AS3668_07 [AMSCO]

4 Channel Breathlight Controller; 4通道Breathlight控制器
AS3668_07
型号: AS3668_07
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

4 Channel Breathlight Controller
4通道Breathlight控制器

控制器
文件: 总59页 (文件大小:1090K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
AS3668  
4 Channel Breathlight Controller  
1 General Description  
2 Key Features  
High efficiency capacitive 60mA charge pump with 1:1 and 1:2  
The AS3668 is a 4-channel LED driver designed to produce lighting  
effects for portable devices. A highly efficient charge pump enables  
LED driving over full Li-Ion battery voltage range. The device is  
equipped with an internal program memory, which allows control of  
LED patterns even without processor control. This helps the whole  
system to save power and extend for example battery life time in  
every mobile application. The AS3668 maintains excellent efficiency  
over a wide operating range by automatically selecting the best  
charge pump gain based on the LED forward voltage requirements  
and the device input voltage.  
mode  
Automatic mode switching for charge pump  
Automatic Pattern Mode without digital control  
Highly accurate 4 Channel High Side 25.5mA current sources  
Audio Controlled Lighting with internal digital filters  
Charge Pump with soft start and overcurrent/short circuit pro-  
tection  
Furthermore the chip supports an automatic power-save mode which  
gets active when LED outputs are not active. The special power-  
save mode has a extremely low current consumption below 10μA  
(typ.).the AS3668 has an I2C-compatible control interface which  
supports two slave address without having a dedicated address  
selection pin. For fancy lighting effects synchronized with an audio  
signal the device supports special digital filter modes in order to  
make music literally visible on the 4 independent configurable  
current sources.  
Integrated “easy to use” pattern generator for breathlight LED  
function with logarithmic 12bit dimming  
Small application circuit  
Minimum number of external components  
Available in 12-pin WL-CSP (1.255x1.680mm) with 0.4mm pitch  
3 Applications  
The AS3668 is available in a very tiny 12-pin WL-CSP  
(1.255x1.680mm) 0.4mm pitch package.  
The product is perfect for Mobilephones, MP3 Player, Portable  
Navigation Devices, Digital Cameras, USB Dongles/Modems, Game  
Controllers and can be used for fun and indicator lights, backlighting  
and as programmable current sources.  
Figure 1. AS3668 Block Diagram  
www.ams.com/AS3668  
Revision 1.13  
1 - 59  
AS3668  
Data Sheet - Applications  
Contents  
1 General Description .................................................................................................................................................................. 1  
2 Key Features ............................................................................................................................................................................ 1  
3 Applications .............................................................................................................................................................................. 1  
4 Pin Assignments ....................................................................................................................................................................... 4  
4.1 Pin Description .....................................................................................................................................................................................5  
5 Absolute Maximum Ratings ...................................................................................................................................................... 6  
6 Electrical Characteristics .......................................................................................................................................................... 7  
6.1 Timing Characteristics ..........................................................................................................................................................................9  
6.2 Timing Diagrams ..................................................................................................................................................................................10  
7 Typical Operating Characteristics ................................................................................................................................................11  
8 Detailed Description ............................................................................................................................................................... 14  
8.1 Charge Pump .....................................................................................................................................................................................14  
8.1.1 Charge Pump Mode Switching ..................................................................................................................................................15  
8.1.2 Soft Start ....................................................................................................................................................................................15  
8.1.3 Unused Charge Pump ...............................................................................................................................................................15  
8.1.4 Charge Pump Control Register ..................................................................................................................................................16  
8.2 Current Sources .............................................................................................................................................................................16  
8.2.1 Unused Current Sources ...........................................................................................................................................................17  
8.2.2 Current Source Registers ...........................................................................................................................................................18  
8.3 Power - On Reset ...............................................................................................................................................................................19  
8.4 VBAT Monitor .....................................................................................................................................................................................20  
8.4.1 VBAT Monitor Registers . ..........................................................................................................................................................21  
8.5 Temperature Supervision ...................................................................................................................................................................21  
8.6 I²C Serial Interface Bus ......................................................................................................................................................................22  
8.6.1 I²C Device Address Byte ............................................................................................................................................................24  
8.6.2 Command Byte ..........................................................................................................................................................................24  
8.6.3 I²C Device Address Selection ....................................................................................................................................................25  
8.7 Operating Modes ................................................................................................................................................................................25  
8.7.1 GPIO/AUDIO_IN Automatic Pattern Start-up Mode ..................................................................................................................27  
8.8 General Purpose Input / Output .........................................................................................................................................................29  
8.8.1 Unused General Purpose Input / Output ...................................................................................................................................30  
8.8.2 GPIO Control Register. ..............................................................................................................................................................30  
8.9 Audio Input .........................................................................................................................................................................................30  
8.9.1 Audio Control Register .............................................................................................................................................................32  
8.10 LED Pattern Configuration ...............................................................................................................................................................34  
8.10.1 Single Pulse Mode ...................................................................................................................................................................34  
8.10.2 Multiple Pulse Mode ................................................................................................................................................................ 35  
8.10.3 Frame Mask Mode ...................................................................................................................................................................36  
8.10.4 Frame Start Delay Mode ..........................................................................................................................................................37  
8.10.5 GPIO Toggle Mode ..................................................................................................................................................................37  
8.10.6 LED Pattern Control Registers ...............................................................................................................................................38  
9 Register Map  
........................................................................................................................................................................ 45  
10 Application Information ........................................................................................................................................................ 48  
10.1 LED Software Implementation Examples .........................................................................................................................................48  
www.ams.com/AS3668  
Revision 1.13  
2 - 59  
AS3668  
Data Sheet - Applications  
10.1.1 Simple Breathlight Pattern with one LED .................................................................................................................................48  
10.1.2 Dual Pulse Pattern with one LED ............................................................................................................................................48  
10.1.3 RGB LED Pattern ....................................................................................................................................................................49  
10.1.4 Parallel Up - Dimming ..............................................................................................................................................................50  
10.1.5 Parallel Down- Dimming ..........................................................................................................................................................50  
10.2 Hardware Examples .........................................................................................................................................................................52  
11 Package Drawings and Markings ......................................................................................................................................... 57  
12 Ordering Information ............................................................................................................................................................. 60  
www.ams.com/AS3668  
Revision 1.13  
3 - 59  
AS3668  
Data Sheet - Pin Assignments  
4 Pin Assignments  
Figure 2. Pin Assignments 12-pin WL-CSP (1.255x1.680mm)(Top View)  
www.ams.com/AS3668  
Revision 1.13  
4 - 59  
AS3668  
Data Sheet - Pin Assignments  
4.1 Pin Description  
Table 1. Pin Descriptions  
Pin Name  
Pin Number  
C2  
Description  
Positive Power Supply Input for AS3668.  
VBAT  
Signal and Power Ground. Provide a short, direct PCB path between this pin and the nega-  
tive side of the output capacitor of the charge pump capacitor CVCPOUT.  
GND  
SCL  
SDA  
D2  
B3  
C3  
Serial Clock Input for the two wire I2C interface.  
Serial-Data I/O for I2C interface. This pin is a open drain digital I/O which requires a pull up  
resistor for data transfer.  
General Purpose Input/Output or Audio Input. Depending on AS3668 configuration this  
pin provided three different features. It can either be configured as general purpose input/  
output1 or as analogue audio input for music playback synchronization of AS3668 with an  
audio source. Furthermore it is possible to use it as power up pin starting up with a default  
PWM pattern sequence for LED1. If the pin is not used it is mandatory to connect it to  
ground.  
GPIO/AUDIO_IN  
D3  
CURR1 Output. This pin is a current source output which can be used to operate a LED. The  
current source is internally connected to VCP. If the AS3668 is powered up with GPIO/  
AUDIO_IN pin this current source is active with a default PWM pattern.  
CURR1  
B2  
CURR2 Output. This pin is a current source output which can be used to operate a LED. The  
current source is internally connected to VCP.  
CURR2  
CURR3  
CURR4  
VCP  
C1  
A1  
D1  
B1  
CURR3 Output. This pin is a current source output which can be used to operate a LED. The  
current source is internally connected to VCP.  
CURR4 Output. This pin is a current source output which can be used to operate a LED. The  
current source is internally connected to VCP.  
Charge Pump Output. This pin requires an external blocking capacitor. The capacitor must  
be placed as close as possible to VCP terminal.  
Charge Pump Flying Capacitor. This is the positive terminal for the charge pump flying  
capacitor. The capacitor should be placed as close as possible to AS3668. In addition it is  
mandatory to keep the signal trace between the capacitor and CP terminal as short as  
possible.  
CP  
CN  
A2  
A3  
Charge Pump Flying Capacitor. This is the negative terminal for the charge pump flying  
capacitor. The capacitor should be placed as close as possible to AS3668. In addition it is  
mandatory to keep the signal trace between the capacitor and CN terminal as short as  
possible.  
1. The output is an open-drain output only. Therefore an external Pull-Up resistors is required for output operation.  
www.ams.com/AS3668  
Revision 1.13  
5 - 59  
AS3668  
Data Sheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of  
the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 7 is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 2. Absolute Maximum Ratings  
Parameter  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
Max  
7
Units  
Comments  
VBAT, VCP, CN, CP to GND  
VCP to GND  
V
V
V
V
7
Protection diode between VCP and GND  
LED1, LED2, CURR3, CURR4 to GND  
SCL, SDA, GPIO/AUDIO_IN to GND  
7
7
Input Pin Current without causing  
latch up  
-100  
+100  
mA  
At 25ºC, Norm: EIA/JESD78  
JEDEC JESD22-A114  
Electrostatic Discharge  
ESD HBM (CURR1 to CURR4)  
ESD HBM (all other pins)  
ESD MM  
2
kV  
kV  
V
2
100  
500  
JEDEC JESD22-A115  
JEDEC JESD22-C101  
ESD CDM  
V
Storage Temperature Range  
Temperature Ranges and Storage Conditions  
-55  
+125  
ºC  
Internally limited (over temperature protection)1  
Continuous Power Dissipation  
Storage Temperature Range  
0.83  
+125  
60  
W
ºC  
-55  
5
2
°C/W  
%
Junction to Ambient Thermal Resistance (JA  
)
Humidity non-condensing  
85  
Moisture Sensitive Level  
1
Represents a max. floor life time of unlimited.  
The reflow peak soldering temperature (body  
temperature) specified is in accordance with IPC/  
JEDEC J-STD-020 “Moisture/Reflow Sensitivity  
Classification for Non-Hermetic Solid State Surface  
Mount Devices”.  
Package Body Temperature  
+260  
ºC  
1. Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 140°C (typ.) and  
disengages at TJ = 135°C (typ.).  
2. Junction to ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
www.ams.com/AS3668  
Revision 1.13  
6 - 59  
AS3668  
Data Sheet - Electrical Characteristics  
6 Electrical Characteristics  
VBAT = 3.6V, CBAT = CVCPOUT = 1μF, CFLY = 470nF, TAMB = -30ºC to +85ºC, typical values @ TAMB = +25ºC (unless  
otherwise specified) .  
Table 3. Electrical Characteristics  
Symbol  
Parameter  
Condition  
Min  
2.7  
Typ  
Max  
Unit  
General Operating Conditions  
VBAT  
Supply Voltage  
5.5  
3
V
Standby supply current  
SCL = 0V and GPIO = 0V  
0.2  
10  
μA  
SCL = VBAT and SDA = VBAT, no I2C communication  
μA  
μA  
mA  
and no internal block enabled  
IVBAT  
Normal Mode supply  
current  
Charge pump in 1x mode, no load, current source outputs  
disabled  
70  
Charge pump in 2x mode, no load, current source outputs  
disabled  
2.5  
Internal Oscillator  
fOSC  
-10  
-30  
+10  
85  
%
Frequency Accuracy  
Operating Temperature1  
TAMB  
25  
°C  
Charge Pump  
Operating Mode 1:1  
2
20  
1
Charge Pump Output  
Resistance  
ROUT  
fSW  
Operating Mode 1:2; VBAT = 3.0V  
Switching Frequency  
MHz  
no load, current sources CURR1 - CURR4 deactivated  
30  
μs  
VCP Turn-On Time2  
tON  
IOUT = 50mA, current sources CURR1 - CURR4  
40  
μs  
deactivated  
Current Sources  
Leakage Current  
(LED1 to CURR4)  
ILEAK  
PWM = 0%  
0.1  
1
μA  
IMAX  
IOUT  
Maximum Source Current  
Output Current Accuracy  
Matching Accuracy  
Outputs CURR1 to CURR4  
Output Current set to 25.5 mA  
Output Current set to 25.5 mA  
PWM mode with internal oscillator  
25.5  
mA  
%
-15  
-10  
+15  
+10  
IMATCH  
fLED  
%
Switching Frequency  
122  
Hz  
Logic Interface  
Logic Input SCL, SDA and GPIO/AUDIO_IN  
VIL  
VIH  
Input Low Level  
Input High Level  
Input Current  
0.52  
VBAT  
1.0  
V
V
1.38  
-1.0  
IIN  
μA  
V
VOLGPIO  
VHYS  
Low Level Output voltage  
Hysteresis  
Pin GPIO/AUDIO_IN at 4mA  
0.2  
0.1  
V
fEXT  
External PWM input  
Only possible with GPIO/AUDIO_IN  
1
MHz  
Analogue Input  
Analogue Audio Input GPI/AUDIO_IN  
VAUDIO  
Input Signal Level  
2.5  
VPEAK  
kΩ  
Audio Preamplifier Gain = -6dB  
Audio Preamplifier Gain = +20dB  
400  
60  
RAUDIO_IN  
Audio Input Resistance  
kΩ  
www.ams.com/AS3668  
Revision 1.13  
7 - 59  
AS3668  
Data Sheet - Electrical Characteristics  
Table 3. Electrical Characteristics (Continued)  
Symbol  
Parameter  
Condition  
Min  
-6  
Typ  
10  
Max  
25  
Unit  
pF  
CAUDIO_IN  
Input Capacitance  
Programmable Amplifier  
Gain  
AAudio  
dB  
1. Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 140°C (typ.) and  
disengages at TJ = 135°C (typ.).  
2. Turn-on time is measured from the moment the charge pump is activated until the VCP crosses 90% of its target value  
www.ams.com/AS3668  
Revision 1.13  
8 - 59  
AS3668  
Data Sheet - Electrical Characteristics  
6.1 Timing Characteristics  
VBAT = 3.6V, CBAT = CVCPOUT = 1μF, CFLY = 470nF, TAMB = -30ºC to +85ºC, typical values @ TAMB = +25ºC (unless  
otherwise specified) .  
Table 4. Electrical Characteristics I2C1  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
400  
Unit  
I2C mode timings - see  
fSCLK  
SCL Clock Frequency  
1/35ms  
1.3  
kHz  
Bus Free Time Between a  
STOP and START  
Condition  
tBUF  
μs  
Hold Time (Repeated)  
START Condition2  
tHD:STA  
0.6  
μs  
tLOW  
tHIGH  
LOW Period of SCL Clock  
HIGH Period of SCL Clock  
1.3  
0.6  
μs  
μs  
Setup Time for a Repeated  
START Condition  
tSU:STA  
0.6  
μs  
Data Hold Time3  
Data Setup Time4  
tHD:DAT  
tSU:DAT  
tR  
tF  
tSU:STO  
CB  
0
0.9  
μs  
100  
ns  
20 +  
0.1CB  
Rise Time of Both SDA and  
SCL Signals  
300  
300  
ns  
ns  
μs  
pF  
pF  
20 +  
0.1CB  
Fall Time of Both SDA and  
SCL Signals  
Setup Time for STOP  
Condition  
0.6  
Capacitive Load for Each  
Bus Line  
CB — total capacitance of one bus line in pF  
400  
10  
I/O Capacitance (SDA,  
SCL)  
CI/O  
1. Specification is guaranteed by design and is not tested in production. VEN = 1.65V to VBAT.  
2. After this period the first clock pulse is generated.  
3. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIHMIN of the SCLK signal) to bridge the  
undefined region of the falling edge of SCLK.  
4. A fast-mode device can be used in a standard-mode system, but the requirement tSU:DAT = to 250ns must then be met. This is automat-  
ically the case if the device does not stretch the LOW period of the SCLK signal. If such a device does stretch the LOW period of the  
SCLK signal, it must output the next data bit to the SDA line tR max + tSU:DAT = 1000 + 250 = 1250ns before the SCLK line is released.  
www.ams.com/AS3668  
Revision 1.13  
9 - 59  
AS3668  
Data Sheet - Electrical Characteristics  
6.2 Timing Diagrams  
Figure 3. I2C Mode Timing Diagram  
SDA  
tBUF  
tLOW  
tHD:STA  
tR  
tF  
SCLK  
tHD:STA  
tSU:STO  
tSU:STA  
tHD:DAT  
tHIGH  
tSU:DAT  
REPEATED  
START  
STOP START  
www.ams.com/AS3668  
Revision 1.13  
10 - 59  
AS3668 2V0  
Data Sheet - Typical Operating Characteristics  
7 Typical Operating Characteristics  
VBAT = 3.6V, CBAT = CVCPOUT = 1F, CFLY = 470nF, TAMB = -30ºC to +85ºC, typical values @ TAMB = +25ºC (unless  
otherwise specified).  
Figure 4. Off Mode Current vs. VBAT  
Figure 5. CURRx linearity (0mA - 25.5mA) vs. Code  
Figure 6. Output Voltage vs. load current (1:1, 4.2V,3,6V, 3,3V) L  
Figure 7. Output voltage. vs. load current (1:2, 4.2V,3,6V, 3,3V)  
Figure 8. CP Efficiency vs.VBAT in 1:2 MODE(10mA,30mA,60mA)  
Figure 9. CP Efficiency vs. VBAT in 1:1 Mode(10mA,30mA,60mA)  
www.ams.com/AS3668  
Revision 1.13  
11 - 59  
AS3668 2V0  
Data Sheet - Typical Operating Characteristics  
Figure 10. CURRx logarithmic PWM Ramp  
Figure 11. VCP and VBAT in 1:2 Mode and 50mA load current  
500ms/Div  
1μs/Div  
Figure 12. VCP with charge pump in 1:2 mode and 10mA load  
Figure 13. Line Regulation autom. gain change to 1:2 mode with  
1mA load current  
current  
5V  
3.5V  
2.5V  
1μs/Div  
10ms/Div  
Figure 14. Line Regulation autom. gain change to 1:2 mode with  
10mA load current  
Figure 15. Line Regulation autom. gain change to 1:2 mode with  
25.5mA load current  
5.2V  
4.8V  
4V  
3.5V  
3V  
2.5V  
10ms/Div  
10ms/Div  
www.ams.com/AS3668  
Revision 1.13  
12 - 59  
AS3668 2V0  
Data Sheet - Typical Operating Characteristics  
Figure 16. Output current of CURRx vs. U(CURRx) with 25,5mA  
CURRx output current  
Figure 17. Output current of CURRx vs. U(CURRx) with 10mA  
CURRx output current  
Figure 18. Output current of CURRx vs. U(CURRx) with 1mA  
CURRx output current)  
Figure 19. Battery Current vs. VBAT with CP in 1:2 Mode (10mA,  
30mA, 60mA  
Figure 20. CP efficiency vs. VBAT with automatic CP mode  
Figure 21. CP efficiency vs. ILOAD with automatic CP mode  
switching  
switching  
www.ams.com/AS3668  
Revision 1.13  
13 - 59  
AS3668  
Data Sheet - Detailed Description  
8 Detailed Description  
8.1 Charge Pump  
The Charge Pump uses the external flying capacitor CFLY to generate output voltages higher than the battery voltage. There are two different  
operating modes of the charge pump itself:  
1:1 Bypass Mode  
- Battery input and output are connected by a low-impedance switch  
- battery current = output current.  
1:2 Mode  
- The output voltage is up to 2 times the battery voltage (without load), but is limited to VCPOUTmax all the time  
- battery current = 2 times output current  
Figure 22. Charge Pump Block Diagram .  
As the battery voltage decreases, the Charge Pump must be switched from 1:1 mode to 1:2 mode in order to provide enough supply for the  
current sinks. Depending on the actual current the mode with best overall efficiency can be automatically or manually selected:  
The charge pump mode switching can be done manually or automatically with the following possible software settings:  
Automatic  
- Start with 1:1 mode  
- Switch up automatically to 1:2 mode  
Manual  
- Set modes 1:1 and 1:2 by software  
The Charge Pump requires the external components listed in the following table:  
Table 5. Charge Pump External Components  
Symbol  
Parameter  
Condition  
Min  
Typ  
470  
1.0  
Max  
Unit  
nF  
CFLY  
External Flying Capacitor  
Ceramic low-ESR capacitor between pins CP and CN  
CVCPOUT External Storage Capacitor Ceramic low-ESR capacitor between pins VCP and VSS  
μF  
Note: The connections of the external capacitors CVCPOUT and CFLY should be kept as short as possible.  
.
Table 6. Charge Pump Characteristics  
Symbol  
ICPOUT  
VCPOUTmax  
  
Parameter  
Condition  
Min  
0.0  
Typ  
Max  
60  
Unit  
mA  
V
Output Current  
Continuous  
Depending on PCB layout  
Output Voltage  
Efficiency  
Internally limited, Including output ripple  
5.6  
Including current sink loss;  
ICPOUT = 60mA.  
88  
%
Power Consumption  
without Load,  
ICP1_2  
1:2 Mode  
2.5  
mA  
fclk = 1 MHz  
www.ams.com/AS3668  
Revision 1.13  
14 - 59  
AS3668  
Data Sheet - Detailed Description  
Table 6. Charge Pump Characteristics  
Symbol  
Rcp1_1  
Rcp1_2  
Parameter  
Condition  
Min  
-10  
Typ  
2.5  
20  
Max  
Unit  
Effective Charge Pump  
Output Resistance (Open  
Loop, fclk = 1MHz)  
1:1 Mode; VBAT 3.6V  
1:2 Mode; VBAT  3V  
Accuracy of Clock  
Frequency  
fclk Accuracy  
10  
%
V
If the voltage drops below this threshold, the charge  
pump will use the next available mode  
(1:1 -> 1:2)  
LED1 - CURR4 current  
source dropout voltage  
Vcurr_source  
0.2  
Current limit for soft start  
feature  
Isoft_start  
tdeb  
400  
mA  
cp_start_debounce=0  
cp_start_debounce=1  
32  
ms  
CP automatic up-  
switching debounce time  
200  
μs  
8.1.1 Charge Pump Mode Switching  
If automatic mode switching is enabled the charge pump monitors the current sources, which are directly connected to the output of the charge  
pump VCP. In order to identify the enabled current sources, the related registers should be setup before starting the charge pump. If any of the  
voltage on these current sources drops below the threshold (Vcurr_source), the higher mode is selected after the debounce time (tdeb).  
The charge pump mode switching supports only a mode change to a higher charge pump mode (e.g.: mode 1:1 to mode 1:2). In case VBAT  
increases again during operation the automatic mode switching will not change the operation mode from 1:2 down to 1:1. In order to change the  
mode all current sources must be switched off to reset the charge pump mode switching mechanism. After enabling the current sources again  
the mode switching mechanism chooses the appropriate mode for the optimized operation of the charge pump either in 1:1 mode or 1:2 mode. In  
case an automatic pattern is used the current sources get a reset after each pattern cycle because the current sources are automatically  
switched off when executing a pattern after each cycle.  
Figure 23. Charge Pump Mode Switching .  
8.1.2 Soft Start  
An implemented soft start mechanism reduces the inrush current. Battery current is smoothed when switching the charge pump on and also at  
each switching condition. This precaution reduces electromagnetic radiation significantly.  
8.1.3 Unused Charge Pump  
If the charge pump is not used, capacitors CFLY and CVCPOUT can be removed. The pins CP, CN and VCP should be left open and keep  
register cp_on and cp_auto_on at 0 (default value).  
www.ams.com/AS3668  
Revision 1.13  
15 - 59  
AS3668  
Data Sheet - Detailed Description  
8.1.4 Charge Pump Control Register  
Table 7. Reg Control Register  
.
0x00 Reg Control register  
Bit  
2
Bit Name  
cp_on  
Default  
0
Access  
Bit Description  
This bit enables the charge pump for operation if at lease one current source  
is enabled and the current source has a low voltage condition. Once the  
charge pump is running it will be keep on even if all current sources are  
switched off.  
R/W  
0: Chargepump off  
1: Charge Pump on  
Table 8. CP Control Register  
0x23 Current Control Register  
Access  
Bit  
6
Bit Name  
Default  
1
Bit Description  
cp_auto_on  
This bit enables the charge pump for operation. Once at last one current  
source is enabled and minimum one current source has a low voltage  
condition the charge pump is switched on. If all current sources are switched  
off again the charge will also switch of automatically.  
0: Chargepump off  
R/W  
R/W  
R/W  
1: Chargepump on in automatic mode  
5
4
cp_start_debounce  
cp_mode_switching  
Selects the startup debounce time of the charge pump  
0: 32ms debounce time.  
0
0
1: 240μs debounce time  
Allows the user to select between automatic mode switching or manual  
mode switching of the charge pump. If the bit is set, the user can change  
register cp_mode in order to select 1:1 mode or 1:2 mode of the charge  
pump.  
0: Automatic CP Mode Switching  
1: Manual CP Mode Switching using register cp_mode  
2
0
cp_mode  
cp_clk  
Selects the charge pump operating mode if register cp_mode_switching is  
set to 1. Reading the register return the mode in which the charge pump is  
operating, either 1:1 or 1:2 mode.  
0: 1:1 mode  
0
0
R/W  
R/W  
1: 1:2 mode  
Selects the charge pump clock frequency.  
0: 1Mhz  
1: 500kHz  
8.2 Current Sources  
The AS3668 features four general purpose current sources. All current sources and be controlled independently from each other and share  
internally the same power supply VCP.  
Table 9. Current Sink Function Overview  
Resolution  
Max. Voltage  
(V)  
Max. Current  
(mA)  
Software Current  
Control  
Current Sink  
Hardware On/Off Control  
(Bits)  
(mA)  
CURR1  
CURR2  
CURR3  
CURR4  
Internal PWM; external  
PWM at GPIO/AUDIO_IN,  
Pattern generator  
Separate for each  
current source  
5.5  
25.5  
8
0.1  
www.ams.com/AS3668  
Revision 1.13  
16 - 59  
AS3668  
Data Sheet - Detailed Description  
.
Table 10. Current Sources Characteristiks  
Symbol  
IBIT7  
Parameter  
Condition  
Min  
Typ  
12.8  
6.4  
3.2  
1.6  
0.8  
0.4  
0.2  
0.1  
Max  
Unit  
mA  
Current sink if Bit7 = 1  
Current sink if Bit6 = 1  
Current sink if Bit5 = 1  
Current sink if Bit4 = 1  
Current sink if Bit3 = 1  
Current sink if Bit2 = 1  
Current sink if Bit1 = 1  
Current sink if Bit0 = 1  
Matching Accuracy  
IBIT6  
IBIT5  
IBIT4  
CURR1, CURR2, CURR3, CURR4 > 0.2V  
CURR1, CURR2, CURR3 and CURR4  
IBIT3  
IBIT2  
IBIT1  
IBIT0  
IMATCH  
IOUT  
VCUR1-4  
-10  
-15  
0
+10  
+15  
%
%
V
Absolute Accuracy  
Voltage Compliance  
VCP-0.2  
Figure 24. Internal processing of current sources  
8.2.1 Unused Current Sources  
Unused current sources can be left open. There are no external connections or components necessary if they are not used.  
www.ams.com/AS3668  
Revision 1.13  
17 - 59  
AS3668  
Data Sheet - Detailed Description  
8.2.2 Current Source Registers .  
Table 11. Current Control Register  
0x01 Current Control Register  
Access  
Bit  
Bit Name  
Default  
0
Bit Description  
7:6  
curr4_mode  
00: Current Source CURR4 is in off mode  
01: Current Source CURR4 is in on mode  
10: Current source CURR4 is in PWM control mode  
11: Current source CURR4 is in LED pattern generation mode  
R/W  
R/W  
R/W  
R/W  
5:4  
3:2  
1:0  
curr3_mode  
curr2_mode  
curr1_mode  
00: Current Source CURR3 is in off mode  
01: Current Source CURR3 is in on mode  
10: Current source CURR3 is in PWM control mode  
11: Current source CURR3 is in LED pattern generation mode  
0
0
3
00: Current Source CURR2 is in off mode  
01: Current Source CURR2 is in on mode  
10: Current source CURR2 is in PWM control mode  
11: Current source CURR2 is in LED pattern generation mode  
00: Current Source CURR1 is in off mode  
01: Current Source CURR1 is in on mode  
10: Current source CURR1 is in PWM control mode  
11: Current source CURR1 is in LED pattern generation mode  
Table 12. Current Source Register LED1  
0x02 Current Control Register  
Access  
Bit  
Bit Name  
Default  
0x40  
Bit Description  
7:0  
curr1_current  
0000 0000: 0mA current output from source CURR1  
0000 0001: 0.1mA current output from source CURR1  
0000 0010: 0.2mA current output from source CURR1  
0000 0011: 0.3mA current output from source CURR1  
...  
R/W  
1111 1111: 25.5mA current output from source CURR1  
Table 13. Current Control Register LED2  
0x03 Current Control Register  
Access  
Bit  
Bit Name  
Default  
0
Bit Description  
7:0  
curr2_current  
0000 0000: 0mA current output from source CURR2  
0000 0001: 0.1mA current output from source CURR2  
0000 0010: 0.2mA current output from source CURR2  
0000 0011: 0.3mA current output from source CURR2  
...  
R/W  
1111 1111: 25.5mA current output from source CURR2  
Table 14. Current Control Register CURR3  
0x04 Current Control Register  
Access  
Bit  
Bit Name  
Default  
0
Bit Description  
7:0  
curr3_current  
0000 0000: 0mA current output from source CURR3  
0000 0001: 0.1mA current output from source CURR3  
0000 0010: 0.2mA current output from source CURR3  
0000 0011: 0.3mA current output from source CURR3  
...  
R/W  
1111 1111: 25.5mA current output from source CURR3  
www.ams.com/AS3668  
Revision 1.13  
18 - 59  
AS3668  
Data Sheet - Detailed Description  
Table 15. Current Control Register CURR4  
0x05 Current Control Register  
Access  
Bit  
Bit Name  
Default  
0
Bit Description  
7:0  
curr4_current  
0000 0000: 0mA current output from source CURR4  
0000 0001: 0.1mA current output from source CURR4  
0000 0010: 0.2mA current output from source CURR4  
0000 0011: 0.3mA current output from source CURR4  
...  
R/W  
1111 1111: 25.5mA current output from source CURR4  
Table 16. CURRx Low Voltage Status Register  
0x2b Current Source Low Voltage Status Register  
Bit  
3
Bit Name  
Default  
Access  
Bit Description  
curr4_low_v  
This is a read only register and returns 0 if the voltage on current source  
CURR4 is ok. If the voltage drops below 200mV across the current source  
the bit is set to 1.  
0
0
0
0
R
0: CURR4 voltage is OK  
1: CURR4 voltage is too low  
2
1
0
curr3_low_v  
curr2_low_v  
curr1_low_v  
This is a read only register and returns 0 if the voltage on current source  
CURR3 is ok. If the voltage drops below 200mV across the current source  
the bit is set to 1.  
R
R
R
0: CURR3 voltage is OK  
1: CURR3 voltage is too low  
This is a read only register and returns 0 if the voltage on current source  
CURR2 is ok. If the voltage drops below 200mV across the current source  
the bit is set to 1.  
0: CURR2 voltage is OK  
1: CURR2 voltage is too low  
This is a read only register and returns 0 if the voltage on current source  
CURR1 is ok. If the voltage drops below 200mV across the current source  
the bit is set to 1.  
0: CURR1 voltage is OK  
1: CURR1 voltage is too low  
8.3 Power - On Reset  
The AS3668 provides an power - on reset feature that is controlled by two different sources:  
VBAT supply voltage  
Serial interface state (SCL only)  
If the internal VBAT supply voltage reset is forced, when the supply voltage VBAT of AS3668 drops below a predefined voltage, the device enters  
shutdown mode. This predefined voltage is 2V (typ.) and is defined as VPOR_VBAT. Besides this hard wired voltage level where an internal reset  
is forced to shut down the device, AS3668 supports an additional VBAT monitoring feature. This means that the designer can select according to  
its application requirements a reset level which is appropriate for mobile Li-Ion battery powered applications. The use case for this second VBAT  
monitoring is to make sure that if a mobile device switches off suddenly, at a dedicated voltage, to make sure that also AS3668 enters power  
down mode. Otherwise unwanted LED effects could occur even if the digital system is not running any more. AS3668 allows the designer now to  
set the VBAT monitoring level to the same voltage level the whole system is powering down. There’s no need any more for the CPU to reset or  
power down AS3668 in a low battery case any more. The device can handle this use case automatically.  
In addition to the VBAT voltage monitoring the device supports also a shut down function forced by the serial interface. If the voltage on the serial  
interface pin SCL is below 1V (typ.) and GPIO/AUDIO_IN pin is low, the device forces a reset. To prevent the system against wrong resets  
caused by electromagnetically influences there is also a debounce timer integrated with a typical debounce time of 100ms. This debounce time  
is used for VBAT monitoring as well. If the serial interface monitoring is not supposed to be used in an application it is also possible to disable the  
feature using the corresponding register bit.  
www.ams.com/AS3668  
Revision 1.13  
19 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 25. Reset Circuit Block Diagram  
Table 17. Power On Reset Parameters  
Symbol  
Parameter  
Condition  
Min  
Typ  
2.0  
Max  
Unit  
V
Monitor voltage on VBAT; power-on reset for all  
VPOR_VBAT  
Overall Power-On Reset  
internal functions.  
Register defined stand by  
mode voltage  
depending on register setting the voltage can be  
configured  
VMON_VBAT  
VPOR_PERI  
tPOR_DEB  
tstart  
3.0V  
110  
3.3V  
150  
Reset Level for pins SCL  
Monitor voltage on pin SCL  
1.0  
130  
3
V
Reset debounce time for  
pins SCL  
ms  
ms  
Interface Startup Time  
8.4 VBAT Monitor  
The VBAT monitor is a supervisory circuit. The monitor is per default disabled when the AS3668 is powered up. The function can be used in order  
to send the device automatically into standby mode if the supply voltage of AS3668 drops below the defined values in register vmon_vbat. All  
together the user can select between three different voltage thresholds for this function with 3.375V, 3.3V and 3.0V. If the function is disabled the  
device switches of if the battery voltage drops below 2.0V. The monitor function has also a debouncer with 100ms implemented in order to filter  
the 217Hz GSM noise pulses from the battery supply voltage. Without the debouncer the chip would be susceptible to this noise and maybe  
enter into standby mode due to a misinterpretation of the supply voltage.  
www.ams.com/AS3668  
Revision 1.13  
20 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 26. VBAT Monitor Block Diagram  
Table 18. VBAT Monitor Parameters  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
3.3V  
Unit  
Register defined stand by  
mode voltage  
depending on register setting the voltage can be  
configured  
VMON_VBAT  
3.0V  
8.4.1 VBAT Monitor Registers .  
Table 19. Overtemperature Control / VBAT Monitor Register  
0x29 Overtemperature Control / VBAT Monitor Register  
Bit  
Bit Name  
Default  
Access  
Bit Description  
6:5  
vmon_vbat  
0: Device enters shutdown mode if VBAT voltage drops below ~2.0V  
1: Device enters standby mode if VBAT voltage drops below 3.0V  
2: Device enters standby mode if VBAT voltage drops below 3.15V  
3:Device enters standby mode if VBAT voltage drops below 3.3V  
0
R/W  
4
shutdown_enable  
This bit allows the user to disable the I2C shutdown feature. If the bit is set to  
‘0’ both I2C signal lines can be low without shutting down AS3668.  
0: disables the automatic shutdown of AS3668  
1
0
R/W  
W
1: enables the automatic shutdown of AS3668  
2
1
rst_ov_temp  
ov_temp  
This register is a self clearing register. Write a ‘1’ to this register to clear  
ov_temp.  
This is a read only register and provides feedback about the junction  
temperature of the chip. The bit is usually set if the junction temperature  
reaches about 140°C.  
0: Junction temperature OK  
1: Junction Overtemperature  
0
1
R
0
ov_temp_on  
This bit allows the user the enable/disable the junction temperature  
monitoring for AS3668.  
0: Temperature supervision OFF  
R/W  
1: Temperature supervision ON  
8.5 Temperature Supervision  
An integrated temperature sensor provides over-temperature protection for the AS3668. This sensor generates a flag if the device temperature  
reaches the over temperature threshold of 140º. The threshold has a hysteresis to prevent oscillation effects.  
If the device temperature exceeds the T140 threshold all current sources and the charge pump get disabled and the ov_temp flag is set. After  
decreasing the temperature by THYST operation is resumed. Although the device resumes ordinary operation after a overtemperature event, the  
register ov_temp keeps set to 1. Even a read operation from the register doesn’t reset the register. Therefore it’s necessary to use the register  
rst_ov_temp to reset the overtemperature register ov_temp.  
www.ams.com/AS3668  
Revision 1.13  
21 - 59  
AS3668  
Data Sheet - Detailed Description  
The ov_temp flag can only be reset by first writing a 1 to the register bit rst_ov_temp. If bit ov_temp_on = 1 activates temperature supervision  
Table 20. It is recommend to leave this bit set (default state).  
Table 20. Overtemperature Detection  
Symbol  
T140  
Parameter  
Condition  
Min  
Typ  
140  
5
Max  
Unit  
ºC  
ov_temp Rising Threshold  
ov_temp Hysteresis  
THYST  
ºC  
Table 21. Overtemperature Control / VBAT Monitor Register  
0x29 Overtemerature Control / VBAT Monitor Register  
Bit  
2
Bit Name  
rst_ov_temp  
ov_temp  
Default  
0
Access  
W
Bit Description  
Write a 1 to this register to reset ov_temp  
0: Junction temperature is ok and below T140  
1: Junction temperature is too high and above T140  
1
0
1
R
0
ov_temp_on  
0: Disables the overtemperature supervision (not recommended)  
1: Enabled the overtemperature supervision  
R/W  
8.6 I²C Serial Interface Bus  
The AS3668 supports the I²C serial bus and data transmission protocol in fast mode at 400kHz. The AS3668 operates as a slave on the I²C bus.  
Due to the reason that the device is also power up/down with the I²C interface there is a debouncer (130ms) on the signal lines integrated to  
avoid a system shut down while having I²C traffic on the bus.  
Figure 27. Serial Interface Block Diagram  
The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the START and  
STOP conditions. Connections to the bus are made via the open-drain I/O pins SCL and SDA. The clock line SCL is never held low by AS3668  
because clock stretching of the bus is not supported.  
Figure 28. AS3668 Interface Initialization  
1
8
9
1
8
9
SCLK  
SDA  
0
0
0
0
0
X
X
R/W  
D15 D14 D13 D12 D11 D10 D9 D8  
I2C register address has not been defined yet.  
www.ams.com/AS3668  
Revision 1.13  
22 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 29. Bus Protocol  
MSB  
SDI  
ACK from  
Receiver  
Slave Address  
R/W  
Direction Bit  
ACK from  
Receiver  
1
2
6
7
8
9
1
2
3-8  
8
9
SCLK  
ACK  
ACK  
Repeat if More Bytes Transferred  
START  
STOP or  
Repeated  
START  
The bus protocol (as shown in Figure 29) is defined as:  
- Data transfer may be initiated only when the bus is not busy.  
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is  
HIGH will be interpreted as control signals.  
The bus conditions are defined as:  
- Bus Not Busy. Data and clock lines remain HIGH.  
- Start Data Transfer. A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines a START condition.  
- Stop Data Transfer. A change in the state of the data line, from LOW to HIGH, while the clock line is HIGH, defines the STOP condition.  
- Data Valid. The state of the data line represents valid data, when, after a START condition, the data line is stable for the duration of the  
HIGH period of the clock signal. There is one clock pulse per bit of data.  
Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred  
between START and STOP conditions is not limited and is determined by the master device. The information is transferred byte-wise and  
each receiver acknowledges with a ninth-bit.  
Within the I²C bus specifications a high-speed mode (3.4MHz clock rate) is defined.  
- Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The mas-  
ter device must generate an extra clock pulse that is associated with this acknowledge bit. A device that acknowledges must pull down the  
SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge  
clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generat-  
ing an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to  
enable the master to generate the STOP condition.  
- Figure 29 on page 23 details how data transfer is accomplished on the I²C bus. Depending upon the state of the R/W bit, two types of  
data transfer are possible:  
- Master Transmitter to Slave Receiver. The first byte transmitted by the master is the slave address, followed by a number of data bytes.  
The slave returns an acknowledge bit after the slave address and each received byte.  
- Slave Transmitter to Master Receiver. The first byte, the slave address, is transmitted by the master. The slave then returns an acknowl-  
edge bit. Next, a number of data bytes are transmitted by the slave to the master. The master returns an acknowledge bit after all received  
bytes other than the last byte. At the end of the last received byte, a not-acknowledge is returned. The master device generates all of the  
serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or a repeated START condition. Since  
a repeated START condition is also the beginning of the next serial transfer, the bus will not be released.  
The AS3668 can operate in the following slave modes:  
- Slave Receiver Mode. Serial data and clock are received through SDA and SCL. After each byte is received, an acknowledge bit is trans-  
mitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by  
hardware after reception of the slave address and direction bit.  
- Slave Transmitter Mode. The first byte (the slave address) is received and handled as in the slave receiver mode. However, in this mode  
the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted on SDA by the AS3668 while the serial clock  
is input on SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer.  
www.ams.com/AS3668  
Revision 1.13  
23 - 59  
AS3668  
Data Sheet - Detailed Description  
8.6.1 I²C Device Address Byte  
The address byte (see Figure 30) is the first byte received following the START condition from the master device. The 7 bit device address is  
0x42.  
Figure 30. I²C Device Address Byte  
MSB  
1
6
0
5
0
4
0
3
0
2
1
LSB  
R/W  
AD1  
AD0  
address:  
- Bit 1 and bit 2 of the address byte are defined by the external bus connection of the slave to the master shown in chapter 8.6.3. A maxi-  
mum of two devices can be connected in parallel on the same bus at one time.  
- The last bit of the address byte (R/W) define the operation to be performed. When set to a 1 a read operation is selected; when set to a 0  
a write operation is selected.  
Following the START condition, the AS3668 monitors the I²C bus, checking the device type identifier being transmitted. Upon receiving the  
address code, and the R/W bit, the slave device outputs an acknowledge signal on the SDA line.  
8.6.2 Command Byte  
The AS3668 operation, (see Table 29 on page 23) is determined by a command byte (see Table 31).  
Figure 31. Command Byte  
MSB  
A7  
6
5
4
3
2
1
LSB  
A0  
A6  
A5  
A4  
A3  
A2  
A1  
Figure 32. Command and Single Data Byte received by AS3668  
From Master to Slave  
From Slave to Master  
AS3668 Registers  
0
A7 A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
S
R/W  
A
0
Command Byte  
A
0
A
0
P
Slave Address  
Data Byte  
1 Byte  
Acknowledge  
from AS3668  
Acknowledge  
from AS3668  
Acknowledge  
from AS3668  
Autoincrement  
Memory Word  
Address  
Figure 33. Setting the Pointer to a Address Register to select a Data Register for a Read Operation  
From Master to Slave  
From Slave to Master  
AS3668 Registers  
0
A7 A6 A5 A4 A3 A2 A1 A0  
S
R/W  
A
0
Command Byte  
A
0
P
Slave Address  
Acknowledge  
from AS3668  
Acknowledge  
from AS3668  
www.ams.com/AS3668  
Revision 1.13  
24 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 34. Reading n Bytes from AS3668  
Autoincrement  
Memory Word  
Address  
Stop reading  
From Master to Slave  
Acknowledge  
from AS3668  
Acknowledge  
from Master  
Not Acknowledge  
from Master  
n Bytes  
From Slave to Master  
0
0
1
S
R/W  
A
First Data Byte  
A
/A  
P
Slave Address  
Second Data Byte  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
Autoincrement  
to next address  
AS3668 Registers  
8.6.3 I²C Device Address Selection  
The AS3668 features two I²C slave addresses without having a dedicated address selection pin. The selection of the I²C address is done with  
the interconnection of AS3668 to the bus lines shown in Figure 35 below. The serial interface logic inside AS3668 is able to distinguish between  
a direct I2C connection to the master or a second option where data and clock line are crossed. Therefore it is only possible to address a  
maximum of two AS3668 slaves on one I²C bus.  
Figure 35. I²C Address Selection Application Diagram  
DEVICE 1  
DEVICE 2  
The I²C addresses for the devices in the different connection modes can be found in Table 22.  
Table 22. I²C Addresses for AS3668  
DEVICE Number  
7 bit I²C address  
0x42  
8 Bit read address  
8 Bit write address  
1(default)  
2
0x85  
0x87  
0x84  
0x86  
0x43  
8.7 Operating Modes  
Due to the reason that AS3668 has no dedicated enable or power - on pin the device is basically controlled with the I²C signal lines SDA and  
SCL. If the voltages on these pins are less than VPOR_PERI for > tPOR_DEB and GPIO/AUDIO_IN input is low, the AS3668 is in shut down  
mode with a minimized current consumption of IVBAT = 1μA (typ.). All blocks inside AS3668 are basically switched off except the power up reset  
circuit is always active.  
www.ams.com/AS3668  
Revision 1.13  
25 - 59  
AS3668  
Data Sheet - Detailed Description  
If the voltage on the I²C signal lines is bigger than VPOR_PERI for a time frame longer than tPOR_DEB, the device changes it’s operation mode  
from power off to standby mode. In this use state only the power on reset and the I²C block of the device is active with an average current  
consumption of 10μA(typ.). The device changes its operating mode from standby to active mode automatically if one of the following blocks  
inside AS3668 are activated:  
Charge Pump  
Current Source  
Pattern Mode activated  
External PWM mode via GPIO/AUDIO_IN  
In addition to the I²C monitoring for startup of the device it is possible to power up AS3668 with GPIO/AUDIO_IN pin while the I²C signal lines are  
low. this is a special use case which starts a predefined pattern on current source CURR1. For a detailed description please refer to chapter  
8.7.1.  
Besides the monitoring of the I²C signal lines there is also an additional feature which monitors the battery supply voltage VBAT. Basically there  
are two voltage levels where this voltage monitoring becomes active. The first voltage VPOR_VBAT can be seen as a shut down and minimum  
supply voltage of the device voltage which is fixed at 2V (typ.). The same voltage level is used for the power on reset circuit. If the battery voltage  
drops below VPOR_VBAT the device automatically changes from active mode or standby mode to off mode. Besides the VPOR_VBAT level there  
is a second VBAT monitoring voltage which can be activated in a register. This voltage VMON_VBAT is typically set to 3.4V (default register  
setting) but can be reconfigured using the I²C interface down to 2.4V according to the requirements of an application. It is also possible to disable  
the VBAT monitoring. The VPOR_VBAT monitoring can not be disabled.  
Table 23. Truth Table for AS3668 operating modes  
AS3668 Blocks  
Power On/Off Reset  
I²C  
Off Mode  
enabled  
disabled  
Standby Mode  
enabled  
Active Mode  
enabled  
enabled  
enabled  
enabled/disabled depending on  
register setting  
Charge Pump  
Current Sources  
Pattern Mode  
External PWM  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
enabled/disabled depending on  
register setting  
enabled/disabled depending on  
register setting  
enabled/disabled depending on  
register setting  
www.ams.com/AS3668  
Revision 1.13  
26 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 36. Startup and operating mode selection  
8.7.1 GPIO/AUDIO_IN Automatic Pattern Start-up Mode  
As described in the previous chapter it is basically possible to start up the device using the I²C clock line. In some cases it is not possible to  
configure AS3668 in an application because the application processor is not running that time. Therefore AS3668 supports a special startup  
mode shown in Figure 36 and Figure 37 to start up the device without pulling the I²C clock line high. If an external device is connected to the  
GPIO/AUDIO_IN pin of AS3668 and the pin is pulled high the device starts up with an default pattern running on CURR1 although the I²C clock  
line is low shown in Figure 37. If for example AS3668 starts up with I²C and the GPIO/AUDIO_IN pin is low that time the device starts up in  
standby mode and can be configured using the two wire interface. If the I2C signal lines become low whereas the GPIO/AUDIO_IN pin is high at  
the same time the chip keeps activated and running as long as GPIO/AUDIO_IN pin is high. Once the GPIO/AUDIO_IN pin goes low the device  
enters shut down mode. This use case enables the user to keep on charging the battery for example and indicate this with a special PWM  
pattern while the CPU is powered down for example. A typical application is shown in Figure 38.  
www.ams.com/AS3668  
Revision 1.13  
27 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 37. Timing Diagram Startup Modes  
Figure 38. Typical Application Automatic Pattern Startup  
The application in Figure 38 shows the AS3668 connected to a CPU and a typical charger. Most of the stand alone chargers do have a open  
drain output for charger indication with a LED. This output pin can be used to control AS3668. If the charger is active the GPIO/AUDIO_IN input  
pin of AS3668 is pulled high. The chip starts up with a default pattern on CURR1output. With this special mode it is possible to indicate charging  
using for example the RGB LED connected to AS3668 although the CPU is not running. This use case can happen if the battery of a device is  
almost fully discharged and the CPU can not start up because the battery voltage is too low in trickle charge mode. The automatic pattern start-  
up mode allows the operate the LED on AS3668 without I²C interaction with the CPU. AS3668 starts up in automatic pattern start-up mode with  
the default pattern shown in Figure 39. Please mind that the pattern is only active for current source CURR1.  
www.ams.com/AS3668  
Revision 1.13  
28 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 39. Timing for Automatic Pattern Startup  
Table 24. Automatic Pattern Start-Up Parameters  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
s
Rise time for dimming up  
CURR1  
tr_CURR  
2.62  
Fall time for dimming down  
CURR1  
tf_CURR  
2.62  
s
ton_CURR  
toff_CURR  
ICURR1  
On time for CURR1  
Off time for CURR1  
49  
0.54  
6.4  
ms  
s
Output Current for CURR1  
mA  
8.8 General Purpose Input / Output  
The pin GPIO/AUDIO_IN is a general purpose input / output which is shared as a audio input for music synchronization. The pin can support the  
following features:  
Digital Schmitt Trigger Input  
Digital output with open drain functionality  
Analogue Audio input for audio controlled LEDs  
PWM input for CURR1, CURR2, CURR3 and CURR4 (max. 1MHz)  
Device Start-up in Automatic Pattern Generation mode  
Figure 40. General Purpose Input / Output Block diagram  
www.ams.com/AS3668  
Revision 1.13  
29 - 59  
AS3668  
Data Sheet - Detailed Description  
Although the GPIO/AUDIO_IN pin supports digital output as well for simple control exercises an external pull up resistor is mandatory. The pin is  
not able to actively drive the signal line because there is no push/pull stage integrated. The internal pull down resistor is disabled in audio  
synchronization mode.  
For a detailed description of music playback synchronization please refer to chapter 8.9.  
8.8.1 Unused General Purpose Input / Output  
If the pin is not used it is recommended to connect it to ground.  
8.8.2 GPIO Control Register .  
Table 25. GPIO Control Register  
.
0x06 GPIO Control Register  
Bit  
2
Bit Name  
Default  
Access  
Bit Description  
gpio_in_invert  
This bit allows the user to invert input signal of GPIO/AUDIO_IN if the pin is  
configured as digital input.  
0: Non-inverted digital input GPIO/AUDIO_IN  
1: Inverted digital input GPIO/AUDIO_IN  
0
R/W  
1
0
gpio_in_en  
gpio_mode  
0: GPIO/AUDIO_IN pin is configured as analog input (audio mode)  
1: GPIO/AUDIO_IN pin is configured as digital input (general purpose)  
1
0
R/W  
R/W  
0: GPIO/AUDIO_IN pin is configured as input  
1: GPIO/AUDIO_IN pin is configured as output in open drain configuration  
The pin requires an external pull up resistor  
Table 26. GPIO Signal Register  
0x08 GPIO Signal Register  
Bit  
0
Bit Name  
gpio_in  
Default  
0
Access  
Bit Description  
The register is a read only register. The register is set to 1, if the pin GPIO/  
AUDIO_IN is externally pulled high. The register is set to 0, if the pin is  
connected to ground.  
R
Table 27. GPIO Output Register  
0x07 GPIO Output Register  
Bit  
0
Bit Name  
gpio_out  
Default  
0
Access  
Bit Description  
This register is the output register if the pin GPIO/AUDIO_IN is configured as  
output. Writing to the register changes the output state of the pin.  
0: GPIO/AUDIO_IN pin low  
R/W  
1: GPIO/AUDIO_IN pin high (external pull-up resistor required)  
8.9 Audio Input  
The audio input pin GPIO/AUDIO_IN is shared with a general purpose input/output. It is possible to switch the operating mode of the pin from a  
GPIO to an analogue audio input. This multiplexed audio input pin allows the AS3668 to do lighting effects depending on the audio content  
connected to GPIO/AUDIO_IN.  
The block diagram for the signal processing path is shown in Figure 41. The analogue audio signal is coupled into the pin GPIO/AUDIO_IN with  
an external DC blocking capacitor. The integrated audio pre-amplifier with automatic gain control attenuates or amplifies the input signal to avoid  
clipping inside the signal processing path and furthermore increase the dynamic range of the signal in case a very small signal is applied to  
AS3668. The AGC of the preamplifier uses the audio gain defined in register audio_gain as start value and changes the gain in a range of +/-  
3dB. The pre-amplified audio signal is then feed into an special analogue signal processing unit to create special lighting effects. Various settings  
inside the signal processing unit allow the user to define different types fancy lighting effects. This processing unit it directly linked together with  
the control logic for the four current sources of the device. Thus, besides the ordinary lighting pattern control of the current sources with register  
settings, the outputs are directly controlled in audio mode from the audio signal processing unit.  
www.ams.com/AS3668  
Revision 1.13  
30 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 41. Audio Input block diagram  
www.ams.com/AS3668  
Revision 1.13  
31 - 59  
AS3668  
Data Sheet - Detailed Description  
8.9.1 Audio Control Register .  
Table 28. Audio AGC Register  
.
0x40 Audio AGC Register  
Bit  
6
Bit Name  
Default  
0
Access  
Bit Description  
agc_up_level  
This bit allows the change of the AGC up switching threshold.  
0: Default AGC up switching threshold  
R/W  
1: Increased AGC up switching threshold  
5
agc_down_level  
decay_agc_down  
This bit allows the change of the AGC down switching threshold.  
0: Default AGC down switching threshold  
1: Increased AGC down switching threshold  
0
0
R/W  
R/W  
4:3  
Defines the decay time for the automatic gain control of the audio input  
amplifier for decreasing the gain.  
00: 0.131s  
01: 0.262s  
10: 0.393s  
11: 0.524s  
2:1  
decay_agc_up  
Defines the decay time for the automatic gain control of the audio input  
amplifier for increasing the gain.  
00: 0.262s  
01: 0.524s  
10: 0.786s  
11: 1.049s  
0
0
R/W  
R/W  
0
agc_on  
This bit allows the user the enable / disable the automatic gain control of the  
audio input amplifier.  
0: Automatic Gain Control off  
1: Automatic Gain Control on  
Table 29. Audio Input Buffer Register  
0x41 Audio Input Buffer Register  
Access  
Bit  
7
Bit Name  
Default  
0
Bit Description  
audio_dis_start  
Enables the audio input capacitor precharging. This function is only active if  
register audio_man_start is set to manual precharging. After precharging  
register audio_dis_start must be cleared again.  
0: Input capacitor precharging enabled  
1: Input capacitor precharging disabled  
R/W  
R/W  
6
audio_man_start  
audio_gain  
Configures the input capacitor precharging mechanism for auto precharging  
or manual precharging.  
0: Automatic Precharging  
0
0
0
1: Manual Precharging  
5:1  
Configures the gain of the audio preamplifier. The gain can be configured in  
the range of -6dB up to +25dB according to the register setting in 1dB steps.  
0 0000: -6dB  
0 0001: -5dB  
0 0010: -4dB  
0 0011: -3dB  
...  
R/W  
R/W  
1 1111: 25dB  
0
aud_buf_on  
This bit switches the internal audio buffer amplifier on and off according to  
the register setting  
0: Audio Buffer off  
1: Audio Buffer on  
www.ams.com/AS3668  
Revision 1.13  
32 - 59  
AS3668  
Data Sheet - Detailed Description  
Table 30. Audio Control Register  
0x42 Audio Control Register  
Bit  
7
Bit Name  
Default  
0
Access  
Bit Description  
audio_input_pin  
This bit enables pin GPIO/AUDIO_IN or CURR4 pin to be configured as  
audio input pin for audio playback synchronization of the current sources.  
0: GPIO/AUDIO_IN selected for audio synchronization  
R/W  
1: CURR4 pin selected for audio synchronization  
6
5
pld_off  
This bit defines if the internal pull down resistor of GPIO/AUDIO_IN pin is  
enabled or disabled. If the audio mode is enabled the internal pull down is  
automatically disabled  
0: Pull down resistor enabled if register aud_buf_on is set to ‘0’  
1: Pull down resistor disabled  
0
0
0
R/W  
R/W  
R/W  
adc_characteristic  
Defines the ADC characteristic of the ADC for general purpose ADC  
measurements depending on the selected ADC characteristics in register  
adc_mode.  
00: x*250mV (adc_mode = 0)  
01: x*50mV (adc_mode = 0)  
00: 75mV*2x(adc_mode = 0 or adc_mode = 1)  
4:3  
2:0  
audio_decay  
Defines the audio decay time.  
00: 10ms  
01: 20ms  
10: 40ms  
11: 80ms  
audiosync_mode  
In this register it is possible to select between different audio synchronization  
modes of the current sources in order to create different lighting effects.  
000: 4 LED bar code  
001: 4 LED bar code with dimming  
010: Running LED bar code  
0
R/W  
011: Running LED bar code with dimming  
100: RGB (CURR1, CURR2, CURR3; CURR4 not used)  
101: RGB with dimming (CURR1, CURR2, CURR3; CURR4 not used)  
110: 4 LED parallel with dimming  
111: Do not use  
Table 31. Audio Output Register  
0x43 Audio Output Register  
Bit  
3
Bit Name  
Default  
0
Access  
Bit Description  
curr4_aud_en  
This register allows the user to select between normal control (e.g. PWM  
pattern control) and audio synchronization mode of current source CURR4 .  
0: CURR4 normal function  
R/W  
1: CURR4 audio synchronization mode  
2
1
0
curr3_aud_en  
curr2_aud_en  
curr1_aud_en  
This register allows the user to select between normal control (e.g. PWM  
pattern control) and audio synchronization mode of current source CURR3 .  
0: CURR3 normal function  
0
0
0
R/W  
R/W  
R/W  
1: CURR3 audio synchronization mode  
This register allows the user to select between normal control (e.g. PWM  
pattern control) and audio synchronization mode of current source CURR2 .  
0: CURR2 normal function  
1: CURR2 audio synchronization mode  
This register allows the user to select between normal control (e.g. PWM  
pattern control) and audio synchronization mode of current source CURR1 .  
0: CURR1 normal function  
1: CURR1 audio synchronization mode  
www.ams.com/AS3668  
Revision 1.13  
33 - 59  
AS3668  
Data Sheet - Detailed Description  
8.10 LED Pattern Configuration  
8.10.1 Single Pulse Mode  
The AS3668 supports basically three basic LED pattern modes to create fancy lighting effect for the LEDs which can be connected to the current  
sources CURR1, CURR2, CURR3 and CURR4. The first and basic mode is the “Single Pulse Mode”. This mode is basically defined out of five  
parameters shown in Figure 42 below.  
Figure 42. LED Pattern - Single Pulse Mode  
The first parameter which can be configured in register pwm_dim_speed_up is tr_CURR. This time defines how long it takes to ramp up the  
current to the defined value in registers curr1_current, curr2_current, curr3_current and curr4_current for each current source. The dimming of  
the current source is of course logarithmic for a better visual effect but can be reconfigured to linear mode in register pwm_dim_shape. The  
second parameter tf_CURR, which can be controlled in register pwm_dim_speed_down, defines the fall time for dimming down the LEDs. The  
third parameter is ton_CURR and can be configured in register pattern_ton. It defines how long a current source keeps switched on with the  
current configured in register curr1_current, curr2_current, curr3_current and curr4_current for each current source. Also this down dimming is  
done with a logarithmic scale for a better visual effect. The last parameter toff_CURR defines how long the current sources or LEDs are switched  
off until the whole pattern cycle starts from the beginning and can be configured in register pattern_toff.  
Table 32. Singe Pulse Mode Parameters  
Symbol  
Parameter  
Condition  
Min  
0
Typ  
Max  
8.39  
Unit  
s
Rise time for dimming up  
CURRx  
tr_CURR  
Fall time for dimming down  
CURRx  
tf_CURR  
0
8.39  
s
ton_CURR  
toff_CURR  
On time for CURRx  
Off time for CURRx  
0.05  
0.08  
4.2  
8.4  
s
s
Please mind that the settings for tf_CURR, tr_CURR, ton_CURR and toff_CURR are valid for all four current sinks at the same time. It is not  
possible to define individual time values for each current source differently to each other. The only parameter which can differ from on current  
source to another is the current which can be configured in registers curr1_current, curr2_current, curr3_current and curr4_current for each  
current source individually. An example how the mode looks like for all four current sources in parallel can be seen in Figure 43. All current  
sources work synchronously to each other with a fixed and parallel start point.  
www.ams.com/AS3668  
Revision 1.13  
34 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 43. Single Pulse Mode - Example  
8.10.2 Multiple Pulse Mode  
In addition to the Single Pulse Pattern Mode described in Section 8.10.1 there is a second mode which is basically based on the Single Pulse  
Mode. The Multiple Pulse Mode still uses the parameters tr_CURR, tf_CURR, ton_CURR and toff_CURR of the Single Pulse Mode but has two  
more parameters. The first parameter is tp_CURR and can be configured in register tp_led. This register defines the pause time between two  
pulses. The second new parameter is a parameter that defines the number of multiple pulses. This can be configured in register multiple_pulse  
Table 33. Timing Multiple Pulse Mode  
The new parameter can be found in Table 34. All other parameters keep the same and are shared with the Single Pulse Mode. These  
parameters can be found in Table 32.  
/
Table 34. Singe Pulse Mode Parameters  
Symbol  
Parameter  
Condition  
Min  
0
Typ  
Max  
540  
Unit  
ms  
Pause time between  
multiple pulses  
tp_CURR  
www.ams.com/AS3668  
Revision 1.13  
35 - 59  
AS3668  
Data Sheet - Detailed Description  
Please mind that the settings for tr_CURR, tf_CURR, ton_CURR, toff_CURR and tp_CURR and the pulse count number in register multiple_pulse  
are valid for all four current sinks at the same time. It is not possible to define individual time values for each current source differently to each  
other. The only parameter which can differ from on current source to another is the current which can be configured in registers curr1_current,  
curr2_current, curr3_current and curr4_current for each current source independently.  
Figure 44. Multiple Pulse Mode - Example  
8.10.3 Frame Mask Mode  
An additional feature for creating unique LED lighting effects is the Frame Mask Mode. In order to use this mode there is no additional timing  
parameter necessary. All the timing parameters described in Section 8.10.1 and Section 8.10.2 are also valid for this third mode and can be  
combined together. There are no restrictions when using this mode together with Single- or Multiple Pulse Mode. For a better understanding how  
this special mode works a timing diagram example can be found in Figure 45 below.  
Figure 45. Multiple Pulse Mode - Example  
www.ams.com/AS3668  
Revision 1.13  
36 - 59  
AS3668  
Data Sheet - Detailed Description  
As the example shows, each defined pattern, no matter if it is a single pulse or multiple pulse pattern, can be divided into frames which are  
basically running in parallel mode. The pattern which has be defined with the different parameters like tr_CURR, ton_CURR, toff_CURR and  
tp_CURR is repeated in an endless loop. In order to enhance the functionality of the pattern generation it is possible to mask or skip frames in  
between the endless pattern loop. Each current source comes with a dedicated register to support masking of one frame up to four frames. This  
means the Frame Mask Mode allows the user to individually skip frames in each current source. The example above shows that the Frame Mask  
Register fmask_curr2 of CURR2 has been set to 1, which means every second frame will be masked out when playing the pattern. The Frame  
Mask Register fmask_curr3 of CURR3 has been set to 2, therefore two frames are masked out in the example. The register fmask_curr4 of  
CURR4 has been set to 3, thus three frames are masked out in the example. The frame mask order in the example is not fixed and can be easily  
exchanged depending on the Frame Mask Register setting for each current source.  
8.10.4 Frame Start Delay Mode  
The frame delay mode allows the user to add a start-delay for each current source separately in pattern generation mode. This feature allows an  
user to create again more complex lighting patterns like a running LED shown in the example in Figure 46.  
Figure 46. Frame Start Delay Mode  
Each current source has a dedicated delay register(frame_delay1, frame_delay2, frame_delay3 and frame_delay4) which allow adding different  
start delays to each current source. This feature can of course be combined with the frame mask mode described in 8.10.3. In the example  
above the frame_delay2 register has been set to 1 to add one frame delay to CURR2. The frame_delay3 register has been set to 2 adding two  
frames startup delay to CURR3. CURR4 needs a startup delay of 3 frames which means theframe_delay4 registers must be set to 3. It is worth  
mentioning that there are also no restrictions when using this mode together with Single- or Multiple Pulse mode described in chapter 8.10.1 and  
8.10.2.  
8.10.5 GPIO Toggle Mode  
An add on feature which enables the user to use up to eight LEDs in pattern generation mode in a sequential order is the GPIO Toggle mode.  
Figure 47. GPIO Toggle Mode 1 Frame  
The mode can be enabled with the register gpio_toggle_en. Once the mode has been enabled register gpio_toggle_framenr gets activated and  
allows the user to select after how many frames the GPIO/AUDIO_IN pin toggles. An example is shown in Figure 47 above. The gpio_toggle_en  
register has been set to 1. The gpio_toggle_framenr register has also been set to 1. The GPIO/AUDIO_IN pin toggles after each frame. The pin  
can be used to control an external switch to enable some more LEDs. An example of such an application is shown in Figure 48. Please mind that  
it is not possible to operate all eight LEDs in parallel. It is only possible to enable either one or the other block. This mechanism is handled  
automatically with the external control transistors.  
www.ams.com/AS3668  
Revision 1.13  
37 - 59  
AS3668  
Data Sheet - Detailed Description  
Figure 48. Application Proposal GPIO Toggle Mode  
8.10.6 LED Pattern Control Registers  
Table 35. PWM Control Register  
0x15 PWM Control Register  
Bit  
1
Bit Name  
Default  
0
Access  
Bit Description  
pwm_dim_shape  
This bit defines if the current sources do logarithmic or linear up/down  
dimming.  
0: logarithmic dimming  
1: linear dimming  
R/W  
0
pwm_src  
Defines the PWM source. It can either be selected the internal PWM  
generator to dim the current sources or us the pin GPIO/AUDIO_IN as PWM  
input.  
0
R/W  
0: internal PWM generator  
1: external PWM input selected (GPIO/AUDIO_IN)  
www.ams.com/AS3668  
Revision 1.13  
38 - 59  
AS3668  
Data Sheet - Detailed Description  
Table 36. PWM Control Register  
0x16 PWM Timing Register  
Access  
Bit  
Bit Name  
Default  
Bit Description  
7:4  
pwm_dim_speed_up  
These bits define the value of tr_CURR which is the dim speed when  
dimming up and down the current sources. The dim speed is valid for all  
current sources at the same time.  
0000: immediate  
0001: 0.12s  
0010: 0.25s  
0011: 0.38s  
0100: 0.51s  
0101: 0.77s  
0110: 1.0s  
0x08  
R/W  
0111: 1.6s  
1000: 2.1s  
1001: 2.6s  
1010: 3.1s  
1011: 4.2s  
1100: 5.2s  
1101: 6.2s  
1110: 7.3s  
1111: 8.3s  
3:0  
pwm_dim_speed_down  
These bits define the value of tr_CURR which is the dim speed when  
dimming up and down the current sources. The dim speed is valid for all  
current sources at the same time.  
0000: immediate  
0001: 0.12s  
0010: 0.25s  
0011: 0.38s  
0100: 0.51s  
0101: 0.77s  
0110: 1.0s  
0x08  
R/W  
0111: 1.6s  
1000: 2.1s  
1001: 2.6s  
1010: 3.1s  
1011: 4.2s  
1100: 5.2s  
1101: 6.2s  
1110: 7.3s  
1111: 8.3s  
Table 37. PWM Trigger Register  
0x17 PWM Trigger Register  
Bit  
4
Bit Name  
start_dim  
Default  
0
Access  
Bit Description  
This bit defines in PWM mode of the current sources if the outputs are  
switched on/off directly or dimmed up/down using the timing of register  
pwm_dim_speed_up.  
R/W  
0: direct on/off of current sources  
1: logarithmic/linear - up/down dimming of current sources  
www.ams.com/AS3668  
Revision 1.13  
39 - 59  
AS3668  
Data Sheet - Detailed Description  
Table 37. PWM Trigger Register  
0x17 PWM Trigger Register  
Bit  
3
Bit Name  
dim_curr4  
Default  
Access  
Bit Description  
A register read of this register reflects the status of current source CURR4. If  
the register returns 0, the current source is switched off. If the register  
returns 1, the current source is switch on with the current defined in register  
curr4_current.  
R
0: Current Source CURR4 is switched off  
1: Current Source CURR4 is switched on  
0
A write to this register defines the target value for CURR4. If 0 is written to  
this register CURR4 is switched off or dimmed down depending on register  
start_dim. If 1 is written to this register CURR4 is switched on or dimmed up  
depending on register start_dim. Mind that this setting is only effective if  
CURR4 is configured to PWM mode in register curr4_mode.  
0: Target value of CURR4 for dimming down or direct control  
1: Target value of CURR4 for dimming up or direct control  
W
R
2
1
0
dim_curr3  
dim_curr2  
dim_curr1  
A register read of this register reflects the status of current source CURR3. If  
the register returns 0, the current source is switched off. If the register  
returns 1, the current source is switch on with the current defined in register  
curr3_current.  
0: Current Source CURR3 is switched off  
1: Current Source CURR3 is switched on  
0
0
0
A write to this register defines the target value for CURR3. If 0 is written to  
this register CURR3 is switched off or dimmed down depending on register  
start_dim. If 1 is written to this register CURR3 is switched on or dimmed up  
depending on register start_dim. Mind that this setting is only effective if  
CURR3 is configured to PWM mode in register curr3_mode.  
0: Target value of CURR3 for dimming down or direct control  
1: Target value of CURR3 for dimming up or direct control  
W
R
A register read of this register reflects the status of current source CURR2. If  
the register returns 0, the current source is switched off. If the register  
returns 1, the current source is switch on with the current defined in register  
curr2_current.  
0: Current Source CURR2 is switched off  
1: Current Source CURR2 is switched on  
A write to this register defines the target value for CURR2. If 0 is written to  
this register CURR2 is switched off or dimmed down depending on register  
start_dim. If 1 is written to this register CURR2 is switched on or dimmed up  
depending on register start_dim. Mind that this setting is only effective if  
CURR2 is configured to PWM mode in register curr2_mode.  
0: Target value of CURR2 for dimming down or direct control  
1: Target value of CURR2 for dimming up or direct control  
W
R
A register read of this register reflects the status of current source CURR1. If  
the register returns 0, the current source is switched off. If the register  
returns 1, the current source is switch on with the current defined in register  
curr1_current.  
0: Current Source CURR1 is switched off  
1: Current Source CURR1 is switched on  
A write to this register defines the target value for CURR1. If 0 is written to  
this register CURR1 is switched off or dimmed down depending on register  
start_dim. If 1 is written to this register CURR1 is switched on or dimmed up  
depending on register start_dim. Mind that this setting is only effective if  
CURR1 is configured to PWM mode in register curr1_mode.  
W
0: Target value of CURR1 for dimming down or direct control  
1: Target value of CURR1 for dimming up or direct control  
www.ams.com/AS3668  
Revision 1.13  
40 - 59  
AS3668  
Data Sheet - Detailed Description  
Table 38. Pattern Timing Register  
0x18 Pattern Timing Register  
Access  
Bit  
Bit Name  
Default  
0x03  
Bit Description  
5:3  
pattern_toff  
These bits define the value of the parameter toff_CURR. It defines the off  
time of CURR1, CURR2, CURR3 and CURR4 in pattern generation mode.  
The same value is used for all four current sources in parallel.  
000: 0.08s  
001: 0.15s  
010: 0.28s  
011: 0.54s  
100: 1.1s  
101: 2.1s  
110: 4.2s  
111: 8.4s  
R/W  
2:0  
pattern_ton  
These bits define the value of the parameter ton_CURR. It defines the on  
time of CURR1, CURR2, CURR3 and CURR4 in pattern generation mode.  
The same value is used for all four current sources in parallel.  
000: 0.04s  
001: 0.07s  
010: 0.14s  
011: 0.27s  
100: 0.53s  
101: 1.1s  
110: 2.1s  
111: 4.2s  
0
R/W  
Table 39. Pattern Multiple Pulse Register  
0x19 Pattern Multiple Pulse Register  
Access  
Bit  
Bit Name  
Default  
0
Bit Description  
7:6  
multiple_pulse  
Defines the number of multiple pulses applied to all current sources at the  
same time.  
00: 1 pulse  
01: 2 pulses  
10: 3 pulses  
11: 4 pulses  
R/W  
R/W  
1:0  
tp_led  
These bits define the value of parameter tp_CURR. It defines the pause time  
for multiple pulse mode in pattern generation mode.  
00: 0ms  
01: 150ms  
10: 280ms  
11: 540ms  
0
www.ams.com/AS3668  
Revision 1.13  
41 - 59  
AS3668  
Data Sheet - Detailed Description  
Table 40. Pattern Frame Mask Register  
0x1a Pattern Frame Mask Register  
Access  
Bit  
Bit Name  
Default  
0
Bit Description  
7:6  
fmask_curr4  
Defines the frames to be masked out in pattern generation mode for current  
source CURR4.  
00: No frame mask for CURR4  
01: Mask 1 frame for CURR4  
10: Mask 2 frames for CURR4  
11: Mask 3 frames for CURR4  
R/W  
R/W  
R/W  
R/W  
5:4  
3:2  
1:0  
fmask_curr3  
fmask_curr2  
fmask_curr1  
Defines the frames to be masked out in pattern generation mode for current  
source CURR3.  
00: No frame mask for CURR3  
01: Mask 1 frame for CURR3  
10: Mask 2 frames for CURR3  
0
0
0
11: Mask 3 frames for CURR3  
Defines the frames to be masked out in pattern generation mode for current  
source CURR2.  
00: No frame mask for CURR2  
01: Mask 1 frame for CURR2  
10: Mask 2 frames for CURR2  
11: Mask 3 frames for CURR2  
Defines the frames to be masked out in pattern generation mode for current  
source CURR2.  
00: No frame mask for CURR1  
01: Mask 1 frame for CURR1  
10: Mask 2 frames for CURR1  
11: Mask 3 frames for CURR1  
Table 41. Pattern Start Control Register  
0x1b Pattern Start Control Register  
Access  
Bit  
2
Bit Name  
Default  
0
Bit Description  
pattern_phase_out  
The bit defines the way how a pattern is being stopped when the  
pattern_enable register is cleared. If the bit is set to 0 and the  
pattern_enable register is cleared the running pattern stops immediately. If  
the bit is set to 1 and the pattern_enable is cleared the pattern finishes the  
running frame and stops afterwards.  
R/W  
0: Stop pattern immediately  
1: Phase-out pattern  
1
0
pattern_enable  
Starts the pattern generation on current sources.  
0: Pattern generation off  
1: Start of pattern generation  
0
1
W
pattern_start_src  
Selects the input source to trigger the pattern generation start.  
0: Pattern enable by software bit  
R/W  
1: pattern enable by GPIO/AUDIO_IN  
www.ams.com/AS3668  
Revision 1.13  
42 - 59  
AS3668  
Data Sheet - Detailed Description  
Table 42. Pattern Frame Start Delay Register  
0x1c Pattern Frame Start Delay Register  
Access  
Bit  
Bit Name  
Default  
0
Bit Description  
7:6  
frame_delay4  
Defines the start delay of CURR4 in pattern generation mode. Note that  
changes in this register are only getting active after a restart of the pattern  
generation unit by toggling the pattern_enable bit.  
00: No start delay for CURR4  
R/W  
R/W  
R/W  
R/W  
01: 1 frame start delay for CURR4  
10: 2 frames start delay for CURR4  
11: 3 frames start delay for CURR4  
5:4  
3:2  
1:0  
frame_delay3  
frame_delay2  
frame_delay1  
Defines the start delay of CURR3 in pattern generation mode. Note that  
changes in this register are only getting active after a restart of the pattern  
generation unit by toggling the pattern_enable bit.  
00: No start delay for CURR3  
01: 1 frame start delay for CURR3  
10: 2 frames start delay for CURR3  
0
0
0
11: 3 frames start delay for CURR3  
Defines the start delay of CURR2 in pattern generation mode. Note that  
changes in this register are only getting active after a restart of the pattern  
generation unit by toggling the pattern_enable bit.  
00: No start delay for CURR2  
01: 1 frame start delay for CURR2  
10: 2 frames start delay for CURR2  
11: 3 frames start delay for CURR2  
Defines the start delay of CURR1 in pattern generation mode. Note that  
changes in this register are only getting active after a restart of the pattern  
generation unit by toggling the pattern_enable bit.  
00: No start delay for CURR1  
01: 1 frame start delay for CURR1  
10: 2 frames start delay for CURR1  
11: 3 frames start delay for CURR1  
Table 43. GPIO Toggle Control Register  
0x1d GPIO Toggle Control Register  
Access  
Bit  
2
Bit Name  
Default  
0
Bit Description  
gpio_toggle_en  
This bit enables the GPIO/AUDIO_IN pin to toggle after a defined number of  
frames. The number of frames where the pin toggles is defined in register  
gpio_toggle_framenr.  
W
0: GPIO toggle disabled  
1: GPIO toggle enabled  
1:0  
gpio_toggle_framenr  
This register defines the number of frames where the GPIO/AUDIO_IN  
toggles. The register setting is only active if gpio_toggle_en bit is enabled.  
00: GPIO toggles after 1 frame  
0
R/W  
01: GPIO toggles after 2 frames  
10: GPIO toggles after 3 frames  
11: GPIO toggles after 4 frames  
www.ams.com/AS3668  
Revision 1.13  
43 - 59  
AS3668 2V0  
Data Sheet - Register Map  
9 Register Map  
Table 44. I2C Register Overview  
Addr  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Chip ID  
chip_id1<7:0>  
Constant value ‘b10100101’  
3Eh  
CHIP ID1  
CHIP ID2  
3Fh  
chip_id2<7:4>  
revision<3:0>  
LED Control  
curr4_mode<7:6>  
curr3_mode<5:4>  
curr2_mode<3:2>  
curr1_mode<1:0>  
0: current source 4 off; 1:current source 4 on;  
0: current source 3 off; 1:current source 3 on;  
0: current source 2 off; 1:current source 2 on;  
0: current source 1 off; 1:current source 1 on;  
01h  
CurrX control  
2: current source 4 PWM; 3: Current source 4 Patt.  
2: current source 2 PWM; 3: Current source 2 Patt. 2: current source 1 PWM; 3: Current source 1 Patt.  
2: current source 3 PWM; 3: Current source 3 Patt.  
curr1_current<7:0>  
02h  
03h  
04h  
05h  
CURR1 current  
CURR2 current  
CURR3 current  
CURR4 current  
Output current for current source CURR1 = 0mA ... 25.5mA; 256 steps of 0.1mA.  
curr2_current<7:0>  
Output current for current source CURR2 = 0mA ... 25.5mA; 256 steps of 0.1mA.  
curr3_current<7:0>  
Output current for current source CURR3 = 0mA ... 25.5mA; 256 steps of 0.1mA.  
curr4_current<7:0>  
Output current for current source CURR4 = 0mA ... 25.5mA; 256 steps of 0.1mA.  
curr4_low_v  
0: CURR4 voltage ok  
1: CURR4 low voltage  
curr3_low_v  
0: CURR3 voltage ok  
1: CURR3 low voltage  
curr2_low_v  
0: CURR2 voltage ok  
1: CURR2 low voltage  
curr1_low_v  
0: CURR1 voltage ok  
1: CURR1 low voltage  
CurrX low  
voltage status  
2Bh  
GPIO Control  
gpio_in_en  
0: analog input  
1: digital input  
gpio_mode  
gpio_in_invert  
0: non-inverted dig. input  
1: inverted digital input  
0: Input only  
06h  
07h  
GPIO Control  
1: Output (open drain)  
gpio_out  
0: GPIO pin low  
1: GPIO pin high  
GPIO Output  
GPIO Signal  
gpio_in  
0: GPIO pin low  
1: GPIO pin high  
08h  
PWM control  
15h  
pwm_dim_shape  
0: logarithmic ramp  
1: linear ramp  
pwm_src  
0: internal PWM  
PWM Control  
1: external PWM  
pwm_dim_speed_up<7:4>  
0: immediate 1: 0.12s 2: 0.25s 3: 0.38s 4: 0.51s 5: 0.77s 6: 1.0s 7: 1.6s 8: 2.1s  
9: 2.6s 10: 3.1s 11: 4.2s 12: 5.2s 13: 6.2s 14: 7.3s 15: 8.3s  
pwm_dim_speed_down  
0: immediate 1: 0.12s 2: 0.25s 3: 0.38s 4: 0.51s 5: 0.77s 6: 1.0s 7: 1.6s 8: 2.1s  
9: 2.6s 10: 3.1s 11: 4.2s 12: 5.2s 13: 6.2s 14: 7.3s 15: 8.3s  
16h  
PWM Timing  
www.ams.com  
Revision 1.13  
44 - 59  
AS3668 2V0  
Data Sheet - Register Map  
Table 44. I2C Register Overview  
Addr  
17h  
Name  
b7  
b6  
b5  
b4  
b3  
dim_curr4  
0: CURR4 off  
1: CURR4 on  
b2  
dim_curr3  
0: CURR3 off  
1: CURR3 on  
b1  
dim_curr2  
0: CURR2 off  
1: CURR2 on  
b0  
start_dim  
0: no dimming  
1: start log dimming  
dim_curr1  
0: CURR1 off  
1: CURR1 on  
PWM Trigger  
Pattern Control  
pattern_toff<5:3>  
000: 0.08s 001: 0.15s 010: 0.28s 011: 0.54s  
100: 1.1s 101: 2.1s 110: 4.2s 111: 8.4s  
pattern_ton<2:0>  
000: 0.04s 001: 0.07s 010: 0.14s 011: 0.27s  
100: 0.53s 101: 1.1s 110: 2.1s 111: 4.2s  
18h  
19h  
Pattern Timing  
multiple_pulse<7:6>  
00: 1 pulse 01: 2 pulses  
10: 3 pulses 11: 4 pulses  
tp_led<1:0>  
Multiple Pulse  
Frame Mask  
Start Control  
00: 0ms 01: 150ms  
10: 280ms 11: 540ms  
fmask_curr4<7:6>  
fmask_curr3<5:4>  
fmask_curr2<3:2>  
fmask_curr1<1:0>  
00: No frame mask for CURR1  
01: Mask 1 frame for CURR1  
10: Mask 2 frame for CURR1  
11: Mask 3 frame for CURR1  
00: No frame mask for CURR4  
01: Mask 1 frame for CURR4  
10: Mask 2 frame for CURR4  
11: Mask 3 frame for CURR4  
00: No frame mask for CURR3  
01: Mask 1 frame for CURR3  
10: Mask 2 frame for CURR3  
11: Mask 3 frame for CURR3  
00: No frame mask for CURR2  
01: Mask 1 frame for CURR2  
10: Mask 2 frame for CURR2  
11: Mask 3 frame for CURR2  
1Ah  
pattern_phase_out  
0: turn off immediately  
pattern_enable  
0: pattern off  
1: start pattern  
pattern_start_src  
0: Softw. pattern enable  
1: GPIO pattern enable  
1Bh  
1Ch  
1: phase out pattern  
frame_delay4  
0: no delay 1: CURR4 1 frame delay  
frame_delay3  
0: no delay 1: CURR3 1 frame delay  
frame_delay2  
frame_delay1  
0: no delay 1: CURR1 1 frame delay  
Pattern Frame  
Start Delay  
0: no delay 1: CURR2 1 frame delay  
2: CURR4 2 frames delay 3:CURR4 3 frames delay 2: CURR3 2 frames delay 3:CURR3 3 frames delay 2: CURR2 2 frames delay 3:CURR2 3 frames delay 2: CURR1 2 frames delay 3:CURR1 3 frames delay  
gpio_toggle_en  
0: disabled  
1: enabled  
gpio_toggle_framenr  
0: 1 frame 1: 2 frames  
2: 3 frames 3: 4 frames  
GPIO toggle  
control  
1Dh  
ADC Result  
26h  
adc_select  
adc_on  
0: ADC off  
1: ADC on  
adc_mode  
0: Audip Preamplifier  
0: linear ADC  
1: logarithmic ADC  
1: GPIO direct  
27h  
ADC Result  
adc_result<3:0>  
Charge Pump  
cp_on  
00h  
Reg Control  
0: Charge Pump off  
1: Charge Pump on  
www.ams.com  
Revision 1.13  
45 - 59  
AS3668 2V0  
Data Sheet - Register Map  
Table 44. I2C Register Overview  
Addr  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
cp_mode_switching  
0: Automatic Mode  
1: 240μs debounce time 1: Manual Mode  
cp_auto_on  
cp_mode  
cp_clk  
0: 1MHz  
1: 500kHz  
cp_start_debounce  
0: 1:1 mode  
1: 1:2 mode  
23h  
CP Control  
0: Manual CP Mode  
0: 32ms debounce time  
1: automatic CP Mode  
Overtemperature Control  
vmon_vbat<6:5>  
shutdown_enable  
0: disable shutdown  
1: enable shutdown  
ov_temp_on  
0: temp supervision off  
1: temp supervision on  
Overtemp  
Control  
29h  
rst_ov_temp  
ov_temp  
0: ~2V - Shutdown Mode 01: 3.0V - Standby Mode  
10: 3.15V - Standby Mode 11: 3.3V - Standby Mode  
Audio Control  
agc_up_level  
agc_down_level  
decay_agc_down<4:3>  
00: 0.131s 01: 0.262s  
10: 0.393s 11: 0.524s  
agc_on  
decay_agc_up<2:1>  
00: 0.262s 01: 0.524s  
10: 0.786s 11: 1.049s  
0: Normal AGC up  
0: Normal AGC down  
40h  
41h  
Audio AGC  
switching level threshold switching level threshold  
1: AGC up switching  
threshold increased  
0: AGC switched off  
1: AGC down switching  
threshold increased  
1: AGC switched on  
audio_dis_start  
0: input cap precharge  
1: no precharging  
audio_man_start  
0: auto precharge  
1: manual precharge  
aud_buf_on  
audio_gain<5:1>  
Controls the audio input gain from -6dB ... +25dB in 1dB steps  
Audio Input  
Buffer  
0: Audio Buffer off  
1: Audio Buffer on  
adc_characteristic  
audiosync_mode<2:0>  
0: x*250mV (linear)  
pld_off  
audio_decay<4:3>  
audio_input_pin  
000: 4 LED bar code 001: 4 LED bar code with dimming  
1: x*50mV (linear)  
42h  
43h  
Audio Control  
Audio Output  
0: Pull down enabled  
00: 10ms 01: 20ms  
0: GPIO  
010: running LED bar code 011: running LED bar code with dimming 100: RGB  
101: RGB with dimming 110: 4 LED parallel with dimming 111: -  
1: CURR4  
0: 75mV*2x (log)  
1: Pull down disabled  
10: 40ms 11: 80ms  
1: 75mV*2x (log)  
curr1_aud_en  
0: CURR1 normal  
mode  
curr4_aud_en  
curr3_aud_en  
curr2_aud_en  
0: CURR2 normal mode  
1: CURR2 audio sync  
0: CURR4 normal mode 0: CURR3 normal mode  
1: CURR4 audio sync  
1: CURR3 audio sync  
1: CURR1 audio sync  
www.ams.com  
Revision 1.13  
46 - 59  
AS3668  
Data Sheet - Application Information  
10 Application Information  
10.1 LED Software Implementation Examples  
10.1.1 Simple Breathlight Pattern with one LED  
In this example we’d like to use CURR1 in pattern generation mode to create a simple breathlight pattern without continuous I2C traffic. This  
helps to unload the calculation power from the CPU.  
Figure 49. Simple Breathlight Pattern Example  
The timing example shown in Figure 49 above, can be easily implemented with just a couple of I2C commands.  
Table 45. Code Example Simple Breathlight Pattern  
Write Value  
Register Name  
Address  
Comments  
Enable CURR1 for pattern generation mode. Other  
current sources are off  
0x01  
CurrX Control  
0x03  
0x02  
0x16  
0x18  
0x1B  
Set the output current of CURR1 to 15mA.  
Define Rise/Fall time with 0,77s  
Define 0,15s on time and 4,21s off time  
Start breathlight pattern  
CURR1 Current  
PWM Timing  
0x96  
0x55  
0x32  
0x02  
Pattern Timing  
Start Control  
10.1.2 Dual Pulse Pattern with one LED  
In this example we would like to use CURR1 in pattern generation mode to create a simple dual pulse pattern without continuous I2C traffic. This  
helps again to unload the CPU.  
Figure 50. Dual Pulse Pattern Example  
The timing example shown in Figure 50 above, can be easily implemented with just a couple of I2C commands.  
www.ams.com/AS3668  
Revision 1.13  
47 - 59  
AS3668  
Data Sheet - Application Information  
Table 46. Code Example Dual Pulse Pattern Example  
Write Value  
Register Name  
Address  
Comments  
Enable CURR1 for pattern generation mode. Other  
current sources are off  
0x01  
CurrX Control  
0x03  
0x02  
0x16  
0x18  
0x19  
0x1B  
Set the output current of CURR1 to 25,5mA.  
Define Rise/Fall time with 0,12s  
Define 0,04s on time and 4,2s off time  
Define 2 pulses and 150ms pause time  
Start breathlight pattern  
CURR1 Current  
PWM Timing  
0xFF  
0x11  
0x30  
0x41  
0x02  
Pattern Timing  
Multiple Pulse  
Start Control  
10.1.3 RGB LED Pattern  
In this example we would like to demonstrate how to use an RGB LED which is connected to CURR1, CURR2 and CURR3.  
Figure 51. RGB Pulse Pattern Example  
With the timing example above you get a mixture of red, green and blue color. Table 43 below shows how to configure the device to get the  
pattern shown in Figure 51.  
Table 47. Code Example RGB Pulse Pattern  
Write Value  
Register Name  
Address  
Comments  
Enable CURR1, CURR2 and CURR3 for pattern  
generation mode. CURR4 is in off mode.  
0x01  
CurrX Control  
0x3F  
0x02  
0x03  
0x04  
0x16  
0x18  
0x19  
0x1B  
Set the output current of CURR1 to 7,9mA.  
Set the output current of CURR2 to 20mA.  
Set the output current of CURR3 to 18,2mA.  
Define Rise/Fall time with 2.1s  
CURR1 Current  
CURR2 Current  
CURR3 Current  
PWM Timing  
0x4F  
0xC8  
0xB6  
0x88  
0x25  
0x00  
0x02  
Define 1,1s on time and 1,1s off time  
Define single pulse mode  
Pattern Timing  
Multiple Pulse  
Start Control  
Start breathlight pattern  
www.ams.com/AS3668  
Revision 1.13  
48 - 59  
AS3668  
Data Sheet - Application Information  
10.1.4 Parallel Up - Dimming  
In this example we would like to demonstrate how to do simple PWM up-dimming of all four LEDs in parrallel.  
Figure 52. PWM Up-Dimming Example  
If the output current of all four current sources is configured according to the requirements of the application it is possible to dimm the LEDs up  
with a single I2C command.  
Table 48. Code Example Up-Dimming  
Write Value  
0xAA  
Register Name  
Address  
0x01  
0x02  
0x03  
0x04  
0x05  
0x16  
Comments  
Enable CURR1, CURR2, CURR3 and CURR4 for PWM mode.  
Set the output current of CURR1 to 10mA.  
Set the output current of CURR2 to 10mA.  
Set the output current of CURR3 to 10mA.  
Set the output current of CURR4 to 10mA.  
Define dimming time with 1.6s  
CurrX Control  
CURR1 Current  
CURR2 Current  
CURR3 Current  
CURR4 Current  
PWM Timing  
0x64  
0x64  
0x64  
0x64  
0x77  
Start up-dimming of all current sources with 1.7s  
dimming time.  
0x17  
PWM Trigger  
0x1F  
10.1.5 Parallel Down- Dimming  
In this example we would like to demonstrate how to do simple PWM down-dimming of all four LEDs in parallel.  
Figure 53. PWM Down-Dimming Example  
www.ams.com/AS3668  
Revision 1.13  
49 - 59  
AS3668  
Data Sheet - Application Information  
Table 49. Code Example Down-Dimming  
Write Value  
0xAA  
Register Name  
Address  
0x01  
0x02  
0x03  
0x04  
0x05  
Comments  
Enable CURR1, CURR2, CURR3 and CURR4 for On mode.  
Set the output current of CURR1 to 10mA.  
Set the output current of CURR2 to 10mA.  
Set the output current of CURR3 to 10mA.  
Set the output current of CURR4 to 10mA.  
CurrX Control  
CURR1 Current  
CURR2 Current  
CURR3 Current  
CURR4 Current  
0x64  
0x64  
0x64  
0x64  
Enable CURR1, CURR2, CURR3 and CURR4 for PWM mode.  
All four current sources keep switched on when we  
change from On Mode to PWM Mode.  
0x17  
PWM Trigger  
0x0F  
0x16  
0x17  
Define dimming time with 1.6s  
PWM Timing  
PWM Trigger  
0x77  
0x10  
Start down-dimming of all current sources with 1.7s  
dimming time.  
www.ams.com/AS3668  
Revision 1.13  
50 - 59  
AS3668  
Data Sheet - Application Information  
10.2 Hardware Examples  
Figure 54. AS3668 Standard 4 Channel LED Application Example  
C N  
A 3  
G N D  
D 2  
C P  
A 2  
www.ams.com/AS3668  
Revision 1.13  
51 - 59  
AS3668  
Data Sheet - Application Information  
Figure 55. AS3668 Standard RGB LED Operation with GPIO Control Application Example  
C N  
A 3  
G N D  
D 2  
C P  
A 2  
www.ams.com/AS3668  
Revision 1.13  
52 - 59  
AS3668  
Data Sheet - Application Information  
Figure 56. AS3668 Audio Synchronization Application Example  
C N  
A 3  
G N D  
D 2  
C P  
A 2  
www.ams.com/AS3668  
Revision 1.13  
53 - 59  
AS3668  
Data Sheet - Application Information  
Figure 57. AS3668 Charger Application Example with Audio Synchronization  
C N  
A 3  
G N D  
D 2  
C P  
A 2  
www.ams.com/AS3668  
Revision 1.13  
54 - 59  
AS3668  
Data Sheet - Application Information  
Figure 58. AS3668 Dual RGB LED Application Example  
C N  
A 3  
G N D  
D 2  
C P  
A 2  
www.ams.com/AS3668  
Revision 1.13  
55 - 59  
AS3668  
Data Sheet - Package Drawings and Markings  
11 Package Drawings and Markings  
The device is available in a 12-pin WL-CSP (1.255x1.680mm) package.  
Figure 59. 12-pin WL-CSP (1.255x1.680mm) Marking  
Table 50. Packaging Code XXXX  
XXXX  
encoded Datecode  
www.ams.com/AS3668  
Revision 1.13  
56 - 59  
AS3668  
Data Sheet - Package Drawings and Markings  
Figure 60. 12-pin WL-CSP (1.255x1.680mm) Package Drawing  
www.ams.com/AS3668  
Revision 1.13  
57 - 59  
AS3668  
Data Sheet - Ordering Information  
12 Ordering Information  
The devices are available as the standard products shown in Table 51.  
Table 51. Ordering Information  
Ordering Code  
AS3668-BWLT  
Marking  
AS3668  
Description  
Delivery Form  
Tape & Reel  
Package  
4-channel smart LED driver  
12-pin WL-CSP (1.255x1.680mm)  
Note: All products are RoHS compliant and ams green.  
Buy our products or get free samples online at www.ams.com/ICdirect  
Technical Support is available at www.ams.com/Technical-Support  
For further information and requests, email us at sales@ams.com  
(or) find your local distributor at www.ams.com/distributor  
www.ams.com/AS3668  
Revision 1.13  
58 - 59  
AS3668  
Data Sheet - Copyrights  
Copyrights  
Copyright © 1997-2013, ams AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights  
reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the  
copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no  
warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described  
devices from patent infringement. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior  
to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in normal  
commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability  
applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing  
by ams AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard  
production flow, such as test flow or test location.  
The information furnished here by ams AG is believed to be correct and accurate. However, ams AG shall not be liable to recipient or any third  
party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the  
technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other  
services.  
Contact Information  
Headquarters  
ams AG  
Tobelbaderstrasse 30  
A-8141 Unterpremstaetten, Austria  
Tel : +43 (0) 3136 500 0  
Fax : +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.ams.com/contact  
www.ams.com/AS3668  
Revision 1.13  
59 - 59  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY