AS3630-ZWLT [AMSCO]

8A Supercap Flash Driver;
AS3630-ZWLT
型号: AS3630-ZWLT
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

8A Supercap Flash Driver

文件: 总72页 (文件大小:763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS3630  
8A Supercap Flash Driver  
The AS3630 is an inductive high efficient 4MHz dual DCDC step  
up converter with several sources. It supports the charging of a  
Supercap, its voltage balancing and a highly efficient DCDC step  
up from the Supercap to the LED and from VIN to the LED to  
power the flash LED with up to 8A. The AS3630 supports the  
pre-charging of the Supercap (to VIN) to reduce the startup time  
for the flash without reducing the lifetime of the Supercap.  
General Description  
The system concept supports an immediate torch function  
without first charging the Supercap.  
The AS3630 includes flash timeout, over- undervoltage,  
overtemperature and LED short circuit protection.  
The AS3630 is controlled by an I²C interface for adjustment of  
the currents and timings, set the end of charge voltage and  
measure the Supercap and LED parameters through the internal  
ADC. A dedicated TXMASK/TORCH input can be used for a torch  
button -or- reducing the battery current if a RF PA is operated  
at the same time (TX Masking). A hardware enable pin -ON can  
be used as a reset input.  
The AS3630 is available in a space-saving WL-CSP 5x5 balls  
package measuring only 2.5x2.5x0.6mm and operates over the  
-30ºC to +85ºC temperature range.  
Figure AS3630 – 1:  
Key Benefits and Features  
Benefits  
Features  
Dual high efficiency boost converter with soft start  
allows small coils  
Reduce Supercap size  
Instantaneous Torch operation for improved user  
experience  
Immediate Torch functions with charging of the  
Supercap  
Tiny external coils  
4MHz fixed frequency DCDC  
10bit ADC converter for system monitoring with  
Protection functions:  
Automatic Flash Timeout timer to protect the LED  
Overvoltage and undervoltage Protection  
LED (NTC) and device Overtemperature Protection  
LED short/open circuit protection  
System Safety  
Improved thermal performance (ground = heat sink)  
Flash LED(s) cathode connected to ground:  
8A Supercap Flash Driver  
AS3630 – 1  
Benefits  
Features  
LED currents (fully adjustable by interface)  
• 8A for 33ms and 6A for 120ms (Flash), 2.9mA -  
272mA for torch  
Fine control of current to fit to applications  
• 1mA-8mA indicator current  
Full control and hardware ON pin for easier system  
integration  
I²C Interface with Interrupt output and ON pin  
The device is ideal for Flash/Torch for mobile phones, DSC and  
Tablets.  
Applications  
Figure AS3630 – 2:  
Typical Operating Circuit  
ꢀꢁꢀꢁꢓꢂꢓꢙꢚ  
ꢑꢒꢓ  
ꢎꢏꢐ  
ꢍꢊꢋ  
ꢓꢛꢙꢜ  
ꢍꢊꢋ  
ꢍꢀꢁꢀꢁ  
ꢀꢁꢀꢁꢓ  
ꢓꢛꢙꢜꢝꢓꢛꢍ  
ꢑꢀꢏ  
ꢑꢁꢔ  
ꢗꢋ  
ꢀꢁꢀꢁꢱ  
ꢑꢒꢱ  
ꢓꢙꢚ  
ꢀꢁꢀꢁꢱ  
ꢓꢛꢙꢜꢝꢲꢳꢴꢍ  
ꢑꢐꢟꢗꢎꢕ  
ꢀꢁꢀꢁꢂꢁꢃꢄꢅꢆꢃꢇ  
ꢈꢄꢉ  
ꢊꢋꢂꢌꢃꢄꢅꢆꢃꢇ  
ꢡꢕꢕꢞꢖꢁꢚꢏꢟꢢꢕ  
ꢍꢑꢘꢞꢕꢟꢁꢏꢞ  
ꢎꢏꢔ  
ꢂꢂꢂꢂꢂꢓꢛꢭꢠꢅꢂꢂꢂꢂꢂꢂꢂꢂꢂ ꢧꢨꢚꢩ  
ꢏꢀꢁꢂꢂꢂꢂ  
ꢐꢰꢨꢏꢑꢡꢝꢐꢗꢟꢁꢚ  
ꢊꢋꢐ  
ꢑꢪꢦꢤꢆꢁꢈꢦ  
ꢊꢄꢅꢤꢆꢬ  
ꢆꢪꢦꢅ  
ꢗꢣꢐꢤꢥꢦ  
ꢗꢐꢞꢂ  
ꢧꢎꢮꢅꢤꢯ  
ꢔꢕꢀꢖꢗꢘꢐ  
ꢋꢐꢁꢖꢐꢚ  
ꢜꢇꢈꢯꢵꢂꢔꢕꢀꢯ  
ꢊꢋꢀꢖꢗꢘꢐ  
ꢋꢐꢁ  
ꢏꢢꢋꢀ  
ꢞꢢꢋꢀ  
ꢜꢔꢏꢑꢚꢓ  
ꢊꢋꢀ  
ꢊꢄꢉꢠꢌꢈꢅꢃꢆ  
ꢔꢕꢀ  
ꢜꢔꢏꢑꢚꢱ  
ꢋꢐꢁ  
Typical Operating Circuit: Shows the main function blocks of the AS3630.  
AS3630 – 2  
8A Supercap Flash Driver  
Pin Assignment  
Figure AS3630 – 3:  
Pin Assignments (Top View)  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢂꢇꢁꢈꢉꢊꢋꢌ  
ꢐꢑꢒ  
ꢄꢓ  
ꢍꢎꢄ  
ꢄꢏ  
ꢍꢒ$  
ꢄ*  
ꢄ"ꢐꢎ  
ꢄ2  
ꢍꢑꢔꢕꢖꢗ  
ꢄꢅ  
!ꢆꢐ  
ꢍ#ꢅ  
!ꢎꢒꢎꢒ  
ꢍ#ꢓ  
ꢍꢎꢄ  
ꢍꢒ$  
ꢕꢐ  
ꢑꢘꢙꢄꢍꢚꢛ  
ꢑꢕꢔꢒꢜ  
ꢖꢏ  
!ꢍ ꢀꢗꢔꢒꢄꢀ ꢆꢐꢎꢝꢕ ꢑ  
ꢖꢓ  
!ꢆꢐ  
ꢖ2  
ꢕꢐ  
ꢖ*  
ꢖꢅ  
ꢎꢒꢎꢒꢃꢒꢋꢂꢊꢌꢋ%  
ꢉꢂꢇ  
ꢆꢐꢃꢈꢋꢂꢊꢌꢋ%  
ꢍꢑꢔꢕꢖꢗ  
ꢖꢄ$  
ꢒꢅ  
ꢍ#ꢓ  
ꢒꢓ  
ꢀ"ꢐꢎ  
ꢒꢏ  
ꢆꢐꢑ  
ꢒ*  
!ꢎꢒꢎꢒ  
ꢒ2  
ꢚꢗꢗꢀꢝꢒꢜꢄꢔ"ꢗ  
ꢃꢃꢃꢃꢃꢅ./ꢁꢊꢃꢃꢃꢃꢃꢃꢃꢃꢃ *ꢙꢜꢩ  
ꢄꢎꢒꢃꢃꢃꢃ  
ꢑꢘꢙꢄꢍꢚꢛ  
ꢑꢕꢔꢒꢜ  
ꢖꢄ$  
ꢆꢂꢊ'ꢌ,  
ꢌ-)ꢊ  
ꢕ&ꢑ'()  
ꢕꢑꢀꢃ  
*ꢖ0ꢊ'1  
!ꢎꢒꢎꢒ  
ꢎꢅ  
ꢍ#ꢓ  
ꢎꢓ  
ꢍ#ꢅ  
ꢎ*  
$ꢗꢎꢝꢕ ꢑ  
ꢎ2  
ꢀ"ꢐꢎ  
ꢎꢏ  
ꢆꢐꢑ  
$ꢗꢎꢝꢕ ꢑ  
!ꢐꢑꢒꢝꢑꢜ  
ꢀ"ꢐꢎ  
ꢗꢏ  
ꢍ#ꢅ  
ꢗ*  
$ꢗꢎꢝꢕ ꢑ  
ꢗ2  
ꢍ#ꢓ  
ꢗꢓ  
!ꢎꢒꢎꢒ  
ꢗꢅ  
ꢆꢐꢎꢝꢕ ꢑ  
ꢐꢑꢒ  
ꢄ"ꢐꢎ  
ꢀ"ꢐꢎ  
8A Supercap Flash Driver  
AS3630 – 3  
Pin Description  
Figure AS3630 – 4:  
Pin Description  
Pin Number  
Pin Name  
Description  
Digital input with pulldown to control strobe time for flash  
A1  
STROBE  
1
function  
LED temperature sensor input - connect to NTC and connect its  
GND with a separate ground wire to AGND  
A2  
A3  
NTC  
Digital input, open drain output - serial data input/output for I²C  
interface (needs external pullup resistor)  
2
SDA  
2
3
A4  
A5  
B1  
B2  
SCL  
Digital Input - serial clock input for I²C mode  
AGND  
Analog ground - connect to ground (GND)  
Supercap connection  
VSUPERCAP  
IND_OUT  
Indicator LED current source output  
Function 1  
• “TXMASK” Connect to RF power amplifier enable signal -  
reduces currents during flash to avoid a system shutdown  
due to parallel operation of the RF PA and the flash driver.  
Function 2  
B3  
TXMASK/TORCH  
• “TORCH” Operate torch current level without using the I²C  
interface to operate the torch without need to start a  
camera processor (if the I²C is connected to the camera  
processor.  
Digital Input active high - a logic 1 enables of the AS3630; a logic  
0 resets the AS3630  
B4  
B5  
C1  
C2  
C3  
C4  
ON  
VIN  
Positive supply voltage input - connect to supply and make a  
short connection to input capacitor CVIN and to coil L  
DCDC1  
Supercap balance pin - balances both single capacitors inside the  
Supercap  
BAL  
DCDC converter 2 switching node - make a short connection to  
SW2  
PGND  
INT  
the coil L  
and connect all SW2 pins together on top plane  
DCDC2  
Power ground - connect to ground (GND) and connect all PGND  
pins together on top plane  
Open drain interrupt output - active low (needs external pullup  
resistor)  
DCDC converter 1 and 2 output capacitor - make a short  
connection to CVOUT1 and connect all VDCDC pins together as  
short as possible  
C5  
VDCDC  
AS3630 – 4  
8A Supercap Flash Driver  
Pin Number  
Pin Name  
Description  
DCDC converter 1 and 2 output capacitor - make a short  
connection to CVOUT1 and connect all VDCDC pins together as  
short as possible  
D1  
VDCDC  
DCDC converter 2 switching node - make a short connection to  
D2  
D3  
D4  
D5  
SW2  
PGND  
the coil L  
and connect all SW2 pins together on top plane  
DCDC2  
Power ground - connect to ground (GND) and connect all PGND  
pins together on top plane  
DCDC converter 1 switching node - make a short connection to  
SW1  
the coil L  
and connect all SW1 pins together on top plane  
DCDC1  
Flash LED current source output and connect all LED_OUT pins  
together on top plane  
LED_OUT  
DCDC converter 1 and 2 output capacitor - make a short  
connection to CVOUT1 and connect all VDCDC pins together as  
short as possible  
E1  
VDCDC  
DCDC converter 2 switching node - make a short connection to  
E2  
E3  
E4  
E5  
SW2  
PGND  
the coil L  
and connect all SW2 pins together on top plane  
DCDC2  
Power ground - connect to ground (GND) and connect all PGND  
pins together on top plane  
DCDC converter 1 switching node - make a short connection to  
SW1  
the coil L  
and connect all SW1 pins together on top plane  
DCDC1  
Flash LED current source output and connect all LED_OUT pins  
together on top plane  
LED_OUT  
1. Application Information: The pin STROBE is usually connected directly to the camera processor.  
2. When SCL and SDA exchanged, the AS3630 uses a different I²C address and the functionality of SCL/SDA is also exchanged - see “I²C Address  
Selection” on page 43.  
3. Only input: The AS3630 does not perform clock stretching.  
8A Supercap Flash Driver  
AS3630 – 5  
Stresses beyond those listed under “Absolute Maximum  
Ratings“ may cause permanent damage to the device. These are  
stress ratings only. Functional operation of the device at these  
or any other conditions beyond those indicated under  
“Operating Conditions” is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Absolute Maximum Ratings  
Figure AS3630 – 5:  
Absolute Maximum Ratings  
Parameter  
Min  
Max  
Units  
Comments  
VIN, SDA, SCL, ON, STROBE,  
TXMASK/TORCH, INT, IND_OUT, NTC  
and BAL to GND  
-0.3  
+7.0  
V
SDA, SCL, ON, STROBE,  
TXMASK/TORCH, INT, IND_OUT, NTC to  
GND  
-0.3  
-0.3  
VIN + 0.3  
+11  
V
V
V
, SW1, SW2, V  
, LED_OUT and  
DCDC  
DCDC  
VSUPERCAP to GND  
Diode between  
V
V
V
to SW1  
to SW2  
to LED_OUT  
DCDC  
DCDC  
DCDC  
• V  
• V  
• V  
and SW1  
and SW2  
and LED_OUT  
DCDC  
DCDC  
DCDC  
-0.3  
V
VSUPERCAP to BAL  
• VSUPERCAP and BAL  
Connect AGND and PGND to GND  
directly below the ball (short  
connection required)  
AGND, PGND to GND  
0.0  
0.0  
V
+100  
Input Pin Current without causing  
latchup  
-100  
mA  
Norm: EIA/JESD78  
+I  
IN  
Continuous Power Dissipation (T = +70ºC)  
A
1
Continuous power dissipation  
2770  
37  
mW  
P
P
T
Continuous power dissipation derating  
factor  
2
mW/ºC  
DERATE  
Electrostatic Discharge  
ESD HBM  
ESD MM  
2000  
100  
V
V
Norm: JEDEC JESD22-A114F  
Norm: JEDEC JESD 22-A115-B  
AS3630 – 6  
8A Supercap Flash Driver  
Parameter  
Min  
Max  
Units  
Comments  
Temperature Ranges and Storage Conditions  
+150ºC internally limited only  
during flash (max. 20000s)  
Junction Temperature  
+125  
ºC  
Storage Temperature Range  
Humidity  
-55  
5
+125  
85  
ºC  
%
Non condensing  
Body Temperature during Soldering  
+260  
ºC  
According to IPC/JEDEC J-STD-020  
Represents a max. floor life time of  
unlimited  
Moisture Sensitivity Level (MSL)  
MSL 1  
1. Depending on actual PCB layout and PCB used.  
2. PDERATE derating factor changes the total continuous power dissipation (PT) if the ambient temperature is not 70ºC. Therefore for e.g.  
AMB=85ºC calculate PT at 85ºC = PT - PDERATE * (85ºC - 70ºC)  
T
8A Supercap Flash Driver  
AS3630 – 7  
All limits are guaranteed. The parameters with min and max  
values are guaranteed with production tests or SQC (Statistical  
Quality Control) methods.  
Electrical Characteristics  
V
= +2.5V to +4.8V, T  
= -30ºC to +85ºC, unless otherwise  
VIN  
AMB  
specified. Typical values are at V  
unless otherwise specified.  
= +3.7V, T  
= +25ºC,  
BAT  
AMB  
Figure AS3630 – 6:  
Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
General Operating Conditions  
V
Supply Voltage  
2.5  
3.7  
0.5  
4.8  
2.0  
V
VIN  
AS3630 off, V <3.7V, T  
ON=0  
50ºC,  
50ºC,  
Shutdown  
Current  
BAT  
AMB  
I
I
μA  
SHUTDOWN  
AS3630 off, V <3.7V, T  
BAT  
AMB  
Standby Current  
1.0  
2
10  
μA  
μA  
ºC  
STANDBY  
ON=1  
Supercap  
pre-charging  
current  
IPRE_  
CHARGE_  
LOW_POWER  
mode_setting = Supercap pre-charge  
and charge_current =00b  
Operating  
Temperature  
T
-30  
25  
85  
10  
AMB  
DCDC1/2 Step Up Converter  
DCDC Boost  
output Voltage  
DCDC1 (L  
) and/or DCDC2  
DCDC1  
V
V
DCDC  
(L  
) is in operation  
DCDC2  
(pin V  
)
DCDC  
DCDC1 (L  
) or DCDC2 (L  
)
DCDC2  
η
Efficiency  
90  
%
DCDC1  
Operating  
Frequency  
All internal timings are derived from  
this oscillator  
f
-10%  
4.0  
+10%  
MHz  
CLK  
DCDC1/2  
maximum duty  
cycle  
max_duty  
DCDC  
84  
%
DCDC Switch  
RSW_P1  
RSW_N1  
RSW_P2  
RSW_N2  
100  
100  
70  
mΩ  
mΩ  
mΩ  
mΩ  
SW1 - V  
DCDC  
DCDC Switch  
SW1 - GND  
DCDC Switch  
SW2 - V  
DCDC  
DCDC Switch  
SW2 - GND  
100  
AS3630 – 8  
8A Supercap Flash Driver  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
Supercap Charger / Discharge  
0
1
2
3
4
4.469  
4.557  
4.646  
4.724  
4.820  
4.900  
4.995  
5.082  
5.170  
5.258  
5.345  
5.433  
5.526  
5.616  
5.704  
5.793  
4.57  
4.66  
4.75  
4.83  
4.93  
5.01  
5.11  
5.2  
4.671  
4.763  
4.855  
4.936  
5.036  
5.12  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
5
Programmable in  
90mV steps by  
6
5.219  
5.31  
register  
end_of_charge_vo  
ltage above 5.5V  
max. 60000s  
End of charge  
voltage for  
Supercap  
7
VSUPERCAP_  
1
EOC  
8
5.29  
5.38  
5.47  
5.56  
5.65  
5.74  
5.83  
5.92  
5.402  
5.494  
5.585  
5.677  
5.774  
5.868  
5.96  
during lifetime of  
AS3630  
9
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
6.053  
Pre-charging and  
transition (to  
charge) of  
charge_current  
=00b, low  
quiescent  
100  
200  
300  
Supercap - see  
Supercap  
current mode  
Pre-charging  
current of  
ISUPERCAP_  
01b  
10b  
380  
570  
500  
750  
650  
975  
Charging/Discharg  
e/Pre-charge to  
VIN ; final charging  
to VSUPERCAP_EOC is  
controlled by  
coil1_peak  
mA  
CHARGE  
2
Supercap  
11b  
760  
1000  
10  
1300  
During torch, charge or PWM  
operation keep VSUPERCAP charged  
if keep_sc_charged =1  
KeepingSupercap  
charged current  
IKEEP_  
CHARGE  
mA  
Discharge  
resistance for  
VSUPERCAP  
mode_setting = 001b / shutdown  
and discharge Supercap  
RDIS_  
CHARGE  
250*2  
Ω
8A Supercap Flash Driver  
AS3630 – 9  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
LED Current Sources  
Limited lifetime max. 20000s,  
mode_setting = flash operation;  
current specified for each of the two  
flash LEDs  
(2x)  
3000  
10  
10  
mode_setting = torch operation  
460  
mA  
LED_OUT Current  
set by led_current  
ILED_OUT  
303.9  
*
duty  
cycle  
mode_setting = PWM operation  
duty cycle defined by led_out_pwm  
10  
Accuracy, ΔI  
-10  
+10  
%
LED_OUT ripple  
current  
ILED_OUT_  
RIPPLE  
I
=2500mA, BW=20MHz  
200  
mApp  
LED  
Minimum Voltage  
between  
led_current_ra  
nge =00b or  
01b  
0.4  
0.5  
VSUPERCAP and  
LED_OUT to  
generate the  
programmed  
current  
Flash current  
source voltage  
compliance  
VFLASH_  
COMP  
V
10b  
(led_current)  
Range  
1.0  
-20  
8.0  
mA  
%
Set by ind_current  
in 1mA steps  
IIND_OUT  
Indicator Current  
Accuracy, ΔI  
+20  
2.6  
x2  
4.4  
x2  
LED_OUT-  
led_current_range = 00b…10b  
V
V
forward voltage  
measured on pin  
LED_OUT  
VLED_OUT  
2.6  
x2  
4.325  
x2  
led_current_range = 11b (4A)  
ADC  
Resolution  
10  
bits  
‘000h  
ADC Code  
‘3FFh’  
5.866  
BAL, VIN, IND_OUT, PGND,  
TXMASK/TORCH, STROBE, INT and ON  
0.0  
V
VSUPERCAP  
NTC  
0.0  
0.0  
0.0  
6.666  
2.2  
V
V
V
ADC input range;  
channel selected  
by ADC_channel  
Range  
V
11  
DCDC  
LED_OUT  
12.1  
Tjunc (AS3630 junction temperature, in ºC) =  
round (((4 * ADC_D9-D2 + ADC_D1-D0) - 324) * -1.05042)  
ºC  
AS3630 – 10  
8A Supercap Flash Driver  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
Number of conversion per  
measurement (averaged);  
ADC internal  
averaging filter  
Averaging  
measurements can be started  
immediately, at begin of flash and  
end of flash - see ADC_convert  
4
Protection and Fault Detection Functions  
V
DCDC  
DCDC Converter Overvoltage  
Protection  
V
9.3  
10.0  
V
overvoltage  
protection  
VOUTMAX  
Current Limit for  
Range  
500  
3500  
mA  
Set by coil1_peak  
and  
coil L  
(Pin  
DCDC1  
SW1) measured at  
75% PWM duty  
ILDCDC1  
coil1_txmask_curr  
_red during  
TXMask  
Accuracy, ΔI  
Range  
-10  
1000  
-10  
+10  
6000  
+10  
%
mA  
%
3
cycle  
Current Limit for  
coil L  
(Pin  
DCDC2  
SW1) measured at  
75% PWM duty  
ILDCDC2  
Set by coil2_peak  
Accuracy, ΔI  
3
cycle  
Voltage measured on pin LED_OUT  
monitored once the LED_OUT current  
is at or above a minimum current -  
“Short/Open LED Protection -  
fault_led” on page 35  
Flash LED short  
circuit detection  
voltage  
V
1.45  
V
LEDSHORT  
Overtemperature  
Protection  
T
144  
5
ºC  
OVTEMP  
Junction temperature  
T
Overtemperature  
Hysteresis  
OVTEMP  
HYST  
ºC  
Range  
Set by  
4
760  
ms  
t
Flash Timeout  
Timer  
FLASHTIMEO  
UT  
-10%  
-2ms  
+10%  
+2ms  
flash_timeout  
Accuracy, Δt  
Falling V  
2.3  
2.4  
2.5  
V
V
VIN  
Undervoltage  
Lockout  
V
UVLO  
V
V
V
UVLO  
+0.05  
UVLO  
+0.1  
UVLO  
+0.15  
Rising V  
VIN  
8A Supercap Flash Driver  
AS3630 – 11  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
Protection and Fault Detection Functions - NTC  
0
off  
40  
1
2
34.4  
45.6  
88  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
72  
80  
3
110  
147  
184  
220  
257  
294  
331  
368  
404  
441  
478  
515  
552  
120  
160  
200  
240  
280  
320  
360  
400  
440  
480  
520  
560  
600  
130  
173  
216  
260  
303  
346  
389  
432  
476  
519  
562  
605  
648  
4
5
6
Adjustable by  
NTC_current in  
40μA steps,  
7
NTC Current  
Source  
INTC  
8
V(NTC) 1.7V  
9
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
If ntc_on=1 and the voltage on NTC  
drops below VNTC_TH, any flash/torch  
or PWM operation of LED_OUT is  
stopped  
Threshold for  
overtemperature  
VNTC_TH  
1.0  
V
Digital Interface  
High Level Input  
Voltage  
V
V
1.28  
0.0  
0
V
V
IH  
VIN  
Pins SDA, SCL, ON, STROBE and  
TXMASK/TORCH  
Low Level Input  
Voltage  
V
0.5  
0.2  
IL  
Low Level Output  
voltage  
V
Pin INT and SDAat 2mA  
V
OL  
Leakage current  
I
Pins SDA, SCL, ON  
Pins  
TXMASK/TORCH,  
STROBE  
-1.0  
+1.0  
μA  
LEAK  
V
or GND  
VIN  
Pulldown current  
to GND  
RPULLDOWN  
1.8V on pad  
35  
kΩ  
torch debounce  
time  
tDEBTORCH  
TXMASK/TORCH input in torch mode  
7.5  
ms  
AS3630 – 12  
8A Supercap Flash Driver  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
TXMASK/TORCH input in TXMask  
mode - see “TXMASK” on page 28  
tDEBTXMASK  
debounce timer  
2.1  
μs  
I²C Mode Timings (page 14 )  
SCL Clock  
Frequency  
f
0
400  
kHz  
μs  
SCLK  
Bus Free Time  
Between a STOP  
and START  
t
1.3  
BUF  
Condition  
Hold Time  
(Repeated) START  
t
0.6  
μs  
HD:STA  
4
Condition  
LOW Period of  
SCL Clock  
t
1.3  
0.6  
μs  
μs  
LOW  
HIGH Period of  
SCL Clock  
t
HIGH  
Setup Time for a  
Repeated START  
Condition  
t
0.6  
μs  
SU:STA  
5
t
0
0.9  
μs  
μs  
Data Hold Time  
HD:DAT  
6
t
100  
Data Setup Time  
SU:DAT  
Rise Time of Both  
SDA and SCL  
Signals  
20 +  
t
300  
300  
ns  
ns  
R
0.1C  
B
Fall Time of Both  
SDA and SCL  
Signals  
20 +  
t
F
0.1C  
B
Setup Time for  
STOP Condition  
t
0.6  
μs  
pF  
pF  
SU:STO  
C — total capacitance of one bus  
line in pF  
Capacitive Load  
for Each Bus Line  
B
C
400  
10  
B
I/O Capacitance  
(SDA, SCL)  
C
I/O  
1. In pre-charge the Supercap is always charged close to VVIN; therefore VSUPERCAP_EOC VVIN is possible  
2. In order to reduce the total charging time of the Supercap, it is recommended to keep the Supercap pre-charged at VIN (can be enabled/dis-  
able by mode_setting)  
3. Due to slope compensation of the current limit, the current limit changes with duty cycle  
4. After this period, the first clock pulse is generated.  
5. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIHMIN of the SCL signal) to bridge the unde-  
fined region of the falling edge of SCL.  
6. A fast-mode device can be used in a standard-mode system, but the requirement tSU:DAT = to 250ns must then be met. This is automatically  
the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it  
must output the next data bit to the SDA line tR max + tSU:DAT = 1000 + 250 = 1250ns before the SCL line is released.  
8A Supercap Flash Driver  
AS3630 – 13  
Timing Diagrams  
Figure AS3630 – 7:  
2
I C Mode Timing Diagram  
SDA  
t
BUF  
t
LOW  
t
t
t
HD:STA  
R
F
SCLK  
t
HD:STA  
t
SU:STO  
t
SU:STA  
t
t
t
SU:DAT  
HD:DAT  
HIGH  
REPEATED  
STO START  
All measurements are performed at V =3.7V and T  
=25°C.  
Typical Operating Characteristics  
Figure AS3630 – 8:  
VIN  
AMB  
LED = LXCL-LW07.  
Efficiency vs. Supply Voltage V for DCDC1  
IN  
Efficiency vs. Supply Voltage: Shows efficiency (P /P ) of internal DCDC1 (V to V ) vs. different supply  
DCDC  
OUT IN  
IN  
AS3630 – 14  
8A Supercap Flash Driver  
voltages.  
Figure AS3630 – 9:  
Efficiency vs. V  
for DCDC2  
SUPERCAP  
Efficiency vs. Supply Voltage: Shows efficiency (P /P ) of internal DCDC2 (V  
to V ) vs. voltage on  
DCDC  
OUT IN  
SUPERCAP  
V
while discharging from 6V down to 3V.  
SUPERCAP  
8A Supercap Flash Driver  
AS3630 – 15  
Figure AS3630 – 10:  
Supercap Charging Cycle  
VVSUPERCAP (1V/div)  
VVOUT_DCDC (2V/div)  
IVIN (500mA/div)  
time (500ms/div)  
Supercap charging cycle: Shows all phases for charging of the Supercap starting from Pre-charge to transitions  
to charge until end of charge.  
Figure AS3630 – 11:  
Complete Flash Cycle  
VVSUPERCAP (1V/div)  
ILED_OUT (500mA/div)  
IVVIN (500mA/div)  
ISUPERCAP (2A/div)  
time (2ms/div)  
Complete flash cycle: Shows a complete LED flash cycle, flash time=16ms, I  
=3A, automatic re-charge  
LED_OUT  
enabled at end of flash cycle.  
AS3630 – 16  
8A Supercap Flash Driver  
Figure AS3630 – 12:  
Startup of Flash Cycle  
VVSUPERCAP (1V/div)  
ILED_OUT (500mA/div)  
IVVIN (500mA/div)  
ISUPERCAP (2A/div)  
time (40μs/div)  
Startup flash cycle: Shows detailed (zoomed) of startup of a flash cycle, I  
=3A.  
LED_OUT  
Figure AS3630 – 13:  
Shutdown of Flash Cycle  
ILED_OUT (500mA/div)  
VLED_OUT (2V/div)  
IVVIN (1A/div)  
ISUPERCAP (1A/div)  
time (50μs/div)  
Shutdown flash cycle: Shows detailed (zoomed) of rampdown of a flash cycle, I  
=2.5A.  
LED_OUT  
8A Supercap Flash Driver  
AS3630 – 17  
Figure AS3630 – 14:  
Torch Cycle  
VVDCDC_OUT (1V/div)  
ILED_OUT (20mA/div)  
IVVIN (500mA/div)  
VVSUPERCAP (1V/div)  
time (80μs/div)  
Torch cycle: Shows a torch operation. To operate the torch no charging of the Supercap is required (see voltage  
on VSUPERCAP), I =100mA.  
LED_OUT  
Figure AS3630 – 15:  
ILED_OUT Ripple Waveform  
ILED_OUT (30mA/div, AC coupled)  
time (100ns/div)  
ILED_OUT ripple: Current ripple measured on ILED during flash with I  
=2A.  
LED_OUT  
AS3630 – 18  
8A Supercap Flash Driver  
Figure AS3630 – 16:  
Open LED Detection Waveform  
VVDCDC_OUT (2V/div)  
VLED_OUT (2V/div)  
ILED_OUT (100mA/div)  
time (400μs/div)  
Open LED detection: Detailed measurement for detection of an open LED (LED disconnected) in torch mode.  
Figure AS3630 – 17:  
Short LED Detection Waveform  
VVDCDC_OUT (1V/div)  
VLED_OUT (1V/div)  
ILED_OUT (50mA/div)  
time (40μs/div)  
Short LED detection: Detailed measurement for detection of a shorted LED (short during operation).  
8A Supercap Flash Driver  
AS3630 – 19  
Figure AS3630 – 18:  
Switching Waveform  
VSW1 (3V/div)  
VSW1 (2V/div)  
ILDCDC1 (200mA/div ac  
coupled)  
time (320ns/div)  
Switching waveform: Detailed measurement of the DCDC converters in operation during flash.  
AS3630 – 20  
8A Supercap Flash Driver  
Detailed Descriptions  
The AS3630 is a highly efficient dual DCDC Supercap charger  
charging and balancing the Supercap and operating a LED flash  
at up to 8A current.  
The principle of operation of a AS3630 is as follows:  
1. Charge the Supercap on VSUPERCAP to e.g. 5.5V - see  
Supercap Charging/Discharge/Pre-charge to VIN  
2. Torch (or PWM) operation of the LED does not depend  
on a charge Supercap - see Torch/PWM Operation” on  
page 25.  
3. Use DCDC1 to step up from VIN to V  
to source one  
DCDC  
part of the LED_OUT current; in parallel use DCDC2 to  
step up from -VSUPERCAP to V to source the  
DCDC  
remaining part of the flash current - see Flash Operation.  
Using this approach a very high current flash operation can be  
performed using considerable low current from the battery  
(usually batteries have a defined strict current limit, so the full  
flash current cannot be supplied directly from the battery only).  
Supercap Charging/Discharge/Pre-charge to VIN  
The charging of the Supercap is performed in following steps:  
Pre-Charge - (see Figure below): Charge the Supercap  
close to VIN - initiated by setting mode_setting = Supercap  
1 2  
pre-charge , :  
The switch between SW1 and V  
is closed and I  
CHARGE  
DCDC  
(set by charge_current) is used to control the charging  
current. Use charge_current=00b for a special low power  
mode only consuming I  
.
PRE_CHARGE_LOW_POWER  
1. This mode is usually used during standby of the system - the Supercap is kept at VIN; this will reduce the charging time, when the  
camera is operated and the Supercap has to be charged to its final end of charge voltage (e.g. 5.5V)  
2. In pre-charge the Supercap is always charged close to VVIN; therefore VSUPERCAP_EOC VVIN  
8A Supercap Flash Driver  
AS3630 – 21  
Figure AS3630 – 19:  
Supercap Pre-charging  
ꢇꢏꢈꢆꢎꢇꢂꢑꢍꢉꢇꢆꢁꢈꢂꢅꢃꢂꢍꢊꢋ  
ꢀꢁꢀꢁꢓꢂꢄꢃꢅꢂꢓꢚꢂꢅꢌꢙꢂ  
ꢀꢁꢀꢁꢓ  
ꢎꢏꢐ  
ꢍꢊꢋ  
ꢑꢒꢓ  
ꢍꢊꢋ  
ꢍꢀꢁꢀꢁ  
ꢑꢀꢏ  
ꢀꢁꢀꢁꢓ  
ꢑꢁꢔ  
ꢗꢋ  
ꢀꢁꢀꢁ  
ꢑꢒ  
ꢗꢄ  
ꢑꢐꢗꢎꢕ  
ꢀꢁꢀꢁ  
ꢀꢁꢀꢁꢂꢁꢃꢄꢅꢆꢃꢇ  
ꢈꢄꢉ  
ꢊꢋꢂꢌꢃꢄꢅꢆꢃꢇ  
ꢕꢕꢖꢁꢁꢅꢕ  
ꢍꢑꢘꢁꢏ  
ꢂꢂꢂꢂꢂꢓꢐꢑꢂꢅꢂꢂꢂꢂꢂꢂꢂꢂꢂ ꢊꢋꢄꢌ  
ꢏꢀꢁꢂꢂꢂꢂ  
ꢔꢋꢏꢑꢃꢕꢐꢗ  
ꢎꢏꢔ  
ꢍꢉꢇꢆꢁꢈ  
ꢊꢄꢅ  
ꢍꢉꢅ  
ꢇꢈꢉ  
ꢗꢐꢂ  
ꢇꢓ  
ꢊꢋꢐ  
ꢔꢕꢀꢖꢗꢘꢐ  
ꢋꢐꢁꢖꢐ  
ꢇꢈꢓꢙꢂꢔꢕꢀ  
ꢊꢋꢀꢖꢗꢘꢐ  
ꢋꢐꢁ  
ꢊꢋꢀ  
ꢋꢀ  
ꢀꢅꢋꢀ  
ꢔꢏꢑꢓ  
ꢊꢄꢉꢌꢈꢅꢃꢆ  
ꢔꢕꢀ  
ꢔꢏꢑꢄꢖ  
ꢋꢐꢁ  
3
Transition between pre-charge -> charge: Once the  
voltage on VSUPERCAP is close to V and mode_setting  
VIN  
= “Supercap charge”, the DCDC1 converter is started and  
the current source I between V and  
CHARGE  
DCDC  
VSUPERCAP is used to finally charge VSUPERCAP to V  
VIN  
3. To avoid a current peak at VIN if the VSUPERCAP is connected to VIN, but its voltage is still below VIN  
AS3630 – 22  
8A Supercap Flash Driver  
Figure AS3630 – 20:  
Supercap Charging  
ꢈꢆꢎꢂꢂꢑꢍꢉꢇꢆꢁꢈꢂꢅꢃꢂꢄꢉꢂꢃ3ꢂꢌꢈꢆꢎꢇꢃꢇꢅꢈꢎꢇ  
ꢀꢁꢀꢁꢓꢂꢓꢛꢂꢅꢌꢙꢂ  
ꢀꢁꢀꢁꢓ  
ꢎꢏꢐ  
ꢍꢊꢋ  
ꢑꢒꢓ  
ꢍꢊꢋ  
ꢍꢀꢁꢀꢁ  
ꢑꢀꢏ  
ꢀꢁꢀꢁꢓ  
ꢑꢁꢔ  
ꢗꢋ  
ꢀꢁꢀꢁ  
ꢑꢒ  
ꢗꢄ  
ꢑꢐꢗꢎꢕ  
ꢀꢁꢀꢁ  
ꢀꢁꢀꢁꢂꢁꢃꢄꢅꢆꢃꢇ  
ꢈꢄꢉ  
ꢊꢋꢂꢌꢃꢄꢅꢆꢃꢇ  
ꢕꢕꢖꢁꢁꢅꢕ  
ꢍꢑꢘꢁꢏ  
ꢂꢂꢂꢂꢂꢓꢐꢑꢂꢅꢂꢂꢂꢂꢂꢂꢂꢂꢂ ꢊꢋꢄꢌ  
ꢏꢀꢁꢂꢂꢂꢂ  
ꢔꢋꢏꢑꢃꢕꢐꢗ  
ꢎꢏꢔ  
ꢍꢉꢇꢆꢁꢈ  
ꢊꢄꢅ  
ꢍꢉꢅ  
ꢇꢈꢉ  
ꢗꢐꢂ  
ꢇꢓ  
ꢊꢋꢐ  
ꢔꢕꢀꢖꢗꢘꢐ  
ꢋꢐꢁꢖꢐ  
ꢇꢈꢓꢙꢂꢔꢕꢀ  
ꢊꢋꢀꢖꢗꢘꢐ  
ꢋꢐꢁ  
ꢊꢋꢀ  
ꢋꢀ  
ꢀꢅꢋꢀ  
ꢔꢏꢑꢓ  
ꢊꢄꢉꢌꢈꢅꢃꢆ  
ꢔꢕꢀ  
ꢔꢏꢑꢄꢖ  
ꢋꢐꢁ  
Charging - (see Figure above): Once the voltage on  
VSUPERCAP VIN and mode_setting = “Supercap charge”,  
the main charging can start: The DCCD1 converter is  
operated and the switch between V  
and SW2 is closed.  
DCDC  
The charging current in this phase is defined by the L  
peak current limit (programmed by coil1_peak).  
Once the voltage on VSUPERCAP reaches  
DCDC1  
4
end_of_charge_voltage , the peak current through L  
DCDC1  
is reduced to 500mA. Charging is finished when the  
voltage on VSUPERCAP again reaches  
end_of_charge_voltage. Then the flash status_eoc is set and  
if enabled by status_eoc_mask, INT is pulled low.  
If keep_sc_charged=1, AS3630 will continuously check the  
voltage on VSUPERCAP if it drops below  
end_of_charge_voltage and automatically recharge the  
Supercap with 5mA.  
5
Keep charge: Even in torch or PWM operation of the LED  
connected to LED_OUT the charge on VSUPERCAP can be  
maintained by setting keep_sc_charged=1. Then the  
current source I  
will be used to charger  
KEEP_CHARGE  
VSUPERCAP from V  
(without exceeding  
DCDC  
end_of_charge_voltage).  
4. In pre-charge the Supercap is always charged close to VVIN; therefore VSUPERCAP_EOC VVIN  
5. In these modes DCDC2 is not used as LED_OUT can be driven directly with DCDC1 from VIN.  
8A Supercap Flash Driver  
AS3630 – 23  
Shutdown: Setting mode_setting=”shutdown or external  
torch mode (leave Supercap charged)” will keep the  
Supercap charged and disables the balancing circuit.It can  
be forced on if bal_force_on is set. If the voltage voltage  
on V  
is above 5.35V, the Supercap will be discharged  
DCDC  
until V  
is below 5.3V before shutdown mode is  
DCDC  
entered.  
Shutdown and Discharge: Setting  
mode_setting=”shutdown and discharge Supercap” will  
6
slowly discharge the Supercap through RDIS_CHARGE .  
Pre-Charge after Charge or Flash: Setting  
mode_setting=”pre charge Supercap (to VIN)” will  
discharge the Supercap to approximately V -0.3V by  
VIN  
using RDIS_CHARGE. Afterwards the Supercap is charged  
to V  
as shown in Figure 19.  
VIN  
Note: If the Supercap is charged above 5.5V it will be discharged  
to 5.5V even if the mode is set to “shutdown or external torch  
mode (leave Supercap charged)” to protect the Supercap.  
If during pre-charge, transition or charging operation, the  
junction temperature exceed T  
, the operation is  
OVTEMP  
temporarily stopped and automatically resumes, when the  
junction temperature has dropped below T -T  
.
OVTEMP OVTEMPHYST  
The Supercap balancing circuit keeps both parts of the  
Supercap at the same voltage level - see Balancing Circuit - Pin  
BAL.  
6. Implemented by a resistor between VSUPERCAP and BAL and another resistor between BAL and GND.  
AS3630 – 24  
8A Supercap Flash Driver  
Torch/PWM Operation  
Due to its concept, a torch or PWM operation can be performed  
without even charging the Supercap (this allows instantaneous  
video light or torch light):  
Figure AS3630 – 21:  
Immediate Torch (=Video Light) or PWM Operation  
ꢃꢇꢇꢉꢏꢈꢆꢎꢇ3ꢃꢆ  
ꢍꢉꢇꢆꢁꢈ43ꢄꢈ  
ꢐꢃꢆꢌꢙꢕꢀꢂꢃꢉꢇꢆꢈꢅꢃꢄꢂꢃ3ꢂꢔꢕꢀꢖꢗꢘꢐ  
ꢀꢁꢀꢁꢓꢂYꢅꢌꢙꢂ  
ꢀꢁꢀꢁꢓ  
ꢎꢏꢐ  
ꢍꢊꢋ  
ꢑꢒꢓ  
ꢍꢊꢋ  
ꢍꢀꢁꢀꢁ  
ꢑꢀꢏ  
ꢀꢁꢀꢁꢓ  
ꢑꢁꢔ  
ꢗꢋ  
ꢀꢁꢀꢁ  
ꢑꢒ  
ꢗꢄ  
ꢑꢐꢗꢎꢕ  
ꢀꢁꢀꢁ  
ꢀꢁꢀꢁꢂꢁꢃꢄꢅꢆꢃꢇ  
ꢈꢄꢉ  
ꢊꢋꢂꢌꢃꢄꢅꢆꢃꢇ  
ꢕꢕꢖꢁꢁꢅꢕ  
ꢍꢑꢘꢁꢏ  
ꢂꢂꢂꢂꢂꢓꢐꢑꢂꢅꢂꢂꢂꢂꢂꢂꢂꢂꢂ ꢊꢋꢄꢌ  
ꢏꢀꢁꢂꢂꢂꢂ  
ꢔꢋꢏꢑꢃꢕꢐꢗ  
ꢎꢏꢔ  
ꢍꢉꢇꢆꢁꢈ  
ꢊꢄꢅ  
ꢍꢉꢅ  
ꢇꢈꢉ  
ꢗꢐꢂ  
ꢇꢓ  
ꢊꢋꢐ  
ꢔꢕꢀꢖꢗꢘꢐ  
ꢋꢐꢁꢖꢐ  
ꢇꢈꢓꢙꢂꢔꢕꢀ  
ꢊꢋꢀꢖꢗꢘꢐ  
ꢋꢐꢁ  
ꢋꢀ  
ꢀꢅꢋꢀ  
ꢔꢏꢑꢓ  
ꢊꢋꢀ  
ꢊꢄꢉꢌꢈꢅꢃꢆ  
ꢔꢕꢀ  
ꢋꢐꢁ  
ꢔꢏꢑꢄꢖ  
7
After setting mode_setting = “Torch” or “PWM Operation” the  
step-up DCDC1 converter is used to generate -V sufficiently  
DCDC  
high enough to drive the I  
current (controlled by  
LED_OUT  
led_current). If keep_sc_charged (page 51)=1, VSUPERCAP is  
charged by the current source I (without exceeding  
KEEP_CHARGE  
end_of_charge_voltage) to maintain the charge on the Supercap  
during this operating mode.  
7. In PWM operation the current source ILED_OUT is PWM modulated with a duty cycle set by led_out_pwm.  
8A Supercap Flash Driver  
AS3630 – 25  
Flash Operation  
Additionally the step up converter DCDC1 (from VIN using  
L
), the step up converter DCDC2 (from Supercap using  
DCDC1  
L
) is used in parallel operating at high efficiency for the  
DCDC2  
flash operation. This allows to reduce the current for each of the  
DCDC’s and therefore the size of the Supercap and/or current  
required from battery:  
Figure AS3630 – 22:  
Flash DCDC1 and DCDC2 Parallel Operation to Reduce Current and Size of Supercap  
ꢇꢈꢓꢙꢂꢁꢆꢆꢄꢅꢂꢓꢍꢉꢉꢂꢇꢉ  
ꢑꢒꢂꢀꢁꢀꢁꢓ  
ꢇꢈꢓꢙꢂꢁꢆꢆꢄꢅꢂꢓꢍꢉꢉꢂꢇꢉ  
ꢑꢒꢂꢀꢁꢀꢁ  
ꢀꢁꢀꢁꢓ  
ꢎꢏꢐ  
ꢍꢊꢋ  
ꢑꢒꢓ  
ꢍꢊꢋ  
ꢍꢀꢁꢀꢁ  
ꢑꢀꢏ  
ꢀꢁꢀꢁꢓ  
ꢑꢁꢔ  
ꢗꢋ  
ꢀꢁꢀꢁ  
ꢑꢒ  
ꢗꢄ  
ꢑꢐꢗꢎꢕ  
ꢀꢁꢀꢁ  
ꢀꢁꢀꢁꢂꢁꢃꢄꢅꢆꢃꢇ  
ꢈꢄꢉ  
ꢊꢋꢂꢌꢃꢄꢅꢆꢃꢇ  
ꢕꢕꢖꢁꢁꢅꢕ  
ꢍꢑꢘꢁꢏ  
ꢂꢂꢂꢂꢂꢓꢐꢑꢂꢅꢂꢂꢂꢂꢂꢂꢂꢂꢂ ꢊꢋꢄꢌ  
ꢏꢀꢁꢂꢂꢂꢂ  
ꢔꢋꢏꢑꢃꢕꢐꢗ  
ꢎꢏꢔ  
ꢍꢉꢇꢆꢁꢈ  
ꢊꢄꢅ  
ꢍꢉꢅ  
ꢇꢈꢉ  
ꢗꢐꢂ  
ꢇꢓ  
ꢊꢋꢐ  
ꢔꢕꢀꢖꢗꢘꢐ  
ꢋꢐꢁꢖꢐ  
ꢇꢈꢓꢙꢂꢔꢕꢀ  
ꢊꢋꢀꢖꢗꢘꢐ  
ꢋꢐꢁ  
ꢊꢋꢀ  
ꢋꢀ  
ꢀꢅꢋꢀ  
ꢔꢏꢑꢓ  
ꢊꢄꢉꢌꢈꢅꢃꢆ  
ꢔꢕꢀ  
ꢋꢐꢁ  
ꢔꢏꢑꢄꢖ  
The flash operation is enabled by mode_setting = “Flash” and  
the timeout timer (register flash_timeout) defines the maximum  
flash duration.  
Note: If the voltage on VSUPERCAP drops below 2.55V, DCDC2  
is automatically stopped (and the flash current is supplied by  
DCDC1 only).  
Once the flash is finished, the AS3630 will automatically select  
the operating mode according to register mode_after_flash (see  
page 51) shown in Figure 26:  
AS3630 – 26  
8A Supercap Flash Driver  
Figure AS3630 – 23:  
Automatically Selected Operating Mode After Flash  
mode_after_flash  
mode_setting  
updated to  
Mode selected after flash has been finished  
(see page 51)  
00  
000b  
Shutdown of AS3630, but leave Supercap at the voltage  
at the end of the flash  
01  
10  
001b  
010b  
Shutdown AS3630 and discharge Supercap  
Discharge the Supercap to approximately VVIN-0.3V by  
using RDIS_CHARGE. Afterwards the Supercap is charged to  
VVIN as shown in Figure 19 and kept at this voltage  
11  
011b  
Supercap is automatically recharged to  
end_of_charge_voltage  
DCDC1 / DCDC2 Operating Principle During Flash  
In order to supply the required LED output current during flash  
operation, DCDC1 (from VIN) and DCDC2 (from Supercap) are  
used in parallel as shown in Figure 22.  
Three different operating modes are used (automatically  
selected by the AS3630):  
1. DCCD1 alone can deliver the full flash current.  
I
<coil1_peak, I  
=0A  
DCDC1  
DCDC2  
DCDC1 is regulated to deliver the flash LED current  
alone; no current is used from DCDC2 or the Supercap.  
2. DCDC1 and DCDC2 together deliver the flash current.  
I
hits coil1_peak, I  
<coil2_peak  
DCDC1  
DCDC2  
DCDC1 is operating in peak current limit (controlled by  
coil1_peak) and DCDC2 is controlled to deliver the  
remaining current for the LED. DCDC2 peak current is  
below the setting coil2_peak.  
3. DCDC1 and DCDC2 together cannot deliver the full flash  
current.  
I
hits coil1_peak, I  
hits coil2_peak  
DCDC1  
DCDC2  
In this operating mode both peak current settings  
together (coil1_peak and coil2_peak) are not able to  
deliver the programmed led_current. Therefore both  
DCDCs are operating in coil current limit and the LED  
current is the resulting sum of these two currents. If the  
register bit curr_limit_curr_red is set, led_current is  
8
ramped down until DCDC2 leaves peak current limit  
and operation continuous at mode 2. (DCDC1 and  
DCDC2 together deliver the flash current) and  
led_current_min is set to the reduced LED current.  
4. If the voltage on VSUPERCAP drops below 2.4V, DCDC2  
is disabled and the flash current drops to the current  
supplied by DCDC1 only.  
8. fault_current_reduced is set to indicate this condition.  
8A Supercap Flash Driver  
AS3630 – 27  
Note: If DCDC1 shall not be used during flash (the whole current  
has to be delivered by DCDC2 using the Supercap only, no  
current from VIN) set the registers as follows:  
txmask_torch_mode = 01b (TXMASK/TORCH is used as TXMask  
input),  
pull TXMASK/TORCH to ‘1,  
coil1_peak = 000b.  
The AS3630 will then always operate in TXMask mode and  
switch off DCDC1 (as coil1_peak = 000b).  
Battery and Flash LED Current Reductions in Flash Mode  
Current Reduction by VIN Measurements In Flash Mode  
Due to the load of the flash driver and the ESR of the battery  
(especially critical at low temperatures), the voltage on the  
battery drops. If the voltage drops below the system reset  
threshold, the system would reset. To prevent this condition the  
AS3630 monitors the battery voltage and keeps it above  
vin_low_v as follows:  
During flash, if the voltage on VIN drops below the threshold  
defined by vin_low_v, coil1_peak current is reduced thus  
reducing the current from the battery and preventing a system  
shutdown. Due to the unique regulation scheme (see DCDC1 /  
DCDC2 Operating Principle During Flash) more current is  
automatically used from the Supercap and therefore the flash  
current is kept constant.  
This function can be disabled by setting vin_low_v = 000b.  
DCDC1 and DCDC2 in Current Limit  
See DCDC1 / DCDC2 Operating Principle During Flash operating  
mode 3.  
TXMASK  
The coil L  
current limit is usually defined by coil1_peak. If  
DCDC1  
this current is too high to allow parallel operation of another  
high power load (e.g. the RF power amplifier) without  
overloading of the battery, the TXMask function can be used.  
Set txmask_torch_mode = 01b (TXMASK/TORCH is used as  
TXMask input) and connect the enable line of the other high  
power load to the AS3630 pin TXMASK/TORCH.  
In the event of TXMASK/TORCH=1 during flash, the coil1_peak  
current is instantaneously reduced by coil1_txmask_curr_red  
steps (coding as for coil1_peak). If coil1_peak minus  
coil1_txmask_curr_red steps would be negative DCDC1 is  
switched off during TXMask.  
Once TXMASK/TORCH=0, the coil peak current is ramped to the  
previous programmed value of coil1_peak.  
Continuous LED Current Ramp Down During Flash  
If the register led_current_rampdown is set, the LED current  
during flash is continuously ramped down. This has the benefit  
of using the Supercap energy most efficiently.  
AS3630 – 28  
8A Supercap Flash Driver  
Balancing Circuit - Pin BAL  
Figure AS3630 – 24:  
Balancing Circuit  
ꢄꢄꢙꢌꢍꢀꢁꢂꢃꢄ  
')')'*  
+",-./' -  
1345/)6"7  
'ꢀꢁꢂꢃꢄ  
 
 
ꢝ !  
"#$%&'($  
ꢅꢆꢇꢈꢂꢉꢊꢋꢌ  
ꢍꢀꢁꢂꢃꢄ  
ꢎꢏꢐꢑꢒꢓꢔꢕꢖ  
ꢋꢗꢘꢖꢔꢑꢓꢘ  
!ꢓ"ꢌ#ꢝꢔꢑꢖꢌꢝ $  
$#ꢔꢝꢛ$ꢝꢘꢖꢔꢓ%ꢏ ꢕ$ꢛꢝꢎꢖ  
The internal balancing circuit (Figure 24) keeps the voltage  
between VSUPERCAP-BAL to BAL-GND equal in order to avoid  
overvoltage on one of the capacitors inside the Supercap. It is  
powered from VSUPERCAP, therefore it can operate even if there  
is no voltage on VIN.  
The Supercap balancing circuit is active in pre-charge,  
transition, charge, keep charge and discharge. It can be forced  
on in flash and shutdown if bal_force_on is set.  
8A Supercap Flash Driver  
AS3630 – 29  
Operating Mode and LED Currents  
Currents and operating modes are selected according to the  
following figure:  
Figure AS3630 – 25:  
Operating Mode and Current Settings  
AS3630 Configuration  
Operating Mode and Currents  
Condition  
Mode  
No supply on VIN (0V)  
Shutdown  
All registers are  
reset to their  
Discharging  
0
X
X
X
VIN supplied  
default values  
txmask_torch_m  
ode not 10  
X
0
1
X
X
X
X
X
Keep voltage as is  
if mode_setting  
=000b,  
discharging if  
mode_setting=00  
1b  
Standby  
0mA  
txmask_torch_m  
ode =10  
000b,  
001b  
1
txmask_torch_m  
ode =10  
External torch  
mode  
led_current  
limited to 460mA  
Pre-charge  
Supercap to VIN  
010b  
011b  
Pre-charge  
0mA  
Charge Supercap  
to  
end_of_charge_v  
oltage  
X
X
Charge  
0mA  
AS3630 – 30  
8A Supercap Flash Driver  
AS3630 Configuration  
Operating Mode and Currents  
Condition  
Mode  
1
led_current  
X
X
X
X
100b  
101b  
Torch light mode  
PWM operation:  
limited to 460mA  
If  
keep_sc_charged  
=0 keep voltage  
on Supercap as is;  
3
led_current  
limited to  
303.9mA PWM  
modulated by  
led_out_pwm  
(1/16...4/16 @  
31.25kHz,  
Use for indicator  
with the main flash  
LED or low current  
if  
keep_sc_charged  
=1 charge  
2
Supercap to  
end_of_charge_v  
oltage with  
IKEEP_CHARGE -  
Figure 21 on  
page 25  
PWM operation  
1/32, 3/32 @  
15.625kHz)  
0
1
X
0mA  
Torch operation  
sync to STROBE -  
see Figure 32 on  
page 35  
X
110b  
1
led_current  
limited to 931mA  
strobe_on = 0  
Flash mode;  
Supercap is  
discharged using  
DCDC2 to  
0-  
>
1
strobe_on = 1  
and  
strobe_type = 0  
flash duration  
defined by  
flash_timeout  
LED_OUT -  
Figure 22 on  
page 26  
led_current for  
flash duration  
Flash mode;  
111b  
strobe_on = 1  
and  
strobe_type = 1  
flash duration  
defined by STROBE  
input; timeout  
defined by  
mode selected  
after flash: see  
Figure 23 on  
page 27  
1
flash_timeout  
1. If led_current_range=10 will use led_current_range=00.  
2. The low current mode is a general purpose PWM mode to drive less current through the LED in average, but keep the actual pulsed current  
in a range where the light output from the LED is still specified.  
3. Will use led_current_range=00.  
4. If txmask_torch_mode=01b then the DCDC1 peak coil current is changed depending on input TXMASK/TORCH - see section “TXMASK” on  
page 28  
8A Supercap Flash Driver  
AS3630 – 31  
Current Ranges  
Depending on operating mode (mode_setting(see page 51)) the  
9
current settings according to Figure 26 are possible :  
Figure AS3630 – 26:  
LED Current Selections  
External Torch  
led_current_range Mode or Torch  
Mode  
Flash  
Torch operation  
PWM Operation  
Operation sync to STROBE  
00  
Ok, but limited to  
460mA  
Ok, but limited to  
303.9mA  
Ok, but limited to  
931mA  
Ok  
(10-2500mA range)  
01  
Will use 00 range  
(10-303.9mA)  
Ok  
Ok  
Ok  
Ok  
(10-250mA range)  
10  
Will use 00 range  
(10mA - 460mA)  
Will use 00 range  
(10-303.9mA)  
Will use 00 range  
(10mA - 931mA)  
(2500-3000mA range)  
SOFTSTART / Soft Ramp Down  
During startup and ramp down the LED current is smoothly  
ramped up and ramped down. Additionally the DCDC converter  
on VIN has a startup mechanism to minimize or eliminate  
battery input current overshoots.  
Indicator Blinking Function  
Setting ind_on=1 enabled the indicator current source on pin  
IND_OUT. If ind_blink_delay=00 or ind_blink_on_time= 00, the  
current source is constantly enabled with a current defined by  
ind_current. All other conditions enable the indicator blinking  
feature as shown in Figure 27 controlled by ind_blink_on_time,  
ind_rampup_smooth, ind_rampdown_smooth, ind_blink_delay  
and ind_current. Smooth current rampup and rampdown is  
done using PWM modulation.  
9. The LED current is limited by hardware to protect the LEDs under any condition.  
AS3630 – 32  
8A Supercap Flash Driver  
Figure AS3630 – 27:  
Indicator Blinking Function Waveform  
ꢋꢌꢍꢎꢏꢐꢑ  
ꢒꢂꢓꢎꢔꢈꢒꢂꢕꢎ  
ꢃꢂꢎꢄꢒꢗꢉ  
ꢒꢂꢓꢎꢆꢚꢘꢘꢉꢂꢄ  
ꢒꢂꢓꢎꢘꢇꢗꢙꢚꢙꢎ  
ꢅꢗꢃꢃꢄꢛꢜꢝ  
 
&ꢀꢁꢂꢃꢄꢀꢄꢃ  
ꢅꢆꢇꢈꢉꢊ  
ꢜꢝ  
 
ꢒꢂꢓꢎꢔꢈꢒꢂꢕꢎꢓꢉꢈꢇꢖ  
ꢒꢂꢓꢎꢔꢈꢒꢂꢕꢎꢓꢉꢈꢇꢖ  
ꢒꢂꢓꢎꢘꢇꢗꢙꢓꢃ!ꢂꢎꢅꢗꢃꢃꢄꢛ  
Flash Strobe and Torch Sync to STROBE Timings  
The timings are defined as follows:  
1. Flash duration defined by register flash_timeout and  
flash is started immediately when this mode is selected  
by the I²C command (see Figure 28):  
set strobe_on = 0, start the flash by setting mode_setting  
= 111b  
2. Flash duration defined by register flash_timeout and  
flash started with a rising edge on pin STROBE (see  
Figure 29):  
set strobe_on = 1, strobe_type = 0 and setting  
mode_setting = 111b  
3. Flash start and timing defined by the pin STROBE; the  
flash duration is limited by the timeout timer defined by  
flash_timeout (see Figure 30 and Figure 31):  
set strobe_on = 1, strobe_type = 1 and setting  
mode_setting = 111b  
4. Torch operation synchronized to pin STROBE; the  
current is limited according to Figure 26:  
setting mode_setting = 110b  
Figure AS3630 – 28:  
AS3630 Flash Duration Defined by flash_timeout without Using STROBE Input  
2ꢎ3ꢊꢃꢍꢊꢉꢉ4ꢈ5  
0666  
ꢍꢉ#ꢎ)ꢊꢃꢎꢈ01  
7ꢏ3ꢎꢈ8ꢉꢏꢌꢋ#ꢊ  
ꢇꢈꢉꢊ#$ꢋꢌꢊ  
 ꢆ!ꢄ"ꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
%ꢀ& ꢃꢆꢇ(ꢁꢄꢅꢆ  
ꢄꢀꢁꢂꢃꢄꢀꢄꢃꢀꢅꢆꢇꢈꢉꢊ  
8A Supercap Flash Driver  
AS3630 – 33  
Figure AS3630 – 29:  
AS3630 Flash Duration Defined by flash_timeout, Starting Flash with STROBE Rising Edge  
ꢏꢚꢑꢅꢌꢑꢍꢍ!ꢒ"  
ꢓꢔꢔꢔ  
ꢌꢍꢎꢏꢐꢑꢅꢏꢒꢓꢔ ꢌꢍꢎꢏꢐꢑꢅꢍꢕꢖꢑꢓꢗ  
ꢘꢙꢚꢏꢒꢛꢍꢙꢜꢝꢎꢑ  
ꢇꢒꢍꢑꢎ ꢝꢜꢑ  
 ꢆ!ꢄ"ꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢆ  
ꢉꢏꢐꢈꢎꢉꢏꢉꢎꢏꢍꢌꢋꢑꢊꢒ  
Figure AS3630 – 30:  
AS3630 Flash Duration and Start Defined by STROBE, Limited by flash_timeout; Timer Not Expired  
ꢕꢇꢄꢃꢉꢅꢃꢆꢆꢁꢊꢖ  
ꢋꢌꢌꢌ  
ꢅꢆꢂꢇꢈꢃꢉꢇꢊꢋꢌ ꢅꢆꢂꢇꢈꢃꢉꢆꢒꢀꢃꢋꢌ  
ꢍꢎꢄꢇꢊꢏꢆꢎꢐꢑꢂꢃ  
ꢓꢊꢆꢃꢂꢔꢑꢐꢃ  
ꢃꢆ'ꢊ(ꢉ  
ꢁꢉ&ꢅꢊꢋꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢆ  
ꢒꢏꢍꢙꢑ'ꢀꢁꢂꢃꢄ  
ꢍꢙ#ꢒꢏꢍꢙꢍꢏꢙꢌꢜꢝ$ꢑ%  
Figure AS3630 – 31:  
AS3630 Flash Duration and Start Defined by STROBE, Limited by flash_timeout; Timer Expired  
ꢔꢃꢂꢊꢍꢋꢊꢆꢆꢕꢄꢖ  
ꢐꢑꢑꢑ  
ꢅꢆ)ꢇꢃꢉꢇꢊꢓꢔ ꢋꢆꢉꢃꢌꢊꢍꢆꢎꢏꢊꢐꢑ  
ꢒꢄꢆꢊꢉꢓꢈꢇꢊ  
"!#ꢝ$ꢛ  
ꢀꢁꢂꢃꢄꢅꢆꢁꢇꢈꢉꢊ  
ꢚꢛꢜꢉꢝ !  
%ꢚ&"'ꢉ!ꢓ(ꢛꢝ !  
ꢓꢈꢗꢘꢆꢍꢆꢕꢔꢊꢃꢗꢆ  
ꢆꢎꢗꢊꢇꢆꢎꢆꢇꢎꢅꢐꢑꢘꢃꢙ  
AS3630 – 34  
8A Supercap Flash Driver  
Figure AS3630 – 32:  
AS3630 Torch Operation with Duration Synchronized to STROBE Input  
&ꢃ'ꢊꢍꢋꢊꢆꢆ(ꢄ)ꢀꢁꢁꢂ  
ꢎꢇꢉꢍꢌꢏꢋꢊꢍ  
#"$ %ꢜ  
ꢃꢄꢅꢆꢇꢈꢉꢄꢊꢋꢌꢍ  
ꢛꢜꢝꢍ !"  
ꢆꢁꢙꢄꢃꢆꢁꢆꢃꢁꢋꢇꢈꢘꢊꢚ  
Protection, Status, NTC and Fault Detection  
Supercap End of Charge Detection - status_eoc  
Charging of the Supercap is performed as described in  
Figure 20. Once charging is finished the register status_eoc is  
set.  
ADC End of Conversion - status_adc_eoc  
Once the ADC conversion is finished, status_eoc is set - see  
“ADC” on page 38.  
Short/Open LED Protection - fault_led  
After the startup of the LED_OUT current source, the voltage  
on LED_OUT is continuously monitored and compared against  
V
after the LED current has reached a minimum current  
LEDSHORT  
depending on led_current_range (see page 47) - see the figure  
below:  
Figure AS3630 – 33:  
Short LED Detection Minimum Current  
led_current_range  
Short LED Detected Above  
00  
>29.4mA  
(10-2500mA range)  
01  
>20.58mA  
>23.53mA  
Disabled  
(10-250mA range)  
10  
(3000mA range)  
11  
(4000mA range)  
If the voltage on LED_OUT stays below V  
is detected.  
, a shorted LED  
LEDSHORT  
8A Supercap Flash Driver  
AS3630 – 35  
If the voltage on V  
reaches V  
and the voltage across  
VOUTMAX  
DCDC  
the current source between V  
and LED_OUT is below  
DCDC  
V
an open LED is detected.  
FLASH_COMP  
If an open or shorted LED is detected, bit fault_led is set. The  
DCDCs and current sinks are disabled and the Supercap is  
discharged by setting mode_setting=001b. In external torch  
mode, the register txmask_torch_mode is reset.  
Note: Short/open LED detection is disabled in PWM operating  
mode (mode_setting=101b). The voltage on V  
will  
DCDC  
nevertheless never exceed V  
.
VOUTMAX  
AS3630 DIE Overtemperature Detected - fault_overtemp  
The junction temperature of the AS3630 is continuously  
monitored. If the temperature exceeds T  
, the DCDCs are  
OVTEMP  
stopped, the current sources are disabled (instantaneous) and  
the bit fault_overtemp is set (but the operating mode  
mode_setting is not changed). The driver is automatically  
re-enabled once the junction temperature drops below  
T
-T  
.
OVTEMP OVTEMPHYST  
Note: If an overtemperature is detected in Supercap pre-charge,  
transition or charge mode, charging is temporarily disabled  
until the temperature drops, but the register bit fault_overtemp  
is not set.  
Timeout Fault - fault_timeout  
If the flash is started a timeout timer is started in parallel. If the  
flash duration defined by the STROBE input (strobe_on=1 and  
strobe_type=1, see Figure 31) exceeds tFLASHTIMEOUT  
(adjustable by register flash_timeout), the DCDCs are stopped  
and the flash current source (on pin LED_OUT) is disabled  
(ramping down) and fault_timeout is set.  
If the flash duration is defined by the timeout timer itself  
(strobe_on = 0, see Figure 28), the register fault_timeout is not  
set after the flash has been finished.  
AS3630 will automatically select the operating mode according  
to register mode_after_flash shown in Figure 26.  
Supercap Short Detected - fault_sc_short  
In all operating modes except shutdown (mode_setting not  
000b or 001b) once VSUPERCAP is above 2.4V both internal  
capacitors of the Supercap (VSUPERCAP-BAL and BAL-GND) are  
10  
monitored if they are shorted. If any of them is shorted  
,
charging is stopped and the Supercap is discharged by setting  
mode_setting=001b andfault_sc_short is set.  
10. VSUPERCAP-BAL is compared with typ. 950mV, BAL-GND is compared with typ. 700mV.  
AS3630 – 36  
8A Supercap Flash Driver  
NTC - Flash LED Overtemperature Protection - fault_ntc  
Figure AS3630 – 34:  
NTC Internal circuit  
ꢄꢔꢀ  
ꢀꢁꢂꢅꢐꢍꢕꢕꢈꢏꢉ  
ꢏꢉꢐꢅꢓꢏꢊ  
ꢗꢘꢙꢊꢐꢍꢕꢕꢈꢏꢉꢊꢇꢓꢍꢕꢐꢈꢊ  
ꢌꢐꢉꢑꢚꢈꢊ  
ꢓꢏ  
ꢛꢙꢂꢊꢐꢓꢏꢚꢈꢕꢇꢑꢓꢏꢊꢜꢑꢉꢝꢊ  
ꢛꢙꢂꢅꢐꢝꢌꢏꢏꢈꢎ ꢀꢁꢂꢊ  
ꢓꢏ  
ꢀꢁꢂꢅꢁꢆ  
ꢇꢈꢉꢊꢋꢌꢍꢎꢉꢅꢏꢉꢐ  
ꢋꢎꢑꢒꢋꢎꢓꢒ  
ꢉꢓꢊꢛꢙꢂꢊꢐꢝꢌꢏꢏꢈꢎꢊꢀꢁꢂ  
ꢀꢁꢂ  
ꢉꢝꢈꢕ"ꢌꢎꢎ#  
ꢐꢓꢍꢒꢎꢈ$  
!ꢎꢌꢇꢝꢊꢗꢘꢙꢇ  
ꢀꢁꢂ  
The NTC input can be used to monitor the flash LED temperature  
if ntc_on=1. A internal current source controlled by NTC_current  
sources a current on pin NTC - see Figure 34. If the voltage on  
pin NTC drops below VNTC_TH, fault_ntc is set, the DCDCs are  
stopped and the flash current source (on pin LED_OUT) is  
disabled (instantaneous) by setting mode_setting depending  
on register mode_after_flash. If mode_after_flash=001b then  
mode_setting=001b (shutdown and discharge Supercap). All  
other settings of mode_after_flash result in mode_setting=000b  
(shutdown).  
As the external NTC cannot measure the LED temperature in  
real time during a short high current flash pulse (the duration  
from heating up of the LED until the NTC recognizes a too hot  
LED is usually too long), it is advisable to measure the LED  
temperature before the flash pulse (with the ADC and  
NTC_current) and judge how much current can be driven  
through the LED (to be estimated depending on LED heat sink  
and is usually specified by the LED manufacturer).  
LED Current Reduction Triggered - fault_current_reduced  
If during flash the LED current has been reduced (for conditions  
when this can occur see DCDC1 / DCDC2 Operating Principle  
During Flash operating mode 3.), the register bit  
fault_current_reduced is set for indication and lled_current_min  
is set to the reduced LED current.  
The operating mode is not changed and the DCDCs and current  
source continue operation.  
8A Supercap Flash Driver  
AS3630 – 37  
Supply Undervoltage Protection  
If the voltage on the pin VIN (=battery voltage) is or falls below  
V
, the AS3630 is kept in shutdown state and all registers are  
UVLO  
set to their default state.  
Interrupt Output  
INT is an open drain, active low output. The internal circuit to  
control this pin is shown in Figure 35.  
Figure AS3630 – 35:  
Interrupts Processing  
ꢀꢁꢂꢁꢃꢄꢁꢅꢆ  
ꢚꢛꢜ  
ꢇꢈꢃꢉꢊꢈꢋꢀꢌꢌꢈꢊ  
%ꢎꢗꢃꢈ$ꢃꢋꢐꢑꢊꢂꢀꢃ  
ꢈ$ꢃ!ꢏꢉꢀꢊꢋꢑꢉ  
ꢈꢇꢐꢀꢊꢃꢍꢎꢇꢀꢊꢊꢏꢉꢇ  
ꢍꢎꢇꢀꢊꢊꢏꢉꢇꢃꢍꢎꢉꢏꢇ  
ꢌꢈꢏꢊꢋꢀꢌ  
ꢌꢀꢇ  
ꢌꢇꢑꢇꢏꢌꢒꢀꢈꢋ  
ꢝ !  
ꢃꢃꢃꢃꢃꢃ"#ꢍꢉ$#ꢈꢉ  
ꢊꢀꢌ  
ꢕꢇꢐꢀꢊꢃꢍꢎꢇꢀꢊꢏꢉꢇꢃꢌꢈꢏꢊꢋꢀꢌ  
ꢖꢈꢇꢐꢀꢊꢃꢗꢀꢘꢍꢋꢀꢌꢙ  
ꢝꢀꢑꢗꢈꢏꢇꢃꢊꢀꢂꢍꢌꢇꢀꢊ  
"ꢑꢏ#ꢇꢃ ꢃ!ꢇꢑꢇꢏꢌ  
ꢌꢇꢑꢇꢏꢌꢒꢀꢈꢋꢒꢓꢑꢌꢔ  
Once an interrupt event occurs (e.g. end of charge of Supercap;  
detailed description of interrupt events in “AS3630 Torch  
Operation with Duration Synchronized to STROBE Input ” on  
page 35, the interrupt flip flop is set (register status_eoc=1). If  
the interrupt mask is high (register status_eoc_mask=1), the  
output INT is pulled to low signalizing an interrupt condition.  
All 8 interrupt flip flops are automatically cleared upon readout  
of register Fault / Status.  
ADC  
The ADC is programmed by setting the ADC channel in register  
ADC_channel (page 52) and the ADC conversion is performed  
after setting ADC_convert (page 52).  
The actual timing when the ADC conversion is started / finished  
is programmed with ADC_convert as shown in Figure 36:  
AS3630 – 38  
8A Supercap Flash Driver  
Figure AS3630 – 36:  
ADC Timings  
ꢔꢅꢌꢏꢐꢑꢕꢇꢒꢃꢓꢄꢀꢁꢖꢗꢘꢙꢌ  
ꢚꢛꢁꢆꢀꢁꢌꢏꢐꢑꢌꢔꢜꢜꢄꢝꢔꢆꢁꢄꢉ !ꢌ  
ꢔꢅꢌꢏꢐꢑꢕꢇꢒꢃꢓꢄꢀꢁꢖꢘꢗꢙꢌ  
ꢚꢏꢁꢌꢊꢁꢆꢀꢁꢌꢒꢅꢌꢅꢉꢆꢊꢋ!ꢌ  
ꢔꢅꢌꢏꢐꢑꢕꢇꢒꢃꢓꢄꢀꢁꢖꢘꢘꢙꢌ  
ꢚꢏꢁꢌꢄꢃꢝꢌꢒꢅꢌꢅꢉꢆꢊꢋ!ꢌ  
ꢑꢍꢉꢄꢛꢖꢜꢗꢊꢝꢋꢇꢇꢍꢒ ꢑꢍꢉꢄꢛꢖꢜꢗꢊꢆꢇ ꢍꢀꢁ  
ꢂꢃꢁꢄꢀꢅꢆꢇꢄ  
ꢏꢐꢑꢌꢑꢒꢃꢓꢄꢀꢊꢔꢒꢃ  
ꢐꢆꢁꢆꢌꢆꢓꢆꢔꢉꢆꢙꢉꢄ  
ꢐꢆꢁꢆꢌꢆꢓꢆꢔꢉꢆꢙꢉꢄ  
ꢈꢉꢆꢊꢋꢌꢍꢎꢉꢊꢄ  
ꢐꢆꢁꢆꢌꢆꢓꢆꢔꢉꢆꢙꢉꢄ  
ꢔꢕꢖꢗꢘꢙꢚ  
ꢉꢄꢐꢇꢆꢉꢄꢉꢆ  
ꢑꢊꢋꢒꢍꢓ  
ꢘ"#ꢜꢊ  
Once the conversion is finished ADC_convert returns to 00b,  
status_adc_eoc is set, and the result data is available from  
register 4 * ADC_D9-D2 + ADC_D1-D0.  
Note: The ADC input ranges and gains are described in Figure 6  
subsection ADC.  
I²C Mode Serial Data Bus  
The AS3630 supports the I²C bus protocol. A device that sends  
data onto the bus is defined as a transmitter and a device  
receiving data as a receiver. The device that controls the  
message is called a master. The devices that are controlled by  
the master are referred to as slaves. A master device that  
generates the serial clock (SCL), controls the bus access, and  
generates the START and STOP conditions must control the bus.  
The AS3630 operates as a slave on the I²C bus. Within the bus  
specifications a standard mode (100kHz maximum clock rate)  
and a fast mode (400kHz maximum clock rate) are defined. The  
AS3630 works in both modes. Connections to the bus are made  
through the open-drain I/O lines SDA and SCL.  
The following bus protocol has been defined (Figure 37):  
• Data transfer may be initiated only when the bus is not  
busy.  
• During data transfer, the data line must remain stable  
whenever the clock line is HIGH. Changes in the data line  
while the clock line is HIGH are interpreted as control  
signals.  
Accordingly, the following bus conditions have been defined:  
Bus Not Busy  
Both data and clock lines remain HIGH.  
8A Supercap Flash Driver  
AS3630 – 39  
Start Data Transfer  
A change in the state of the data line, from HIGH to LOW, while  
the clock is HIGH, defines a START condition.  
Stop Data Transfer  
A change in the state of the data line, from LOW to HIGH, while  
the clock line is HIGH, defines the STOP condition.  
Data Valid  
The state of the data line represents valid data when, after a  
START condition, the data line is stable for the duration of the  
HIGH period of the clock signal. The data on the line must be  
changed during the LOW period of the clock signal. There is one  
clock pulse per bit of data.  
Each data transfer is initiated with a START condition and  
terminated with a STOP condition. The number of data bytes  
transferred between START and STOP conditions are not  
limited, and are determined by the master device. The  
information is transferred byte-wise and each receiver  
acknowledges with a ninth bit.  
Acknowledge  
Each receiving device, when addressed, is obliged to generate  
an acknowledge after the reception of each byte. The master  
device must generate an extra clock pulse that is associated  
with this acknowledge bit.  
A device that acknowledges must pull down the SDA line during  
the acknowledge clock pulse in such a way that the SDA line is  
stable LOW during the HIGH period of the acknowledge-related  
clock pulse. Of course, setup and hold times must be taken into  
account. A master must signal an end of data to the slave by not  
generating an acknowledge bit on the last byte that has been  
clocked out of the slave. In this case, the slave must leave the  
data line HIGH to enable the master to generate the STOP  
condition.  
AS3630 – 40  
8A Supercap Flash Driver  
Figure AS3630 – 37:  
Data Transfer on I²C Serial Bus  
SDA  
MSB  
7 bit SLAVE  
ADDRESS  
R/W  
DIREC-  
TION  
ACKNOWLEDGE-  
MENT SIGNAL FROM  
RECEIVER  
ACKNOWLEDGE-  
MENT SIGNAL FROM  
RECEIVER  
SCLK  
1
9
1
2
6
7
8
2
3-7  
8
9
ACK  
STOP CONDITION  
OR REPEATED  
START CONDI-  
START  
CONDITION  
REPEATED IF  
MORE BYTES  
ARE TRANS-  
Depending upon the state of the R/W bit, two types of data  
transfer are possible:  
1. Data transfer from a master transmitter to a slave  
receiver. The first byte transmitted by the master is the  
slave address. Next follows a number of data bytes. The  
slave returns an acknowledge bit after each received  
byte. Data is transferred with the most significant bit  
(MSB) first.  
2. Data transfer from a slave transmitter to a master  
receiver. The master transmits the first byte (the slave  
address). The slave then returns an acknowledge bit,  
followed by the slave transmitting a number of data  
bytes. The master returns an acknowledge bit after all  
received bytes other than the last byte. At the end of the  
last received byte, a “not acknowledge” is returned. The  
master device generates all of the serial clock pulses and  
the START and STOP conditions. A transfer is ended with  
a STOP condition or with a repeated START condition.  
Since a repeated START condition is also the beginning  
of the next serial transfer, the bus is not released. Data  
is transferred with the most significant bit (MSB) first.  
The AS3630 can operate in the following two modes:  
1. Slave Receiver Mode (Write Mode): Serial data and  
clock are received through SDA and SCLK. After each  
byte is received an acknowledge bit is transmitted.  
START and STOP conditions are recognized as the  
beginning and end of a serial transfer. Address  
recognition is performed by hardware after reception of  
the slave address and direction bit (see Figure 38). The  
slave address byte is the first byte received after the  
master generates the START condition. The slave  
address byte contains the 7-bit AS3630 address, which  
is shown in Figure 42, followed by the direction bit  
11  
(R/W), which, for a write, is 0. After receiving and  
decoding the slave address byte the device outputs an  
acknowledge on the SDA line. After the AS3630  
8A Supercap Flash Driver  
AS3630 – 41  
acknowledges the slave address + write bit, the master  
transmits a register address to the AS3630. This sets the  
register pointer on the AS3630. The master may then  
transmit zero or more bytes of data, with the AS3630  
acknowledging each byte received. The address pointer  
will increment after each data byte is transferred. The  
master generates a STOP condition to terminate the  
data write.  
2. Slave Transmitter Mode (Read Mode): The first byte is  
received and handled as in the slave receiver mode.  
However, in this mode, the direction bit indicates that  
the transfer direction is reversed. Serial data is  
transmitted on SDA by the AS3630 while the serial clock  
is input on SCLK. START and STOP conditions are  
recognized as the beginning and end of a serial transfer  
(Figure 39 and Figure 40). The slave address byte is the  
first byte received after the master generates a START  
condition. The slave address byte contains the 7-bit  
AS3630 address, which is shown in Figure 42, followed  
12  
by the direction bit (R/W), which, for a read, is 1. After  
receiving and decoding the slave address byte the  
device outputs an acknowledge on the SDA line. The  
AS3630 then begins to transmit data starting with the  
register address pointed to by the register pointer. If the  
register pointer is not written to before the initiation of  
a read mode the first address that is read is the last one  
stored in the register pointer. The AS3630 must receive  
a “not acknowledge” to end a read.  
Figure AS3630 – 38:  
Data Write - Slave Receiver Mode  
<Data(n+X)>  
XXXXXXXX  
<Slave Address>  
Figure 42  
<Word Address (n)>  
XXXXXXXX  
<Data(n)>  
<Data(n+1)>  
XXXXXXXX  
S
0
A
A
XXXXXXXX  
A
A
A
P
S - Start  
A - Acknowledge (ACK)  
P - Stop  
Data Transferred  
(X + 1 Bytes + Acknowledge)  
11. The address for writing to the AS3630 is shown in Figure 42  
12. The address for read mode from the AS3630 is shown in Figure 42  
AS3630 – 42  
8A Supercap Flash Driver  
Figure AS3630 – 39:  
Data Read (from Current Pointer Location) - Slave Transmitter Mode  
<Data(n+X)>  
XXXXXXXX  
<Slave Address>  
Figure 42  
<Data(n)>  
<Data(n+1)>  
XXXXXXXX  
<Data(n+2)>  
XXXXXXXX  
S
1
A
XXXXXXXX  
A
A
A
NA  
P
S - Start  
A - Acknowledge (ACK)  
P - Stop  
Data Transferred  
(X + 1 Bytes + Acknowledge)  
Note: Last data byte is followed by a NACK  
NA - Not Acknowledge (NACK)  
Figure AS3630 – 40:  
Data Read (Write Pointer, Then Read) - Slave Receive and Transmit  
<Word Address (n)>  
XXXXXXXX  
A
<Slave Address>  
Figure 42  
S
Figure 42  
0
A
Sr  
1
A
<Data(n+1)>  
XXXXXXXX  
<Data(n+2)>  
XXXXXXXX  
<Data(n+X)>  
XXXXXXXX  
<Data(n)>  
XXXXXXXX  
A
A
A
NA  
P
S - Start  
Sr - Repeated Start  
A - Acknowledge (ACK)  
P - Stop  
Data Transferred  
(X + 1 Bytes + Acknowledge)  
Note: Last data byte is followed by a NACK  
NA - Not Acknowledge (NACK)  
I²C Address Selection  
Note: It is required to read the register Fixed ID twice after  
startup in order for the I²C address selection to identify the I²C  
address used.  
The AS3630 features two I²C slave addresses without having a  
dedicated address selection pin. The selection of the I²C address  
is done with the interconnection of AS3630 to the bus lines  
shown in the figure below. The serial interface logic inside  
AS3630 is able to distinguish between a direct I²C connection  
to the master or a second option where data and clock line are  
crossed. Therefore it is possible to address a maximum of two  
AS3630 slaves on one I²C bus.  
8A Supercap Flash Driver  
AS3630 – 43  
Figure AS3630 – 41:  
I²C Address Selection Application Diagram  
ꢁꢔꢕꢊꢖꢔꢏꢗ  
ꢜꢍꢌꢍꢏꢝꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢃꢄ  
ꢇꢓ  
ꢙꢘꢃ  
ꢚꢍꢛꢌꢔꢒ  
ꢖꢎꢐꢖ!ꢏꢝꢀꢃꢄ  
ꢀꢅꢆꢇꢈꢉ  
ꢁꢔꢕꢊꢖꢔꢏꢘ  
ꢀꢁꢂ  
ꢀꢃꢄ  
ꢇꢓ  
ꢀꢅꢆꢇꢈꢉ  
The I²C address use is defined according to the figure below:  
Figure AS3630 – 42:  
I²C Addresses for AS3630  
7 bit I²C  
address  
8 bit I²C read  
address  
8 bit I²C write  
address  
Device Number  
Figure 41 on page 44  
1
30h  
31h  
60h  
62h  
61h  
63h  
(default; SCLK and SDA directly connected)  
2
(SCLK and SDA exchanged)  
8A Supercap Flash Driver  
AS3630 – 44  
Register Description  
Figure AS3630 – 43:  
Register Overview  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
Fixed ID  
fixed_id  
RO  
Access  
00h  
17h - fixed id (e.g. to check I²C communication)  
Note: It is required to read the register Fixed ID twice after startup in order for the I²C address selection to identify the I²C address used.  
Reset Value  
Version  
reserved  
version  
Access  
RO  
NA  
RO  
01h  
Reset Value  
X
Don't use by application  
Don't use by application  
8A Supercap Flash Driver  
AS3630 – 45  
Addr  
Name  
Current Set LED  
Access  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
led_current  
RW  
Reset Value  
15h (206mA)  
LED Current pin LED_OUT; the range of this setting is defined by led_current_range  
LSB is 9.8mA (2500mA/255) for led_current_range=00b  
LSB is 980μA (250mA/255) for led_current_range=01b  
LSB is 11.76mA (3000mA/255) for led_current_range=10b  
led_current_range  
11b  
led_current  
00b  
0mA  
01b  
10b  
02h  
00h  
01h  
02h  
03h  
...  
0mA  
0mA  
0mA  
9.8mA  
19.6mA  
29.4mA  
...  
Don’t use  
below  
2506mA  
(code D5h)  
Don’t use  
below  
2996mA  
(code BFh)  
Don’t use below 10mA (code  
0Bh)  
D5h  
...  
2088mA  
...  
209mA  
...  
2506mA  
...  
3341mA  
...  
FFh  
2500mA  
250mA  
3000mA  
4000mA  
AS3630 – 46  
8A Supercap Flash Driver  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
Boost/TXMask  
Current  
curr_limit_curr_r  
ed  
led_current_range  
coil1_txmask_curr_red  
txmask_torch_mode  
Access  
RW  
RW  
0b  
RW  
RW  
Reset Value  
00b  
011b  
00b  
Reduce L  
current in steps of coil1_peak  
DCDC1  
Function of TXMASK/TORCH  
pin  
currents during TXMask  
(this is a delta value; e.g. -1 means one current  
step reduction e.g. from 2.5A to 2.0A; -4  
means four steps e.g. from 2.5A to 750mA. if  
the reduction would result in a negative value,  
DCDC1 is switch off during TXMask event)  
000 … -1  
001 … -2  
010 … -3  
011 … -4 - default value  
100 … -5  
101 … -6  
00 … no effect (default)  
01 … txmask operation  
mode (applies for flash  
mode, mode_setting=111b)  
10 … external torch mode  
(applies for shutdown mode,  
mode_setting=000b or  
001b, max. led_current ≤  
460mA)  
Range setting for led_current  
00...10-2500mA range  
01...10-250mA range  
10...2500-3000mA range  
11...don’t use  
03h  
Comment  
11 … don't use  
use range “10” only for currents  
above 2500mA  
110 … -7  
111 … -8  
If set, reduce LED current if LDCDC1 and LDCDC2 currents are hit and current source ILED cannot drive  
the output current.  
Note: In flash mode LDCDC1 is usually operated in current limit.  
8A Supercap Flash Driver  
AS3630 – 47  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
Coil and Charge  
Current  
charge_current  
coil2_peak  
coil1_peak  
Access  
RW  
RW  
RW  
Reset Value  
01b  
010b  
100b  
Defines charging current of  
Supercap for pre-charge and  
‘transition’ (to charge);  
afterwards coil1_peak defines  
current  
LDCDC2 Coil Peak current limit  
000 … don’t use  
001 … don’t use  
010 … 2.43A (default)  
011 … 3.14A  
LDCDC1 Coil Peak current limit  
000 … don’t use  
001 … 750mA  
010 … 1A  
04h  
Comment  
011 … 1.5A  
00 … 200mA - low quiescent  
current mode  
100 … 3.86A  
101 … 4.57A  
100 … 2A (default)  
101 … 2.5A  
01 … 500mA  
110 … 5.29 A  
110 … 3A  
10 ... 750mA  
111 … 6.0A  
111 … 3.5A  
11 … 1000mA  
AS3630 – 48  
8A Supercap Flash Driver  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
Charge / Low  
Voltage  
bal_force_on  
end_of_charge_voltage  
vin_low_v  
Access  
RW  
0b  
RW  
5h  
RW  
5h  
Reset Value  
Define Supercap end of charge  
Note: In pre-charge the Supercap is always charged close to VVIN;  
Reduce coil1_peak current if the VIN voltage  
falls below vin_low_v -  
0h function is disabled  
1h 3.0V  
2h 3.07V  
3h 3.14V  
4h 3.22V  
5h 3.3V - default  
6h 3.38V  
therefore end_of_charge_voltage VVIN  
05h  
0h … 4.61V  
1h … 4.7V  
8h … 5.33V  
9h … 5.42V  
Ah … 5.51V  
Bh … 5.61V  
Ch … 5.7V  
Dh … 5.79V  
Eh … 5.88V  
Fh … 5.97V  
2h … 4.79V  
3h … 4.88V  
4h … 4.97V  
5h … 5.06V (default)  
6h … 5.15V  
7h … 5.24V  
7h 3.47V  
0 … balancing circuit is enabled according to the operating mode  
1 … balancing circuit is always enabled  
8A Supercap Flash Driver  
AS3630 – 49  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
ind_rampup_s  
mooth  
ind_rampdo  
wn_smooth  
Flash Timer  
flash_timeout  
Access  
RW  
1
RW  
1
RW  
0Fh  
Reset Value  
Flash timeout timer - define maximum flash time  
4ms steps from 0…15h; 16ms steps from 16h to 63h  
00h … 4ms  
01h … 8ms  
16h … 104ms  
17h … 120ms  
18h … 136ms  
19h … 152ms  
1Ah … 168ms  
1Bh … 184ms  
1Ch … 200ms  
1Dh … 216ms  
1Eh … 232ms  
1Fh … 248ms  
20h … 264ms  
21h … 280ms  
22h … 296ms  
23h … 312ms  
24h … 328ms  
25h … 344ms  
26h … 360ms  
27h … 376ms  
28h … 392ms  
29h … 408ms  
2Ah … 424ms  
2Bh … 440ms  
2Ch … 456ms  
2Dh … 472ms  
2Eh … 488ms  
2Fh … 504ms  
30h … 520ms  
31h … 536ms  
32h … 552ms  
33h … 568ms  
34h … 584ms  
35h … 600ms  
36h … 616ms  
37h … 632ms  
38h … 648ms  
39h … 664ms  
3Ah … 680ms  
3Bh … 696ms  
3Ch … 712ms  
3Dh … 728ms  
3Eh … 744ms  
3Fh … 760ms  
02h … 12ms  
03h … 16ms  
04h … 20ms  
05h … 24ms  
06h … 28ms  
07h … 32ms  
08h … 36ms  
09h … 40ms  
0Ah … 44ms  
0Bh … 48ms  
0Ch … 52ms  
0Dh … 56ms  
0Eh … 60ms  
0Fh … 64ms  
10h … 68ms  
11h … 72ms  
12h … 76ms  
13h … 80ms  
14h … 84ms  
15h … 88ms  
Smooth  
rampdown  
during  
indicator  
blinking if  
ind_on=1  
Smooth  
rampup during  
indicator  
blinking if  
ind_on=1  
06h  
0... none  
1...smooth  
(380ms)  
0... none  
1...smooth  
(380ms)  
AS3630 – 50  
8A Supercap Flash Driver  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
keep_sc_ch  
arged  
Control  
ind_on  
mode_after_flash  
ntc_on  
mode_setting  
Access  
RW  
0b  
RW  
RW  
0b  
RW  
0b  
RW  
Reset Value  
11b  
001b  
000 ... shutdown or external torch mode (leave  
Supercap charged)  
001 ... shutdown or external torch mode and  
discharge Supercap with RDIS_CHARGE - default  
010 ... pre charge Supercap (to VIN)  
011 ... charge Supercap  
100 ... torch operation (wo/ Supercap) - max.  
led_current 460mA  
101 ... PWM Operation (main LED); max.  
led_current 303.9mA; led_current_range is  
set to 00b  
If set during  
PWM,Torch  
or Charge  
operation  
keep  
Supercap  
charged  
with 10mA  
current  
Set the operating mode after  
flash (see Figure 23 on page 27):  
00... shutdown (leave Supercap  
charged)  
01... shutdown and discharge  
Supercap  
07h  
Iindicator  
Hardware  
NTC  
protection  
of LED_OUT  
0…off  
current source  
on IND_OUT  
0 … off  
1… on, (current  
set by  
10... pre charge Supercap (to VIN)  
11... charge Supercap  
1…on  
ind_current)  
110 ... torch operation sync to STROBE  
(STROBE=1: LED on; STROBE=0: LED off) max.  
led_current 931mA  
111 ... Flash Operation  
8A Supercap Flash Driver  
AS3630 – 51  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
Strobe and ADC  
control  
strobe_on  
strobe_type  
ADC_convert  
ADC_channel  
Access  
RW  
1b  
RW  
1b  
RW  
RW  
0h  
Reset Value  
00b  
Select ADC channel for conversion  
0h … V  
DCDC  
1h … LED_OUT  
2h ... Tjunc (DIE Junction temperature)  
3h … VSUPERCAP  
4h ... don’t use  
5h ... BAL  
6h … VIN  
7h ... NTC  
8h … IND_OUT  
9h ... don’t use  
Ah ... PGND.  
Control ADC conversion -  
register is automatically reset to  
00 after the conversion is  
finished  
08h  
STROBE  
input is  
Enable STROBE  
input  
0 … edge  
sensitive  
1 … level  
sensitive  
Bh ... don’t use  
Ch ... STROBE  
Dh ... INT  
Eh ... ON  
Fh ... don’t use  
00 … ADC shutdown (no conversion performed or end of conversion)  
01 … start ADC conversion immediately  
10 … do ADC conversion 1.5ms after current rampup (beginning of flash)  
11 … do ADC conversion just before current rampdown (at end of flash; flash duration is extended  
by 100μs)  
AS3630 – 52  
8A Supercap Flash Driver  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
status_adc_e  
oc  
fault_overte  
mp  
fault_timeo  
ut  
fault_current  
_reduced  
Fault / Status  
status_eoc  
fault_led  
fault_sc_short  
fault_ntc  
1
Access  
SS_RC  
0b  
SS_RC  
0b  
SS_RC  
0b  
SS_RC  
0b  
SS_RC  
0b  
SS_RC  
0b  
SS_RC  
0b  
SS_RC  
Reset Value  
0b  
Detect a  
shorted  
Timeout has Supercap  
LED  
Overtemper  
ture  
detection  
hit  
(monitored  
by NTC) (see  
page 36)  
Overtemper  
Shorted or open ature  
09h  
End Of  
ADC end of  
conversion  
reached (see  
page 35)  
LED Current  
has been  
reduced and  
register  
Supercap  
Charge (see  
page 35)  
LED (LED_OUT)  
detected (see  
page 35)  
(Tjunction)  
triggered  
(see  
triggered  
(see  
page 36)  
(BAL-GND) or  
(VSUPERCAP-  
BAL) during  
charging (see  
page 36)  
page 36)  
led_current_min reports min. led current during flash cycle (see page 37)  
fault_current  
_reduced_m  
ask  
status_eoc_mas status_adc_e  
fault_overte  
mp_mask  
fault_timeo  
ut_mask  
fault_sc_short fault_ntc_m  
Interrupt Mask  
fault_led_mask  
k
oc_mask  
_mask  
ask  
Access  
RW  
0b  
RW  
0b  
RW  
0b  
RW  
0b  
RW  
0b  
RW  
0b  
RW  
0b  
RW  
0b  
Reset Value  
0Ah  
If set,  
overtemper  
ature  
(Tjunction)  
triggers INT  
If set, end of  
Supercap  
charge triggers  
INT  
If set ADC  
end of  
conversion  
triggers INT  
If set, a shorted  
or open LED  
(LED_OUT)  
If set  
If set  
timeout  
triggers INT  
If set  
fault_sc_short fault_ntc  
triggers INT triggers INT  
If set  
fault_current  
_reduced  
triggers INT  
triggers INT  
8A Supercap Flash Driver  
AS3630 – 53  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
PWM and  
Indicator  
ind_blink_delay  
ind_current  
led_out_pwm  
Access  
RW  
RW  
RW  
Reset Value  
01b  
000b  
000b  
PWM modulate LED_OUT current if  
mode_setting=PWM operation; automatically  
uses led_current_range=00 (10mA...2500mA)  
but limits current to 303.9mA (codes 00h...1Fh  
for led_current)  
Control indicator blinking  
function delay between blinks if 000 … 1mA  
IND_OUT current setting if ind_on=1  
0Bh  
ind_on=1  
001 … 2mA  
010 … 3mA  
011 … 4mA  
100 … 5mA  
101 … 6mA  
110 … 7mA  
111 … 8mA  
000 1/32 PWM at 15.625kHz- subharmonic  
oscillation are possible - not recommended to  
use  
001 don’t use - use 1/16 instead  
010 3/32 PWM at 15.625kHz  
00 ... continuously on (no  
blinking)  
01 ... 512ms  
10 ... 1024ms  
11 ... 2048ms  
011 don’t use - use 2/16 instead  
100 1/16 PWM at 31.25kHz  
101 2/16 PWM at 31.25kHz  
110 3/16 PWM at 31.25kHz  
111 4/16 PWM at 31.25kHz  
Minimum LED  
Current  
led_current_min  
Access  
RO  
0Ch  
Reset Value  
00h  
At the beginning of a flash pulse, led_current_min is set to led_current then it is reduced upon following condition: (coil1_peak hit  
and coil2_peak hit and curr_limit_curr_red=1); led_current_min has the same coding used as led_current (the current reduction  
happens in steps as the coding of led_current is done)  
AS3630 – 54  
8A Supercap Flash Driver  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
ADC MSB  
ADC_D9-D2  
Access  
RO  
NA  
0Dh  
Reset Value  
ADC MSB results bit 9 to bit 2  
ADC LSB  
Access  
led_current_rampdown  
ADC_D1-D0  
RW  
00  
RO  
NA  
Reset Value  
Automatically ramp-down of  
LED current register led_current  
during flash  
0Eh  
00 ... no ramp-down  
ADC LSB results bit 1 to bit 0  
01 ...1LSB every 100μs  
10 ...1LSB every 200μs  
11 ...1LSB every 500μs  
8A Supercap Flash Driver  
AS3630 – 55  
Addr  
Name  
<D7>  
test6  
R/W  
0
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
NTC  
skip_enable  
ind_blink_on_time  
NTC_current  
Access  
RW  
1
RW  
10  
RW  
8h  
Reset Value  
Current through the NTC when overtemperature protection of  
the LEDs (LED_OUT) is monitored  
0h … off; use for an external drive of NTC  
1h … 40μA  
2h … 80μA  
3h … 120μA  
4h … 160μA  
5h … 200μA  
6h … 240μA  
7h … 280μA  
8h … 320μA - default  
9h … 360μA  
Ah … 400μA  
Allow  
Control indicator blinking  
on-time if ind_on=1 (excluding  
rampup/down)  
pulse-skip  
operation or  
force 4MHz  
operation  
0Fh  
Test bit - don’t  
use  
00 ... 0ms (immediate  
ramp-down after ramp-up)  
01 ... 128ms  
0...4MHz  
operation  
1...pulse-skip 11 ... 512ms  
10 ... 256ms - default  
Bh … 440μA  
Ch … 480μA  
Dh … 520μA  
Eh … 560μA  
Fh … 600μA  
OTP1  
OTP_data1  
Access  
RO  
NA  
10h  
Reset Value  
Data of OTP  
AS3630 – 56  
8A Supercap Flash Driver  
Addr  
Name  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
OTP2  
OTP_data2  
Access  
RO  
NA  
11h  
Reset Value  
Data of OTP  
OTP3  
OTP_data3  
Access  
RO  
NA  
12h  
13h  
Reset Value  
Data of OTP  
OTP_lock  
RO  
OTP4  
OTP_data4  
Access  
RO  
NA  
Reset Value  
NA  
Data of OTP  
0 ... OTP is program-able (unlocked)  
1... OTP is locked and no further programming of OTP is possible  
1. SS_RC = automatically cleared upon readout  
8A Supercap Flash Driver  
AS3630 – 57  
Register Map  
Figure AS3630 – 44:  
Register Map  
Addr  
00h  
Name  
Fixed ID  
Version  
Default  
17h  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
fixed_id  
01h  
XXh  
reserved  
version  
Current Set  
LED  
02h  
03h  
15h  
0Ch  
led_current  
Boost/TXMas  
k Current  
curr_limit_curr  
_red  
led_current_range  
charge_current  
coil1_txmask_curr_red  
txmask_torch_mode  
Coil and  
Charge  
Current  
04h  
54h  
coil2_peak  
coil1_peak  
Charge / Low  
Voltage  
05h  
06h  
07h  
08h  
09h  
2Dh  
CFh  
61h  
C0h  
00h  
bal_force_on  
ind_rampup_s ind_rampdo  
end_of_charge_voltage  
vin_low_v  
mode_setting  
fault_ntc  
Flash Timer  
Control  
flash_timeout  
mooth  
wn_smooth  
keep_sc_ch  
arged  
ind_on  
mode_after_flash  
ntc_on  
Strobe and  
ADC control  
strobe_on  
status_eoc  
strobe_type  
ADC_convert  
ADC_channel  
Fault /  
status_adc_  
eoc  
fault_overt fault_timeo fault_sc_shor  
emp ut  
fault_curren  
t_reduced  
fault_led  
1
t
Status  
AS3630 – 58  
8A Supercap Flash Driver  
Addr  
Name  
Default  
<D7>  
<D6>  
<D5>  
<D4>  
<D3>  
<D2>  
<D1>  
<D0>  
fault_curren  
t_reduced_  
mask  
Interrupt  
Mask  
status_eoc_m  
ask  
status_adc_  
eoc_mask  
fault_overt fault_timeo fault_sc_shor  
fault_ntc_  
mask  
0Ah  
00h  
fault_led_mask  
emp_mask  
ut_mask  
t_mask  
PWM and  
Indicator  
0Bh  
0Ch  
40h  
NA  
ind_blink_delay  
ind_current  
led_out_pwm  
Minimum  
LED Current  
led_current_min  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
ADC MSB  
ADC LSB  
NTC  
NA  
0Xh  
68h  
NA  
NA  
NA  
NA  
ADC_D9-D2  
0
led_current_rampdown  
0
0
0
ADC_D1-D0  
test6  
skip_enable  
ind_blink_on_time  
OTP_data1  
NTC_current  
2
OTP1  
OTP2  
OTP_data2  
OTP_data3  
OTP3  
OTP4  
OTP_lock  
OTP_data4  
Read-Only Register  
R/W Register  
if writing to read-only register is required, write ‘0’ to read-only positions  
(e.g. ADC LSB)  
1. The register Fault / Status is a read only register, which is automatically cleared after readout. Therefore only a single I²C access is required to poll the status of the AS3630.  
2. If OTP data are fused in-circuit, expect a small yield loss.  
8A Supercap Flash Driver  
AS3630 – 59  
Application Information  
External Components  
Supercap  
The Supercap performance is critical for the performance of  
AS3630. As the Supercap is affected by aging, the flash  
performance has to be checked at end of life conditions.  
Figure AS3630 – 45:  
Recommended Supercaps  
Rated  
ESR Voltage  
Peak  
Rated1  
Voltage  
Match  
ing2  
Temp  
Range3  
Part  
C
Manufact  
urer  
Size  
Number  
DME2Z5R5K43 430mF  
-30ºC...  
+70ºC  
20.5x18.5  
x3.2mm  
50mΩ  
60mΩ  
60mΩ  
5.5V  
5.5V  
5.5V  
4.2V  
4.2V  
4.2V  
<5%  
<5%  
<5%  
4M3BT  
20%  
Murata  
www.murat  
a.com  
DME2U5R5L35 350mF  
4M3BT 20%  
-30ºC...  
+70ºC  
20.5x18.5  
x3.0mm  
DMF3R5R5L35 350mF  
-30ºC...  
+70ºC  
21.0x14.0  
x2.5mm  
4M3DTA0  
20%  
TDK  
EDLC082644-3  
31-2F-11  
-20ºC...  
+70ºC  
26x44  
x0.8mm  
www.tdk-  
component  
s.com  
330mF 80mΩ  
5.5V  
3.2V  
1. Can be applied constantly  
2. Difference of Capacitance of top capacitor (between VSUPERCAP/BAL) to capacitance of bottom capacitor (between BAL/GND).  
3. Operating temperature range  
AS3630 – 60  
8A Supercap Flash Driver  
LEDs  
The LED with its optics and its performance are a key element  
in a Supercap LED flash. Therefore use 2 high power LEDs with  
lowest forward voltage.  
Figure AS3630 – 46:  
Recommended LEDs  
ILED  
@ 25ºC  
ILED peak  
@ 25ºC  
Part  
Number  
Vf  
@ 1A  
Brightness  
@ 1A  
Size  
Manufacturer  
2500mA, t 2x1.64x0.6  
3.5V  
(max. 4.2V)  
30mA-120  
0mA  
Osram-OS  
CUW CFUP  
CL-778  
250-355lm  
10ms,  
3mm, max  
H 0.74mm  
www.osram-os.com  
duty=0.005  
Citizen Electronics  
ce.citizen.co.jp/lighting  
_led/en/index.html  
2.24x1.84x  
0.75mm  
Lumileds  
www.philipslumileds.c  
om  
LXCL-LW07  
3000mA  
Input Capacitor CVIN  
Low ESR input capacitors reduce input switching noise and  
reduce the peak current drawn from the battery. Ceramic  
capacitors are required for input decoupling and should be  
located as close to the device as is practical.  
Figure AS3630 – 47:  
Recommended Input Capacitor  
Related  
Voltage  
Part Number  
C
TC Code  
Size  
Manufacturer  
10μ  
>3μF@4.5V  
>2μF@5.25V  
Murata  
GRM188R60J106ME47  
LMK107BBJ106MA  
X5R  
X5R  
6V3  
0603  
0603  
www.murata.com  
10μ  
>3μF@4.5V  
Taiyo Yuden  
www.t-yuden.com  
6V3  
If a different input capacitor is chosen, ensure similar ESR value  
and at least 3μF capacitance at the maximum input supply  
voltage. Larger capacitor values (C) may be used without  
limitations.  
Optionally add a smaller capacitor in parallel to the input pin  
VIN (e.g. Murata GRM155R61C104, >50nF @ 3V, 0402 size).  
8A Supercap Flash Driver  
AS3630 – 61  
Output Capacitor CDCDC1, CDCDC2  
Low ESR capacitors should be used to minimize V  
ripple  
DCDC  
and therefore current ripple on the LED. Multi-layer ceramic  
capacitors are recommended since they have extremely low  
ESR and are available in small footprints. The capacitor should  
be located as close to the device as is practical.  
X5R dielectric material is recommended due to their ability to  
maintain capacitance over wide voltage and temperature  
range.  
Figure AS3630 – 48:  
Recommended DCDCs Capacitor  
Related  
Voltage  
Part Number  
C
TC Code  
Size  
Manufacturer  
10μF 20%  
>4.8μF@5V  
GRM219R61A106ME47  
GRM219R61A106ME44  
0805  
(2.0x1.25x0.85mm  
max 1mm height)  
Murata  
www.murata.com  
X5R  
10V  
10μF 10%  
>4.05μF@5V  
1
2x0805  
(2.0x1.25x0.85mm  
max 0.95mm  
height)  
TDK  
www.tdk.com  
2
10μF 20%  
X5R  
10V  
2 x C2012X5R1A106M  
1. If TAMB<70ºC or higher output voltage ripple can be tolerated.  
2. Use 2 in parallel for CDCDC1 and CDCDC2 to reach the required output capacitor of >4.2μF capacitance at 5V.  
If a different output capacitor is chosen, ensure similar ESR  
values and at least 4.2μF capacitance at 5V output voltage and  
for CDCDC1 10V voltage rating, CDCDC2 6.3V voltage rating.  
Inductor LDCDC1  
L
is used for charging of the Supercap, operate the LED in  
DCDC1  
torch and PWM operation and in parallel to L  
to power the  
DCDC2  
LED during flash. Due to the different durations of the operation  
modes, different peak current limits apply (see Figure 49).  
The fast switching frequency (4MHz) of the AS3649 allows for  
the use of small SMDs for the external inductor. The saturation  
current ISATURATION should be chosen to be above the  
13  
maximum value of ILDCCD1 . The inductor should have very  
low DC resistance (DCR) to reduce the I2R power losses - high  
DCR values will reduce efficiency.  
13. Can be adjusted in I²C mode with register coil1_peak  
AS3630 – 62  
8A Supercap Flash Driver  
Figure AS3630 – 49:  
Recommended Inductor  
max. coil1_peak  
setting for  
Part Number  
L
DCR  
Size  
Manufacturer  
Other modes Flash  
1.0μH  
LQM32PN1R0MG0 >0.6μH @  
3.0A  
3.2x2.5x0.9mm  
max 1.0mm  
height  
Murata  
1
60mΩ  
2.0A  
2.5A  
3.0A  
www.murata.com  
3.2x3x1.2  
mm  
height is max  
3.0A  
1.0μH  
SPM3012T-1R0M  
20%  
57mΩ  
10%  
TDK  
www.tdk.com  
2
(3.5A )  
1.0μH  
>0.7μH @  
2.7A  
>0.6μH @  
3.0A  
Samsung  
Electro-Mechancs  
www.sem.samsun  
g.co.kr  
3.2x2.5mm  
max 1.0mm  
height  
60mΩ  
25%  
CIG32W1R0MNE  
CKP3225N1R0M  
2.0A  
3.0A  
1.0μH  
3.2x2.5x0.9mm  
max 1.0mm  
height  
3
>0.6μH @ <60mΩ  
1.0A  
2.5A  
3.0A  
3.0A  
Taiyo Yuden  
www.t-yuden.com  
1.0μH  
2.5x2.0x1.2mm  
height is max  
MAMK2520T1R0M >0.6μH@  
2.75A  
45mΩ  
2.5A  
1. Flash pattern: 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again (no limit on the number of total cycles)  
Alternative pattern with 1000ms/1.6A, 200ms pause, 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again. (no limit on the number of  
total cycles)  
2. Check with coil supplier  
3. Check with coil supplier for worst case flash pattern.  
If a different inductor is chosen, ensure similar DCR values and  
at least0.6μH inductance at ILDCCD1 set by coil1_peak.  
Inductor LDCDC2  
L
is used in parallel to L  
to power the LED during  
DCDC1  
DCDC2  
flash. The whole current from the Supercap flows through  
therefore a high power inductor is required.  
L
DCDC2  
The fast switching frequency (4MHz) of the AS3649 allows for  
the use of small SMDs for the external inductor. The saturation  
current ISATURATION should be chosen to be above the  
14  
maximum value of ILDCCD2 . The inductor should have very  
low DC resistance (DCR) to reduce the I2R power losses - high  
DCR values will reduce efficiency  
14. Can be adjusted in I²C mode with register coil2_peak  
8A Supercap Flash Driver  
AS3630 – 63  
Figure AS3630 – 50:  
Recommended Inductor  
max.  
coil2_peak  
setting  
Part Number  
L
DCR  
Size  
Manufacturer  
4.06x4.45x1  
.5mm  
height is  
max  
1
1.0μH  
>0.6μH @ 6.0A  
6.0A  
MPI4040R2-1R0-R  
25mΩ  
(max. value)  
Coiltronics (Cooper  
Bussmann)  
www.cooperbussmann.c  
om  
4.06x4.45x1  
.2mm  
height is  
max  
1.0μH  
>0.6μH @ 6.0A  
check with  
coiltronics  
MPI4040R1-1R0-R  
40mΩ  
4x4x2mm  
max 2.1mm  
height  
1.0μH  
>0.6μH @ 6.0A  
6.0A  
(max. value)  
XAL4020-102ME_  
XFL4020-102ME_  
13.25mΩ  
14.4mΩ  
Coilcraft  
www.coilcraft.com  
1.0μH  
>0.6μH @  
5.29A  
4x4x2mm  
max 2.1mm  
height  
5.29A  
4.57A  
3.0A  
4.4x4.1x1.2  
mm  
height is  
max  
SPM4012T-1R0M  
SPM3012T-1R0M  
1.0μH 20%  
1.0μH 20%  
38mΩ  
TDK  
www.tdk.com  
3.2x3x1.2  
mm  
height is  
max  
57mΩ  
10%  
2
(3.5A )  
3.2x2.5x0.9  
mm  
max 1.0mm  
height  
1.0μH  
>0.6μH @ 3.0A  
Murata  
3
LQM32PN1R0MG0  
CIG32W1R0MNE  
CKP3225N1R0M  
60mΩ  
3.0A  
www.murata.com  
1.0μH  
>0.7μH @ 2.7A  
>0.6μH @ 3.0A  
3.2x2.5mm  
max 1.0mm  
height  
Samsung  
Electro-Mechancs  
www.sem.samsung.co.kr  
60mΩ  
25%  
3.0A  
3.2x2.5x0.9  
mm  
max 1.0mm  
height  
1.0μH  
>0.6μH @ 3.0A  
Taiyo Yuden  
www.t-yuden.com  
4
<60mΩ  
3.0A  
1. Flash profile and max. TAMB to be checked with coil manufacturer.  
2. Check with coil supplier  
3. Flash pattern: 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again (no limit on the number of total cycles)  
Alternative pattern with 1000ms/1.6A, 200ms pause, 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again. (no limit on the number of  
total cycles)  
4. Check with coil supplier for worst case flash pattern.  
If a different inductor is chosen, ensure similar DCR values and  
at least0.6μH inductance at ILDCCD2 set by coil2_peak.  
AS3630 – 64  
8A Supercap Flash Driver  
Thermistor (NTC)  
The NTC is used to protect the LED against overheating  
(hardware protection inside the AS3649, which works without  
any software - see “NTC - Flash LED Overtemperature Protection  
- fault_ntc” on page 37.  
The thermistor has to be thermally coupled to the LED (and  
therefore as close as possible to the LED) and it shall not share  
the same ground connection as the LED return ground (if they  
share the same ground connection the high current through  
the LED will offset the measurement of the NTC).  
Figure AS3630 – 51:  
Recommended Thermistors  
Part Number  
NCP02WF104F05RH  
NCP02XH103F05RH  
NCP03WL224E05RL  
NCP03WL104E05RL  
NCP15WF104F03RC  
NCP15WL683J03RC  
NTCG104QH224HT  
NTCG104EF104FT  
NTCG104LH683JT  
NTCG104BF683JT  
Resistance @ 25ºC B-constant 25/50ºC  
Size  
Manufacturer  
100kΩ 1%  
10kΩ 1%  
220kΩ 3%  
100kΩ 3%  
100kΩ  
4250k 1%  
3380k 1%  
4485K 1%  
4485K 1%  
01005 (inch)  
01005 (inch)  
Murata  
www.murata.com  
0201 (inch)  
0402 (inch)  
68kΩ  
220kΩ 3%  
100kΩ 1%  
4750k 3%  
4250k 1%  
4550k 3%  
4085k 1%  
TDK  
www.tdk.com  
1.0x0.5mm  
68kΩ 5%  
It is recommended to use 220kΩ resistance for a detection  
threshold of 125ºC, 100kΩ for 110ºC and 68kΩ for 80ºC LED  
temperature detection threshold.  
8A Supercap Flash Driver  
AS3630 – 65  
The high speed operation requires proper layout for optimum  
performance. Route the power traces first and try to minimize  
the area and wire length.  
PCB Layout Guideline  
At the pin GND a single via (or more vias, which are closely  
combined) connects to the common ground plane. This via(s)  
will isolate the DCDC high frequency currents from the common  
ground - see the ‘ground via’ in Figure 52.  
Figure AS3630 – 52:  
Layout Recommendation Using a 3225 Coil for L  
and L  
DCDC2  
DCDC1  
ꢅꢊꢈꢌꢌ  
ꢆꢊ2ꢆꢌꢌ  
ꢁꢀꢁꢀꢈꢃꢉꢊꢈꢋꢈꢊꢆꢌꢌꢍ  
ꢘꢙ+  
ꢚꢂ  
ꢁꢀꢁꢀꢈꢃꢄꢅꢄꢆ  
-ꢚꢇ  
ꢘ)ꢑ'ꢎ*ꢀꢚ'  
+ꢒꢀ3&+ꢁ  
*ꢕꢖꢛꢜ ꢍ#.ꢍꢔꢜ/ꢖ0ꢔꢜ  
$(ꢍ#!!"01#ꢛ0ꢕꢝ  
ꢒꢕ!ꢍꢇ#(ꢜꢔ  
ꢙꢝꢝꢜꢔꢍꢇ#(ꢜꢔ  
&ꢔꢕꢖꢝ ꢍ'"#ꢝꢜ  
ꢒꢓꢔꢕꢖꢗꢓꢍꢘꢙꢚꢍꢛꢕꢍꢛꢓꢜꢍꢗꢔꢕꢖꢝ ꢍ!"#ꢝꢜꢍ#ꢝ ꢍ  
ꢘꢙꢚꢍ$ꢜꢛ%ꢜꢜꢝ  
Note:  
If component placement rules allow, move all components close to the AS3630.  
The NTC ground connection shall be separated from the main ground and directly connected to AGND (Ball A5).  
The recommended PCB pad size for the AS3630 is 250μm.  
AS3630 – 66  
8A Supercap Flash Driver  
Drive 4 LEDs  
In order to drive 4 LEDs at a maximum current of up to 4x3A =  
15  
12A using a single Supercap, two AS3630 can be used. The I²C  
connections can be combined as the AS3630 supports two I²C  
addresses (see “I²C Address Selection” on page 43). Use the  
circuit shown in the figure below- to synchronize the flash  
pulses use the STROBE input:  
Figure AS3630 – 53:  
Combining Two AS3630 Using a Single Supercap  
ꢀꢁꢀꢁꢓꢂꢓꢙꢚ  
ꢎꢏꢐ  
ꢍꢊꢋꢓ  
ꢓꢛꢙꢜ  
ꢘꢯꢤꢉꢂ4ꢃꢆꢂꢁꢵꢈꢆꢫꢤZꢂꢐꢃꢆꢌꢵꢂꢈꢄꢉꢂꢜꢇꢈꢯꢵ  
ꢍꢊꢋ  
ꢑꢒꢓ  
ꢍꢀꢁꢀꢁ  
ꢀꢁꢀꢁꢓ  
ꢓꢛꢙꢜꢝꢓꢛꢍ  
ꢑꢀꢏ  
ꢊꢱꢁ  
ꢗꢋ  
ꢑꢁꢔ  
ꢗꢋ  
ꢀꢁꢀꢁꢱ  
ꢑꢒꢱ  
ꢓꢙꢚ  
ꢀꢁꢀꢁꢱ  
ꢓꢛꢙꢜꢝꢲꢳꢴꢍ  
ꢑꢐꢟꢗꢎꢕ  
ꢀꢁꢀꢁꢂꢁꢃꢄꢅꢆꢃꢇ  
ꢈꢄꢉ  
ꢊꢋꢂꢌꢃꢄꢅꢆꢃꢇ  
ꢑꢐꢟꢗꢎꢕ  
ꢡꢕꢕꢞꢖꢁꢚꢏꢟꢢꢕ  
ꢍꢑꢘꢞꢕꢟꢁꢏꢞ  
ꢎꢏꢔ  
ꢐꢰꢨꢏꢑꢡꢝ  
ꢐꢗꢟꢁꢚ  
ꢂꢂꢂꢂꢂꢓꢛꢭꢠꢅꢂꢂꢂꢂꢂꢂꢂꢂꢂ ꢧꢨꢚꢩ  
ꢏꢀꢁꢂꢂꢂꢂ  
ꢐꢰꢨꢏꢑꢡꢝ  
ꢐꢗꢟꢁꢚ  
ꢑꢪꢦꢤꢆꢁꢈꢦ  
ꢊꢄꢅꢤꢆꢬ  
ꢆꢪꢦꢅ  
ꢗꢣꢐꢤꢥꢦ  
ꢗꢐꢞꢂ  
ꢧꢎꢮꢅꢤꢯ  
ꢊꢋꢐ  
ꢊꢋꢐ  
ꢔꢕꢀꢖꢗꢘꢐ  
ꢋꢐꢁꢖꢐꢚ  
ꢜꢇꢈꢯꢵꢂꢔꢕꢀꢯ  
ꢊꢋꢀꢖꢗꢘꢐ  
ꢋꢐꢁ  
ꢊꢋꢀ  
ꢏꢢꢋꢀ  
ꢞꢢꢋꢀ  
ꢋꢐꢁꢓ  
ꢜꢔꢏꢑꢚꢓ  
ꢊꢄꢉꢠꢌꢈꢅꢃꢆ  
ꢔꢕꢀ  
ꢜꢔꢏꢑꢚꢱ  
ꢋꢐꢁꢓ  
ꢀꢁꢀꢁꢧꢂꢓꢙꢚ  
ꢑꢒꢓ  
ꢎꢏꢐ  
ꢍꢊꢋꢱ  
ꢓꢛꢙꢜ  
ꢍꢊꢋ  
ꢘꢯꢤꢉꢂ4ꢃꢆꢂꢐꢃꢆꢌꢵꢂꢈꢄꢉꢂꢜꢇꢈꢯꢵZꢂꢄꢃꢅꢂꢪꢯꢤꢉꢂ4ꢃꢆꢂꢁꢵꢈꢆꢫꢤ  
ꢍꢀꢁꢀꢁ  
ꢀꢁꢀꢁꢴ  
ꢓꢛꢙꢜꢝꢓꢛꢍ  
ꢑꢀꢏ  
ꢑꢁꢔ  
ꢗꢋ  
ꢀꢁꢀꢁꢴ  
ꢑꢒꢱ  
ꢓꢙꢚ  
ꢀꢁꢀꢁꢧ  
ꢓꢛꢙꢜꢝꢲꢳꢴꢍ  
ꢑꢐꢟꢗꢎꢕ  
ꢀꢁꢀꢁꢂꢁꢃꢄꢅꢆꢃꢇ  
ꢈꢄꢉ  
ꢊꢋꢂꢌꢃꢄꢅꢆꢃꢇ  
ꢡꢕꢕꢞꢖꢁꢚꢏꢟꢢꢕ  
ꢍꢑꢘꢞꢕꢟꢁꢏꢞ  
ꢐꢰꢨꢏꢑꢡꢝ  
ꢐꢗꢟꢁꢚ  
ꢂꢂꢂꢂꢂꢓꢛꢭꢠꢅꢂꢂꢂꢂꢂꢂꢂꢂꢂ ꢧꢨꢚꢩ  
ꢏꢀꢁꢂꢂꢂꢂ  
ꢎꢏꢔ  
ꢄꢃꢅꢂꢌꢃꢄꢄꢤꢌꢅꢤꢉ  
ꢊꢄꢅꢤꢆꢬ  
ꢆꢪꢦꢅ  
ꢗꢣꢐꢤꢥꢦ  
ꢗꢐꢞꢂ  
ꢧꢎꢮꢅꢤꢯ  
ꢊꢋꢐ  
ꢔꢕꢀꢖꢗꢘꢐ  
ꢋꢐꢁꢖꢐꢚ  
ꢜꢇꢈꢯꢵꢂꢔꢕꢀꢯ  
ꢜꢔꢏꢑꢚꢴ  
ꢊꢋꢀꢖꢗꢘꢐ  
ꢄꢃꢅꢂꢌꢃꢄꢄꢤꢌꢅꢤꢉ  
ꢋꢐꢁ  
ꢏꢢꢋꢀ  
ꢞꢢꢋꢀ  
ꢋꢐꢁꢱ  
ꢋꢐꢁꢱ  
ꢜꢔꢏꢑꢚꢧ  
4ꢂꢀꢜꢔꢏꢑꢚꢓꢳꢳꢧꢂꢈꢆꢤꢂꢌꢇꢃꢯꢤꢂꢅꢃꢂꢤꢈꢌꢵꢂꢃꢅꢵꢤꢆZꢂꢟꢋꢐꢁꢱ  
ꢌꢈꢄꢂꢭꢤꢂꢆꢤꢥꢃꢣꢤꢉꢂꢈꢄꢉꢂꢋꢐꢁꢱꢂꢌꢃꢄꢄꢤꢌꢅꢤꢉꢂꢅꢃꢂꢋꢐꢁꢓꢳ  
15. Will depend on the Supercap and LEDs VF which flash current / flash duration can be used.  
8A Supercap Flash Driver  
AS3630 – 67  
Package Drawings and Markings  
Figure AS3630 – 54:  
25pin WL-CSP Marking  
Notes:  
1. Line 1 : ams AG logo  
2. Line 2 : AS3630  
3. Line 3 : <Code> (Encoded Datecode - 4 characters)  
Figure AS3630 – 55:  
25pin WL-CSP Package Dimensions  
ꢌꢍꢎꢎꢍꢉꢀꢏꢐꢑꢒꢀꢓꢌꢔꢕꢕꢀꢖꢐꢗꢑꢘ  
ꢖꢐꢗꢑꢀꢏꢐꢑꢒ  
ꢙꢍꢚꢀꢏꢐꢑꢒꢀꢓꢎꢛꢜꢍꢝ ꢛꢘ  
'ꢁꢇ  
ꢄꢁꢇꢅ  
ꢆꢃꢇ  
ꢈꢉ  
!ꢐ"ꢀ#ꢃ  
$"ꢗꢐ%ꢔꢎꢍꢜ  
&ꢇ  
ꢈꢉ  
ꢁꢂꢊꢋꢂ  
ꢈꢉ  
ꢁꢂꢊꢋꢂ  
ꢈꢉ  
ꢁ&ꢇ  
ꢈꢉ  
ꢂꢇꢇꢈꢉ  
ꢂꢇꢇꢈꢉ  
ꢂꢇꢇꢈꢉ  
ꢂꢇꢇꢈꢉ  
#ꢃ  
ꢌꢃ  
(ꢃ  
)ꢃ  
*ꢃ  
#ꢁ  
ꢌꢁ  
(ꢁ  
)ꢁ  
*ꢁ  
#'  
ꢌ'  
('  
)'  
*'  
#&  
ꢌ&  
(&  
)&  
*&  
#ꢂ  
ꢌꢂ  
(ꢂ  
)ꢂ  
*ꢂ  
#&  
#&  
ꢌ&  
(&  
)&  
*&  
#'  
ꢌ'  
('  
)'  
*'  
#ꢁ  
ꢌꢁ  
(ꢁ  
)ꢁ  
*ꢁ  
#ꢃ  
ꢌ&  
(&  
)&  
*&  
ꢌꢃ  
(ꢃ  
)ꢃ  
*ꢃ  
'
+
,ꢇꢇꢀꢄꢅꢆ'ꢇꢈꢉ  
ꢁꢂꢃꢂꢀꢄꢅꢆꢁꢇꢈꢉ  
ꢁꢂꢃꢂꢀꢄꢅꢆꢁꢇꢈꢉ  
Note: The coplanarity of the balls is 40μm  
AS3630 – 68  
8A Supercap Flash Driver  
The devices are available as standard products as shown below.  
Ordering Information  
Figure AS3630 – 56:  
Ordering Information  
Ordering Code  
Description  
Delivery  
Package  
25-pin WL-CSP  
Tape & Reel 5x5 balls 0.5mm pitch, 2.5x2.5x0.6mm size  
RoHS compliant / Pb-Free  
8A Supercap Flash Driver  
with Torch and Indicator  
AS3630-ZWLT  
AS3630-ZWLT:  
AS3630-  
Z : Temperature Range: -30ºC - 85ºC  
WL : Package: Wafer Level Chip Scale Package (WL-CSP)  
T : Delivery Form: Tape & Reel  
Note:  
All products are RoHS compliant and ams green.  
Buy our products or get free samples online at www.ams.com/ICdirect  
Technical Support is available at www.ams.com/Technical-Support  
For further information and requests, email us at sales@ams.com  
(or) find your local distributor at www.ams.com/distributor  
8A Supercap Flash Driver  
AS3630 – 69  
The PCB assembly should be instrumented and the reflow  
oven’s process parameters established to ensure the solder  
paste manufacturer’s reflow profile specification is met during  
the assembly process. See Figure below.  
Soldering Information  
The maximum PCB temperature recommended by the supplier  
must not be exceeded.  
Figure AS3630 – 57:  
Solder Reflow Profile  
Profile Feature  
Lead-free Assembly  
Average ramp-up rate (Ts  
to T )  
3 °C/second max.  
max  
P
Preheat  
150 °C  
200 °C  
60 – 120 seconds  
• Temperature Min (Ts  
• Temperature Max (Ts  
• Time (t )  
)
min  
)
max  
L
Time maintained above:  
217 °C  
60 – 150 seconds  
• Temperature (T )  
L
• Time (t )  
L
Peak/classification temperature (T )  
260 °C  
P
Time within 5 °C of actual peak temperature (T )  
30 seconds  
P
Ramp-down rate  
6 °C/second max.  
8 minutes max.  
Time 25 °C to peak temperature  
JEDEC standard Lead-free reflow profile: According to J-STD-020D.  
Figure AS3630 – 58:  
Recommended Reflow Soldering Profile  
tP  
TP  
Critical  
Zone  
Ramp  
Up  
TL to TP  
TL  
TL  
Tsmax  
Ramp Down  
Tsmin  
TL  
25  
Time [s]  
t 25°C to Peak Temperature  
AS3630 – 70  
8A Supercap Flash Driver  
The term RoHS compliant means that ams products fully comply  
with current RoHS directive. Our semiconductor products do  
not contain any chemicals for all 6 substance categories,  
including the requirement that lead not exceed 0.1% by weight  
in homogeneous materials. Where designed to be soldered at  
high temperatures, RoHS compliant products are suitable for  
use in specified lead-free processes. ams Green means RoHS  
compliant and no Sb/Br). ams defines Green that additionally  
to RoHS compliance our products are free of Bromine (Br) and  
Antimony (Sb) based flame retardants (Br or Sb do not exceed  
0.1% by weight in homogeneous material).  
RoHS Compliant and ams Green  
Statement  
Important Information and Disclaimer The information  
provided in this statement represents ams knowledge and  
belief as of the date that it is provided. ams bases its knowledge  
and belief on information provided by third parties, and makes  
no representation or warranty as to the accuracy of such  
information. Efforts are underway to better integrate  
information from third parties. ams has taken and continues to  
take reasonable steps to provide representative and accurate  
information but may not have conducted destructive testing or  
chemical analysis on incoming materials and chemicals. ams  
and ams suppliers consider certain information to be  
proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
8A Supercap Flash Driver  
AS3630 – 71  
Copyright © 1997-2013, ams AG, Tobelbaderstrasse 30, 8141  
Unterpremstaetten, Austria-Europe. Trademarks Registered ®.  
All rights reserved. The material herein may not be reproduced,  
adapted, merged, translated, stored, or used without the prior  
written consent of the copyright owner.  
Copyrights  
Disclaimer  
Devices sold by ams AG are covered by the warranty and patent  
indemnification provisions appearing in its Term of Sale. ams  
AG makes no warranty, express, statutory, implied, or by  
description regarding the information set forth herein or  
regarding the freedom of the described devices from patent  
infringement. ams AG reserves the right to change  
specifications and prices at any time and without notice.  
Therefore, prior to designing this product into a system, it is  
necessary to check with ams AG for current information. This  
product is intended for use in normal commercial applications.  
Applications requiring extended temperature range, unusual  
environmental requirements, or high reliability applications,  
such as military, medical life-support or life-sustaining  
equipment are specifically not recommended without  
additional processing by ams AG for each application. For  
shipments of less than 100 parts the manufacturing flow might  
show deviations from the standard production flow, such as test  
flow or test location.  
The information furnished here by ams AG is believed to be  
correct and accurate. However, ams AG shall not be liable to  
recipient or any third party for any damages, including but not  
limited to personal injury, property damage, loss of profits, loss  
of use, interruption of business or indirect, special, incidental  
or consequential damages, of any kind, in connection with or  
arising out of the furnishing, performance or use of the  
technical data herein. No obligation or liability to recipient or  
any third party shall arise or flow out of ams AG rendering of  
technical or other services.  
AS3630 – 72  
8A Supercap Flash Driver  

相关型号:

AS3635

Xenon Flash Driver with 5V IGBT Control
AMSCO

AS3635B-ZWLT

Xenon Flash Driver with 5V IGBT Control
AMSCO

AS3635E-ZWLT

Xenon Flash Driver with 5V IGBT Control
AMSCO

AS3642

Ultra Small 500mA Inductive White LED Flash Driver
AMSCO

AS3642-ZWLT

Ultra Small 500mA Inductive White LED Flash Driver
AMSCO

AS3643

1300mA High Current LED Flash Driver
AMSCO

AS3643-ZWLT

1300mA High Current LED Flash Driver
AMSCO

AS3644

Ultra Small Low Cost 320mA Inductive White LED Flash Driver
AMSCO

AS3644-ZWLT

Ultra Small Low Cost 320mA Inductive White LED Flash Driver
AMSCO

AS3647

1600mA High Current LED Flash Driver
AMSCO

AS3647-ZWLT

1600mA High Current LED Flash Driver
AMSCO

AS3647B-ZWLT1

1600mA High Current LED Flash Driver
AMSCO