT =1.4V  
1200Ω  
50Ω  
Output  
ZO=50Ω  
OUTPUT  
50pF  
870Ω  
50pF  
(Fig. 2) AC Output Load Circuit  
(Fig. 1) DC Output Load Circuit  
AC Characteristics  
(AC operating conditions unless otherwise noted)  
-6  
-7  
Unit  
Note  
Symbol  
tCC  
Parameter  
CAS Latency  
Min  
6
Max  
Min  
7
Max  
3
2
3
2
3
2
CLK cycle time  
1000  
1000  
ns  
ns  
1
10  
-
10  
-
5
6
6
6
tSAC  
CLK to valid Output delay  
1,2  
-
-
2.5  
3
3
tOH  
tCH  
Output data hold time  
CLK high pulse width  
-
-
-
-
ns  
ns  
2
3
3
2.5  
3
tCL  
tSS  
CLK low pulse width  
Input setup time  
2.5  
1.5  
1
-
-
-
3
2
1
-
-
-
ns  
ns  
ns  
ns  
3
3
3
2
tSH  
tSLZ  
Input hold time  
CLK to output in Low-Z  
1
-
-
1
-
-
3
2
5
6
6
6
tSHZ  
CLK to output In Hi-Z  
ns  
-
-
*All AC parameters are measured from half to half.  
Note : 1. Parameters depend on programmed CAS latency.  
2. If clock rising time is longer than 1ns, (tr/2-0.5) ns should be added to the parameter.  
3. Assumed input rise and fall time (tr & tf) = 1ns.  
If tr & tf is longer than 1ns, transient time compensation should be considered,  
i.e., [(tr + tf)/2-1]ns should be added to the parameter.  
(December, 2009, Version 1.3)  
6
AMIC Technology, Corp.  
A43L2616B  
Operating AC Parameter  
(AC operating conditions unless otherwise noted)  
Version  
Symbol  
Parameter  
Unit  
Note  
-6  
12  
18  
-7  
14  
20  
tRRD(min)  
tRCD(min)  
Row active to row active delay  
ns  
ns  
1
1
RAS to  
delay  
CAS  
tRP(min)  
tRAS(min)  
tRAS(max)  
tRC(min)  
Row precharge time  
Row active time  
18  
42  
20  
42  
ns  
ns  
μs  
ns  
1
1
100  
Row cycle time  
60  
63  
1
tCDL(min)  
tRDL(min)  
tBDL(min)  
tCCD(min)  
Last data in new col. Address delay  
Last data in row precharge  
6
12  
6
7
14  
7
ns  
ns  
ns  
ns  
2
2
2
Last data in to burst stop  
Col. Address to col. Address delay  
6
7
CAS Latency = 3  
CAS Latency = 2  
2
1
Number of valid output data  
ea  
3
Note: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and  
then rounding off to the next higher integer.  
2. Minimum delay is required to complete write.  
3. In case of row precharge interrupt, auto precharge and read burst stop.  
(December, 2009, Version 1.3)  
7
AMIC Technology, Corp.  
A43L2616B  
Simplified Truth Table  
Command  
CKEn-1 CKEn CS RAS  
DQM BA0 A10 A9~A0, Notes  
CAS  
L
WE  
L
BA1 /AP  
A11  
Register  
Mode Register Set  
Auto Refresh  
1,2  
H
H
X
L
L
X
X
OP CODE  
3
3
3
Refresh  
H
L
L
L
L
L
H
H
X
Entry  
Self  
H
H
Refresh  
Exit  
L
H
X
X
X
X
H
L
X
L
X
H
X
H
3
4
Bank Active & Row Addr.  
H
V
V
Row Addr.  
Read &  
Column Addr.  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
L
Column  
Addr.  
4
H
X
L
H
L
H
X
H
L
4,5  
4
Write &  
Column  
Addr.  
H
H
X
X
L
L
H
H
L
L
L
X
X
V
Column Addr.  
H
4,5  
Burst Stop  
Precharge  
H
X
Bank Selection  
Both Banks  
V
X
L
H
X
L
L
H
L
X
X
H
L
H
X
L
H
X
X
H
X
V
X
X
H
X
H
X
X
H
X
V
X
H
X
X
H
X
V
X
Entry  
H
L
L
H
L
X
X
X
Clock Suspend or  
Active Power Down  
X
X
Exit  
Entry  
H
H
L
Precharge Power Down Mode  
Exit  
L
H
H
H
X
X
V
X
H
DQM  
X
X
6
L
H
X
H
X
No Operation Command  
H
(V = Valid, X = Don’t Care, H = Logic High, L = Logic Low)  
Note : 1. OP Code: Operand Code  
A0~A11, BA0, BA1: Program keys. (@MRS)  
2. MRS can be issued only at both banks precharge state.  
A new command can be issued after 2 clock cycle of MRS.  
3. Auto refresh functions as same as CBR refresh of DRAM.  
The automatical precharge without Row precharge command is meant by “Auto”.  
Auto/Self refresh can be issued only at both precharge state.  
4. BA0, BA1 : Bank select address.  
If both BA1 and BA0 are “Low” at read, write, row active and precharge, bank A is selected.  
If both BA1 is “Low” and BA0 is “High” at read, write, row active and precharge, bank B is selected.  
If both BA1 is “High” and BA0 is “Low” at read, write, row active and precharge, bank C is selected.  
If both BA1 and BA0 are “High” at read, write, row active and precharge, bank D is selected.  
If A10/AP is “High” at row precharge, BA1 and BA0 is ignored and all banks are selected.  
5. During burst read or write with auto precharge, new read write command cannot be issued.  
Another bank read write command can be issued at every burst length.  
6. DQM sampled at positive going edge of a CLK masks the data-in at the very CLK (Write DQM latency is 0) but  
masks the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2)  
(December, 2009, Version 1.3)  
8
AMIC Technology, Corp.  
A43L2616B  
Mode Register Filed Table to Program Modes  
Register Programmed with MRS  
Address  
BA0, BA1  
A11, A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Function  
RFU  
RFU  
W.B.L  
TM  
CAS Latency  
BT  
Burst Length  
(Note 1)  
(Note 2)  
Test Mode  
Type  
CAS Latency  
A6 A5 A4 Latency  
Burst Type  
Burst Length  
A8 A7  
A3  
Type  
A2 A1 A0  
BT=0  
BT=1  
0
0
1
1
0
1
0
1
Mode Register Set  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
-
0
1
Sequential  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
8
Vendor  
Use  
2
Only  
3
Reserved  
Reserved  
Reserved  
Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
256(Full) Reserved  
Write Burst Length  
Length  
A9  
0
Burst  
1
Single Bit  
Power Up Sequence  
1. Apply power and start clock, Attempt to maintain CKE = “H”, DQM = “H” and the other pins are NOP condition at inputs.  
2. Maintain stable power, stable clock and NOP input condition for a minimum of 200μs.  
3. Issue precharge commands for all banks of the devices.  
4. Issue 2 or more auto-refresh commands.  
5. Issue a mode register set command to initialize the mode register.  
cf.) Sequence of 4 & 5 may be changed.  
The device is now ready for normal operation.  
Note : 1. RFU(Reserved for Future Use) should stay “0” during MRS cycle.  
2. If A9 is high during MRS cycle, “Burst Read Single Bit Write” function will be enabled.  
(December, 2009, Version 1.3)  
9
AMIC Technology, Corp.  
A43L2616B  
Burst Sequence (Burst Length = 4)  
Initial address  
Sequential  
Interleave  
A1  
0
A0  
0
0
1
2
3
1
2
3
0
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
0
1
3
2
1
0
0
1
1
0
1
1
Burst Sequence (Burst Length = 8)  
Initial address  
Sequential  
Interleave  
A2  
A1  
A0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
7
1
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
6
7
0
1
2
3
4
0
1
2
3
4
5
6
0
3
2
5
4
7
6
(December, 2009, Version 1.3)  
10  
AMIC Technology, Corp.  
A43L2616B  
Device Operations  
Clock (CLK)  
Power-Up  
The following sequence is recommended for POWER UP  
1. Power must be applied to either CKE and DQM inputs to  
pull them high and other pins are NOP condition at the  
inputs before or along with VDD (and VDDQ) supply.  
The clock signal must also be asserted at the same time.  
2. After VDD reaches the desired voltage, a minimum  
pause of 200 microseconds is required with inputs in  
NOP condition.  
The clock input is used as the reference for all SDRAM  
operations. All operations are synchronized to the positive  
going edge of the clock. The clock transitions must be  
monotonic between VIL and VIH. During operation with CKE  
high all inputs are assumed to be in valid state (low or high)  
for the duration of set up and hold time around positive  
edge of the clock for proper functionality and ICC  
specifications.  
3. Both banks must be precharged now.  
4. Perform a minimum of 2 Auto refresh cycles to stabilize  
the internal circuitry.  
Clock Enable (CKE)  
5. Perform a MODE REGISTER SET cycle to program the  
CAS latency, burst length and burst type as the default  
value of mode register is undefined.  
The clock enable (CKE) gates the clock onto SDRAM. If  
CKE goes low synchronously with clock (set-up and hold  
time same as other inputs), the internal clock is suspended  
form the next clock cycle and the state of output and burst  
address is frozen as long as the CKE remains low. All other  
inputs are ignored from the next clock cycle after CKE goes  
low. When both banks are in the idle state and CKE goes  
low synchronously with clock, the SDRAM enters the power  
down mode form the next clock cycle. The SDRAM  
remains in the power down mode ignoring the other inputs  
as long as CKE remains low. The power down exit is  
synchronous as the internal clock is suspended. When  
CKE goes high at least “tSS + 1 CLOCK” before the high  
going edge of the clock, then the SDRAM becomes active  
from the same clock edge accepting all the input  
commands.  
At the end of one clock cycle from the mode register set  
cycle, the device is ready for operation.  
When the above sequence is used for Power-up, all the  
out-puts will be in high impedance state. The high  
impedance of outputs is not guaranteed in any other  
power-up sequence.  
cf.) Sequence of 4 & 5 may be changed.  
Mode Register Set (MRS)  
The mode register stores the data for controlling the  
various operation modes of SDRAM. It programs the CAS  
latency, addressing mode, burst length, test mode and  
various vendor specific options to make SDRAM useful for  
variety of different applications. The default value of the  
mode register is not defined, therefore the mode register  
must be written after power up to operate the SDRAM. The  
Bank Select (BA0, BA1)  
This SDRAM is organized as 4 independent banks of  
1,048,576 words X 16 bits memory arrays. The BA0, BA1  
mode register is written by asserting low on  
,
,
CS RAS  
, (The SDRAM should be in active mode with  
WE  
inputs is latched at the time of assertion of  
and  
CAS  
RAS  
CAS  
to select the bank to be used for the operation. The bank  
select BA0, BA1 is latched at bank activate, read, write  
mode register set and precharge operations.  
CKE already high prior to writing the mode register). The  
state of address pins A0~A11, BA0 and BA1 in the same  
cycle as  
,
,
,
going low is the data  
WE  
CS RAS CAS  
written in the mode register. One clock cycle is required to  
complete the write in the mode register. The mode register  
contents can be changed using the same command and  
clock cycle requirements during operation as long as both  
banks are in the idle state. The mode register is divided  
into various fields depending on functionality. The burst  
length field uses A0~A2, burst type uses A3, addressing  
mode uses A4~A6, A7~A8, A11, BA0 and BA1 are used for  
vendor specific options or test mode. And the write burst  
length is programmed using A9. A7~A8, A11, BA0 and BA1  
must be set to low for normal SDRAM operation.  
Address Input (A0 ~ A11)  
The 20 address bits required to decode the 262,144 word  
locations are multiplexed into 12 address input pins  
(A0~A11). The 12 bit row address is latched along with  
, BA0 and BA1 during bank activate command. The 8  
RAS  
bit column address is latched along with  
and BA1during read or write command.  
,
, BA0  
WE  
CAS  
NOP and Device Deselect  
Refer to table for specific codes for various burst length,  
addressing modes and CAS latencies.  
When  
,
and  
are high, the SDRAM  
WE  
CAS  
RAS  
performs no operation (NOP). NOP does not initiate any  
new operation, but is needed to complete operations which  
require more than single clock like bank activate, burst  
read, auto refresh, etc. The device deselect is also a NOP  
and is entered by asserting  
high.  
high disables  
CS  
CS  
the command decoder so that  
,
and  
, and  
WE  
CAS  
RAS  
all the address inputs are ignored.  
(December, 2009, Version 1.3)  
11  
AMIC Technology, Corp.  
A43L2616B  
Device Operations (continued)  
Bank Activate  
Burst Write  
The burst write command is similar to burst read  
command, and is used to write data into the SDRAM  
consecutive clock cycles in adjacent addresses depending  
on burst length and burst sequence. By asserting low on  
The bank activate command is used to select a random  
row in an idle bank. By asserting low on  
and  
RAS  
with desired row and bank addresses, a row access is  
CS  
initiated. The read or write operation can occur after a time  
delay of tRCD(min) from the time of bank activation.  
tRCD(min) is an internal timing parameter of SDRAM,  
therefore it is dependent on operating clock frequency. The  
minimum number of clock cycles required between bank  
activate and read or write command should be calculated  
by dividing tRCD(min) with cycle time of the clock and then  
rounding off the result to the next higher integer. The  
SDRAM has two internal banks on the same chip and  
shares part of the internal circuitry to reduce chip area,  
therefore it restricts the activation of both banks  
immediately. Also the noise generated during sensing of  
each bank of SDRAM is high requiring some time for  
power supplies recover before the other bank can be  
sensed reliably. tRRD(min) specifies the minimum time  
required between activating different banks. The number of  
clock cycles required between different bank activation  
must be calculated similar to tRCD specification. The  
minimum time required for the bank to be active to initiate  
sensing and restoring the complete row of dynamic cells is  
determined by tRAS(min) specification before a precharge  
command to that active bank can be asserted. The  
maximum time any bank can be in the active state is  
determined by tRAS(max). The number of cycles for both  
tRAS(min) and tRAS(max) can be calculated similar to tRCD  
specification.  
,
and  
with valid column address, a write  
WE  
CS CAS  
burst is initiated. The data inputs are provided for the initial  
address in the same clock cycle as the burst write  
command. The input buffer is deselected at the end of the  
burst length, even though the internal writing may not have  
been completed yet. The writing can not complete to burst  
length. The burst write can be terminated by issuing a burst  
read and DQM for blocking data inputs or burst write in the  
same or the other active bank. The burst stop command is  
valid only at full page burst length where the writing  
continues at the end of burst and the burst is wrap around.  
The write burst can also be terminated by using DQM for  
blocking data and precharging the bank “tRDL” after the last  
data input to be written into the active row. See DQM  
OPERATION also.  
DQM Operation  
The DQM is used to mask input and output operation. It  
works similar to  
during read operation and inhibits  
OE  
writing during write operation. The read latency is two  
cycles from DQM and zero cycle for write, which means  
DQM masking occurs two cycles later in the read cycle and  
occurs in the same cycle during write cycle. DQM  
operation is synchronous with the clock, therefore the  
masking occurs for a complete cycle. The DQM signal is  
important during burst interrupts of write with read or  
precharge in the SDRAM. Due to asynchronous nature of  
the internal write, the DQM operation is critical to avoid  
unwanted or incomplete writes when the complete burst  
write is not required.  
Burst Read  
The burst read command is used to access burst of data  
on consecutive clock cycles from an active row in an active  
bank. The burst read command is issued by asserting low  
on  
and  
with  
being high on the positive  
WE  
CS  
CAS  
Precharge  
edge of the clock. The bank must be active for at least  
tRCD(min) before the burst read command is issued. The  
first output appears CAS latency number of clock cycles  
after the issue of burst read command. The burst length,  
burst sequence and latency from the burst read command  
is determined by the mode register which is already  
programmed. The burst read can be initiated on any  
column address of the active row. The address wraps  
around if the initial address does not start from a boundary  
such that number of outputs from each I/O are equal to the  
burst length programmed in the mode register. The output  
goes into high-impedance at the end of the burst, unless a  
new burst read was initiated to keep the data output  
gapless. The burst read can be terminated by issuing  
another burst read or burst write in the same bank or the  
other active bank or a precharge command to the same  
bank. The burst stop command is valid at every page burst  
length.  
The precharge operation is performed on an active bank by  
asserting low on  
,
,
and A10/AP with valid  
WE  
CS RAS  
BA of the bank to be precharged. The precharge command  
can be asserted anytime after tRAS(min) is satisfied from  
the bank activate command in the desired bank. “tRP” is  
defined as the minimum time required to precharge a bank.  
The minimum number of clock cycles required to complete  
row precharge is calculated by dividing “tRP” with clock  
cycle time and rounding up to the next higher integer. Care  
should be taken to make sure that burst write is completed  
or DQM is used to inhibit writing before precharge  
command is asserted. The maximum time any bank can be  
active is specified by tRAS(max). Therefore, each bank has  
to be precharged within tRAS(max) from the bank activate  
command. At the end of precharge, the bank enters the  
idle state and is ready to be activated again.  
Entry to Power Down, Auto refresh, Self refresh and Mode  
register Set etc, is possible only when both banks are in  
idle state.  
(December, 2009, Version 1.3)  
12  
AMIC Technology, Corp.  
A43L2616B  
cycle). The time required to complete the auto refresh  
operation is specified by “tRC(min)”. The minimum number  
of clock cycles required can be calculated by driving “tRC”  
with clock cycle time and then rounding up to the next  
higher integer. The auto refresh command must be  
followed by NOP’s until the auto refresh operation is  
completed. Both banks will be in the idle state at the end of  
auto refresh operation. The auto refresh is the preferred  
refresh mode when the SDRAM is being used for normal  
data transactions. The auto refresh cycle can be performed  
once in 15.6us or a burst of 4096 auto refresh cycles once  
in 64ms.  
Device Operations (continued)  
Auto Precharge  
The precharge operation can also be performed by using  
auto precharge. The SDRAM internally generates the  
timing to satisfy tRAS(min) and “tRP” for the programmed  
burst length and CAS latency. The auto precharge  
command is issued at the same time as burst read or burst  
write by asserting high on A10/AP. If burst read or burst  
write command is issued with low on A10/AP, the bank is  
left active until a new command is asserted. Once auto  
precharge command is given, no new commands are  
possible to that particular bank until the bank achieves idle  
state.  
Self Refresh  
The self refresh is another refresh mode available in the  
SDRAM. The self refresh is the preferred refresh mode for  
data retention and low power operation of SDRAM. In self  
refresh mode, the SDRAM disables the internal clock and  
all the input buffers except CKE. The refresh addressing  
and timing is internally generated to reduce power  
consumption.  
Four Banks Precharge  
Both banks can be precharged at the same time by using  
Precharge all command. Asserting low on  
,
and  
CS RAS  
with high on A10/AP after both banks have satisfied  
WE  
tRAS(min) requirement, performs precharge on both banks.  
At the end of tRP after performing precharge all, both  
banks are in idle state.  
The self refresh mode is entered from all banks idle state  
by asserting low on  
,
,
and CKE with high  
CS RAS CAS  
on  
. Once the self refresh mode is entered, only CKE  
WE  
Auto Refresh  
state being low matters, all the other inputs including clock  
are ignored to remain in the self refresh.  
The storage cells of SDRAM need to be refreshed every  
64ms to maintain data. An auto refresh cycle accomplishes  
refresh of a single row of storage cells. The internal  
counter increments automatically on every auto refresh  
cycle to refresh all the rows. An auto refresh command is  
The self refresh is exited by restarting the external clock  
and then asserting high on CKE. This must be followed by  
NOP’s for a minimum time of “tRC” before the SDRAM  
reaches idle state to begin normal operation. If the system  
uses burst auto refresh during normal operation, it is  
recommended to used burst 4096 auto refresh cycles  
immediately after exiting self refresh.  
issued by asserting low on  
,
and  
with high  
CS RAS  
CAS  
on CKE and  
. The auto refresh command can only be  
WE  
asserted with both banks being in idle state and the device  
is not in power down mode (CKE is high in the previous  
(December, 2009, Version 1.3)  
13  
AMIC Technology, Corp.  
A43L2616B  
Basic feature And Function Descriptions  
1. CLOCK Suspend  
1) Click Suspended During Write (BL=4)  
2) Clock Suspended During Read (BL=4)  
CLK  
CMD  
CKE  
WR  
RD  
Masked by CKE  
Masked by CKE  
Internal  
CLK  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
Not Written  
Suspended Dout  
Note: CLK to CLK disable/enable=1 clock  
2. DQM Operation  
2) Read Mask (BL=4)  
1) Write Mask (BL=4)  
CLK  
CMD  
WR  
RD  
DQM  
Masked by CKE  
D3  
Masked by CKE  
Q2  
Hi-Z  
Hi-Z  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
Q0  
Q3  
Q2  
D3  
Q1  
Q3  
DQM to Data-in Mask = 0CLK  
DQM to Data-out Mask = 2  
2) Read Mask (BL=4)  
CLK  
CMD  
CKE  
RD  
DQM  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Q0  
Q2  
Q1  
Q4  
Q3  
Q6  
Q5  
Q7  
Q6  
Q8  
Q7  
DQ(CL2)  
DQ(CL3)  
Hi-Z  
* Note : 1. DQM makes data out Hi-Z after 2 clocks which should masked by CKE “L”.  
2. DQM masks both data-in and data-out.  
(December, 2009, Version 1.3)  
14  
AMIC Technology, Corp.  
A43L2616B  
3. CAS Interrupt (I)  
1) Read interrupted by Read (BL=4)Note 1  
CLK  
CMD  
RD  
A
RD  
B
ADD  
DQ(CL2)  
DQ(CL3)  
QA0 QB0 QB1 QB2 QB3  
QA0 QB0 QB1 QB2 QB3  
t
CCD  
Note2  
2) Write interrupted by Write (BL =2)  
3) Write interrupted by Read (BL =2)  
CLK  
WR WR  
WR  
RD  
CMD  
t
CCD  
tCCD  
Note2  
Note2  
ADD  
DQ  
A
B
A
B
DA0 DB0 DB1  
DQ(CL2)  
DQ(CL3)  
DA0  
QB0 QB1  
t
CDL  
Note3  
DA0  
QB0 QB1  
t
CDL  
Note3  
Note : 1. By “Interrupt”, It is possible to stop burst read/write by external command before the end of burst.  
By “ Interrupt”, to stop burst read/write by access; read, write and block write.  
CAS  
2. tCCD :  
CAS  
to  
delay. (=1CLK)  
CAS  
CAS  
3. tCDL : Last data in to new column address delay. (= 1CLK).  
(December, 2009, Version 1.3)  
15  
AMIC Technology, Corp.  
A43L2616B  
4. CAS Interrupt (II) : Read Interrupted Write & DQM  
(1) CL=2, BL=4  
CLK  
i) CMD  
RD  
RD  
WR  
D0  
DQM  
DQ  
ii) CMD  
D1  
D2  
D3  
D2  
WR  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
D1  
RD  
RD  
WR  
iii) CMD  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
iv) CMD  
WR  
DQM  
DQ  
Hi-Z  
Note 1  
Q0  
D0  
D3  
(2) CL=3, BL=4  
CLK  
i) CMD  
DQM  
RD  
RD  
RD  
RD  
WR  
D0  
DQ  
D1  
D2  
D3  
D2  
ii) CMD  
WR  
DQM  
DQ  
D0  
D1  
D3  
D2  
iii) CMD  
WR  
DQM  
DQ  
D0  
D1  
D3  
D2  
D1  
iv) CMD  
WR  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
v) CMD  
RD  
WR  
DQM  
DQ  
Hi-Z  
Q0  
D0  
D3  
Note 2  
* Note : 1. To prevent bus contention, there should be at least one gap between data in and data out.  
2. To prevent bus contention, DQM should be issued which makes a least one gap between data in and data out.  
(December, 2009, Version 1.3)  
16  
AMIC Technology, Corp.  
A43L2616B  
5. Write Interrupted by Precharge & DQM  
CLK  
Note 2  
CMD  
WR  
D0  
PRE  
Note 1  
DQM  
DQ  
D1  
D2 D3  
Masked by DQM  
Note : 1. To inhibit invalid write, DQM should be issued.  
2. This precharge command and burst write command should be of the same bank, otherwise it is not precharge  
interrupt but only another bank precharge of dual banks operation.  
6. Precharge  
1 ) N o rm a l W rite (B L = 4 )  
C L K  
C M D  
D Q  
W R  
D 0  
P R E  
D 1  
D 2  
D 3  
tR D L  
2 ) R e a d (B L = 4 )  
C L K  
C M D  
R D  
P R E  
Q 2  
D Q (C L 2 )  
Q 0  
Q 1  
Q 0  
Q 3  
Q 2  
D Q (C L 3 )  
Q 1  
Q 3  
7. Auto Precharge  
1) Normal Write (BL=4)  
CLK  
CMD  
DQ  
WR  
D0  
D1  
D2  
D3  
Note 1  
Auto Precharge Starts  
2) Read (BL=4)  
CLK  
CMD  
DQ(CL2)  
DQ(CL3)  
RD  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
Note 1  
Auto Precharge Starts  
* Note : 1. The row active command of the precharge bank can be issued after tRP from this point.  
The new read/write command of other active bank can be issued from this point.  
At burst read/write with auto precharge,  
interrupt of the same/another bank is illegal.  
CAS  
(December, 2009, Version 1.3)  
17  
AMIC Technology, Corp.  
A43L2616B  
8. Burst Stop & Interrupted by Precharge  
1) Normal Write (BL=4)  
CLK  
2) Write Burst Stop (BL=8)  
CLK  
CMD  
CMD  
WR  
PRE  
WR  
STOP  
DQM  
DQ  
DQM  
DQ  
D0  
D1  
D2  
D3  
D0  
D1  
D2  
D3  
D4  
D5  
tRDL Note 1  
t
BDL Note 2  
1) Read Interrupted by Precharge (BL=4)  
CLK  
4) Read Burst Stop (BL=4)  
CLK  
CMD  
CMD  
RD  
PRE  
Q0  
RD  
STOP  
Q0  
Note 3  
1
1
DQ(CL2)  
DQ(CL3)  
Q1  
Q0  
DQ(CL2)  
DQ(CL3)  
Q1  
Q0  
2
2
Q1  
Q1  
9. MRS  
Mode Register Set  
CLK  
Note 1  
PRE  
MRS  
ACT  
CMD  
t
RP  
2CLK  
Note : 1. tRDL: 1CLK  
2. tBDL: 1CLK; Last data in to burst stop delay.  
Read or write burst stop command is valid at every burst length.  
3. Number of valid output data after row precharge or burst stop: 1,2 for CAS latency = 2, 3 respectively.  
4. PRE: All banks precharge if necessary.  
MRS can be issued only when all banks are in precharged state.  
10. Clock Suspend Exit & Power Down Exit  
1) Clock Suspend (=Active Power Down) Exit  
2) Power Down (=Precharge Power Down) Exit  
CLK  
CKE  
CLK  
CKE  
t
SS  
t
SS  
Note 2  
Note 1  
Internal  
CLK  
Internal  
CLK  
NOP  
ACT  
RD  
CMD  
CMD  
(December, 2009, Version 1.3)  
18  
AMIC Technology, Corp.  
A43L2616B  
11. Auto Refresh & Self Refresh  
Note 3  
1) Auto Refresh  
CLK  
Note 4  
Note 5  
CMD  
PRE  
AR  
CMD  
CKE  
tRP  
tRC  
Note 6  
2) Self Refresh  
CLK  
Note 4  
CMD  
CKE  
PRE  
SR  
CMD  
tRP  
tRC  
* Note : 1. Active power down : one or more bank active state.  
2. Precharge power down : both bank precharge state.  
3. The auto refresh is the same as CBR refresh of conventional DRAM.  
No precharge commands are required after Auto Refresh command.  
During tRC from auto refresh command, any other command can not be accepted.  
4. Before executing auto/self refresh command, both banks must be idle state.  
5. MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.  
6. During self refresh mode, refresh interval and refresh operation are performed internally.  
After self refresh entry, self refresh mode is kept while CKE is LOW.  
During self refresh mode, all inputs expect CKE will be don’t cared, and outputs will be in Hi-Z state.  
During tRC from self refresh exit command, any other command can not be accepted.  
Before/After self refresh mode, burst auto refresh cycle (4K cycles ) is recommended.  
(December, 2009, Version 1.3)  
19  
AMIC Technology, Corp.  
A43L2616B  
12. About Burst Type Control  
At MRS A3=”0”. See the BURST SEQUENCE TABE.(BL=4,8)  
BL=1,2,4,8 and full page wrap around.  
At MRS A3=” 1”. See the BURST SEQUENCE TABE.(BL=4,8)  
BL=4,8 At BL=1,2 Interleave Counting = Sequential Counting  
Sequential counting  
Basic  
MODE  
Interleave counting  
Every cycle Read/Write Command with random column address can realize  
Random Column Access.  
That is similar to Extended Data Out (EDO) Operation of convention DRAM.  
Random  
MODE  
Random column Access  
tCCD = 1 CLK  
13. About Burst Length Control  
At MRS A2,1,0 = “000”.  
At auto precharge, tRAS should not be violated.  
1
Basic  
MODE  
At MRS A2,1,0 = “001”.  
At auto precharge, tRAS should not be violated.  
At MRS A2,1,0 = “010”  
2
4
8
At MRS A2,1,0 = “011”.  
At MRS A9=”1”.  
Read burst = 1,2,4,8, full page/write Burst =1  
At auto precharge of write, tRAS should not be violated.  
Before the end of burst, Row precharge command of the same bank  
Stops read/write burst with Row precharge.  
Special  
BRSW  
MODE  
Interrupt  
RAS  
(Interrupted by Precharge)  
tRDL=1 with DQM, valid DQ after burst stop is 1,2 for CL=2,3 respectively  
Interrupt  
MODE  
During read/write burst with auto precharge,  
Before the end of burst, new read/write stops read/write burst and starts new  
read/write burst or block write.  
interrupt cannot be issued.  
RAS  
Interrupt  
CAS  
During read/write burst with auto precharge,  
interrupt can not be issued.  
CAS  
(December, 2009, Version 1.3)  
20  
AMIC Technology, Corp.  
A43L2616B  
Power On Sequence & Auto Refresh  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
CS  
High level is necessary  
tRP  
tRC  
RAS  
CAS  
ADDR  
KEY  
Ra  
BA0, BA1  
A10/AP  
BA  
Ra  
WE  
DQM  
DQ  
High level is necessary  
High-Z  
Precharge  
(All Banks)  
Auto Refresh  
Auto Refresh  
Mode Regiser Set  
Row Active  
(A-Bank)  
: Don't care  
(December, 2009, Version 1.3)  
21  
AMIC Technology, Corp.  
A43L2616B  
Single Bit Read-Write-Read Cycles (Same Page) @CAS Latency=3, Burst Length=1  
tCH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
tCL  
tCC  
High  
tRAS  
tRC  
tSH  
*Note 1  
CS  
tSS  
tRCD  
tRP  
tSH  
RAS  
tSS  
tCCD  
tSH  
CAS  
ADDR  
tSS  
tSH  
tSS  
Ra  
Ca  
Cb  
Cc  
Rb  
tSS  
tSH  
*Note 2,3  
*Note 2,3  
*Note 2,3 *Note 4  
*Note 2  
*Note 2  
BA0, BA1  
A10/AP  
BA  
BA  
BA  
BA  
BA  
BA  
*Note 3  
*Note 3  
*Note 3 *Note 4  
Ra  
Rb  
tSH  
WE  
tSS  
tSS  
tSH  
tSH  
DQM  
DQ  
tRAC  
tSAC  
tSLZ  
Qa  
Db  
Qc  
tSS  
tOH  
tSHZ  
Read  
Write  
Row Active  
Read  
Row Active  
Precharge  
: Don't care  
(December, 2009, Version 1.3)  
22  
AMIC Technology, Corp.  
A43L2616B  
* Note : 1. All inputs can be don’t care when  
is high at the CLK high going edge.  
CS  
2. Bank active & read/write are controlled by BA0, BA1.  
BA1  
BA0  
Active & Read/Write  
Bank A  
0
0
1
1
0
1
0
1
Bank B  
Bank C  
Bank D  
3. Enable and disable auto precharge function are controlled by A10/AP in read/write command.  
A10/AP BA1  
BA0  
0
Operation  
0
0
Disable auto precharge, leave bank A active at end of burst.  
Disable auto precharge, leave bank B active at end of burst.  
Disable auto precharge, leave bank C active at end of burst.  
Disable auto precharge, leave bank D active at end of burst.  
Enable auto precharge, precharge bank A at end of burst.  
Enable auto precharge, precharge bank B at end of burst.  
Enable auto precharge, precharge bank C at end of burst.  
Enable auto precharge, precharge bank D at end of burst.  
1
0
1
0
1
0
0
1
0
1
1
1
0
1
1
4. A10/AP and BA0, BA1 control bank precharge when precharge command is asserted.  
A10/AP  
BA1  
0
BA0  
0
Precharge  
Bank A  
0
0
0
0
1
0
1
Bank B  
1
0
Bank C  
1
1
Bank D  
X
X
All Banks  
(December, 2009, Version 1.3)  
23  
AMIC Technology, Corp.  
A43L2616B  
Read & Write Cycle at Same Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
*Note 1  
tRC  
CS  
tRCD  
RAS  
CAS  
*Note 2  
ADDR  
Ra  
Ca0  
Rb  
Cb0  
BA0  
BA1  
A10/AP  
WE  
Ra  
Rb  
DQM  
tOH  
Qa0  
DQ  
(CL = 2)  
Qa1  
Qa2  
Qa3  
Db0  
Db0  
Db1  
Db2  
Db3  
tRAC  
*Note 4  
tRDL  
tSAC  
tSHZ  
*Note 3  
tOH  
DQ  
(CL = 3)  
Qa0  
Qa1  
Qa2  
Qa3  
Db1  
Db2  
Db3  
tRAC  
*Note 4  
tRDL  
tSHZ  
tSAC  
*Note 3  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. Minimum row cycle times is required to complete internal DRAM operation.  
2. Row precharge can interrupt burst on any cycle. [CAS latency-1] valid output data available after Row enters precharge.  
Last valid output will be Hi-Z after tSHZ from the clock.  
3. Access time from Row address. tCC*(tRCD + CAS latency-1) + tSAC  
4. Output will be Hi-Z after the end of burst. (1,2,4 & 8)  
(December, 2009, Version 1.3)  
24  
AMIC Technology, Corp.  
A43L2616B  
Page Read & Write Cycle at Same Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
tRCD  
RAS  
CAS  
*Note 2  
ADDR  
BA0  
Ra  
Ca  
Cb  
Cc  
Cd  
BA1  
A10/AP  
WE  
Ra  
tRDL  
tCDL  
*Note 2  
*Note1  
*Note3  
DQM  
DQ  
(CL=2)  
Qb2  
Qb1  
Qa0  
Qa1  
Qb0  
Qa1  
Qb1  
Qb0  
Dc0  
Dc0  
Dc1  
Dd0  
Dd0  
Dd1  
DQ  
(CL=3)  
Qa0  
Dc1  
Dd1  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Write  
(A-Bank)  
Read  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. To write data before burst read ends, DQM should be asserted three cycle prior to write command to avoid bus  
contention.  
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge, will be written.  
3. DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input  
data after Row precharge cycle will be masked internally.  
(December, 2009, Version 1.3)  
25  
AMIC Technology, Corp.  
A43L2616B  
Page Read Cycle at Different Bank @Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
*Note 1  
CS  
*Note 2  
RAS  
CAS  
RAa  
RBb  
CAa  
CBb  
RCc  
RDd  
CCc  
CDd  
ADDR  
BA0  
BA1  
A10/AP  
WE  
RAa  
RBb  
RCc  
RDd  
DQM  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QBb0 QBb1 QBb2 QCc0 QCc1 QCc2 QDd0 QDd1 QDd2  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QBb0 QBb1 QBb2 QCc0 QCc1 QCc2 QDd0 QDd1 QDd2  
Read  
(C-Bank)  
Row Active  
(D-Bank)  
Read  
(D-Bank)  
Precharge  
(D-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
Precharge  
(B-Bank)  
Precharge  
(C-Bank)  
Row Active  
(B-Bank)  
Row Active  
(C-Bank)  
: Don't care  
* Note : 1.  
can be don’t care when  
,
CAS  
RAS  
and  
are high at the clock high going edge.  
WE  
CS  
2. To interrupt a burst read by row precharge, both the read ad the precharge banks must be the same.  
(December, 2009, Version 1.3)  
26  
AMIC Technology, Corp.  
A43L2616B  
Page Write Cycle at Different Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
*Note 2  
CCc  
CDd  
RAa  
RBb  
CAa  
CBb  
RCc  
RDd  
ADDR  
BA0  
BA1  
A10/AP  
RAa  
RBb  
RCc  
RDd  
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DCc0 DCc1 DDd0 DDd1 CDd2  
DQ  
tRDL  
tCDL  
WE  
*Note 1  
DQM  
Precharge  
(All Banks)  
Write  
(A-Bank)  
Write  
(B-Bank)  
Row Active  
(D-Bank)  
Write  
(D-Bank)  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Row Active  
(C-Bank)  
Write  
(C-Bank)  
: Don't care  
* Note:  
1. To interrupt burst write by Row precharge, DQM should be asserted to mask invalid input data.  
2. To interrupt burst write by Row precharge, both the write and precharge banks must be the same.  
(December, 2009, Version 1.3)  
27  
AMIC Technology, Corp.  
A43L2616B  
Read & Write Cycle at Different Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
RAa  
CAa  
RDb  
CDb  
RBc  
CBc  
ADDR  
BA0  
BA1  
A10/AP  
RAa  
RDb  
RBC  
tCDL  
*Note 1  
WE  
DQM  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QAa3  
DDb0 DDb1 DDb2 DDb3  
DDb0 DDb1 DDb2 DDb3  
QBc0 QBc1 QBc2  
QBc0 QBc1  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Write  
(D-Bank)  
Read  
(B-Bank)  
Row Active  
(D-Bank)  
Row Active  
(B-Bank)  
: Don't care  
* Note : tCDL should be met to complete write.  
(December, 2009, Version 1.3)  
28  
AMIC Technology, Corp.  
A43L2616B  
Read & Write Cycle with Auto Precharge @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
RAa  
RBb  
CAa  
CBb  
ADDR  
BA0  
BA1  
RAa  
RBb  
A10/AP  
WE  
DQM  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QAa3  
DDb0 DDb1 DDb2 DDb3  
DDb0 DDb1 DDb2 DDb3  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3  
Row Active  
(A-Bank)  
Auto Precharge  
Start Point  
(A-Bank/CL=3)  
Auto Precharge  
Start Point  
(D-Bank)  
Read with  
Auto Precharge  
(A-Bank)  
Write with  
Auto Precharge  
(D-Bank)  
Auto Precharge  
Start Point  
(A-Bank/CL=2)  
Row Active  
(D-Bank)  
: Don't care  
*Note : tRCD should be controlled to meet minimum tRAS before internal precharge start.  
(In the case of Burst Length=1 & 2, BRSW mode)  
(December, 2009, Version 1.3)  
29  
AMIC Technology, Corp.  
A43L2616B  
Clock Suspension & DQM Operation Cycle @CAS Latency = 2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
CS  
RAS  
CAS  
Ra  
Ca  
Cb  
Cc  
ADDR  
BA0  
BA1  
A10/AP  
Ra  
WE  
* Note 1  
DQM  
DQ  
Qa0  
Qa1  
Qb0  
Qb1  
Dc0  
Dc2  
Qa2  
Qa3  
tSHZ  
tSHZ  
Clock  
Suspension  
Write  
DQM  
Row Active  
Read  
Read  
Read DQM  
Clock  
Suspension  
Write  
: Don't care  
* Note : DQM needed to prevent bus contention.  
(December, 2009, Version 1.3)  
30  
AMIC Technology, Corp.  
A43L2616B  
Read Interrupted by Precharge Command & Read Burst Stop Cycle @Burst Length=Full Page  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
RAa  
CAa  
CAb  
ADDR  
BA0  
BA1  
RAa  
A10/AP  
WE  
DQM  
1
1
DQ  
(CL=2)  
QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
QAa0  
2
2
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
Read  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
: Don't care  
* Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. About the valid DQ’s after burst stop, it is same as the case of  
interrupt.  
RAS  
Both cases are illustrated above timing diagram. See the label 1,2 on them.  
But at burst write, burst stop and interrupt should be compared carefully.  
RAS  
Refer the timing diagram of “Full page write burst stop cycle”.  
3. Burst stop is valid at every burst length.  
(December, 2009, Version 1.3)  
31  
AMIC Technology, Corp.  
A43L2616B  
Write Interrupted by Precharge Command & Write Burst Stop Cycle @ Burst Length = Full Page  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
RAa  
CAa  
CAb  
ADDR  
BA0  
BA1  
A10/AP  
RAa  
tRDL  
tBDL  
* Note 2  
WE  
DQM  
DQ  
DAa0 DAa1 DAa2 DAa3 DAa4  
DAb0 DAb1 DAb2 DAb3 DAb4 DAb5  
Write  
(A-Bank)  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
: Don't care  
* Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. Data-in at the cycle of interrupted by precharge cannot be written into the corresponding memory cell.  
It is defined by AC parameter of tRDL(=2CLK).  
DQM at write interrupted by precharge command is needed to prevent invalid write.  
DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst.  
Input data after Row precharge cycle will be masked internally.  
3. Burst stop is valid at every burst length.  
(December, 2009, Version 1.3)  
32  
AMIC Technology, Corp.  
A43L2616B  
Active/Precharge Power Down Mode @CAS Lantency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
* Note 2  
tSS  
tSS  
tSS  
tSS  
* Note 1  
*Note 3  
CS  
RAS  
CAS  
Ra  
Ca  
ADDR  
BA0  
BA1  
Ra  
A10/AP  
WE  
DQM  
DQ  
t
Qa0  
Qa1  
Qa2  
Precharge  
Power-down  
Exit  
Precharge  
Power-  
down  
Read  
Precharge  
Row Active  
Entry  
Active  
Active  
Power-down  
Entry  
Power-  
down  
Exit  
: Don't care  
* Note : 1. All banks should be in idle state prior to entering precharge power down mode.  
2. CKE should be set high at least “1CLK + tSS” prior to Row active command.  
3. Cannot violate minimum refresh specification. (64ms)  
(December, 2009, Version 1.3)  
33  
AMIC Technology, Corp.  
A43L2616B  
Self Refresh Entry & Exit Cycle  
* Note : TO ENTER SELF REFRESH MODE  
1. with CKE should be low at the same clock cycle.  
CAS  
,
&
CS RAS  
2. After 1 clock cycle, all the inputs including the system clock can be don’t care except for CKE.  
3. The device remains in self refresh mode as long as CKE stays “Low”.  
(cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.  
TO EXIT SELF REFRESH MODE  
4. System clock restart and be stable before returning CKE high.  
5.  
starts from high.  
CS  
6. Minimum tRC is required after CKE going high to complete self refresh exit.  
7. 4K cycle of burst auto refresh is required before self refresh entry and after self refresh exit.  
If the system uses burst refresh.  
(December, 2009, Version 1.3)  
34  
AMIC Technology, Corp.  
A43L2616B  
Mode Register Set Cycle  
Auto Refresh Cycle  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
CLOCK  
CKE  
High  
High  
*Note 2  
CS  
tRC  
RAS  
CAS  
* Note 1  
* Note 3  
Key  
Ra  
ADDR  
WE  
DQM  
DQ  
Hi-Z  
Hi-Z  
MRS  
Auto Refresh  
New Command  
: Don't care  
New  
Command  
* Both banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.  
MODE REGISTER SET CYCLE  
* Note : 1.  
,
,
&
activation at the same clock cycle with address key will set internal mode register.  
WE  
CS RAS CAS  
2. Minimum 2 clock cycles should be met before new  
3. Please refer to Mode Register Set table.  
activation.  
RAS  
(December, 2009, Version 1.3)  
35  
AMIC Technology, Corp.  
A43L2616B  
Function Truth Table (Table 1)  
Current  
CS RAS  
BA  
Address  
Action  
Note  
CAS  
WE  
State  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP  
NOP  
X
ILLEGAL  
2
2
X
H
L
BA  
BA  
BA  
X
CA, A10/AP ILLEGAL  
IDLE  
H
H
L
RA  
Row Active; Latch Row Address  
L
PA  
NOP  
4
5
5
L
H
L
X
Auto Refresh or Self Refresh  
L
L
OP Code  
Mode Register Access  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP  
NOP  
Row  
X
ILLEGAL  
2
2
Active  
H
L
BA  
BA  
BA  
BA  
X
CA,A10/AP Begin Read; Latch CA; Determine AP  
CA,A10/AP Begin Write; Latch CA; Determine AP  
L
H
H
L
H
L
RA  
PA  
X
ILLEGAL  
Precharge  
ILLEGAL  
L
L
X
X
H
L
X
H
H
H
H
L
X
H
H
L
X
X
NOP(Continue Burst to End Row Active)  
NOP(Continue Burst to End Row Active)  
Term burst Row Active  
X
X
X
X
H
L
BA  
BA  
BA  
BA  
X
CA,A10/AP Term burst; Begin Read; Latch CA; Determine AP  
3
3
2
3
Read  
L
CA,AP  
Term burst; Begin Write; Latch CA; Determine AP  
ILLEGAL  
H
H
L
H
L
RA  
PA  
X
L
Term Burst; Precharge timing for Reads  
ILLEGAL  
L
X
X
H
L
X
H
H
H
H
L
X
H
H
L
X
X
NOP(Continue Burst to EndRow Active)  
NOP(Continue Burst to EndRow Active)  
Term burst Row Active  
X
X
X
X
H
L
BA  
BA  
BA  
BA  
X
CA,A10/AP Term burst; Begin Read; Latch CA; Determine AP  
CA,A10/AP Term burst; Begin Read; Latch CA; Determine AP  
3
3
2
3
Write  
L
H
H
L
H
L
RA  
ILLEGAL  
L
A10/AP  
Term Burst; Precharge timing for Writes  
ILLEGAL  
L
X
X
H
L
X
X
X
X
X
H
H
H
H
L
X
H
H
L
X
NOP(Continue Burst to EndPrecharge)  
NOP(Continue Burst to EndPrecharge)  
ILLEGAL  
X
Read with  
Auto  
Precharge  
X
H
L
BA  
BA  
BA  
X
CA,A10/AP ILLEGAL  
CA,A10/AP ILLEGAL  
2
2
L
H
L
X
X
RA, PA  
X
ILLEGAL  
ILLEGAL  
L
2
(December, 2009, Version 1.3)  
36  
AMIC Technology, Corp.  
A43L2616B  
Function Truth Table (Table 1, Continued)  
Current  
CS RAS  
BA  
Address  
Action  
Note  
CAS  
WE  
State  
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP(Continue Burst to EndPrecharge)  
NOP(Continue Burst to EndPrecharge)  
ILLEGAL  
Write with  
Auto  
X
H
L
BA  
BA  
BA  
X
CA,A10/AP ILLEGAL  
CA,A10/AP ILLEGAL  
2
2
Precharge  
L
H
L
X
X
X
H
L
RA, PA  
ILLEGAL  
L
X
X
X
X
ILLEGAL  
2
X
H
H
H
L
X
H
H
L
X
NOPIdle after tRP  
NOPIdle after tRP  
ILLEGAL  
X
X
Precharge  
X
H
L
BA  
BA  
BA  
X
CA,A10/AP ILLEGAL  
2
2
2
4
H
H
L
RA  
ILLEGAL  
L
A10/PA  
NOPIdle after tRP  
ILLEGAL  
L
X
X
H
L
X
X
X
X
X
H
H
H
L
X
H
H
L
X
NOPRow Active after tRCD  
NOPRow Active after tRCD  
ILLEGAL  
X
X
Row  
Activating  
X
H
L
BA  
BA  
BA  
X
CA,A10/AP ILLEGAL  
2
2
2
2
H
H
L
RA  
ILLEGAL  
L
A10/PA  
ILLEGAL  
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ILLEGAL  
X
H
H
L
X
H
L
X
NOPIdle after tRC  
NOPIdle after tRC  
ILLEGAL  
X
Refreshing  
X
H
L
X
ILLEGAL  
L
X
ILLEGAL  
X
X
X
NOPIdle after 2 clocks  
Mode  
Register  
Accessing  
L
H
H
H
H
X
NOPIdle after 2 clocks  
L
L
L
H
H
L
H
L
L
X
X
X
X
X
X
X
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
X
Abbreviations  
RA = Row Address  
NOP = No Operation Command  
BA = Bank Address  
CA = Column Address  
AP = Auto Precharge  
PA = Precharge All  
Note: 1. All entries assume that CKE was active (High) during the preceding clock cycle and the current clock cycle.  
2. Illegal to bank in specified state : Function may be legal in the bank indicated by BA, depending on the state of that  
bank.  
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
4. NOP to bank precharging or in idle state. May precharge bank indicated by BA (and PA).  
5. Illegal if any banks is not idle.  
(December, 2009, Version 1.3)  
37  
AMIC Technology, Corp.  
A43L2616B  
Function Truth Table for CKE (Table 2)  
Current  
State  
CKE CKE  
CS  
RAS  
Address  
Action  
Note  
CAS  
WE  
n-1  
n
H
X
X
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
L
L
H
H
H
H
H
L
6
6
Exit Self RefreshABI after tRC  
Exit Self RefreshABI after tRC  
ILLEGAL  
Self  
L
L
Refresh  
L
L
X
X
X
X
X
H
L
ILLEGAL  
L
L
X
X
X
X
H
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
NOP(Maintain Self Refresh)  
INVALID  
H
L
X
H
H
H
H
H
L
7
7
Exit Power DownABI  
Exit Power DownABI  
ILLEGAL  
Both  
Bank  
Precharge  
Power  
L
L
L
L
L
X
X
X
X
X
H
L
ILLEGAL  
Down  
L
L
X
X
X
X
H
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
NOP(Maintain Power Down Mode)  
Refer to Table 1  
H
H
H
H
H
H
H
H
L
H
L
Enter Power Down  
Enter Power Down  
ILLEGAL  
8
8
L
All  
Banks  
Idle  
L
L
L
L
X
X
H
L
ILLEGAL  
L
L
H
L
ILLEGAL  
L
L
L
Enter Self Refresh  
ILLEGAL  
8
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
H
H
L
H
L
Refer to Operations in Table 1  
Begin Clock Suspend next cycle  
Exit Clock Suspend next cycle  
Maintain clock Suspend  
Any State  
Other than  
Listed  
9
9
H
L
Above  
L
Abbreviations : ABI = All Banks Idle  
Note: 6. After CKE’s low to high transition to exit self refresh mode. And a time of tRC(min) has to be elapse after CKE’s low  
to high transition to issue a new command.  
7. CKE low to high transition is asynchronous as if restarts internal clock.  
A minimum setup time “tSS + one clock” must be satisfied before any command other than exit.  
8. Power-down and self refresh can be entered only from the all banks idle state.  
9. Must be a legal command.  
(December, 2009, Version 1.3)  
38  
AMIC Technology, Corp.  
A43L2616B  
Part Numbering Scheme  
X
X XX X X X X X  
XX  
A43  
Package Material  
Blank: normal  
F: PB free  
Temperature  
Blank :0°C ~ 70°C  
I:-25°C ~ 85°C  
U:-40°C ~ 85°C  
Speed  
95: 105 MHz  
75: 133 MHz  
7: 143 MHz  
6: 166 MHz  
55: 183 MHz  
5: 200 MHz  
Package Type  
V: TSOP  
G: CSP  
Device Version*  
Mobile Function*  
I/O Width  
16: 16 I/O  
32: 32 I/O  
Device Density  
06: 1M  
16: 2M  
26: 4M  
36: 8M  
46: 16M  
83: 256K  
Operating Vcc  
L: 3V~3.6V  
P: 2.3V~2.7V  
E: 1.7V~1.95V  
Device Type  
A43: AMIC SDRAM  
* Optional  
(December, 2009, Version 1.3)  
39  
AMIC Technology, Corp.  
A43L2616B  
Ordering Information  
Part No.  
Cycle Time (ns)  
Clock Frequency (MHz)  
Access Time  
Package  
A43L2616BV-6F  
A43L2616BV-6UF  
A43L2616BV-7F  
54 Pb-Free TSOP (II)  
54 Pb-Free TSOP (II)  
54 Pb-Free TSOP (II)  
54 Pb-Free TSOP (II)  
6
166 @ CL = 3  
5.0 ns  
7
143 @ CL = 3  
6.0 ns  
A43L2616BV-7UF  
1. Pb-free for “-F” grade  
2. Industrial for “-U” grade  
(December, 2009, Version 1.3)  
40  
AMIC Technology, Corp.  
A43L2616B  
Package Information  
TSOP 54 (Type II) Outline Dimensions  
unit: inches/mm  
Detail "A"  
R1  
54  
28  
0.21 REF  
R2  
0.665 REF  
θ
L
L
1
1
27  
D
Detail "A"  
S
-C-  
e
b
0.1  
Seating Plane  
Dimensions in inches  
Dimensions in mm  
Symbol  
Min  
-
Nom  
Max  
Min  
-
Nom  
Max  
1.20  
0.15  
1.05  
0.45  
0.21  
A
-
0.047  
0.006  
0.041  
0.018  
0.008  
-
A1  
A2  
b
0.002  
0.037  
0.012  
0.005  
0.004  
0.05  
0.95  
0.30  
0.12  
-
0.039  
1.00  
-
-
c
-
-
D
0.875 BSC  
0.028 REF  
0.463 BSC  
0.400 BSC  
0.031 BSC  
0.020  
22.22 BSC  
0.71 REF  
11.76 BSC  
10.16 BSC  
0.80 BSC  
0.50  
S
E
E1  
e
L
0.016  
0.024  
0.40  
0.60  
L1  
R1  
R2  
θ
0.031 REF  
-
0.80 REF  
-
0.005  
0.005  
0°  
-
0.12  
0.12  
0°  
-
-
0.010  
8°  
-
0.25  
8°  
-
-
Notes:  
1. The maximum value of dimension D includes end flash.  
2. Dimension E does not include resin fins.  
3. Dimension S includes end flash.  
(December, 2009, Version 1.3)  
41  
AMIC Technology, Corp.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY