AS5047P-ATSM [AMSCO]

14-bit On-Axis Magnetic Rotary Position Sensor with 12-Bit Decimal;
AS5047P-ATSM
型号: AS5047P-ATSM
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

14-bit On-Axis Magnetic Rotary Position Sensor with 12-Bit Decimal

文件: 总40页 (文件大小:539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS5047P  
14-bit On-Axis Magnetic Rotary  
Position Sensor with 12-Bit Decimal &  
Binary Incremental Pulse Count for  
28krpm high speed capability  
The AS5047P is a high-resolution rotary position sensor for high  
speed (up to 28krpm) angle measurement over a full 360 degree  
range. This new position sensor is equipped with revolutionary  
integrated dynamic angle error compensation (DAEC™) with  
almost 0 latency and offers a robust design that suppresses the  
influence of any homogenous external stray magnetic field.  
General Description  
A standard 4-wire SPI serial interface allows a host  
microcontroller to read 14-bit absolute angle position data  
from the AS5047P and to program non-volatile settings without  
a dedicated programmer.  
Incremental movements are indicated on a set of ABI signals  
with a maximum resolution of 4000 steps / 1000 pulses per  
revolution in decimal mode and 4096 steps / 1024 pulses per  
revolution in binary mode. The resolution of the ABI signal is  
programmable and can be reduced to 100 steps per revolution,  
or 25 pulses per revolution.  
Brushless DC (BLDC) motors are controlled through a standard  
UVW commutation interface with a programmable number of  
pole pairs from 1 to 7. The absolute angle position is also  
provided as PWM-encoded output signal  
The AS5047P is available as a single die in a compact 14-pin  
TSSOP package.  
Ordering Information and Content Guide appear at end of  
datasheet.  
Key Benefits & Features  
The benefits and features of AS5047P, 14-bit On-Axis Magnetic  
Rotary Position Sensor with 12-Bit Decimal & Binary  
Incremental Pulse Count for 28krpm high speed capability are  
listed below:  
Figure 1:  
Added Value of using the AS5047P  
Benefits  
High speed application  
Features  
Up to 28krpm  
Easy to use – saving costs on DSP  
Good resolution for motor & position control  
DAEC™ Dynamic angle error compensation  
14-bit core resolution  
ams Datasheet  
Page 1  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − General Description  
Benefits  
Features  
ABI programmable decimal and binary pulse-count:  
1000,500,400,300,200,100,50,25,1024,512,256 ppr  
Simple optical encoder replacement  
No programmer needed (via SPI command)  
Versatile choice of the interface  
Zero position, configuration programmable  
Independent output interfaces: SPI, ABI, UVW, PWM  
Immune to external stray field  
Lower system costs (no shielding)  
Applications  
The AS5047P is ideally suited to support BLDC motor  
commutation for the most challenging industrial applications  
such as factory automation, building automation, robotics,  
PMSM (permanent magnet synchronous motor) and stepper  
motors closed loop in as well optical encoder replacement.  
Block Diagram  
The functional blocks of this device for reference are  
shown below:  
Figure 2:  
AS5047P Block Diagram  
VDD3V3  
Volatile Memory  
CSn  
SCL  
SPI  
MISO  
MOSI  
OTP  
LDO  
VDD  
A
B
ABI  
Hall  
Sensors  
Analog  
Front-End  
I/PWM  
U
V
Dynamic Angle  
Error  
Compensation  
ATAN  
(CORDIC)  
INTERPOLATOR  
A/D  
UWV  
W / PWM  
PWM Decoder  
Selectable  
on I or W  
AGC  
GND  
Page 2  
Document Feedback  
amsDatasheet  
[v1-00] 2014-Oct-31  
AS5047P − Pin Assignment  
Pin Assignment  
Figure 3:  
TSSOP-14 Pin Assignment  
CSn  
CLK  
I / PWM  
GND  
MISO  
VDD3V  
MOSI  
TEST  
B
VDD  
U
V
A
W / PWM  
Figure 4:  
Pin Description  
Pin Number Pin Name  
Pin Type  
Description  
1
2
3
4
5
6
7
CSn  
CLK  
MISO  
MOSI  
Test  
B
Digital input  
Digital input  
Digital output  
Digital input  
SPI chip select (active low)  
SPI clock  
SPI master data input, slave output  
SPI master data output, slave input  
Test pin (connect to ground)  
Incremental signal B  
Digital output  
Digital output  
A
Incremental signal A  
ams Datasheet  
[v1-00] 2014-Oct-31  
Page 3  
Document Feedback  
AS5047P − Pin Assignment  
Pin Number Pin Name  
Pin Type  
Digital output  
Digital output  
Digital output  
Power supply  
Description  
8
9
W/PWM  
Commutation signal W or PWM  
Commutation signal V  
V
U
10  
11  
Commutation signal U  
VDD  
5V power supply voltage for on-chip regulator  
3.3V on-chip low-dropout (LDO) output. Requires an  
external decoupling capacitor (1uF)  
12  
VDD3V3  
Power supply  
13  
14  
GND  
I
Power supply  
Digital output  
Ground  
Incremental signal I (index) or PWM  
Note(s) and/or Footnote(s):  
1. Floating state of a digital input is not allowed.  
2. If SPI is not used, an Pull up resistor on CSn is required.  
3. If SPI is not used, an Pull down resistor on CLK is required.  
Page 4  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Absolute Maximum Ratings  
Stresses beyond those listed under  
Absolute Maximum Ratings  
“Absolute Maximum Ratings” may cause permanent damage to  
the device. These are stress ratings only. Functional operation  
of the device at these or any other conditions beyond those  
indicated under “Electrical Characteristics” is not implied.  
Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
Figure 5:  
Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Units  
Note  
VDD5  
DC supply voltage at VDD pin  
-0.3  
7.0  
V
DC supply voltage at VDD3V3  
pin  
VDD3  
-0.3  
-0.3  
5.0  
V
V
DC supply voltage at GND pin  
Input pin voltage  
0.3  
V
V
SS  
V
VDD+0.3  
in  
Input current  
(latch-up immunity)  
I
-100  
2
100  
mA  
kV  
Norm: AEC-Q100-004  
Norm: AEC-Q100-002  
scr  
ESD  
Electrostatic discharge  
Total power dissipation  
(all supplies and outputs)  
P
150  
125  
125  
45  
mW  
t
In the 5.0V power supply mode  
only  
Ta5V0  
Ta3V3  
TaProg  
Ambient temperature 5V0  
Ambient temperature 3V3  
Programming Temperature  
-40  
-40  
°C  
°C  
°C  
In the 3.3V power supply mode if  
NOISESET = 0  
Programming @ Room  
temperature (25°C 20°C)  
5
T
Storage temperature  
-55  
150  
260  
85  
°C  
°C  
%
strg  
T
Package body temperature  
Humidity non-condensing  
Norm: IPC/JEDEC J-STD-020  
body  
5
Represents a maximum floor  
lifetime of 168h  
Moisture sensitivity level  
3
ams Datasheet  
Page 5  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − Electrical Characteristics  
All limits are guaranteed. The parameters with min and max  
values are guaranteed with production tests or SQC (Statistical  
Quality Control) methods.  
Electrical Characteristics  
Figure 6:  
Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
VDD  
Positive supply voltage 5.0V operation mode  
4.5  
5.0  
5.5  
V
3.3V operation mode; only  
Positive supply voltage  
VDD3V3  
3.0  
3.3  
3.3  
3.6  
3.5  
V
V
from -40 to 125°C  
Supply voltage required  
VDD_Burn Positive supply voltage for programming in 3.3V  
operation  
Voltage at VDD3V3 pin if  
VDD ≠ VDD3V3  
V
Regulated Voltage  
3.2  
2.3  
3.4  
3.6  
V
V
V
REG  
3V operation. Pin VDD5 &  
VDD3 shorted  
V
Internal POR-ON level  
Internal POR-OFF level  
2.85  
2.65  
porON  
3V operation. Pin VDD5 &  
VDD3 shorted  
V
2.05  
150  
porOFF  
V
Internal POR hysteresis  
Supply current  
300  
15  
mV  
mA  
porh  
I
DD  
High-level input  
voltage  
V
0.7×VDD  
V
V
V
IH  
V
Low-level input voltage  
0.3×VDD  
IL  
High-level output  
voltage  
V
VDD-0.5  
OH  
Low-level output  
voltage  
V
V
+0.4  
1
V
OL  
SS  
Current on digital  
output  
I_Out  
C_L  
mA  
pf  
Capacitive load on  
digital output  
50  
Page 6  
Document Feedback  
amsDatasheet  
[v1-00] 2014-Oct-31  
AS5047P − Magnetic Characteristics  
Magnetic Characteristics  
Figure 7:  
Magnetic Specifications  
Symbol  
Parameter  
Conditions  
Min Max Unit  
Orthogonal magnetic field  
Required orthogonal component of the  
Bz  
strength, normal operating magnetic field strength measured at the  
mode die's surface along a circle of 1.1mm  
35  
70  
mT  
Note(s) and/or Footnote(s):  
1. it is possible to operate the AS5047P below 35mT with reduced noise performance.  
System Characteristics  
Figure 8:  
System Specifications  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Units  
RES  
Core resolution  
14  
bit  
Resolution of the ABI  
interface  
Programmable with register  
setting (ABIRES)  
Steps per  
revolution  
RES_ABI  
100  
4096  
0.8  
Non-linearity, optimum  
placement of the  
magnet  
INL  
@
OPT  
Deg  
25°C  
Non-linearity optimum  
placement of the  
magnet over the full  
Temperature Range  
INL  
1
1.2  
Deg  
Deg  
OPT+TEMP  
Non-linearity @  
displacement of  
magnet and  
temperature -40°C to  
150°C  
Assuming N35H Magnet  
(D=8mm, H=3mm) 500um  
displacement in x and y  
z-distance @ 2000um  
INL  
DIS+TEMP  
Orthogonal component for  
the magnetic field within the  
specified range (Bz),  
RMS output noise  
(1 sigma). Not tested,  
guaranteed by design.  
ONL  
0.068  
degree  
NOISESET = 0  
RMS output noise  
(1 sigma) on PWM  
interface  
Orthogonal component for  
the magnetic field within the  
specified range (Bz)  
ON_PWM  
0.068  
110  
degree  
μs  
System propagation  
delay –core  
t
Reading angle via SPI  
90  
delay  
ams Datasheet  
Page 7  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − Timing Characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Units  
System propagation  
delay after dynamic  
angle error correction.  
t
delay_  
DAEC  
At ABI and UVW interfaces  
1.5  
1.9  
μs  
t
Sampling rate  
Refresh rate at SPI  
202  
222  
247  
ns  
sampl  
DAE  
Dynamic angle error  
At 1700 RPM constant speed  
0.02  
degree  
1700  
At 14500 RPM constant  
speed  
DAE  
Dynamic angle error  
0.18  
degree  
max  
Dynamic angle error at  
constant acceleration  
(25krad/s²)  
25k radians/s² constant  
acceleration  
DAE  
0.175  
degree  
RPM  
acc  
MS  
Maximum speed  
28000  
Reference magnet: N35H, 8mm diameter; 3mm thickness.  
Timing Characteristics  
Figure 9:  
Timing Specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
t
Power-on time  
10  
ms  
pon  
Page 8  
Document Feedback  
amsDatasheet  
[v1-00] 2014-Oct-31  
AS5047P − Detailed Description  
The AS5047P is a Hall-effect magnetic sensor using a CMOS  
lateral technology. The lateral Hall sensors convert the  
magnetic field component perpendicular to the surface of the  
chip into a voltage.  
Detailed Description  
The signals from the Hall sensors are amplified and filtered by  
the analog front-end (AFE) before being converted by the  
analog-to-digital converter (ADC). The output of the ADC is  
processed by the hardwired CORDIC (coordinate rotating  
digital computer) block to compute the angle and magnitude  
of the magnetic vector. The intensity of the magnetic field  
(magnitude) is used by the automatic gain control (AGC) to  
adjust the amplification level for compensation of the  
temperature and magnetic field variations.  
The internal 14-bit resolution is available by reading a register  
through the SPI interface. The resolution on the ABI output can  
be programmed from 4096 to 100 steps per revolution.  
The Dynamic Angle Error Compensation block corrects the  
calculated angle for latency using a linear prediction  
calculation algorithm. At constant rotation speed the latency  
time is internally compensated by the AS5047P, reducing the  
dynamic angle error at the SPI, ABI and UVW outputs. The  
AS5047P allows to switch OFF the UVW output interface to  
display the absolute angle as PWM-encoded signal on the  
pin W.  
At higher speeds, the interpolator fills in missing ABI pulses and  
generates the UVW signals with no loss of resolution. The  
non-volatile settings in the AS5047P can be programmed  
through the SPI interface without any dedicated programmer.  
The AS5047P is built for high speed application up to 28krpm.  
Power Management  
The AS5047P can be either powered from a 5.0V supply using  
the on-chip low-dropout regulator or from a 3.3V voltage  
supply. The LDO regulator is not intended to power any other  
loads, and it needs a 1 μF capacitor to ground located close to  
the chip for decoupling as shown in Figure 10.  
In 3.3V operation, VDD and VREG must be tied together.  
ams Datasheet  
Page 9  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − Detailed Description  
Figure 10:  
5.0V and 3.3V Power Supply Options  
5.0V Operation  
3.3V Operation  
4.5 - 5.5V  
3.0 – 3.6V  
VDD  
VDD3V3  
1µF  
VDD  
VDD3V3  
LDO  
LDO  
100nF  
100nF  
GND  
GND  
AS5047P  
AS5047P  
After applying power to the chip, the power-on time (t ) must  
pon  
elapse before the AS5047P provides the first valid data.  
Dynamic Angle Error Compensation  
The AS5047P uses 4 integrated Hall sensors which produce a  
voltage proportional to the orthogonal component of the  
magnetic field to the die. These voltage signals are amplified,  
filtered, and converted into the digital domain to allow the  
CORDIC digital block to calculate the angle of the magnetic  
vector. Propagation of these signals through the analog  
front-end and digital back-end generates a fixed delay between  
the time of measurement and the availability of the measured  
angle at the outputs. This latency generates a dynamic angle  
error represented by the product of the angular speed (ω)and  
the system propagation delay (t  
):  
delay  
DAE = ω x t  
delay  
The dynamic angle compensation block calculates the current  
magnet rotation speed (ω) and multiplies it with the system  
propagation delay (t  
) to determine the correction angle to  
delay  
reduce this error. At constant speed, the residual system  
propagation delay is t  
.
delay_DAEC  
The angle represented on the PWM interface is not  
compensated by the Dynamic Angle Error Compensation  
algorithm. it is also possible to disable the Dynamic Angle Error  
Compensation with the setting DAECDIS. Disabling the  
Dynamic Angle Error Compensation gives a noise benefit of  
0.016 degree rms.This setting can be advantageous for low  
speed (under 100rpm) respectively static positioning  
applications.  
Page 10  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Detailed Description  
SPI Interface (slave)  
The SPI interface is used by a host microcontroller (master) to  
read or write the volatile memory as well as to program the  
non-volatile OTP registers. The AS5047P SPI only supports slave  
operation mode. It communicates at clock rates up to 10 MHz.  
The AS5047P SPI uses mode=1 (CPOL=0, CPHA=1) to exchange  
data. As shown in Figure 11, a data transfer starts with the  
falling edge of CSn (SCL is low). The AS5047P samples MOSI data  
on the falling edge of SCL. SPI commands are executed at the  
end of the frame (rising edge of CSn). The bit order is MSB first.  
Data is protected by parity.  
SPI Timing  
The AS5047P SPI timing is shown in Figure 11.  
Figure 11:  
SPI Timing Diagram  
tCSn  
CSn  
(Input)  
tL  
tclk  
tclkL  
tclkH  
tH  
CLK  
(Input)  
tMISO  
tOZ  
MISO  
(Output)  
Data[15]  
Data[14]  
Data[0]  
tOZ  
tMOSI  
MOSI  
(Input)  
Data[15]  
Data[14]  
Data[0]  
ams Datasheet  
[v1-00] 2014-Oct-31  
Page 11  
Document Feedback  
AS5047P − Detailed Description  
Figure 12:  
SPI Timing  
Parameter  
Description  
Time between CSn falling edge and CLK rising edge  
Serial clock period  
Min  
350  
100  
50  
Max  
Units  
ns  
t
L
t
ns  
clk  
t
Low period of serial clock  
ns  
clkL  
t
High period of serial clock  
50  
ns  
clkH  
Time between last falling edge of CLK and rising  
edge of CSn  
t
tclk / 2  
ns  
H
t
High time of CSn between two transmissions  
Data input valid to falling clock edge  
CLK edge to data output valid  
350  
20  
ns  
ns  
ns  
ns  
CSn  
t
MOSI  
t
51  
10  
MISO  
t
Release bus time after CS rising edge.  
OZ  
SPI Transaction  
An SPI transaction consists of a 16-bit command frame followed  
by a 16-bit data frame. Figure 13 shows the structure of the  
command frame.  
Figure 13:  
SPI Command Frame  
Bit  
Name  
Description  
15  
PARC  
Parity bit (even) calculated on the command frame  
0: Write  
1: Read  
14  
R/W  
13:0  
ADDR  
Address to read or write  
To increase the reliability of communication over the SPI, an  
even parity bit PARC must be generated and sent. A wrong  
setting of the parity bit causes the PARERR bit in the error flag  
register to be set. The parity bit is calculated from the 16-bit  
command frame. The 16-bit command specifies whether the  
transaction is a read or a write and the address.  
Page 12  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Detailed Description  
Figure 14 shows the read data frame.  
Figure 14:  
SPI Read Data Frame  
Bit  
Name  
Description  
15  
PARD  
Parity bit (even) for the data frame  
0: No command frame error occurred  
1: Error occurred  
14  
EF  
13:0  
DATA  
Data  
The data is sent on the MISO pin. The parity bit PARD is  
calculated by the AS5047P for the 16-bit data frame. If an error  
is detected in the previous SPI command frame, the EF bit is set  
high. The SPI read is sampled on the rising edge of CSn and the  
data is transmitted on MISO with the next read command, as  
shown in Figure 15.  
Figure 15:  
SPI Read  
CSn  
Command  
Command  
Command  
Command  
Read ADD[n]  
Read ADD[k]  
Read ADD[p]  
Read ADD[m]  
MOSI  
MISO  
Data  
Data  
Data  
Data ADD[n]  
Data ADD[k]  
Data ADD[p]  
Figure 16:  
SPI Write Data Frame  
Bit  
15  
Name  
Description  
PARD  
0
Parity bit (even)  
Always low  
Data  
14  
13:0  
DATA  
ams Datasheet  
[v1-00] 2014-Oct-31  
Page 13  
Document Feedback  
AS5047P − Detailed Description  
The parity bit PARD must be calculated from the 16-bit data.  
In an SPI write transaction, the write command frame (e.g. Write  
ADD[n]) is followed by a data frame (e.g. DATA [x]). In addition  
to writing an address in the AS5047P, a write command frame  
causes the old contents of the addressed register (e.g. DATA [y])  
to be sent on MISO in the following frame. This is followed by  
the new contents of the addressed register (DATA [x]) as shown  
in Figure 18.  
Figure 17:  
SPI Write Transaction  
CSn  
Command  
Command  
Data to write into ADD[n]  
DATA (y)  
Command  
Data to write into ADD[n]  
DATA (x)  
MOSI  
MISO  
Write ADD[n]  
Write (ADDm)  
Next command  
New Data content  
of ADD[n]  
New Data content  
of ADD[m]  
Data content of ADD[n]  
DATA (y)  
Data content of ADD[m]  
DATA (p)  
DATA (x)  
DATA (y)  
Page 14  
Document Feedback  
amsDatasheet  
[v1-00] 2014-Oct-31  
AS5047P − Detailed Description  
Volatile Registers  
The volatile registers are shown in Figure 18. Each register has  
a 14-bit address.  
Figure 18:  
Volatile Register Table  
Address  
0x0000  
0x0001  
0x0003  
0x3FFC  
0x3FFD  
Name  
NOP  
Default  
0x0000  
0x0000  
0x0000  
0x0180  
0x0000  
Description  
No operation  
Error register  
ERRFL  
PROG  
DIAAGC  
MAG  
Programming register  
Diagnostic and AGC  
CORDIC magnitude  
Measured angle without dynamic angle  
error compensation  
0x3FFE  
0x3FFF  
ANGLEUNC  
ANGLECOM  
0x0000  
0x0000  
Measured angle with dynamic angle error  
compensation  
Reading the NOP register is equivalent to a nop (no operation)  
instruction for the AS5047P.  
Figure 19:  
ERRFL (0x0001)  
Name  
Read/Write  
Bit Position  
Description  
PARERR  
R
R
2
1
Parity error  
Invalid command error: set to 1 by reading or writing  
an invalid register address  
INVCOMM  
FRERR  
Framing error: is set to 1 when a non-compliant SPI  
frame is detected  
R
0
Reading the ERRFL register automatically clears its contents  
(ERRFL=0x0000).  
ams Datasheet  
[v1-00] 2014-Oct-31  
Page 15  
Document Feedback  
AS5047P − Detailed Description  
Figure 20:  
PROG (0x0003)  
Name  
PROGVER  
PROGOTP  
OTPREF  
Read/Write  
R/W  
Bit Position  
Description  
Program verify: must be set to 1 for verifying the  
correctness of the OTP programming  
6
3
2
R/W  
Start OTP programming cycle  
Refreshes the non-volatile memory content with the  
OTP programmed content  
R/W  
Program OTP enable: enables programming the entire  
OTP memory  
PROGEN  
R/W  
0
The PROG register is used for programming the OTP memory.  
(See programming the zero position.)  
Figure 21:  
DIAAGC (0x3FFC)  
Name  
MAGH  
MAGL  
COF  
Read/Write Bit Position  
Description  
R
R
R
11  
10  
9
Diagnostics: Magnetic field strength too low; AGC=0xFF  
Diagnostics: Magnetic field strength too high; AGC=0x00  
Diagnostics: CORDIC overflow  
Diagnostics: Offset compensation  
LF=0:internal offset loops not ready regulated  
LF=1:internal offset loop finished  
LF  
R
R
8
AGC  
7:0  
Automatic gain control value  
Figure 22:  
MAG (0x3FFD)  
Description  
Name  
Read/Write  
Bit Position  
CMAG  
R
13:0  
CORDIC magnitude information  
Figure 23:  
ANGLE (0x3FFE)  
Name  
Read/Write  
Bit Position  
Description  
Angle information without dynamic angle error  
compensation  
CORDICANG  
R
13:0  
Page 16  
Document Feedback  
amsDatasheet  
[v1-00] 2014-Oct-31  
AS5047P − Detailed Description  
Figure 24:  
ANGLECOM (0x3FFF)  
Name  
Read/Write  
Bit Position  
Description  
Angle information with dynamic angle error  
compensation  
DAECANG  
R
13:0  
Non-Volatile Registers (OTP)  
A nonvolatile memory (One-Time Programmable) is used store  
the zero position of the magnet and custom settings.  
Figure 25:  
Non-Volatile Register Table  
Address  
0x0016  
0x0017  
0x0018  
0x0019  
0x001A  
Name  
Default  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Description  
ZPOSM  
ZPOSL  
Zero position MSB  
Zero position LSB /MAG diagnostic  
Custom setting register 1  
Custom setting register 2  
Redundancy register  
SETTINGS1  
SETTINGS2  
RED  
Figure 26:  
ZPOSM (0x0016)  
Description  
Name  
Read/Write/Program Bit Position  
ZPOSM  
R/W/P  
7:0  
8 most significant bits of the zero position  
Figure 27:  
ZPOSL (0x0017)  
Name  
Read/Write/Program Bit Position  
Description  
ZPOSL  
R/W/P  
5:0  
6 least significant bits of the zero position  
This bit enables the contribution of  
MAGH (Magnetic field strength too high)  
to the system_error  
comp_l_error_en  
comp_h_error_en  
R/W/P  
6
This bit enables the contribution of MAGL  
(Magnetic field strength too low) to the  
system_error  
R/W/P  
7
ams Datasheet  
Page 17  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − Detailed Description  
Figure 28:  
SETTINGS1 (0x0018)  
Name  
Read/Write/Program Bit Position  
Description  
Factory  
Setting  
R
0
Pre-Programmed to 1  
NOISESET  
DIR  
R/W/P  
R/W/P  
1
2
Noise setting  
Rotation direction  
Defines the PWM Output  
UVW_ABI  
R/W/P  
3
(0 = ABI is operating, W is used as PWM  
1 = UVW is operating, I is used as PWM)  
Disable Dynamic Angle Error Compensation  
(0 = DAE compensation ON, 1 = DAE  
compensation OFF)  
DAECDIS  
ABIBIN  
R/W/P  
R/W/P  
4
5
ABI decimal or binary selection of the ABI  
pulses per revolution  
This bit defines which data can be read form  
address 16383dec (3FFFhex).  
0->DAECANG  
Dataselect  
PWMon  
R/W/P  
R/W/P  
6
7
1->CORDICANG  
enables PWM (setting of UVW_ABI Bit  
necessary)  
Page 18  
Document Feedback  
amsDatasheet  
[v1-00] 2014-Oct-31  
AS5047P − Detailed Description  
Figure 29:  
SETTINGS2 (0x0019)  
Name  
Read/Write/Program Bit Position  
Description  
UVW number of pole pairs  
UVWPP  
R/W/P  
2:0  
(000 = 1, 001 = 2, 010 = 3, 011 = 4, 100 = 5, 101 =  
6, 110 = 7, 111 = 7)  
HYS  
R/W/P  
R/W/P  
4:3  
7:5  
Hysteresis setting  
Resolution of ABI  
ABIRES  
Figure 30:  
RED (0x001A)  
Name  
Read/Write/Program  
Bit Position  
Description  
Redundancy bits. This field enables with  
force to high one bit of the Non-Volatile  
register map after a non-successful  
burning. For more details please refer to  
the application note  
REDUNDANCY  
R/W/P  
4:0  
“AN5000 – AS5147_Redundancy_Bits”  
ams Datasheet  
[v1-00] 2014-Oct-31  
Page 19  
Document Feedback  
AS5047P − Detailed Description  
ABI Incremental Interface  
The AS5047P can send the angle position to the host  
microcontroller through an incremental interface. This  
interface is available simultaneously with the other interfaces.  
By default, the incremental interface is set to work at the highest  
resolution 4096 step per revolution, or 1024 pulses per  
revolution (ppr). It is possible to select between a decimal and  
binary pulses per revolution, respectively with the bit ABIBIN  
and select the pulses per revolution with the bit ABIRES as  
shown in Figure 31.  
Figure 31:  
ABI Resolution Setting  
ABIRES  
000  
ABIBIN  
Steps per revolution  
Pulses per revolution  
0
0
0
0
0
0
0
0
1
1
1
4000  
2000  
1600  
1200  
800  
1000  
500  
400  
300  
200  
100  
50  
001  
010  
011  
100  
101  
400  
110  
200  
111  
100  
25  
000  
4096  
2048  
1024  
1024  
512  
256  
001  
010  
The phase shift between the signals A and B indicates the  
rotation direction: e.g. DIR-Bit = 0, clockwise (A leads, B follows)  
or counterclockwise (B leads, A follows). During the start-up  
time, after power ON to the chip, all three ABI signals are high.  
Page 20  
Document Feedback  
amsDatasheet  
[v1-00] 2014-Oct-31  
AS5047P − Detailed Description  
Figure 32:  
ABI Signals at 11-Bit Resolution  
A
B
I
Steps  
N-7 N-6 N-5 N-4 N-3 N-2 N-1  
0
1
2
3
4
5
6
7
8
7
6
5
4
3
2
1
0
N-1 N-2 N-3 N-4  
Clockwise rotation  
Counter-clockwise rotation  
The Figure 32 shows the ABI signal flow if the magnet rotates  
in clockwise direction, placing the magnet on the top of the  
AS5047P and looking at the magnet from the top (DIR=0). With  
the bit DIR, it is possible to invert the rotation direction.  
ams Datasheet  
Page 21  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − Detailed Description  
UVW Commutation Interface  
The AS5047P can emulate the UVW signals generated by the  
three discrete Hall switches commonly used in BLDC motors.  
The UVWPP field in the SETTINGS register selects the number  
of pole pairs of the motor (from 1 to 7 pole pairs). The UVW  
signals are generated with 14-bit resolution.  
During the start-up time, after power ON of the chip, the UVW  
signals are low.  
Figure 33:  
UVW Signals  
U
V
W
Electrical  
Angle  
0°  
60°  
120°  
180°  
240°  
300°  
360°  
The Figure 33 shows the UVW signal flow if the magnet rotates  
in clockwise direction, placing the magnet on the top of the  
AS5047P and looking at the magnet from the top (DIR=0). With  
the bit DIR, it is possible to invert the rotation direction.  
Page 22  
Document Feedback  
amsDatasheet  
[v1-00] 2014-Oct-31  
AS5047P − Detailed Description  
PWM  
The PWM can be enabled with the bit setting PWMon. The PWM  
encoded signal is displayed on the pin W or the pin I. The bit  
setting UVW_ABI defines which output is used as PWM.The  
PWM output consists of a frame of 4119 PWM clock periods, as  
shown in Figure 34. The PWM frame has the following sections:  
• 12 PWM Clocks for INIT  
• 4 PWM Clocks for Error detection  
• 16 PWM clock periods high  
• 4095 PWM clock periods of data  
• 8 PWM clock periods low  
The angle is represented in the data part of the frame with a  
12-bit resolution. One PWM clock period represents 0.088  
degree and has a typical duration of 444 ns.  
If the embedded diagnostic of the AS5047P detects any error  
the PWM interface displays only 12 clock periods high  
(0.3% duty-cycle).  
Figure 34:  
Pulse Width Modulation Encoded Signal  
time  
16 clock pulse  
high  
8 clock pulse  
low  
data  
ams Datasheet  
[v1-00] 2014-Oct-31  
Page 23  
Document Feedback  
AS5047P − Detailed Description  
Hysteresis  
The hysteresis can be programmed in the HYS bits if the  
SETTINGS2 register and depends on the chosen resolution of  
the incremental interface (ABIRES), as shown in the Figure 35.  
Figure 35:  
Hysteresis Settings  
Hysteresis related to 11 Bit  
HYS  
ABI Resolution  
00  
01  
10  
11  
3
2
1
0
Automatic Gain Control (AGC) and CORDIC  
Magnitude  
The AS5047P uses AGC to compensate for variations in the  
magnetic field strength due to changes of temperature, air gap  
between the chip and the magnet, and demagnetization of the  
magnet. The automatic gain control value can be read in the  
AGC field of the DIAAGC register. Within the specified input  
magnetic field strength (Bz), the Automatic Gain Control works  
in a closed loop and keeps the CORDIC magnitude value (MAG)  
constant. Below the minimum input magnetic field strength,  
the CORDIC magnitude decreases and the MAGL bit is set.  
Diagnostic Features  
The AS5047P supports embedded self-diagnostics.  
MAGL: magnetic field strength too high, set if AGC = 0xFF. This  
indicates the non-linearity error may be increased.  
MAGH: magnetic field strength too low, set if AGC = 0x00. This  
indicates the output noise of the measured angle may be  
increased.  
COF: CORDIC overflow. This indicates the measured angle is not  
reliable.  
LF: offset compensation completed. At power-up, an internal  
offset compensation procedure is started, and this bit is set  
when the procedure is completed.  
Page 24  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Detailed Description  
OCF Error / COF Error  
In case of an OCF or COF error, all outputs are changing into a  
safe state:  
SPI Output: Information in the DIAAGC (0x3FFC) register. The  
angle information is still valid.  
PWM Output: PWM Clock Period 13 - 16 of the first 16 PWM Clock  
Periods = low. Additional there is no angle information valid  
(all 4096 clock periods = low)  
ABI Output : The state of ABI is frozen to ABI = 111  
UVW Output : The state of UVW is frozen to UVW = 000  
MAGH Error /MAGL Error  
Default diagnostic setting for MAGH error /MAGL error:  
In case of a MAGH error or MAGL error, there is no safe state on  
the PWM,ABI or UVW outputs if comp_h_error_en= 0 &  
comp_h_error_en = 0. The device is operating with the  
performance as explained.  
The error flags can be read out with the DIAAGC (0x3FFC)  
register.  
Enhanced diagnosis setting for MAGH error / MAGL error:  
In case of a MAGH error or MAGL error, the PWM,ABI or UVW  
outputs are going into a safe state if comp_h_error_en= 1 &  
comp_h_error_en = 1.  
SPI Output: Information in the DIAAGC (0x3FFC) register. The  
angle information is still valid, if the MAGH or MAGL error flag  
is on.  
PWM Output: PWM Clock Period 13 - 16 of the first 16 PWM Clock  
Periods = low. Additional there is no angle information valid (all  
4096 clock periods = low)  
ABI Output : The state of ABI is frozen to ABI = 111  
UVW Output : The state of UVW is frozen to UVW = 000  
Important: When comp_(h/l)_error_en is enabled a marginal  
magnetic field input can cause toggling of MAGH or MAGL  
which will lead to toggling of the ABI/UVW outputs between  
operational mode and failure mode.  
ams Datasheet  
Page 25  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − Application Information  
Application Information  
Burn and Verification of the OTP Memory  
Step-by-step procedure to permanently program the  
non-volatile memory (OTP):  
Figure 36:  
Minimum Programming Diagram for the AS5047P in 5 V Operation  
5V operation  
VDD during programming 4.5 – 5.5V  
VDD  
I
CSn  
CLK  
GND  
VDD3V  
MISO  
MOSI  
VDD  
U
TEST  
Programmer  
A
V
100nF  
1μF  
B
W
GND  
Note(s) and/or Footnote(s):  
1. In terms of EMC and for remote application, additional circuits are necessary.  
Page 26  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Application Information  
Figure 37:  
Minimum Programming Diagram for the AS5047P in 3.3V Operation  
3.3V operation  
VDD during programming: 3.3V – 3.5V  
VDD  
I
CSn  
CLK  
GND  
VDD3V  
MISO  
MOSI  
VDD  
U
TEST  
Programmer  
A
V
100nF  
B
W
GND  
Note(s) and/or Footnote(s):  
1. In terms of EMC and for remote application, additional circuits are necessary.  
Figure 38:  
Programming Parameter  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Programming @ Room  
Temperature  
(25°C +-20°C  
Programming  
temperature  
T
5
45  
°C  
aProg  
5 V operation mode. Supply  
voltage during  
programming  
Positive supply  
voltage  
V
4.5  
3.3  
5
5.5  
V
DD  
3.3 V operation mode.  
Supply voltage during  
programming  
Positive supply  
voltage  
V
3.5  
V
DD  
Current for  
programming  
max current during OTP burn  
procedure.  
I
100  
mA  
Prog  
ams Datasheet  
Page 27  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − Application Information  
The programming can either be performed in 5V operation  
using the internal LDO (1uF on regulator output pin), or in 3V  
Operation but using a supply voltage between 3.3V and 3.5V.  
1. Power ON cycle  
2. Write the SETTINGS1 and SETTINGS2 registerswith the  
Custom settings for this application (Bit0 of Settings1 is  
a factory bit. For programming its mandatory to set this  
bit to 0).  
3. Position the magnet at the desired zero position  
4. Read out the measured angle from the ANGLE register  
5. Write ANGLE [5:0] into the ZPOSL register and ANGLE  
[13:6] into the ZPOSM register  
6. Read reg(0x0016) to reg(0x0019) Read register step1  
7. Comparison of written content (settings and angle) with  
content of read register step1 (Removing of Bit0 of  
Settings1 from the comparison is mandatory. Bit0 is  
preprogrammed)  
8. If point 7 is correct, enable OTP read / write by setting  
PROGEN = 1 in the PROG register  
9. Start the OTP burn procedure by setting PROGOTP = 1  
in the PROG register  
10. Read the PROG register until it reads 0x0000  
(Programming procedure complete)  
11. Clear the memory content writing 0x00 in the whole  
non-volatile memory  
12. Enable OTP read / write by setting PROGEN = 1 in the  
PROG register  
13. Set the PROGVER = 1 to set the Guard band for the guard  
(1)  
band test  
.
14. Refresh the non-volatile memory content with the OTP  
content by setting OTPREF = 1  
Page 28  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Application Information  
15. Read reg(0x0016) to reg(0x0019) Read register step2  
16. Comparison of written content (settings and angle) with  
content of read register step2.  
Mandatory: guard band test (Removing of Bit0 of  
Settings1 from the comparison is mandatory. Bit0 is  
preprogrammed)  
17. New power ON cycle, if point 16 is correct. If point 16  
1
fails, the test with the guard band test was not  
successful and the device is incorrectly programmed. A  
reprogramming is not allowed!  
18. Read reg(0x0016) to reg(0x0019) Read register step3  
19. Comparision of written content (settings and angle)  
with content of read register step3(Removing of Bit0 of  
Settings1 from the comparison is mandatory. Bit0 is  
preprogrammed).  
20. If point 19 is correct, the programming was successful.  
If point 19 fails, device is incorrectly programmed. A  
reprogramming is not allowed  
1. Guard band test:  
- Restricted to temperature range: 25 °C 20 °C  
- Right after the programming procedure (max. 1 hour with same  
Conditions 25°C 20 °C)  
-
- Same VDD voltage  
The guard band test is only for the verification of the burned OTP fuses during the programming sequence.  
A use of the guard band in other cases is not allowed.  
ams Datasheet  
Page 29  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − Application Information  
Figure 39:  
OTP Memory Burn and Verification Flowchart  
Write  
Reg(0x0016)=0x00  
Reg(0x0017)=0x00  
Reg(0x0018=0x00  
Reg(0x0019)=0x00  
Power on cycle  
START  
Clear memory  
Write  
Reg(0x0003)=0x08  
Write reg(0x0018)  
Write reg(0x0019)  
Unlock OTParea for read/write  
(PROGEN=1)  
AS5047P settings  
Set the magnet to  
the zero position  
Write  
Reg(0x0003)=0x40  
Set Guardband  
Position of the magnet to  
the zero position  
Not correct  
Write  
Reg(0003)=0x04  
Refresh memory with OTP  
content  
Read ANGLE  
Read reg(0x3FFF)  
Read  
Write  
Reg(0x0016)  
Reg(0x0017)  
Reg(0x0018)  
Reg(0x0016)  
Write Angle into ZPOSL  
and ZPOSM  
Reg(0x0017(5:0))= reg(0x3FFF(5:0))  
Reg(0x0016(7:0))= reg(0x3FFF(13:6))  
Read Register step 2  
Read  
Comparison of written content (settings and  
angle) with content of Read Register step 2*  
Mandatory Guardband-Test  
Reg(0x0016)  
Reg(0x0017)  
Reg(0x0018)  
Reg(0x0019)  
Verify 2  
correct  
Read Register step 1  
Not correct  
YES  
Comparison of written content  
(settings and angle) with content  
of Read Register step 1*  
Guardbandtest fails.  
Wrong programming.  
Reprogramming not allowed  
Verify 1  
correct  
Power-on cycle  
Read  
Reg(0x0016)  
Reg(0x0017)  
Reg(0x0018)  
Reg(0x0016)  
Unlock OTParea for read/write  
(PROGEN=1)  
Write  
Reg(0x0003)=0x01  
Read Register step 3  
Comparison of written content  
(settings and angle) with content  
of Read Register step 3*  
Start OTP burning procedure  
(PROGOTP=1)  
Write  
Reg(0x0003)=0x08  
Verify 3  
correct  
Not correct  
END  
Correct  
programming and  
verification  
END  
Read  
Reg(0x0003)  
Read OTP_CTRL  
Wrong programming  
Reprogramming not  
allowed  
NO  
OTP burning procedure  
complete if Reg(0x0003) =0x00  
Reg(0x0003)=0x00  
* During the comparison the bit0 of settings1 has to be ignored. This bit is pre-programmed.  
Page 30  
Document Feedback  
amsDatasheet  
[v1-00] 2014-Oct-31  
AS5047P − Application Information  
Figure 40:  
Minimum Circuit Diagram for the AS5047P  
4.5 – 5.5V  
VDD  
I
CSn  
CLK  
GND  
VDD3V  
MISO  
MOSI  
TEST  
A
VDD  
U
MCU  
V
100nF  
1μF  
B
W
GND  
Note(s) and/or Footnote(s):  
1. In terms of EMC and for remote application, additional circuits are necessary.  
ams Datasheet  
[v1-00] 2014-Oct-31  
Page 31  
Document Feedback  
AS5047P − Package Drawings & Markings  
The axis of the magnet must be aligned over the center of the  
package.  
Package Drawings & Markings  
Figure 41:  
Package Outline Drawing  
Green  
RoHS  
Symbol  
Min  
-
Nom  
Max  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
-
Symbol  
R
Min  
Nom  
-
Max  
A
A1  
A2  
b
-
-
0.09  
-
-
0.05  
0.80  
0.19  
0.09  
4.90  
-
R1  
0.09  
-
1.00  
-
S
0.20  
-
-
Θ1  
0º  
-
-
8º  
-
c
-
Θ2  
12 REF  
12 REF  
0.10  
0.10  
0.05  
0.20  
14  
D
5.00  
6.40 BSC  
4.40  
0.65 BSC  
0.60  
1.00 REF  
Θ3  
-
-
E
aaa  
bbb  
ccc  
ddd  
N
-
-
E1  
e
4.30  
-
4.50  
-
-
-
-
-
L
0.45  
-
0.75  
-
-
-
L1  
Note(s) and/or Footnote(s):  
1. Dimensioning and tolerancing conform to ASME Y14.5M - 1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
3. N is the total number of terminals.  
Page 32  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Package Drawings & Markings  
Figure 42:  
Packaging Code  
YY  
WW  
M
ZZ  
@
Last two digits of the  
current year  
Free choice /  
traceability code  
Manufacturing week  
Plant identifier  
Sublot identifier  
Figure 43:  
Package Marking  
AS5047P  
YYWWMZZ  
@
ams Datasheet  
[v1-00] 2014-Oct-31  
Page 33  
Document Feedback  
AS5047P − Mechanical Data  
Mechanical Data  
Figure 44:  
Angle Detection by Default (no zero position programmed)  
90 Deg  
0 Deg  
S
N
270 Deg  
180 Deg  
N
S
Page 34  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Ordering & Contact Information  
Ordering&ContactInformation  
Figure 45:  
Ordering Information  
Ordering  
Package  
Code  
Delivery  
Quantity  
Marking  
Delivery Form  
AS5047P-ATST  
AS5047P-ATSM  
TSSOP-14  
TSSOP-14  
AS5047P  
AS5047P  
13” Tape & Reel in dry pack  
7” Tape & Reel in dry pack  
4500  
500  
Buy our products or get free samples online at:  
www.ams.com/ICdirect  
Technical Support is available at:  
www.ams.com/Technical-Support  
Provide feedback about this document at:  
www.ams.com/Document-Feedback  
For further information and requests, e-mail us at:  
ams_sales@ams.com  
For sales offices, distributors and representatives, please visit:  
www.ams.com/contact  
Headquarters  
ams AG  
Tobelbaderstrasse 30  
8141 Unterpremstaetten  
Austria, Europe  
Tel: +43 (0) 3136 500 0  
Website: www.ams.com  
ams Datasheet  
Page 35  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − RoHS Compliant & ams Green Statement  
RoHS: The term RoHS compliant means that ams AG products  
fully comply with current RoHS directives. Our semiconductor  
products do not contain any chemicals for all 6 substance  
categories, including the requirement that lead not exceed  
0.1% by weight in homogeneous materials. Where designed to  
be soldered at high temperatures, RoHS compliant products are  
suitable for use in specified lead-free processes.  
RoHS Compliant & ams Green  
Statement  
ams Green (RoHS compliant and no Sb/Br): ams Green  
defines that in addition to RoHS compliance, our products are  
free of Bromine (Br) and Antimony (Sb) based flame retardants  
(Br or Sb do not exceed 0.1% by weight in homogeneous  
material).  
Important Information: The information provided in this  
statement represents ams AG knowledge and belief as of the  
date that it is provided. ams AG bases its knowledge and belief  
on information provided by third parties, and makes no  
representation or warranty as to the accuracy of such  
information. Efforts are underway to better integrate  
information from third parties. ams AG has taken and continues  
to take reasonable steps to provide representative and accurate  
information but may not have conducted destructive testing or  
chemical analysis on incoming materials and chemicals. ams AG  
and ams AG suppliers consider certain information to be  
proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Page 36  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Copyrights & Disclaimer  
Copyright ams AG, Tobelbader Strasse 30, 8141  
Copyrights & Disclaimer  
Unterpremstaetten, Austria-Europe. Trademarks Registered. All  
rights reserved. The material herein may not be reproduced,  
adapted, merged, translated, stored, or used without the prior  
written consent of the copyright owner.  
Devices sold by ams AG are covered by the warranty and patent  
indemnification provisions appearing in its General Terms of  
Trade. ams AG makes no warranty, express, statutory, implied,  
or by description regarding the information set forth herein.  
ams AG reserves the right to change specifications and prices  
at any time and without notice. Therefore, prior to designing  
this product into a system, it is necessary to check with ams AG  
for current information. This product is intended for use in  
commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or  
high reliability applications, such as military, medical  
life-support or life-sustaining equipment are specifically not  
recommended without additional processing by ams AG for  
each application. This product is provided by ams AG “AS IS”  
and any express or implied warranties, including, but not  
limited to the implied warranties of merchantability and fitness  
for a particular purpose are disclaimed.  
ams AG shall not be liable to recipient or any third party for any  
damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any  
kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation  
or liability to recipient or any third party shall arise or flow out  
of ams AG rendering of technical or other services.  
ams Datasheet  
Page 37  
[v1-00] 2014-Oct-31  
Document Feedback  
AS5047P − Document Status  
Document Status  
Document Status  
Product Status  
Definition  
Information in this datasheet is based on product ideas in  
the planning phase of development. All specifications are  
design goals without any warranty and are subject to  
change without notice  
Product Preview  
Pre-Development  
Information in this datasheet is based on products in the  
design, validation or qualification phase of development.  
The performance and parameters shown in this document  
are preliminary without any warranty and are subject to  
change without notice  
Preliminary Datasheet  
Datasheet  
Pre-Production  
Production  
Information in this datasheet is based on products in  
ramp-up to full production or full production which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade  
Information in this datasheet is based on products which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade, but these products have been superseded and  
should not be used for new designs  
Datasheet (discontinued)  
Discontinued  
Page 38  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  
AS5047P − Revision Information  
Revision Information  
Changes from 0-02 (2014-Oct-30) to current revision 1-00 (2014-Oct-31)  
Page  
Initial version for release  
Note(s) and/or Footnote(s):  
1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.  
2. Correction of typographical errors is not explicitly mentioned.  
ams Datasheet  
[v1-00] 2014-Oct-31  
Page 39  
Document Feedback  
AS5047P − Content Guide  
1
1
2
2
General Description  
Key Benefits & Features  
Applications  
Content Guide  
Block Diagram  
3
5
6
7
7
8
Pin Assignment  
Absolute Maximum Ratings  
Electrical Characteristics  
Magnetic Characteristics  
System Characteristics  
Timing Characteristics  
9
9
Detailed Description  
Power Management  
10 Dynamic Angle Error Compensation  
11 SPI Interface (slave)  
11 SPI Timing  
12 SPI Transaction  
15 Volatile Registers  
17 Non-Volatile Registers (OTP)  
20 ABI Incremental Interface  
22 UVW Commutation Interface  
23 PWM  
24 Hysteresis  
24 Automatic Gain Control (AGC) and CORDIC Magnitude  
24 Diagnostic Features  
25 OCF error / COF error  
25 MAGH error /MAGL error  
26 Application Information  
26 Burn and Verification of the OTP Memory  
32 Package Drawings & Markings  
34 Mechanical Data  
35 Ordering & Contact Information  
36 RoHS Compliant & ams Green Statement  
37 Copyrights & Disclaimer  
38 Document Status  
39 Revision Information  
Page 40  
amsDatasheet  
Document Feedback  
[v1-00] 2014-Oct-31  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY