AS1977 [AMSCO]

Ultra-Low Current, 1.8V Comparators; 超低电流, 1.8V比较
AS1977
型号: AS1977
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Ultra-Low Current, 1.8V Comparators
超低电流, 1.8V比较

放大器 光电二极管
文件: 总17页 (文件大小:423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
AS1976, AS1977  
Ultra-Low Current, 1.8V Comparators  
1 General Description  
2 Key Features  
CMOS Push/Pull Output Sinks and Sources 8mA  
The AS1976/AS1977 are very low-current comparators  
that can operate beyond the rail voltages and are guar-  
anteed to operate down to 1.8V  
(AS1976)  
CMOS Open-Drain Output Voltage Extends Beyond  
Low input bias current, current-limiting output circuitry,  
and ultra-small packaging make these comparators  
ideal for low-power 2-cell applications including power-  
management and power-monitoring systems.  
VCC (AS1977)  
Ultra-Low Supply Current: 200nA  
Internal Hysteresis: 3mV  
The comparators are available as the standard products  
listed in Table 1.  
Table 1. Standard Products  
3V-to5V Logiv-Level Translation  
Guaranteed to Operate Down to +1.8V  
Model  
AS1976  
AS1977  
Output Type  
Push/Pull  
Current  
200nA  
200nA  
Open-Drain  
Input Voltage Range Operates 200mV Beyond the  
Rails  
The AS1976 push/pull output can sink or source current.  
The AS1977 open-drain output can be pulled beyond  
VCC to a maximum of 6V > VEE. This open-drain model  
is ideal for use as a logic-level translator or bipolar-to-  
unipolar converter.  
Crowbar Current-Free Switching  
No Phase Reversal for Overdriven Inputs  
5-pin SOT23 Package  
Large internal output drivers provide rail-to-rail output  
swings with loads up to 8mA. Both devices feature built-  
in battery power-management and power-monitoring cir-  
cuitry.  
3 Applications  
The AS1976/AS1977 are available in a 5-pin SOT23  
package.  
The devices are ideal for battery monitoring/manage-  
ment, mobile communication devices, laptops and  
PDAs, ultra-low-power systems, threshold detectors/dis-  
criminators, telemetry and remote systems, medical  
instruments, or any other space-limited application with  
low power-consumption requirements.  
Figure 1. Block Diagram  
5
VCC  
AS1976/  
AS1977  
3
+
1
IN+  
4
OUT  
IN-  
2
VEE  
www.austriamicrosystems.com  
Revision 1.01  
1 - 17  
AS1976/AS1977  
Data Sheet - Pinout  
4 Pinout  
Pin Assignments  
Figure 2. Pin Assignments (Top View)  
OUT  
VEE  
IN+  
1
2
3
5
VCC  
AS1976/  
AS1977  
4
IN-  
Pin Descriptions  
Table 2. Pin Descriptions  
Pin  
Pin Name  
Number  
Description  
Comparator Output  
1
2
3
4
5
OUT  
VEE  
IN+  
IN-  
Negative Supply Voltage  
Comparator Non-Inverting Input  
Comparator Inverting Input  
Positive Supply Voltage  
VCC  
www.austriamicrosystems.com  
Revision 1.01  
2 - 17  
AS1976/AS1977  
Data Sheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 3 may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in Section 6 Electrical  
Characteristics on page 4 is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
Table 3. Absolute Maximum Ratings  
Parameter  
Min  
Max  
Units  
Comments  
Supply Voltage VCC to VEE  
+7  
V
VEE  
VCC  
Voltage Inputs IN+, IN-  
V
V
- 0.3  
+ 0.3  
VEE  
- 0.3  
VCC  
+ 0.3  
Output Voltage AS1976, AS1978  
Output Current  
-50  
+50  
10  
mA  
s
Output Short-Circuit Duration  
Continuous Power Dissipation  
Operating Temperature Range  
Storage Temperature Range  
571  
+85  
+150  
mW  
ºC  
Derate at 7.31mW/ºC above +70ºC  
-40  
-65  
ºC  
The reflow peak soldering temperature (body  
temperature) specified is in accordance with IPC/  
JEDEC J-STD-020C “Moisture/Reflow Sensitivity  
Classification for Non-Hermetic Solid State  
Surface Mount Devices”.  
Package Body Temperature  
+260  
ºC  
The lead finish for Pb-free leaded packages is  
matte tin (100% Sn).  
www.austriamicrosystems.com  
Revision 1.01  
3 - 17  
AS1976/AS1977  
Data Sheet - Electrical Characteristics  
6 Electrical Characteristics  
VCC = +5V, VEE = 0, VCM = 0, TAMB = -40 to +85ºC (unless otherwise specified). Typ values are at TAMB = +25ºC.  
Table 4. AS1976/AS1977 Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Inferred from the PSRR test  
VCC = 1.8V  
Min  
Typ  
Max Units  
VCC  
Supply Voltage Range  
1.8  
5.5  
V
0.2  
ICC  
Supply Current  
VCC = 5V, TAMB = +25ºC  
VCC = 5V, TAMB = TMIN to TMAX  
0.21  
0.5  
0.9  
µA  
Input Common-Mode  
Voltage Range  
VEE  
- 0.2  
VCC  
+ 0.2  
VCM  
Inferred from CMRR test  
V
-0.2V VCM (VCC + 0.2V),  
1
5
TAMB = +25ºC 1  
VOS  
Input Offset Voltage  
mV  
-0.2V VCM (VCC + 0.2V),  
10  
TAMB = TMIN to TMAX  
Input-Referred  
Hysteresis  
-0.2V VCM (VCC + 0.2V) 2  
VHB  
IB  
3
mV  
nA  
TAMB = +25ºC  
0.15  
1
2
Input Bias Current 3  
TAMB = TMIN to TMAX  
IOS  
Input Offset Current  
10  
pA  
Power-Supply  
Rejection Ratio  
PSRR  
VCC = 1.8 to 5.5V, TAMB = +25ºC  
0.05  
1
mV/V  
Common-Mode  
Rejection Ratio  
(VEE - 0.2V) VCM (VCC + 0.2V),  
CMRR  
0.2  
3
mV/V  
TAMB = +25ºC  
TAMB = +25ºC,  
220  
500  
650  
200  
300  
500  
650  
200  
300  
1
AS1976 only VCC = 5.5V, ISINK = 8mA  
TAMB = TMIN to TMAX,  
AS1976 only VCC = 5.5V, ISINK = 8mA  
Output Voltage Swing  
High  
VCC - VOH  
mV  
TAMB = +25ºC  
AS1976 only VCC = 1.8V, ISOURCE = 1mA  
80  
220  
70  
TAMB = TMIN to TMAX,  
AS1976 only VCC = 1.8V, ISOURCE = 1mA  
TAMB = +25ºC,  
AS1976 only VCC = 5.5V, ISINK = 8mA  
TAMB = TMIN to TMAX,  
AS1976 only VCC = 5.5V, ISINK = 8mA  
Output Voltage Swing  
Low  
VOL  
mV  
TAMB = +25ºC,  
VCC = 1.8V, ISOURCE = 1mA  
TAMB = TMIN to TMAX,  
VCC = 1.8V, ISOURCE = 1mA  
Output Leakage  
Current  
ILEAK  
ISC  
AS1977 only, VOUT = 5.5V  
0.001  
µA  
Sourcing, VOUT = VEE, VCC = 5.5V  
Sourcing, VOUT = VEE, VCC = 1.8V  
Sinking, VOUT = VCC, VCC = 5.5V  
Sinking, VOUT = VCC, VCC = 1.8V  
VCC = 1.8V  
50  
6
Output Short-Circuit  
Current  
mA  
70  
5
10  
12  
High-to-Low  
tPD-  
µs  
Propagation Delay 4  
VCC = 5.5V  
www.austriamicrosystems.com  
Revision 1.01  
4 - 17  
AS1976/AS1977  
Data Sheet - Electrical Characteristics  
Table 4. AS1976/AS1977 Electrical Characteristics (Continued)  
Symbol  
Parameter  
Conditions  
AS1976 only, VCC = 1.8V  
Min  
Typ  
13  
Max Units  
AS1976 only, VCC = 5.5V  
15  
Low-to-High  
tPD+  
µs  
Propagation Delay 4  
AS1977 only, VCC = 1.8V, RPULUP = 100kΩ  
AS1977 only, VCC = 3.6V, RPULUP = 100kΩ  
AS1976 only, CLOAD = 15pF  
CLOAD = 15pF  
16  
18  
tRISE  
tFALL  
tON  
Rise Time  
Fall Time  
10  
ns  
ns  
ns  
10  
Power-Up Time  
100  
1. VOS is defined as the center of the hysteresis band at the input.  
2. The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the  
center of the band (i.e., VOS) (see Figure 26 on page 11).  
3. Guaranteed by design.  
4. Specified with an input overdrive voltage (VOVERDRIVE) = 100mV, and load capacitance (CLOAD) = 15pF. VOVER-  
DRIVE is defined above and beyond the offset voltage and hysteresis of the comparator input. A reference volt-  
age error should also be added.  
www.austriamicrosystems.com  
Revision 1.01  
5 - 17  
AS1976/AS1977  
Data Sheet - Typical Operating Characteristics  
7 Typical Operating Characteristics  
Figure 3. ICC vs. VCC and Temperature  
Figure 4. ICC vs. Temperature  
500  
300  
275  
250  
225  
200  
175  
150  
VCC = 3V  
400  
300  
+85ºC  
+25ºC  
VCC = 5V  
VCC = 1.8V  
200  
-40ºC  
100  
0
1.5  
2.5  
3.5  
4.5  
5.5  
-40  
-15  
10  
35  
60  
85  
Supply Voltage (V)  
Temperature (°C)  
Figure 5. ICC vs. Output Transition Frequency  
Figure 6. VOL vs. ISINK  
50  
600  
500  
400  
40  
VCC = 3V  
VCC = 5V  
30  
VCC = 1.8V  
VCC = 5V  
300  
200  
100  
0
20  
VCC = 3V  
VCC = 1.8V  
10  
0
1
10  
100  
1000 10000 100000  
2
4
6
8
10  
12  
14  
16  
Output Transition Frequency (Hz)  
Sink Current (mA)  
Figure 7. VOL vs. ISINK and Temperature  
Figure 8. VOH vs. ISOURCE  
600  
500  
0.8  
0.6  
VCC = 1.8V  
+25ºC  
VCC = 3V  
400  
300  
200  
100  
0
+85ºC  
0.4  
0.2  
0
VCC = 5V  
-40ºC  
2
4
6
8
10  
12  
14  
16  
0
5
10  
15  
20  
Sink Current (mA)  
Source Current (mA)  
www.austriamicrosystems.com  
Revision 1.01  
6 - 17  
AS1976/AS1977  
Data Sheet - Typical Operating Characteristics  
Figure 9. VOH vs. ISOURCE and Temperature  
Figure 10. Short Circuit Sink Current vs. Temperature  
0.8  
100  
0.6  
75  
VCC = 5V  
+25ºC  
+85ºC  
0.4  
50  
-40ºC  
VCC = 3V  
0.2  
0
25  
VCC = 1.8V  
0
0
5
10  
15  
20  
-40  
-15  
10  
35  
60  
85  
Source Current (mA)  
Temperature (°C)  
Figure 11. Short Circuit Source Current vs. Temperature Figure 12. tPD+ vs. Temperature  
25  
20  
15  
10  
5
80  
60  
40  
20  
0
VCC = 5V  
VCC = 5V  
VCC = 1.8V  
VCC = 3V  
VCC = 3V  
VCC = 1.8V  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 13. tPD- vs. Temperature  
Figure 14. tPD- vs. Capacitive Load  
150  
125  
100  
75  
20  
16  
VCC = 5V  
VCC = 3V  
12  
VCC = 1.8V  
8
4
0
VCC = 1.8V  
50  
25  
0
VCC = 3V  
VCC = 5V  
-40  
-15  
10  
35  
60  
85  
0.01  
0.1  
1
10  
100  
1000  
Temperature (°C)  
Capacitive Load (nF)  
www.austriamicrosystems.com  
Revision 1.01  
7 - 17  
AS1976/AS1977  
Data Sheet - Typical Operating Characteristics  
Figure 15. tPD+ vs. Capacitive Load  
Figure 16. tPD+ 5V  
200  
150  
100  
VCC = 1.8V  
50  
VCC = 3V  
VCC = 5V  
0
0.01  
0.1  
1
10  
100  
1000  
4µs/Div  
Capacitive Load (nF)  
Figure 17. tPD- 5V  
Figure 18. tPD+ 3V  
4µs/Div  
4µs/Div  
Figure 19. tPD- 3V  
Figure 20. tPD+ 1.8V  
4µs/Div  
4µs/Div  
www.austriamicrosystems.com  
Revision 1.01  
8 - 17  
AS1976/AS1977  
Data Sheet - Typical Operating Characteristics  
Figure 21. tPD- 1.8V  
Figure 22. 10kHz Response @ 1.8V  
4µs/Div  
20µs/Div  
Figure 23. 1kHz Response @ 5V  
Figure 24. Powerup/Powerdown Response  
200µs/Div  
40µs/Div  
www.austriamicrosystems.com  
Revision 1.01  
9 - 17  
AS1976/AS1977  
Data Sheet - Detailed Description  
8 Detailed Description  
The AS1976/AS1977 are ultra low-current comparators and are guaranteed to operate with voltages as low as +1.8V.  
The common-mode input voltage range extends 200mV beyond the rail voltages, and internal hysteresis ensures  
clean output switching, even with slow input signals.  
The AS1976 push/pull output stage sinks and sources-current. The AS1977 open-drain output stage can be pulled  
beyond VCC to an absolute maximum of 3.6V > VEE. The AS1979/AS1977 are perfect for implementing wired-OR out-  
put logic functions.  
For all comparators, large internal output drivers allow rail-to-rail output swings with loads of up to 8mA. The output  
stage design minimizes supply-current surges during switching, eliminating most power supply transients.  
Input Stage  
The input common-mode voltage range extends from (VEE - 0.2V) to (VCC + 0.2V), and the comparators can operate at  
any differential input voltage within this range. The comparators have very low input bias current (±0.15nA, typ) if the  
input voltage is within the common-mode voltage range.  
Inputs are protected from over-voltage conditions by internal ESD protection diodes connected to the supply rails. As  
the input voltage exceeds the supply rails, these ESD protection diodes are forward biased and begin to conduct.  
Output Stage  
The break-before-make output stage is capable of rail-to-rail operation with loads up to 8mA. Many comparators con-  
sume orders of magnitude more current during switching than during steady-state operation.  
Even at loads of up to 8mA, changes in supply-current during an output transition are extremely small (see Figure 5 on  
page 6). As shown in Figure 5, the minimal supply current increases as the output switching frequency approaches  
1kHz. This characteristic reduces the need for power-supply filter capacitors to reduce transients created by compara-  
tor switching currents.  
Because of the unique design of its output stage, the AS1976/AS1977 can dramatically increase battery life, even in  
high-speed applications.  
www.austriamicrosystems.com  
Revision 1.01  
10 - 17  
AS1976/AS1977  
Data Sheet - Application Information  
9 Application Information  
The AS1976/AS1977 comparators are perfect for use with all 2-cell battery-powered applications. Figure 25 shows a  
typical application for the AS1977.  
Figure 25. AS1977 Typical Application Circuit  
VIN  
5
4
VCC  
IN-  
RPULLUP  
AS1977  
1
OUT  
3
2
IN+  
VEE  
Internal Hysteresis  
The comparators were designed with 3mV of internal hysteresis to neutralize the effects of parasitic feedback, i.e., to  
prevent unwanted rapid changes between the two output states.  
The internal hysteresis in the AS1976/AS1977 creates two trip points:  
Rising Input Voltage (VTHR) – The comparator switches its output from low to high as VIN rises above this trip point.  
Falling Input Voltage (VTHF) – The comparator switches its output from high to low as VIN falls below this trip point.  
The area between the trip points is the hysteresis band (VHB) (see Figure 26). When the AS1976/AS1977 input volt-  
ages are equivalent, the hysteresis effectively causes one input to move quickly past the other, thus taking the input  
out of the region where oscillation occurs. In Figure 26 IN- has a fixed voltage applied and IN+ is varied.  
Note: If the inputs are reversed the output will be inverted.  
Figure 26. Threshold Hysteresis Band  
Thresholds  
IN+  
VTHR  
Hysteresis  
Band  
IN-  
VHB  
VTHF  
OUT  
www.austriamicrosystems.com  
Revision 1.01  
11 - 17  
AS1976/AS1977  
Data Sheet - Application Information  
Additional Hysteresis (AS1976)  
Additional hysteresis can be added to the AS1976 and AS1978 with three resistors and positive feedback (see Figure  
27), however, this positive feedback method slows hysteresis response time.  
Figure 27. AS1976 Additional Hysteresis  
VCC  
R3  
R1  
VIN  
+
VCC  
VEE  
OUT  
R2  
VREF  
Resistor Selection Example  
For the circuit shown in Figure 27, use the following steps to calculate values for R1, R2, and R3.  
1. First select the value for R3. Leakage current at IN is less than 2nA, thus the current through R3 should be at least  
0.2µA to minimize errors due to leakage current. The current through R3 at the trip point is:  
(VREF - VOUT)/R3  
(EQ 1)  
Taking into consideration the two possible output states, solving for R3 yields two formulas:  
R3 = VREF/IR3  
(EQ 2)  
(EQ 3)  
R3 = (VCC - VREF)/IR3  
Use the smaller of the two resulting values for R3. For example, for VREF = 1.245V, VCC = 3.3V, and IR3 = 1µA, the  
two resistor values are 1.2MΩ and 2.0MΩ, therefore choose a 1.2MΩ standard resistor for R3.  
2. Choose the required hysteresis band (VHB). For this example, choose 33mV.  
3. Calculate R1 as:  
R1 = R3(VHB/VCC)  
Substituting the R1 and VHB example values gives:  
(EQ 4)  
(EQ 5)  
R1 = 1.2MΩ(50mV/3.3V) = 12kΩ  
4. Choose the trip point for VIN rising (VTHR) such that VTHR > VREF(R1 + R3)/R3. For this example, choose 3V.  
5. Calculate R2 as:  
R2 = 1/[VTHR/(VREF x R1) - (1/R1) - (1/R3)]  
Substituting the R1 and R3 example values gives:  
R2 = 1/[3.0V/(1.2V x 12kΩ) - (1/12kΩ) - (1/1.2MΩ)] = 8.05kΩ  
In this example, a standard 8.2kΩ resistor should be used for R2.  
6. Verify the trip voltages and hysteresis as:  
VTHR = VREF x R1[(1/R1) + (1/R2) + (1/R3)]  
VTHF = VTHR - (R1 x VCC/R3)  
(EQ 6)  
(EQ 7)  
(EQ 8)  
Hysteresis = VTHR - VTHF  
www.austriamicrosystems.com  
Revision 1.01  
12 - 17  
AS1976/AS1977  
Data Sheet - Application Information  
Additional Hysteresis (AS1977)  
Additional hysteresis can be added to the AS1977 and AS1979 with 4 resistors and positive feedback (see Figure 28).  
Figure 28. AS1977 Additional Hysteresis  
VCC  
R3  
R4  
R1  
VIN  
+
VCC  
VEE  
OUT  
R2  
VREF  
Resistor Selection Example  
For the circuit shown in Figure 28, use the following steps to calculate values for R1, R2, R3, and R4.  
1. Select R3 according to one of these formulas:  
R3 = VREF/1µA  
R3 = (VCC - VREF)/1µA - R4  
(EQ 9)  
(EQ 10)  
Use the smaller of the two resulting resistor values for R3.  
2. Choose the hysteresis band required (VHB).  
3. Calculate R1 as:  
R1 = (R3 + R4)(VHB/VCC)  
4. Choose the trip point for VIN rising (VTHR).  
5. Calculate R2 as:  
(EQ 11)  
(EQ 12)  
R2 = 1/[VTHR/(VREF x R1) - (1/R1) - 1/R3]  
6. Verify the trip voltages and hysteresis as:  
VIN rising: VTHR = VREF[R1(1/R1 + 1/R2 + 1/R3)]  
VIN falling: VTHF = VREF[R1(1/R1 + 1/R2 + 1/(R3+R4))] - [1/(R3+R4)]VCC  
Hysteresis = VTHR - VTHF  
(EQ 13)  
(EQ 14)  
(EQ 15)  
Zero-Crossing Detector  
Figure 29 shows the AS1976 in a zero-crossing detector circuit. The inverting input (IN-) is connected to ground, and  
the non-inverting input (IN+) is connected to a 100mVp-p signal source. When the signal at IN- crosses 0V, the signal  
at OUT changes states.  
Figure 29. Zero Crossing Detector  
100mVp-p  
3
+
1
IN+  
4
OUT  
IN-  
AS1976  
5
2
VCC  
VEE  
www.austriamicrosystems.com  
Revision 1.01  
13 - 17  
AS1976/AS1977  
Data Sheet - Application Information  
Logic-Level Translation  
The AS1977 can be used as a 5V-to-3V logic translator. Figure 30 shows an application that converts 5V- to 3V-logic  
levels, and provides the full 5V logic-swing without creating overvoltage on the 3V logic inputs.  
Note: When the comparator is powered by a 5V supply, RPULUP for the open-drain output should be connected to the  
+3V supply voltage.  
For 3V-to-5V logic-level translations, connect the +3V supply voltage to VCC and the +5V supply voltage to RPULUP.  
Figure 30. AS1977 Logic-Level Translation Circuit  
+3/+5V  
5
VCC  
+3/+5V  
RPullup  
100kΩ  
100kΩ  
4
1
+5/+3V  
Logic Out  
REF  
OUT  
AS1977  
+5/+3V  
Logic In  
3
2
IN+  
VEE  
Logic-Level Translator  
Layout Considerations  
The AS1976/AS1977 requires proper layout and design techniques for optimum performance.  
Power-supply bypass capacitors are not typically required, although 100nF bypass capacitors should be placed  
close to the AS1976/AS1977 supply pins when supply impedance is high, leads are long, or for excessive noise on  
the supply lines.  
Minimize signal trace lengths to reduce stray capacitance.  
A ground plane should be used.  
Surface-mount components should be used whenever practical.  
www.austriamicrosystems.com  
Revision 1.01  
14 - 17  
AS1976/AS1977  
Data Sheet - Package Drawings and Markings  
10 Package Drawings and Markings  
The AS1976/AS1977 are available in a 5-pin SOT23 package.  
Figure 31. 5-pin SOT23 Package  
Symbol  
Min  
0.90  
0.00  
0.90  
0.30  
0.09  
2.80  
2.60  
1.50  
0.30  
Max  
1.45  
0.15  
1.30  
0.50  
0.20  
3.05  
3.00  
1.75  
0.55  
A
A1  
A2  
b
C
D
E
E1  
L
e
0.95 REF  
1.90 REF  
e1  
α
0º  
8º  
Notes:  
1. Controlling dimension is millimeters.  
2. Foot length measured at intercept point between datum A and lead surface.  
3. Package outline exclusive of mold flash and metal burr.  
4. Package outline inclusive of solder plating.  
5. Meets JEDEC MO178.  
www.austriamicrosystems.com  
Revision 1.01  
15 - 17  
AS1976/AS1977  
Data Sheet - Ordering Information  
11 Ordering Information  
The devices are available as the standard products shown in Table 5.  
Table 5. Ordering Information  
Type  
Marking  
ASI9  
Description  
Output Type Delivery Form  
Package  
AS1976  
AS1976-T  
AS1977  
AS1977-T  
Ultra-Low Current 1.8V Comparator  
Ultra-Low Current 1.8V Comparator  
Ultra-Low Current 1.8V Comparator  
Ultra-Low Current 1.8V Comparator  
Push/Pull  
Push/Pull  
Tube  
5-pin SOT23  
ASI9  
Tape and Reel 5-pin SOT23  
Tube 5-pin SOT23  
ASJA  
ASJA  
Open-Drain  
Open-Drain Tape and Reel 5-pin SOT23  
www.austriamicrosystems.com  
Revision 1.01  
16 - 17  
AS1976/AS1977  
Data Sheet  
Copyrights  
Copyright © 1997-2007, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe.  
Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, trans-  
lated, stored, or used without the prior written consent of the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing  
in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding  
the information set forth herein or regarding the freedom of the described devices from patent infringement. austriami-  
crosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior  
to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information.  
This product is intended for use in normal commercial applications. Applications requiring extended temperature  
range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-  
sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for  
each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard  
production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However,  
austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to  
personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or  
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the tech-  
nical data herein. No obligation or liability to recipient or any third party shall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosystems AG  
A-8141 Schloss Premstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact  
www.austriamicrosystems.com  
Revision 1.01  
17 - 17  

相关型号:

AS1977-T

Ultra-Low Current, 1.8V Comparators
AMSCO

AS199-61

VSWR. Return Loss and Transmission Loss vs. Trans|DC-6 GHz Plastic Packaged and Chip|SPST
ETC

AS1B-E3/5AT

DIODE 1 A, 100 V, SILICON, SIGNAL DIODE, DO-214AC, ROHS COMPLIANT, SMA, 2 PIN, Signal Diode
VISHAY

AS1B-E3/61T

DIODE 1 A, 100 V, SILICON, SIGNAL DIODE, DO-214AC, ROHS COMPLIANT, SMA, 2 PIN, Signal Diode
VISHAY

AS1D-2M-10-Z

Hyper-miniature Slide Switchess
NIDEC

AS1D-5M-10-Z

Hyper-miniature Slide Switchess
NIDEC

AS1D-6M-10-Z

Hyper-miniature Slide Switchess
NIDEC

AS1D-E3/5AT

DIODE 1 A, 200 V, SILICON, SIGNAL DIODE, DO-214AC, ROHS COMPLIANT, SMA, 2 PIN, Signal Diode
VISHAY

AS1D-E3/61T

DIODE 1 A, 200 V, SILICON, SIGNAL DIODE, DO-214AC, ROHS COMPLIANT, SMA, 2 PIN, Signal Diode
VISHAY

AS1E-2M-10-Z

Hyper-miniature Slide Switchess
NIDEC

AS1E-5M-10-Z

Hyper-miniature Slide Switchess
NIDEC

AS1E-6M-10-Z

Hyper-miniature Slide Switchess
NIDEC