AS3932_07 [AMSCO]

3D Low Frequency Wakeup Receiver; 3D低频唤醒接收器
AS3932_07
型号: AS3932_07
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

3D Low Frequency Wakeup Receiver
3D低频唤醒接收器

文件: 总34页 (文件大小:402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS3932  
3D Low Frequency Wakeup Receiver  
Wake-up sensitivity 100 µVRMS (typ.)  
Adjustable sensitivity level  
1 General Description  
The AS3932 is a 3-channel low power ASK receiver that is able to  
generate a wake-up upon detection of a data signal which uses a LF  
carrier frequency between 110 - 150 kHz. The integrated correlator  
can be used for detection of a programmable 16-bit wake-up pattern.  
The device can operate using one, two, or three active channels.  
Highly resistant to false wake-ups  
False wake-up counter  
Periodical forced wake-up supported (1s – 2h)  
Low power listening modes  
The AS3932 provides a digital RSSI value for each active channel, it  
supports a programmable data rate. The AS3932 offers a real-time  
clock (RTC), which is either derived from a crystal oscillator or the  
internal RC oscillator.  
Current consumption in 3-channel listening mode 1.7 µA (typ.)  
Programmable data-rate 0.5 – 4 kbaud (Manchester encoded)  
Digital RSSI values available for each channel  
Dynamic range 64dB  
The programmable features of AS3932 enable to optimize its  
settings for achieving a longer distance while retaining a reliable  
wake-up generation. The sensitivity level of AS3932 can be adjusted  
in presence of a strong field or in noisy environments.  
5 bit RSSI step (2dB per step)  
RTC based on 32kHz XTAL, RC-OSC, or External Clock  
Operating temperature range -40ºC to +85ºC  
Operating supply voltage 2.4V – 3.6V (TA = 25ºC)  
Bidirectional serial digital interface (SDI)  
Package option: 16-pin TSSOP, 16LD QFN (4x4)  
The device is available in 16-pin TSSOP and 16LD QFN (4x4)  
packages.  
2 Key Features  
3-channel ASK wake-up receiver  
Carrier frequency range 110 - 150 kHz  
One, two, or three channel operation  
Reliable 1-D, 2-D or 3-D wake-up pattern detection  
Programmable wake-up pattern (16bits)  
Doubling of wake-up pattern supported  
Wake-up without pattern detection supported  
3 Applications  
The AS3932 is ideal for Active RFID tags, Real-time location  
systems, Operator identification, Access control, and Wireless  
sensors.  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
1 - 34  
AS3932  
Datasheet - Applications  
Figure 1. AS3932 Typical Application Diagram with Crystal Oscillator  
VCC  
VCC  
XIN  
CS  
NC  
CL  
CBAT  
XTAL  
TRANSMITTER  
XOUT  
DAT  
WAKE  
SCL  
TX  
LF1P  
LF2P  
LF3P  
LFN  
AS3932  
SDO  
SDI  
GND  
VSS  
Figure 2. AS3932 Typical Application Diagram with RC Oscillator  
VCC  
VCC  
XIN  
CS  
NC  
CBAT  
XOUT  
LF1P  
LF2P  
LF3P  
LFN  
DAT  
WAKE  
SCL  
TRANSMITTER  
TX  
AS3932  
SDO  
SDI  
GND  
VSS  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
2 - 34  
AS3932  
Datasheet - Applications  
Figure 3. AS3932 Typical Application Diagram with Clock from External Source  
VCC  
CBAT  
VCC  
XIN  
CS  
NC  
EXTERNAL CLOCK  
R
C
XOUT  
DAT  
WAKE  
SCL  
TRANSMITTER  
LF1P  
LF2P  
LF3P  
LFN  
AS3932  
TX  
SDO  
SDI  
GND  
VSS  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
3 - 34  
AS3932  
Datasheet - Contents  
Contents  
1 General Description ..................................................................................................................................................................  
2 Key Features.............................................................................................................................................................................  
3 Applications...............................................................................................................................................................................  
4 Pin Assignments .......................................................................................................................................................................  
4.1 TSSOP Package ..................................................................................................................................................................................  
1
1
1
5
5
4.1.1 Pin Descriptions........................................................................................................................................................................... 5  
4.2 QFN Package.......................................................................................................................................................................................  
4.2.1 Pin Descriptions........................................................................................................................................................................... 6  
6
5 Absolute Maximum Ratings ......................................................................................................................................................  
6 Electrical Characteristics...........................................................................................................................................................  
7
8
7 Typical Operating Characteristics ........................................................................................................................................... 10  
8 Detailed Description................................................................................................................................................................ 11  
8.1 Operating Modes................................................................................................................................................................................ 12  
8.1.1 Power Down Mode .................................................................................................................................................................... 12  
8.1.2 Listening Mode .......................................................................................................................................................................... 12  
8.1.3 Preamble Detection / Pattern Correlation.................................................................................................................................. 13  
8.1.4 Data Receiving .......................................................................................................................................................................... 13  
8.2 System and Block Specification ......................................................................................................................................................... 14  
8.2.1 Register Table ........................................................................................................................................................................... 14  
8.2.2 Register Table Description and Default Values......................................................................................................................... 14  
8.2.3 Serial Data Interface (SDI)......................................................................................................................................................... 16  
8.2.4 SDI Timing................................................................................................................................................................................. 19  
8.3 Channel Amplifier and Frequency Detector........................................................................................................................................ 20  
8.3.1 Frequency Detector / AGC ........................................................................................................................................................ 20  
8.3.2 Antenna Damper........................................................................................................................................................................ 21  
8.4 Channel Selector / Demodulator / Data Slicer.................................................................................................................................... 21  
8.5 Correlator............................................................................................................................................................................................ 22  
8.6 Wake-up Protocol - Carrier Frequency 125 kHz................................................................................................................................. 23  
8.6.1 Without Pattern Detection.......................................................................................................................................................... 23  
8.6.2 Single Pattern Detection............................................................................................................................................................ 24  
8.7 False Wake-up Register ..................................................................................................................................................................... 26  
8.8 Real Time Clock (RTC)....................................................................................................................................................................... 27  
8.8.1 Crystal Oscillator........................................................................................................................................................................ 28  
8.8.2 RC-Oscillator ............................................................................................................................................................................. 28  
8.8.3 External Clock Source ............................................................................................................................................................... 29  
8.9 Channel Selection in Scanning Mode and ON/OFF Mode................................................................................................................. 29  
9 Package Drawings and Markings ........................................................................................................................................... 30  
10 Ordering Information............................................................................................................................................................. 33  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
4 - 34  
AS3932  
Datasheet - Pin Assignments  
4 Pin Assignments  
4.1 TSSOP Package  
Figure 4. Pin Assignments 16-pin TSSOP Package  
1
2
3
4
5
6
7
CS  
16  
15  
NC  
SCL  
DAT  
SDI  
SDO  
VCC  
GND  
LF3P  
WAKE  
14  
13  
12  
VSS  
AS3932  
XOUT  
11  
10  
9
XIN  
LFN  
LF2P  
LF1P  
8
4.1.1 Pin Descriptions  
Table 1. Pin Descriptions 16-pin TSSOP Package  
Pin  
Number  
Pin Name  
Pin Type  
Description  
CS  
SCL  
SDI  
1
2
Chip select  
SDI interface clock  
SDI data input  
Digital input  
3
SDO  
VCC  
GND  
LF3P  
LF2P  
LF1P  
LFN  
4
Digital output / tristate  
Supply pad  
SDI data output (tristate when CS is low)  
Positive supply voltage  
Negative supply voltage  
Input antenna channel three  
Input antenna channel two  
Input antenna channel one  
Common ground for antenna one, two and three  
Crystal oscillator input  
5
6
Supply pad  
7
8
9
Analog I/O  
10  
11  
12  
13  
14  
15  
16  
XIN  
XOUT  
VSS  
WAKE  
DAT  
NC  
Crystal oscillator output  
Substrate  
Supply pad  
Digital output  
-
Wake-up output IRQ  
Data output  
Not connected  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
5 - 34  
AS3932  
Datasheet - Pin Assignments  
4.2 QFN Package  
Figure 5. Pin Assignments 16LD QFN (4x4) Package  
16  
13  
15  
14  
1
2
SCL  
CS  
LF3P  
LF2P  
12  
11  
AS3932  
3
4
LF1P  
LFN  
10  
9
NC  
DAT  
8
6
5
7
4.2.1 Pin Descriptions  
Table 2. Pin Descriptions 16LD QFN (4x4) Package  
Pin  
Number  
Pin Name  
Pin Type  
Description  
LF3P  
LF2P  
LF1P  
LFN  
1
2
Input antenna channel three  
Input antenna channel two  
Input antenna channel one  
3
Analog I/O  
4
Common ground for antenna one, two and three  
Crystal oscillator input  
Crystal oscillator output  
Substrate  
XIN  
5
XOUT  
VSS  
WAKE  
DAT  
NC  
6
7
Supply pad  
Digital output  
-
8
Wake-up output IRQ  
Data output  
9
10  
11  
12  
13  
14  
15  
16  
Not connected  
CS  
Chip select  
SCL  
SDI  
Digital input  
SDI interface clock  
SDI data input  
SDO  
VCC  
GND  
Digital output / tristate  
Supply pad  
SDI data output (tristate when CS is low)  
Positive supply voltage  
Negative supply voltage  
Supply pad  
Note: The exposed pad has to be connected to ground.  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
6 - 34  
AS3932  
Datasheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 3 may cause permanent damage to the device. These are stress ratings only. Functional operation of the  
device at these or any other conditions beyond those indicated in Electrical Characteristics on page 8 is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 3. Absolute Maximum Ratings  
Parameter  
Electrical Parameters  
Min  
Max  
Units  
Notes  
DC supply voltage (VDD)  
Input pin voltage (VIN)  
-0.5  
-0.5  
-100  
5
5
V
V
Input current (latch up immunity) (ISOURCE)  
Electrostatic Discharge  
100  
mA  
Norm: Jedec 78  
Electrostatic discharge (ESD)  
Continuous Power Dissipation  
±2  
kV  
Norm: MIL 883 E method 3015 (HBM)  
Total power dissipation  
(all supplies and outputs)  
(Pt)  
0.07  
mW  
Temperature Ranges and Storage Conditions  
Storage temperature (Tstrg  
)
-65  
150  
260  
85  
ºC  
ºC  
%
Norm: IPC/JEDEC J-STD-020  
The reflow peak soldering temperature (body  
temperature) is specified according IPC/JEDEC  
J-STD-020 “Moisture/Reflow Sensitivity  
Classification for Non-hermetic Solid State  
Surface Mount Devices”.  
Package body temperature (Tbody  
)
Humidity non-condensing  
5
Moisture Sensitivity Level (MSL)  
3
Represents a maximum floor life time of 168h  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
7 - 34  
AS3932  
Datasheet - Electrical Characteristics  
6 Electrical Characteristics  
Table 4. Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Operating Conditions  
VDD  
VSS  
Positive supply voltage  
Negative supply voltage  
Ambient temperature  
2.4  
0
3.6  
0
V
V
TAMB  
-40  
85  
ºC  
DC/AC Characteristics for Digital Inputs and Outputs  
CMOS Input  
VIH  
High level input voltage  
Low level input voltage  
Input leakage current  
0.58* VDD 0.7* VDD 0.83* VDD  
0.125* VDD 0.2* VDD 0.3* VDD  
100  
V
V
VIL  
ILEAK  
nA  
CMOS Output  
VOH  
High level output voltage  
Low level output voltage  
Capacitive load  
With a load current of 1mA  
With a load current of 1mA  
For a clock frequency of 1 MHz  
VDD - 0.4  
VSS + 0.4  
400  
V
V
VOL  
CL  
pF  
Tristate CMOS Output  
VOH  
VOL  
IOZ  
High level output voltage  
Low level output voltage  
Tristate leakage current  
With a load current of 1mA  
With a load current of 1mA  
to VDD and VSS  
VDD - 0.4  
VSS + 0.4  
100  
V
V
nA  
Table 5. Electrical System Specifications  
Symbol  
Input Characteristics  
RIN  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Input Impedance  
In case no antenna damper is set (R1<4>=0)  
2
MΩ  
kHz  
kHz  
Fmin  
Minimum Input Frequency  
Maximum Input Frequency  
110  
150  
Fmax  
Current Consumption  
IPWD  
Power Down Mode  
400  
2.7  
nA  
Current Consumption in  
standard listening mode with  
one active channel and RC-  
oscillator as RTC  
I1CHRC  
I2CHRC  
µA  
Current Consumption in  
standard listening mode with  
two active channels and RC-  
oscillator as RTC  
4.2  
5.7  
2.7  
µA  
µA  
µA  
Current Consumption in  
standard listening mode with  
three active channels and RC-  
oscillator as RTC  
I3CHRC  
8.3  
Current Consumption in  
scanning mode with three  
active channels and RC-  
oscillator as RTC  
I3CHSCRC  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
8 - 34  
AS3932  
Datasheet - Electrical Characteristics  
Table 5. Electrical System Specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Current Consumption in ON/  
OFF mode with three active  
channels and RC-oscillator as  
RTC  
11% Duty Cycle  
1.7  
I3CHOORC  
µA  
50% Duty Cycle  
3.45  
Current Consumption in  
standard listening mode with  
three active channels and  
crystal oscillator as RTC  
I3CHXT  
IDATA  
6.5  
8.9  
12  
µA  
µA  
Current Consumption in  
Preamble detection / Pattern  
correlation / Data receiving  
mode (RC-oscillator)  
With 125 kHz carrier frequency and 1kbps  
data-rate. No load on the output pins.  
8.3  
Input Sensitivity  
With 125 kHz carrier frequency, chip in default  
mode, 4 half bits burst + 4 symbols preamble  
and single preamble detection  
Input Sensitivity on all  
channels  
SENS  
100  
µVrms  
µs  
Channel Settling Time  
TSAMP  
Amplifier settling time  
250  
Crystal Oscillator  
FXTAL  
Frequency  
Start-up Time  
Crystal dependent  
Crystal dependent  
32.768  
kHz  
s
TXTAL  
1
IXTAL  
Current consumption  
1
1
µA  
External Clock Source  
IEXTCL  
RC Oscillator  
FRCNCAL  
Current consumption  
µA  
Frequency  
Frequency  
If no calibration is performed  
27  
31  
32.768  
32.768  
42  
kHz  
kHz  
If calibration with 32.768 kHz reference signal  
is performed  
FRCCAL32  
34.5  
Maximum achievable frequency after  
calibration  
FRCCALMAX  
FRCCALMIN  
Frequency  
Frequency  
35  
30  
kHz  
kHz  
Minimum achievable frequency after calibration  
Periods of  
reference  
clock  
TCALRC  
IRC  
Calibration time  
65  
Current consumption  
200  
nA  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
9 - 34  
AS3932  
Datasheet - Typical Operating Characteristics  
7 Typical Operating Characteristics  
Figure 6. Sensitivity over Voltage and Temperature  
Figure 7. Sensitivity over RSSI  
1000000  
120  
95 o  
C
C
100000  
10000  
1000  
100  
100  
80  
60  
40  
20  
0
27 o  
-40 o  
C
10  
1
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
2.4  
3
Supply Voltage [V]  
3.6  
RSSI [dB]  
Figure 8. RC-Osc Frequency over Voltage (calibr.)  
Figure 9. RC-Osc Frequency over Temperature (calibr.)  
34.5  
34.5  
34  
34  
33.5  
33  
33.5  
33  
32.5  
32  
32.5  
32  
31.5  
31  
31.5  
31  
-36 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Operating Temperature [oC]  
Supply Voltage [V]  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
10 - 34  
AS3932  
Datasheet - Detailed Description  
8 Detailed Description  
The AS3932 is a three-dimensional low power low-frequency wake-up receiver. The AS3932 is capable to detect the presence of an inductive  
coupled carrier and extract the envelope of the On-Off-Keying (OOK) modulated carrier. In case the carrier is Manchester coded the clock is  
recovered from the transmitted signal and the data can be correlated with a programmed pattern. If the detected pattern corresponds to the  
stored one a wake-up signal (IRQ) is risen up. The pattern correlation can be bypassed in which case the wake-up detection is based only on the  
frequency detection.  
The AS3932 is made up by three independent receiving channels, one envelop detector, one data correlator, 8 programmable registers with the  
main logic and a real time clock.  
The digital logic can be accessed by an SPI. The real time clock can be based on a crystal oscillator or on an internal RC one. If the internal RC  
oscillator is used, a calibration procedure can be performed to improve its accuracy.  
Figure 10. Block Diagram of LF Wake-up Receiver AS3932  
AS3932  
Wake-up  
IRQ  
SCL  
Data  
Channel  
Amplifier 1  
RSSI  
SDI  
Main Logic  
SPI  
LF1P  
SDO  
CS  
Freq. OK  
Channel  
Selector  
Envelope Detector /  
Data Slicer  
Data  
Correlator  
Channel  
Amplifier 2  
RSSI  
LF2P  
Freq. OK  
DAT  
Data  
Channel  
Amplifier 3  
RSSI  
LF3P  
LFN  
I/V  
Bias  
Freq. OK  
RC RTC  
Xtal RTC  
GND  
VCC  
Xin  
Xout  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
11 - 34  
AS3932  
Datasheet - Detailed Description  
AS3932 needs the following external components:  
Power supply capacitor - CBAT – 100 nF  
32.768 kHz crystal with its two pulling capacitors – XTAL and CL – (it is possible to omit these components if the internal RC oscillator is  
used instead of the crystal oscillator).  
One, two, or three LC resonators according to the number of used channels.  
In case the internal RC-oscillator is used (no crystal oscillator is mounted), the pin XIN has to be connected to the supply, while pin XOUT should  
stay floating. Application diagrams with and without crystal are shown in Figure 1 and Figure 2  
8.1 Operating Modes  
8.1.1 Power Down Mode  
In Power Down Mode AS3932 is completely switched off. The typical current consumption is 400 nA.  
8.1.2 Listening Mode  
In listening mode only the active channel amplifiers and the RTC are running. In this mode the system detects the presence of a carrier. In case  
the carrier is detected the RSSI can be displayed.  
If the three dimensional detection is not required it is possible to deactivate one or more channels. In case only two channels are required the  
deactivated channel must be the number two, while if only one channel detection is needed the active channel must be the number one.  
Inside this mode it is possible to distinguish the following three sub modes:  
Standard Listening mode. All channels are active at the same time  
Scanning mode (Low Power mode 1). All used channels are active, but only one per time slot, where the time slot T is defined as 1ms.  
Thus, if all three channels are active the procedure is as follows (see Figure 11): for the first millisecond only channel one is active while channel  
two and three are powered down; for the next millisecond only channel three is active while channel one and two are powered down; finally,  
channel two is active while the other two are deactivated. This channel rotation goes on until the presence of the carrier is detected by any of the  
channels; then immediately all three channels will become active at the same time. Now AS3932 can perform a simultaneous multidirectional  
evaluation (on all three channels) of the field and evaluate which channel has the strongest RSSI. The channel with the highest RSSI will be put  
through to the demodulator. In this way it is possible to perform multidirectional monitoring of the field with a current consumption of a single  
channel, keeping the sensitivity as good as if all channels are active at the same time.  
Figure 11. Scanning Mode  
Channel 1  
Channel 3  
time  
Channel 2  
time  
Presence  
of carrier  
time  
t 0 + 5 T  
t 0  
t 0 + T  
t 0 + 2 T  
t 0 + 3 T  
t 0 + 4 T  
t 1  
time  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
12 - 34  
AS3932  
Datasheet - Detailed Description  
ON/OFF mode (Low Power mode 2). All active channels are on at the same time but not for the whole time (time slot T is defined as 1ms).  
An on-off duty-ratio is defined. This duty ratio is programmable see R4<7:6>.  
Figure 12. ON/OFF Mode  
Channel 1  
Channel 2  
time  
Channel 3  
time  
Presence  
of carrier  
time  
3 *t 0  
t 0  
t 0 + T  
2 *t 0  
2 *t 0 + T  
time  
For each of these sub modes it is possible to enable a further feature called Artificial Wake-up. The Artificial Wake-up is a counter based on the  
used RTC. Three bits define a time window see R8<2:0>. If no activity is seen within this time window the chip will produce an interrupt on the  
WAKE pin that lasts 128 µs. With this interrupt the microcontroller (µC) can get feedback on the surrounding environment (e.g. read the false  
wake-up register R13<7:0>) and/or take actions in order to change the setup.  
8.1.3 Preamble Detection / Pattern Correlation  
The preamble detection and pattern correlation are only considered for the wake-up when the data correlator function is enabled (see R1<1>).  
The correlator searches first for preamble frequency (constant frequency of Manchester clock defined according to bit-rate transmission, see  
Table 19) and then for data pattern.  
If the pattern is matched the wake-up interrupt is displayed on the WAKE output and the chip goes in Data receiving mode. If the pattern fails the  
internal wake-up (on all active channels) is terminated and no IRQ is produced.  
8.1.4 Data Receiving  
After a successful wake-up the chip enters the data receiving mode. In this mode the chip can be retained a normal OOK receiver. The received  
data are streamed out on the pin DAT. It is possible to put the chip back to listening mode either with a direct command (CLEAR_WAKE (see  
Table 12)) or by using the timeout feature. This feature automatically sets the chip back to listening mode after a certain time R7<7:5>.  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
13 - 34  
AS3932  
Datasheet - Detailed Description  
8.2 System and Block Specification  
8.2.1 Register Table  
Table 6. Register Table  
7
6
5
4
3
2
1
0
R0  
R1  
n.a.  
MUX_123  
ATT_ON  
EN_A2  
EN_A3  
EN_PAT2  
EN_A1  
PWD  
ON_OFF  
ABS_HY  
S_ABSH  
HY_20m  
AGC_TLIM  
AGC_UD  
EN_WPAT  
EN_RTC  
R2  
W_PAT_T<1:0>  
HY_POS  
Reserved  
S_WU1<1:0>  
R3  
FS_SLC<2:0>  
FS_ENV<2:0>  
R4  
T_OFF<1:0>  
R_VAL<1:0>  
GR<3:0>  
R5  
TS2<7:0>  
TS1<7:0>  
R6  
R7  
T_OUT<2:0>  
T_HBIT<4:0>  
R8  
n.a.  
T_AUTO<2:0>  
R9  
n.a.  
Reserved  
R10  
R11  
R12  
R13  
n.a.  
n.a.  
n.a.  
RSSI1<4:0>  
RSSI3<4:0>  
RSSI2<4:0>  
F_WAKE  
8.2.2 Register Table Description and Default Values  
Table 7. Default Values of Registers  
Default  
Register  
Name  
Type  
Description  
Value  
R0<5>  
R0<4>  
R0<3>  
R0<2>  
R0<1>  
R0<0>  
R1<7>  
R1<6>  
R1<5>  
R1<4>  
R1<2>  
R1<1>  
R1<0>  
R2<7>  
R2<6:5>  
R2<4:2>  
R2<1:0>  
ON_OFF  
MUX_123  
EN_A2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
On/Off operation mode. (Duty-cycle defined in the register R4<7:6>  
Scan mode enable  
1
Channel 2 enable  
EN_A3  
1
Channel 3 enable  
EN_A1  
1
Channel 1 enable  
PWD  
0
Power down  
ABS_HY  
AGC_TLIM  
AGC_UD  
ATT_ON  
EN_PAT2  
EN_WPAT  
EN_RTC  
S_ABSH  
W_PAT  
0
Data slicer absolute reference  
AGC acting only on the first carrier burst  
AGC operating in both direction (up-down)  
Antenna damper enable  
0
1
0
0
Double wake-up pattern correlation  
Data correlation enable  
1
1
Crystal oscillator enable  
0
Data slicer threshold reduction  
Pattern correlation tolerance (see Table 20)  
Reserved  
00  
000  
00  
Reserved  
S_WU1  
R/W  
Tolerance setting for the stage wake-up (see Table 14)  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
14 - 34  
AS3932  
Datasheet - Detailed Description  
Table 7. Default Values of Registers  
Default  
Value  
Register  
R3<7>  
Name  
Type  
R/W  
R/W  
Description  
Data slicer hysteresis  
HY_20m  
HY_POS  
0
0
if HY_20m = 0 then comparator hysteresis = 40mV  
if HY_20m = 1 then comparator hysteresis = 20mV  
Data slicer hysteresis on both edges (HY_POS = 0 hysteresis on both  
edges; HY_POS = 1 hysteresis only on positive edges)  
R3<6>  
R3<5:3>  
R3<2:0>  
FS_SCL  
FS_ENV  
R/W  
R/W  
100  
000  
Data slicer time constant (see Table 18)  
Envelop detector time constant (see Table 17)  
Off time in ON/OFF operation mode  
T_OFF=00  
T_OFF=01  
1ms  
2ms  
4ms  
8ms  
R4<7:6>  
T_OFF  
R/W  
00  
T_OFF=10  
T_OFF=11  
R4<5:4>  
R4<3:0>  
D_RES  
GR  
R/W  
R/W  
01  
Antenna damping resistor (see Table 16)  
Gain reduction (see Table 15)  
0000  
2nd Byte of wake-up pattern  
R5<7:0>  
R6<7:0>  
TS2  
TS1  
R/W  
R/W  
01101001  
10010110  
1st Byte of wake-up pattern  
Automatic time-out (see Table 21)  
Bit rate definition (see Table 19)  
Artificial wake-up  
T_AUTO=000  
R7<7:5>  
R7<4:0>  
T_OUT  
T_HBIT  
R/W  
R/W  
000  
01011  
No artificial wake-up  
1 sec  
T_AUTO=001  
T_AUTO=010  
5 sec  
R8<2:0>  
T_AUTO  
R/W  
000  
T_AUTO=011  
20 sec  
T_AUTO=100  
2 min  
T_AUTO=101  
15min  
T_AUTO=110  
1 hour  
T_AUTO=111  
2 hour  
R9<6:0>  
R10<4:0>  
R11<4:0>  
R12<4:0>  
R13<7:0>  
Reserved  
RSSI1  
000000  
Reserved  
R
R
R
R
RSSI channel 1  
RSSI2  
RSSI channel 2  
RSSI3  
RSSI channel 3  
F_WAK  
False wake-up register  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
15 - 34  
AS3932  
Datasheet - Detailed Description  
8.2.3 Serial Data Interface (SDI)  
This 4-wires interface is used by the Microcontroller (µC) to program the AS3932. The maximum clock frequency of the SDI is 2MHz.  
Table 8. Serial Data Interface (SDI) pins  
Name  
Signal  
Signal Level  
Description  
CS  
Digital Input with pull down  
CMOS  
Chip Select  
Serial Data input for writing registers, data to  
transmit and/or writing addresses to select  
readable register  
SDI  
Digital Input with pull down  
CMOS  
Serial Data output for received data or read  
value of selected registers  
SDO  
Digital Output  
CMOS  
CMOS  
SCLK  
Digital Input with pull down  
Clock for serial data read and write  
Note: SDO is set to tristate if CS is low. In this way more than one device can communicate on the same SDO bus.  
SDI Command Structure. To program the SDI the CS signal has to go high. A SDI command is made up by a two bytes serial command and  
the data is sampled on the falling edge of SCLK. The Table 9 shows how the command looks like, from the MSB (B15) to LSB (B0). The  
command stream has to be sent to the SDI from the MSB (B15) to the LSB (B0).  
Table 9. SDI Command Structure  
Mode  
B15 B14  
Register address / Direct Command  
B12 B11 B10 B9  
Register Data  
B4 B3  
B13  
B8  
B7  
B6  
B5  
B2  
B1  
B0  
The first two bits (B15 and B14) define the operating mode. There are three modes available (write, read, direct command) plus one spare (not  
used), as shown in Table 10.  
Table 10. SDI Command Structure  
B15  
0
B14  
0
Mode  
WRITE  
0
1
READ  
1
0
NOT ALLOWED  
DIRECT COMMAND  
1
1
In case a write or read command happens the next 6 bits (B13 to B8) define the register address which has to be written respectively read, as  
shown in Table 11.  
Table 11. SDI Command Structure  
B13  
0
B12  
0
B11  
0
B10  
0
B9  
0
B8  
0
Read/Write register  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
1
0
1
0
0
0
1
1
0
0
0
0
1
1
1
0
0
1
0
0
0
0
0
1
0
0
1
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
16 - 34  
AS3932  
Datasheet - Detailed Description  
Table 11. SDI Command Structure  
B13  
0
B12  
0
B11  
1
B10  
0
B9  
1
B8  
0
Read/Write register  
R10  
R11  
R12  
R13  
0
0
1
0
1
1
0
0
1
1
0
0
0
0
1
1
0
1
The last 8 bits are the data that has to be written respectively read. A CS toggle high-low-high terminates the command mode.  
If a direct command is sent (B15-B14=11) the bits from B13 to B8 defines the direct command while the last 8 bits are omitted. The Table 12  
shows all possible direct commands:  
Table 12. List of Direct Commands  
COMMAND_MODE  
clear_wake  
B13  
0
B12  
0
B11  
0
B10  
0
B9  
0
B8  
0
reset_RSSI  
0
0
0
0
0
1
trim_osc  
0
0
0
0
1
0
clear_false  
0
0
0
0
1
1
preset_default  
0
0
0
1
0
0
All direct commands are explained below:  
- clear_wake: clears the wake state of the chip. In case the chip has woken up (WAKE pin is high) the chip is set back to listening mode  
- reset_RSSI: resets the RSSI measurement.  
- trim_osc: starts the trimming procedure of the internal RC oscillator (see Figure 21)  
- clear_false: resets the false wake-up register (R13<7:0>=00)  
- preset_default: sets all register in the default mode, as shown in Figure 7  
Writing of Data to Addressable Registers (WRITE Mode). The SDI is sampled at the falling edge of SCLK (as shown in the following  
diagrams).  
A CS toggling high-low-high indicates the end of the WRITE command after register has been written. The following example shows a write  
command.  
Figure 13. Writing of a Single Byte (falling edge sampling)  
CS  
SCLK  
X
X
0
0
A5  
A4  
A3  
A2  
A1  
SCLK  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
CS falling  
edge signals  
end of  
SCLK rising  
edge Data is  
transfered from  
µC  
Data is moved  
to Address  
A5-A0  
Two leading  
Zeros indicate  
WRITE Mode  
falling edge  
Data is  
WRITE Mode  
sampled  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
17 - 34  
AS3932  
Datasheet - Detailed Description  
Figure 14. Writing of Register Data with Auto-incrementing Address  
CS  
SCLK  
A A A A A A D D D D D D D D D D D D D D D D D D  
5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6  
D D D D D D D D D D  
1 0 7 6 5 4 3 2 1 0  
X
X
0 0  
SDI  
CS falling  
edge signals  
end of  
Two leading  
Zeros indicate  
WRITE Mode  
Data is moved  
to Address  
<A5-A0 >  
Data is moved  
to Address  
<A5-A0 > +1  
Data is moved  
Data is moved  
to Address  
<A5-A0 > +n  
to Address  
<A5-A0 > + (n-1)  
WRITE Mode  
Reading of Data from Addressable Registers (READ Mode). Once the address has been sent through SDI, the data can be fed  
through the SDO pin out to the microcontroller.  
A CS LOW toggling high-low-high has to be performed after finishing the read mode session, in order to indicate the end of the READ command  
and prepare the Interface to the next command control Byte.  
To transfer bytes from consecutive addresses, SDI master has to keep the CS signal high and the SCLK clock has to be active as long as data  
need to be read.  
Figure 15. Reading of Single Register Byte  
CS  
SCLK  
X
X
0
1
A5  
A4  
A3  
A2  
A1  
A0  
SDI  
SDO  
X
X
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SCLK rising  
edge Data is  
moved from  
Address  
SCLK rising  
edge Data is  
transfered from  
µC  
SCLK falling  
edge Data is  
transfered to  
µC  
CS falling  
edge signals  
end of READ  
Mode  
SCLK  
01 pattern  
indicates  
READ Mode  
falling edge  
Data is  
sampled  
<A5-A0>  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
18 - 34  
AS3932  
Datasheet - Detailed Description  
Figure 16. Send Direct COMMAND Byte  
CS  
SCLK  
X
X
1
1
C5  
C4  
C3  
C2  
SCLK  
falling edge  
Data is  
sampled  
C
C0  
SDI  
1
Two leading  
ONE indicate  
COMMAND  
Mode  
SCLK rising  
edge Data is  
transfered from  
µC  
CS falling edge  
signals the end of  
COMMAND Mode  
8.2.4 SDI Timing  
Table 13. SDI Timing Parameters  
Symbol  
TCSCLK  
TDCLK  
THCL  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
ns  
Time CS to Sampling Data  
Time Data to Sampling Data  
SCLK High Time  
500  
300  
200  
1
ns  
ns  
TCLK  
SCLK period  
µs  
Time Sampling Data to CS  
down  
TCLKCS  
TCST  
500  
500  
ns  
ns  
CS Toggling time  
Figure 17. SDI Timing Diagram  
TCST  
CS  
t
t
TCSCLK  
SPI  
TDCLK  
THCL  
SCLK  
TCLKCS  
t
TCLK  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
19 - 34  
AS3932  
Datasheet - Detailed Description  
8.3 Channel Amplifier and Frequency Detector  
Each of the 3 channels consists of a variable gain amplifier, an automatic gain control and a frequency detector. The latter detects the presence  
of a carrier. As soon as the carrier is detected the AGC is enabled, the gain of the VGA is reduced and set to the right value and the RSSI can be  
displayed.  
It is possible to enable/disable individual channels, in case not all three channels are needed. This enables to reduce the current consumption by  
1.5 µA (typ.) per channel.  
8.3.1 Frequency Detector / AGC  
The frequency detection uses the RTC as time base. In case the internal RC oscillator is used as RTC, it must be calibrated, but the calibration  
is guaranteed for a 32.768 kHz crystal oscillator only. The frequency detection criteria can be tighter or more relaxed according to the setup  
described in R2<1:0> (see Table 14).  
Table 14. Tolerance Settings for Wake-up  
R2<1>  
R2<0>  
Tolerance  
relaxed  
0
0
1
1
0
1
0
1
tighter (medium)  
stringent  
reserved  
The AGC can operate in two modes:  
AGC down only (R1<5>=0)  
AGC up and down (R1<5>=1)  
As soon as the AGC starts to operate, the gain in the VGA is set to maximum. If the AGC down only mode is selected, the AGC can only  
decrease the gain. Since the RSSI is directly derived from the VGA gain, the system holds the RSSI peak.  
When the AGC up and down mode is selected, the RSSI can follow the input signal strength variation in both directions.  
Regardless which AGC operation mode is used, the AGC needs maximum 35 carrier periods to settle.  
The RSSI is available for all 3 channels at the same time and it is stored in 3 registers (R10<4:0>, R11<4:0>, R12<4:0>)  
Both AGC modes (only down or down and up) can also operate with time limitation. This option allows AGC operation only in time slot of 256µs  
following the internal wake-up. Then the AGC (RSSI) is frozen till the wake-up or RSSI reset occurs.  
The RSSI is reset either with the direct command 'clear_wakeup' or 'reset_RSSI'. The 'reset_RSSI' command resets only the AGC setting but  
does not terminate wake-up condition. This means that if the signal is still present the new AGC setting (RSSI) will appear not later than 300µs  
(35 LF carrier periods) after the command was received. The AGC setting is reset if for duration of 3 Manchester half symbols no carrier is  
detected. If the wake-up IRQ is cleared the chip will go back to listening mode.  
In case the maximum amplification at the beginning is a drawback (e.g. in noisy environment) it is possible to set a smaller starting gain on the  
amplifier, according to the Table 15. In this way it is possible to reduce the false frequency detection.  
Table 15. Bit Setting of Gain Reduction  
R4<3>  
R4<2>  
R4<1>  
R4<0>  
0
Gain reduction  
no gain reduction  
n.a.  
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
1
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
n.a.  
-4dB  
-8dB  
-12dB  
-16dB  
-20dB  
-24dB  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
20 - 34  
AS3932  
Datasheet - Detailed Description  
8.3.2 Antenna Damper  
The antenna damper allows the chip to deal with higher field strength, it is enabled by register R1<4>. It consists of shunt resistors which  
degrade the quality factor of the resonator by reducing the signal at the input of the amplifier. In this way the resonator sees a smaller parallel  
resistance (in the band of interest) which degrades its quality factor in order to increase the linear range of the channel amplifier (the amplifier  
doesn't saturate in presence of bigger signals). Table 16 shows the bit setup.  
Table 16. Antenna Damper Bit Setup  
R4<5>  
R4<4>  
Shunt resistor (parallel to the resonator at 125 kHz)  
0
0
1
1
0
1
0
1
1 kΩ  
3 kΩ  
9 kΩ  
27 kΩ  
8.4 Channel Selector / Demodulator / Data Slicer  
When at least one of three gain channel enters initial wake-up state the channel selector makes a decision which gain channel to connect to the  
envelope detector. If only one channel is in wake-up state the selection is obvious. If more than one channel enters wake-up state in 256µs  
following the first active channel the channel with highest RSSI value is selected. The output signal (amplified LF carrier) of selected channel is  
connected to the input of the demodulator.  
The performance of the demodulator can be optimized according to bit rate and preamble length as described in Table 17 and Table 18.  
Table 17. Bit Setup for the Envelop Detector for Different Symbol Rates  
R3<2>  
R3<1>  
R3<0>  
Symbol rate [Manchester symbols/s]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4096  
2184  
1490  
1130  
910  
762  
655  
512  
If the bit rate gets higher the time constant in the envelop detector must be set to a smaller value. This means that higher noise is injected  
because of the wider band. The next table is a rough indication of how the envelop detector looks like for different bit rates. By using proper data  
slicer settings it is possible to improve the noise immunity paying the penalty of a longer preamble. In fact if the data slicer has a bigger time  
constant it is possible to reject more noise, but every time a transmission occurs, the data slicer need time to settle. This settling time will  
influence the length of the preamble. Table 18 gives a correlation between data slicer setup and minimum required preamble length.  
Table 18. Bit Setup for the Data Slicer for Different Preamble Length  
R3<5>  
R3<4>  
R3<3>  
Minimum preamble length [ms]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.8  
1.15  
1.55  
1.9  
2.3  
2.65  
3
3.5  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
21 - 34  
AS3932  
Datasheet - Detailed Description  
Note: These times are minimum required, but it is recommended to prolong the preamble.  
The comparator of the data slicer can work only with positive or with symmetrical threshold (R3<6>). In addition the threshold can be 20 or 40  
mV (R3<7>)  
In case the length of the preamble is an issue the data slicer can also work with an absolute threshold (R1<7>). In this case the bits R3<2:0>  
would not influence the performance. It is even possible to reduce the absolute threshold in case the environment is not particularly noisy  
(R2<7>).  
8.5 Correlator  
After frequency detection the data correlation is only performed if the correlator is enabled (R1<1>=1).  
The data correlation consists of checking the presence of a preamble (ON/OFF modulated carrier) followed by a certain pattern.  
After the frequency detection the correlator waits 16 bits (see bit rate definition in Table 19) and if no preamble is detected the chip is set back to  
listening mode and the false wake-up register (R13<7:0>) is incremented by one.  
To get started with the pattern correlation the correlator needs to detect at least 4 bits of the preamble (ON/OFF modulated carrier).  
The bit duration is defined in the register R7<4:0> according to the Table 19 as function of the Real Time Clock (RTC) periods.  
Table 19. Bit Rate Setup  
Bit duration in RTC  
clock periods  
Symbol rate (Manchester  
symbols/s)  
R7<4>  
R7<3>  
R7<2>  
R7<1>  
R7<0>  
Bit rate (bits/s)  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
4
8192  
6552  
5460  
4680  
4096  
3640  
3276  
2978  
2730  
2520  
2340  
2184  
2048  
1926  
1820  
1724  
1638  
1560  
1488  
1424  
1364  
1310  
1260  
1212  
1170  
1128  
4096  
3276  
2730  
2340  
2048  
1820  
1638  
1489  
1365  
1260  
1170  
1092  
1024  
963  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
910  
862  
819  
780  
744  
712  
682  
655  
630  
606  
585  
564  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
22 - 34  
AS3932  
Datasheet - Detailed Description  
Table 19. Bit Rate Setup  
Bit duration in RTC  
clock periods  
Symbol rate (Manchester  
symbols/s)  
R7<4>  
R7<3>  
R7<2>  
R7<1>  
R7<0>  
Bit rate (bits/s)  
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
30  
31  
32  
1092  
1056  
1024  
546  
528  
512  
If the preamble is detected correctly the correlator keeps searching for a data pattern. The duration of the preamble plus the pattern should not  
be longer than 40 bits (see bit rate definition in Table 19). The data pattern can be defined by the user and consists of two bytes which are stored  
in the registers R5<7:0> and R6<7:0>. The two bytes define the pattern consisting of 16 half bit periods. This means the pattern and the bit  
period can be selected by the user. The only limitation is that the pattern (in combination with preamble) must obey Manchester coding and  
timing. It must be noted that according to Manchester coding a down-to-up bit transition represents a symbol "0", while a transition up-to-down  
represents a symbol "1". If the default code is used (96 [hex]) the binary code is (10 01 01 10 01 10 10 01). MSB has to be transmitted first.  
The user can also select (R1<2>) if single or double data pattern is used for wake-up. In case double pattern detection is set, the same pattern  
has to be repeated 2 times.  
Additionally it is possible to set the number of allowed missing zero bits (not symbols) in the received bitstream (R2<6:5>), as shown in the  
Table 20.  
Table 20. Allowed Pattern Detection Errors  
R2<6>  
R2<5>  
Maximum allowed error in the pattern detection  
No error allowed  
0
0
1
1
0
1
0
1
1 missed zero  
2 missed zeros  
3 missed zeros  
If the pattern matches the wake-up, interrupt is displayed on the WAKE output.  
If the pattern detection fails, the internal wake-up (on all active channels) is terminated with no signal sent to MCU and the false wake-up register  
will be incremented (R13<7:0>).  
8.6 Wake-up Protocol - Carrier Frequency 125 kHz  
The wake-up state is terminated with the direct command ‘clear_wake’ Table 12. This command terminates the MCU activity. The termination  
can also be automatic in case there is no response from MCU. The time out for automatic termination is set in a register R7<7:5>, as shown in  
the Table 21.  
Table 21. Timeout Setup  
R7<7>  
R7<6>  
R7<5>  
Time out  
0 sec  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
50 msec  
100 msec  
150 msec  
200 msec  
250 msec  
300 msec  
350 msec  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
23 - 34  
AS3932  
Datasheet - Detailed Description  
8.6.1 Without Pattern Detection  
Figure 18. Wake-up Protocol Overview without Pattern Detection (only carrier frequency detection)  
Carrier Burst  
Data  
Carrier Burst > 550 us  
DAT  
WAKE  
Clear_wake  
In case the data correlation is disabled (R1<1>=0) the AS3932 wakes up upon detection of the carrier frequency only as shown in Figure 18. In  
order to ensure that AS3932 wakes up the carrier burst has to last longer than 550 µs. To set AS3932 back to listening mode there are two  
possibilities: either the microcontroller sends the direct command clear_wake via SDI or the time out option is used (R7<7:5>). In case the latter  
is chosen, AS3932 is automatically set to listening mode after the time defined in T_OUT (R7<7:5>), counting starts at the low-to-high WAKE  
edge on the WAKE pin.  
8.6.2 Single Pattern Detection  
The Figure 19 shows the wake-up protocol in case the pattern correlation is enabled (R1<1>=1) for a 125 kHz carrier frequency. The initial  
carrier burst has to be longer than 550 µs and can last maximum 16 bits (see bit rate definition in Table 19). If the ON/OFF mode is used  
(R1<5>=1), the minimum value of the maximum carrier burst duration is limited to 10 ms. This is summarized in Table 22. In case the carrier  
burst is too long the internal wake-up will be set back to low and the false wake-up counter (R13<7:0>) will be incremented by one. The carrier  
burst must be followed by a preamble (0101... modulated carrier with a bit duration defined in Table 19) and the wake-up pattern stored in the  
registers R5<7:0> and R6<7:0>. The preamble must have at least 4 bits and the preamble duration together with the pattern should not be  
longer than 40 bits. If the wake-up pattern is correct, the signal on the WAKE pin goes high one bit after the end of the pattern and the data  
transmission can get started. To set the chip back to listening mode the direct command clear_wake, as well as the time out option (R7<7:5>)  
can be used.  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
24 - 34  
AS3932  
Datasheet - Detailed Description  
Figure 19. Wake-up Protocol Overview with Single Pattern Detection  
Carrier Burst  
Preamble  
Pattern  
Data  
1 bit Preamble  
1 bit Preamble  
Carrier Burst > 550 µs  
Preamble > 4 bit duration  
Carrier Burst < 16 bit duration  
Preamble + Pattern < 40 bit duration  
DAT  
WAKE  
Clear_wake  
Table 22. Preamble Requirements in Standard Mode, Scanning Mode and ON/OFF Mode  
Maximum duration of the carrier burst in Standard Maximum duration of the carrier burst in ON/OFF Mode  
Bit rate (bit/s)  
Mode and Scanning Mode (ms)  
(ms)  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
8192  
6552  
5460  
4680  
4096  
3640  
3276  
2978  
2730  
2520  
2340  
2184  
2048  
1926  
1820  
1724  
1638  
1.95  
2.44  
2.93  
3.41  
3.90  
4.39  
4.88  
5.37  
5.86  
6.34  
6.83  
7.32  
7.81  
8.30  
8.79  
9.28  
9.76  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
25 - 34  
AS3932  
Datasheet - Detailed Description  
Table 22. Preamble Requirements in Standard Mode, Scanning Mode and ON/OFF Mode  
Maximum duration of the carrier burst in Standard Maximum duration of the carrier burst in ON/OFF Mode  
Bit rate (bit/s)  
Mode and Scanning Mode (ms)  
(ms)  
10.25  
10.75  
11.23  
11.73  
12.21  
12.69  
13.20  
13.67  
14.18  
14.65  
15.15  
15.62  
1560  
1488  
1424  
1364  
1310  
1260  
1212  
1170  
1128  
1092  
1056  
1024  
10.25  
10.75  
11.23  
11.73  
12.21  
12.69  
13.20  
13.67  
14.18  
14.65  
15.15  
15.62  
8.7 False Wake-up Register  
The wake-up strategy in the AS3932 is based on 2 steps:  
1. Frequency Detection: in this phase the frequency of the received signal is checked.  
2. Pattern Correlation: here the pattern is demodulated and checked whether it corresponds to the valid one.  
If there is a disturber or noise capable to overcome the first step (frequency detection) without producing a valid pattern, then a false wake-up call  
happens.Each time this event is recognized a counter is incremented by one and the respective counter value is stored in a memory cell (false  
wake-up register). Thus, the microcontroller can periodically look at the false wake-up register, to get a feeling how noisy the surrounding  
environment is and can then react accordingly (e.g. reducing the gain of the LNA during frequency detection, set the AS3932 temporarily to  
power down etc.), as shown in the Figure 20. The false wake-up counter is a useful tool to quickly adapt the system to any changes in the noise  
environment and thus avoid false wake-up events.  
Most wake-up receivers have to deal with environments that can rapidly change. By periodically monitoring the number of false wake-up events  
it is possible to adapt the system setup to the actual characteristics of the environment and enables a better use of the full flexibility of AS3932.  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
26 - 34  
AS3932  
Datasheet - Detailed Description  
Figure 20. Concept of the False Wake-up Register together with the system  
Wakeup  
Level 1  
Wakeup  
Level 2  
Pattern Correlator  
WAKE  
Frequency Detector  
Unsuccessful  
pattern  
correlation  
False wakeup  
register  
Register Setup  
READ FALSE WAKEUP REGISTER  
Microcontroller  
8.8 Real Time Clock (RTC)  
The RTC can be based on a crystal oscillator (R1<0>=1), the internal RC-oscillator (R1<0>=0), or an external clock source (R1<0>=1). The  
crystal oscillator has higher precision of the frequency with higher current consumption and needs three external components (crystal plus two  
capacitors). The RC-oscillator is completely integrated and can be calibrated if a reference signal is available for a very short time to improve the  
frequency accuracy. The calibration gets started with the trim_osc direct command. Since no non-volatile memory is available the calibration  
must be done every time after the RCO is turned off. The RCO is turned off when the chip is in power down mode, a POR happened, or the  
crystal oscillator is enabled. Since the RTC defines the time base of the frequency detection, the selected frequency (frequency of the crystal  
oscillator or the reference frequency used for calibration of the RC oscillator) should be about one forth of the carrier frequency:  
FRTC ~ FCAR * 0.25  
Where: FCAR is the carrier frequency and FRTC is the RTC frequency  
The third option for the RTC is the use of an external clock source, which must be applied directly to the XIN pin (XOUT floating).  
(EQ 1)  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
27 - 34  
AS3932  
Datasheet - Detailed Description  
8.8.1 Crystal Oscillator  
Table 23. Characteristics of XTAL  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
±120  
60  
Units  
Crystal accuracy  
(initial)  
Overall accuracy  
p.p.m.  
Crystal motional resistance  
Frequency  
KΩ  
32.768  
±5  
kHz  
Contribution of the oscillator to the  
frequency error  
p.p.m  
Start-up Time  
Duty cycle  
Crystal dependent  
1
50  
1
s
45  
55  
%
Current consumption  
µA  
8.8.2 RC-Oscillator  
Table 24. Characteristics of RCO  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
If no calibration is performed  
If calibration is performed  
Periods of reference clock  
27  
31  
32.768  
32.768  
42  
34.5  
65  
kHz  
kHz  
Frequency  
Calibration time  
cycles  
nA  
Current consumption  
200  
To trim the RC-Oscillator, set the chip select (CS) to high before sending the direct command trim_osc over SDI. Then 65 digital clock cycles of  
the reference clock (e.g. 32.768 kHz) have to be sent on the clock bus (SCLK), as shown in Figure 21. After that the signal on the chip select  
(CS) has to be pulled down.  
The calibration is effective after the 65th reference clock edge and it will be stored in a volatile memory. In case the RC-oscillator is switched off  
or a power-on-reset happens (e.g. battery change) the calibration has to be repeated.  
Figure 21. RC-Oscillator Calibration via SDI  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
28 - 34  
AS3932  
Datasheet - Detailed Description  
8.8.3 External Clock Source  
To clock the AS3932 with an external signal the crystal oscillator has to be enabled (R1<0>=1). As shown in the Figure 3 the clock must be  
applied on the pin XIN while the pin XOUT must stay floating. The RC time constant has to be 15µs with a tolerance of ±10% (e.g. R=680 kΩ  
and C=22pF). In the Table 25 the clock characteristics are summarized.  
Table 25. Characteristics of External Clock  
Symbol  
VI  
Parameter  
Low level  
Conditions  
Min  
0
Typ  
Max  
Units  
V
0.1 * VDD  
Vh  
High level  
0.9 * VDD  
VDD  
3
V
Tr  
Rise-time  
µs  
µs  
µs  
Tf  
Fall-time  
3
T = RC  
RC Time constant  
13.5  
15  
16.5  
Note: In power down mode the external clock has to be set to VDD.  
8.9 Channel Selection in Scanning Mode and ON/OFF Mode  
In case only 2 channels are active and one of the Low Power modes is enabled, then the channels 1 and 3 have to be active. If the chip works in  
On-Off mode and only one channel is active then the active channel has to be the channel 1.  
Both Low Power modes are not allowed to be enabled at the same time.  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
29 - 34  
AS3932  
Datasheet - Package Drawings and Markings  
9 Package Drawings and Markings  
The product is available in a 16-pin TSSOP package.  
Figure 22. Drawings and Dimensions  
AS3932 @  
YYWWMZZ  
Notes:  
1. Dimensions and tolerancing conform to ASME Y14.5M-1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
Symbol  
R
Min  
Nom  
Max  
Symbol  
Min  
-
Nom  
Max  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
-
0.09  
-
-
-
-
A
A1  
A2  
b
-
R1  
0.09  
0.05  
0.80  
0.19  
0.09  
4.90  
-
-
1.00  
S
0.20  
-
-
θ1  
θ2  
θ3  
aaa  
bbb  
ccc  
ddd  
N
0º  
-
-
8º  
-
-
12 REF  
12 REF  
0.10  
0.10  
0.05  
0.20  
16  
c
-
-
-
D
5.00  
-
-
E
6.40 BSC  
4.40  
-
-
E1  
e
4.30  
-
4.50  
-
-
-
0.65 BSC  
0.60  
-
-
L
0.45  
-
0.75  
-
L1  
1.00 REF  
Marking: YYWWMZZ.  
YY  
WW  
Manufacturing Week  
M
ZZ  
@
Year (i.e. 10 for 2010)  
Assembly plant identifier  
Assembly traceability code  
Sublot identifier  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
30 - 34  
AS3932  
Datasheet - Package Drawings and Markings  
The product is available in a 16LD QFN (4x4) package.  
Figure 23. Drawings and Dimensions  
AS3932  
YYWWXZZ  
@
Symbol  
A
Min  
0.80  
0
Nom  
0.90  
Max  
1.00  
0.05  
A1  
A3  
L
0.02  
0.20 REF  
0.50  
0.40  
0
0.60  
0.15  
0.35  
L1  
b
-
0.25  
0.30  
D
4.00 BSC  
4.00 BSC  
0.65 BSC  
2.40  
E
e
D2  
E2  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
2.30  
2.50  
Notes:  
2.30  
2.40  
2.50  
1. Dimensions and tolerancing conform to ASME Y14.5M-1994.  
-
-
-
-
-
-
0.15  
-
-
-
-
-
-
2. All dimensions are in millimeters. Angles are in degrees.  
0.10  
3. Dimension b applies to metallized terminal and is measured between 0.25mm  
and 0.30mm from terminal tip. Dimension L1 represents terminal full back from  
package edge up to 0.15mm is acceptable.  
0.10  
0.05  
0.08  
4. Coplanarity applies to the exposed heat slug as well as the terminal.  
5. Radius on terminal is optional.  
0.10  
N
16  
6. N is the total number of terminals.  
Marking: YYWWXZZ.  
YY  
WW  
X
ZZ  
Assembly traceability code  
@
Year (i.e. 10 for 2010) Manufacturing Week  
Assembly plant identifier  
Sublot identifier  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
31 - 34  
AS3932  
Datasheet - Revision History  
Revision History  
Table 26. Revision History  
Revision  
1.0  
Date  
Owner  
Description  
Feb 12, 2009  
Feb 24, 2009  
Table 27 (Ordering information), -Z removed from part numbers  
1.0a  
New figure inserted Figure 2 on page 2, all subsequent chapters and page numbers are  
therefore incremented by one  
1.1  
Apr 2, 2009  
Default Values of RegistersTable 7, default value of R4<3:0> corrected  
Bit Setting of Gain ReductionTable 15, stepsize of gain reduction increased to -4dBm  
Description of external components on page 12 updated  
esn  
1.11  
1.12  
Apr 22, 2009  
May 25, 2009  
Update of Section 10 Ordering Information on page 33  
Updated Wake-up Protocol - Carrier Frequency 125 kHz 8.6 and description of Section  
8.8.2 RC-Oscillator on page 28  
1.13  
Jul 13, 2009  
Updated Key Features for External Clock  
Added Figure 3 AS3932 Typical Application Diagram with Clock from External Source  
Added External Clock Source in Electrical System SpecificationsTable 5  
1.2  
Oct 13, 2009  
Deleted table Minimum duration of carrier burst in ON/OFF mode (Manchester decoder  
enabled)  
Updated Real Time Clock (RTC) 8.8 with External Clock  
Added External Clock Source 8.8.3  
mrh  
Added a new section SDI Timing 8.2.4  
Updated R11 and R12 in Table 7  
1.3  
1.4  
Mar 25, 2010  
Sep 21, 2010  
Mar 04, 2011  
Updated clock frequency of SDI to 2MHz in Serial Data Interface (SDI) 8.2.3  
Updated time constant of RC filter in External Clock Source 8.8.3  
Updated Figure 19 and Figure 8.7  
Updated General Description, Key Features, Figure 1, Figure 2, Figure 3, Figure 4, Table 1,  
Figure 5, Table 2, Figure 10, Section 8.1.4, Table 6, Table 7, Section 8.1.4, Section 8.6.1,  
Figure 19, Section 8.6.2, Package Drawings and Markings.  
Deleted figure “Synchronization of Data with Recovered Manchester Clock” and chapter on  
“Single Pattern Detection (Manchester decoder enabled)”  
1.5  
rlc  
jry  
Updated Absolute Maximum Ratings  
Mar 17, 2011  
Jun 14, 2011  
Feb 04, 2012  
Jun 18, 2013  
Deleted max value for IPWD parameter  
1.6  
1.7  
Corrected data inconsistencies across the datasheet.  
Corrected package drawings in Figure 23 on page 31.  
Note: Typos may not be explicitly mentioned under revision history.  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
32 - 34  
AS3932  
Datasheet - Ordering Information  
10 Ordering Information  
The devices are available as the standard products shown in Table 27.  
Table 27. Ordering Information  
Ordering Code  
AS3932-BTST  
AS3932-BQFT  
Type  
Marking  
AS3932  
AS3932  
Delivery Form 1  
7 inches Tape & Reel  
7 inches Tape & Reel  
Delivery Quantity  
1000 pcs  
16-pin TSSOP  
16LD QFN (4x4)  
1000 pcs  
1. Dry Pack Sensitivity Level =3 according to IPC/JEDEC J-STD-033A for full reels.  
Note: All products are RoHS compliant and ams green.  
Buy our products or get free samples online at www.ams.com/ICdirect  
Technical Support is available at www.ams.com/Technical-Support  
For further information and requests, email us at sales@ams.com  
(or) find your local distributor at www.ams.com/distributor  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
33 - 34  
AS3932  
Datasheet - Copyrights  
Copyrights  
Copyright © 1997-2013, ams AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights  
reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the  
copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no  
warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described  
devices from patent infringement. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior  
to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in normal  
commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability  
applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing  
by ams AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard  
production flow, such as test flow or test location.  
The information furnished here by ams AG is believed to be correct and accurate. However, ams AG shall not be liable to recipient or any third  
party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the  
technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other  
services.  
Contact Information  
Headquarters  
ams AG  
Tobelbaderstrasse 30  
A-8141 Unterpremstaetten, Austria  
Tel : +43 (0) 3136 500 0  
Fax : +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.ams.com/contact  
www.ams.com/LF-Receiver/AS3932  
Revision 1.7  
34 - 34  

相关型号:

AS3933

3D Low Frequency Wake-Up Receiver
AMSCO

AS3933-BQFT

3D Low Frequency Wake-Up Receiver
AMSCO

AS3933-BSWB

3D Low Frequency Wake-Up Receiver
AMSCO

AS3933-BTST

3D Low Frequency Wake-Up Receiver
AMSCO

AS393A

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AM-E1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AM-G1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AMTR-E1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AMTR-G1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AP-E1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AP-G1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393G-E1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI