AS5047U [AMSCO]

14-Bit On-Axis Magnetic Rotary Position Sensor with Up to 14-Bit Binary Incremental Pulse Count;
AS5047U
型号: AS5047U
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

14-Bit On-Axis Magnetic Rotary Position Sensor with Up to 14-Bit Binary Incremental Pulse Count

文件: 总51页 (文件大小:788K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS5047U  
14-Bit On-Axis Magnetic Rotary  
Position Sensor with Up to 14-Bit  
Binary Incremental Pulse Count  
The AS5047U is a high-resolution rotary position sensor for fast  
absolute angle measurement over a full 360-degree range. This  
new position sensor is equipped with a revolutionary  
integrated dynamic angle error compensation (DAEC™) with  
almost 0 latency at higher rotational speed. For increased signal  
quality at lower rotational speed, the dynamic filter system  
(DFS™) reduces transition noise.  
General Description  
The robust design of the device suppresses the influence of any  
homogenous external stray magnetic field. A standard 4-wire  
SPI serial interface with a CRC protection allows a host  
microcontroller to read 14-bit absolute angle position data  
from the AS5047U and to program non-volatile settings without  
a dedicated programmer.  
Incremental movements are indicated on a set of ABI signals  
with a maximum resolution of 16989 steps / 4096 pulses per  
revolution.  
Brushless DC (BLDC) motors are controlled through a standard  
UVW commutation interface with a programmable number of  
pole pairs from 1 to 7. The absolute angle position is also  
provided as PWM-encoded output signal.  
AS5047U are single die sensors and are available in a TSSOP14  
Package.  
Ordering Information and Content Guide appear at end of  
datasheet.  
Key Benefits & Features  
The benefits and features of this device are listed below:  
Figure 1:  
Added Value of Using the AS5047U  
Benefits  
Features  
DAEC ™ Dynamic angle error compensation  
DFS ™ Dynamic filter system  
Easy to use – saving costs on DSP  
Higher durability and lower system costs (no  
shield needed)  
Magnetic stray field immunity  
Versatile choice of the interface  
Independent output interfaces: SPI, ABI, UVW, PWM  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 1  
Document Feedback  
AS5047U − General Description  
Applications  
The AS5047U supports BLDC motor commutation for the most  
challenging industrial applications such as:  
Factory automation  
Building automation  
Robotics  
PMSM (permanent magnet synchronous motor)  
Stepper motor closed loop  
Optical encoder replacement  
Block Diagram  
The functional blocks of the AS5047U are shown below:  
Figure 2:  
AS5047U Block Diagram  
VDD3V3  
Volatile  
CSn  
Memory  
SCL  
SPI  
MISO  
MOSI  
OTP  
VDD  
LDO  
P2ram_err  
or  
CRC  
A
ABI  
B
OffCompN  
otFinished  
Cordic  
Overflow  
I/PWM  
14-Bit ADC  
14-Bit ADC  
U
V
Adaptive  
Filter  
Interpolator  
AFE  
CORDIC  
DAEC  
UVW  
PWM  
W/PWM  
Hall sensor  
array  
AGC  
AGC-  
warning  
WDTST  
Oscillator  
AS5047U  
GND  
Page 2  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Pin Assignment  
Pin Assignment  
Figure 3:  
TSSOP-14 Pin Assignment  
CSn  
I/PWM  
GND  
VDD3V3  
VDD  
1
14  
13  
12  
11  
10  
9
CLK  
MISO  
MOSI  
TEST  
B
2
3
4
5
6
7
U
V
A
8
W/PWM  
Figure 4:  
AS5047U Pin Description  
Pin Number  
Pin Name  
Pin Type  
Description  
(1)  
(1)  
(2)  
1
2
CSn  
CLK  
MISO  
MOSI  
TEST  
B
Digital input  
Digital input  
SPI chip select (active low)  
(3)  
SPI clock  
(4)  
(3)  
3
Digital output  
SPI master data input, slave output  
(1)  
4
Digital input  
SPI master data output, slave input  
Test pin (connect to ground)  
5
(5)  
6
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Power supply  
Incremental signal B  
(5)  
7
A
Incremental signal A  
(5)  
8
W/PWM  
V
Commutation signal W or PWM-encoded output  
(5)  
9
Commutation signal V  
(5)  
10  
11  
U
Commutation signal U  
VDD  
5V power supply voltage for on-chip regulator  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 3  
Document Feedback  
AS5047U − Pin Assignment  
Pin Number  
Pin Name  
Pin Type  
Description  
3.3V on-chip low-dropout (LDO) output. Requires an  
external decoupling capacitor (1μF)  
12  
VDD3V3  
Power supply  
13  
14  
GND  
Power supply  
Digital output  
Ground  
(5)  
I/PWM  
Incremental signal I (index) or PWM  
Note(s):  
1. Floating state of a digital input is not allowed.  
2. If SPI is not used, a pull-up resistor on CSn is required.  
3. If SPI is not used, a pull-down resistor on CLK and MOSI is required.  
4. If SPI is not used, the pin MISO can be left open.  
5. If ABI, UVW or PWM is not used, the pins can be left open.  
Page 4  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Absolute Maximum Ratings  
Stresses beyond those listed under Absolute Maximum Ratings  
Absolute Maximum Ratings  
may cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or any  
other conditions beyond those indicated under Operational  
Conditions is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
Figure 5:  
Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Units  
Comments  
Electrical Parameters  
VDD5  
VDD3  
DC Supply Voltage at VDD pin  
-0.3  
-0.3  
7.0  
5.0  
V
V
Not operational  
DC Supply Voltage at  
VDD3V3 pin  
Not operational  
DC Supply Voltage at GND  
pin  
V
-0.3  
0.3  
VDD+0.3  
100  
V
V
SS  
V
Input Pin Voltage  
in  
Input Current  
(latch-up immunity)  
I
-100  
mA  
AEC-Q100-004  
scr  
Total Power Dissipation  
Total Power Dissipation  
(all supplies and outputs)  
P
150  
mW  
kV  
T
Electrostatic Discharge  
ESD  
Electrostatic Discharge HBM  
2
AEC-Q100-002  
HBM  
Temperature Ranges and Storage Conditions  
Operating Temperature  
Range  
T
-40  
150  
45  
°C  
°C  
Ambient temperature  
AMB  
Programming @ room  
temperature (25°C 20°C)  
T
Programming Temperature  
5
aProg  
T
Storage Temperature Range  
Package Body Temperature  
-55  
150  
260  
°C  
°C  
STRG  
T
IPC/JEDEC J-STD-020  
BODY  
Relative Humidity  
(non-condensing)  
RH  
5
85  
%
NC  
Represents a maximum floor  
lifetime of 168h  
MSL  
Moisture Sensitivity Level  
3
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 5  
Document Feedback  
AS5047U − Electrical Characteristics  
All in this datasheet defined tolerances for external  
components need to be assured over the whole operation  
conditions range and also over lifetime.  
Electrical Characteristics  
Overall condition: T  
= -40°C to 150°C components spec;  
AMB  
unless otherwise noted.  
Figure 6:  
Operational Conditions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
VDD5  
Positive supply voltage 5.0V operation mode  
3.3V operation mode;  
4.5  
5.0  
5.5  
V
from -40°C to 150°C  
(NOISESET bit has to  
set)  
VDD3V3  
Positive supply voltage  
3.0  
3.3  
3.6  
3.5  
V
V
Supply voltage  
required for  
programming in 3.3V  
operation  
VDD_Burn  
Positive supply voltage  
3.3  
3.2  
Voltage at VDD3V3  
Regulated voltage  
V
3.4  
3.6  
16  
V
mA  
V
REG  
pin if VDD ≠ VDD3V3  
I
Supply current  
DD  
High-level input  
voltage  
V
0.7 × VDD  
IH  
V
Low-level input voltage  
0.3 × VDD  
V
IL  
High-level output  
voltage  
V
VDD - 0.5  
V
OH  
Low-level output  
voltage  
V
V
+ 0.4  
SS  
V
OL  
C_L  
50  
pF  
Output current 5 V  
I_Out_5V  
4
2
mA  
(1)  
operation  
Output current 3 V  
I_Out_3V  
mA  
(1)  
operation  
Note(s):  
1. Only applicable for digital output pins I/PWM, A, B, U, V, W/PWM, MISO.  
Page 6  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Electrical Characteristics  
Magnetic Characteristics  
Figure 7:  
Magnetic Characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Required orthogonal component of  
the magnetic field strength  
measured at the package surface  
along a circle of 1.1mm  
Orthogonal Magnetic  
Field Strength  
Bz  
35  
70  
mT  
System Specifications  
Figure 8:  
System Specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Core and resolution on  
SPI  
RES  
14  
bit  
Programmable with  
register setting  
(ABIRES)  
Resolution of the ABI  
interface  
RES_ABI  
25  
4096  
0.8  
steps  
Non-linearity, optimum  
placement of the  
magnet  
INL  
@ 25°C  
0.4  
0.6  
degree  
OPT  
Non-linearity, optimum  
placement of magnet  
and temperature -40°C  
to 150°C  
INL  
1
degree  
degree  
OPT+TEMP  
Assuming N35H  
Magnet  
(D=8mm, H=3mm)  
500μm displacement  
in x and y  
Non-linearity @  
displacement of  
magnet and  
temperature -40°C to  
150°C  
INL  
1.2  
DIS+TEMP  
z-distance = 2000μm  
RMS output noise  
Orthogonal  
without filter (1 sigma)  
on SPI, ABI, PWM and  
UVW. Not tested,  
component for the  
magnetic field within  
the specified range  
(Bz), NOISESET= 0  
ONL  
ONH  
0.034  
0.041  
0.068  
degree  
guaranteed by design  
RMS output noise  
Orthogonal  
without filter (1 sigma)  
on SPI, ABI, PWM and  
UVW. Not tested,  
component for the  
magnetic field within  
the specified range  
(Bz), NOISESET = 1  
0.082  
110  
degree  
μs  
guaranteed by design  
System propagation  
delay –core  
t
Reading angle via SPI  
90  
delay  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 7  
Document Feedback  
AS5047U − Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Residual system  
propagation delay after  
dynamic angle error  
correction  
t
At ABI, UVW and SPI  
-1.9  
1.9  
μs  
delay_DAEC  
Refresh time at  
SPI(ANGLECOM), ABI,  
UVW  
Refresh time of DAEC  
output  
t
202  
222  
247  
ns  
refresh  
At 1700 rpm constant  
speed  
DAE  
Dynamic angle error  
0.02  
degree  
1700  
At 28000 rpm  
constant speed  
DAE  
Dynamic angle error  
Maximum speed  
0.32  
degree  
rpm  
max  
MS  
28000  
Reference magnet: N35H, 8mm diameter; 3mm thickness.  
Magnet in the Bz range.  
Page 8  
Document Feedback  
amsDatasheet  
[v1-00] 2018-Oct-30  
AS5047U − Timing Characteristics  
Timing Characteristics  
Figure 9:  
Timing Specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
Guaranteed by design. Time between  
t
VDD > VDD  
and the first valid  
Power-on time  
10  
ms  
pon  
min  
outcome  
ams Datasheet  
Page 9  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Detailed Description  
The AS5047U is a Hall-effect magnetic sensor using a CMOS  
technology. The Hall sensors convert the magnetic field  
component perpendicular to the surface of the chip into  
voltage.  
Detailed Description  
The signals from the Hall sensors are amplified and filtered by  
the analog front-end (AFE) before being converted by the  
analog-to-digital converter (ADC). The output of the ADC is  
processed by the hardwired CORDIC (coordinate rotation  
digital computer) block to compute the angle and magnitude  
of the magnetic vector. The intensity of the magnetic field  
(magnitude) used by the automatic gain control (AGC) to adjust  
the amplification level for compensation of the temperature  
and magnetic field variations.  
The AS5047U generates continuously the angle information,  
which can be requested by the different interfaces of the device.  
The internal 14-bit resolution is available by readout register  
via the SPI interface. The resolution on the ABI output can be  
programmed for 10 to 14 bits.  
The Dynamic Angle Error Compensation block corrects the  
calculated angle regarding latency by using a linear prediction  
calculation algorithm. At constant rotation speed the latency  
time is internally compensated by the AS5047U, reducing the  
dynamic angle error at the SPI, ABI and UVW outputs.  
The adaptive filter block is implemented after the  
compensation block and reduces the transition noise at low  
rotation speed. The stable information is available on SPI, ABI  
and UVW.  
AS5047U allows selecting between a UVW output interface and  
a PWM encoded interface on the W pin.  
The non-volatile settings in the AS5047U is programmed  
through the SPI interface without any dedicated programmer.  
The AS5047U can support high-speed application up to  
28krpm.  
Page 10  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Power Management  
The AS5047U can be either powered from a 5.0V supply using  
the on-chip low-dropout regulator or from a 3.3V voltage  
supply. The LDO regulator is not intended to power any other  
loads, and it needs a 1μF capacitor to ground located close to  
chip for decoupling as shown in Figure 11.  
In 3.3.V operation, VDD and VREG shall connected together. In  
this configuration, normal noise performance (ONL) is available  
at reduced maximum temperature (125°C) by clearing  
NOISESET to 0. When NOISESET is set to 1, the full temperature  
range is available with reduced noise performance (ONH).  
Figure 10:  
Temperature Range and Output Noise Without Filtering in 3.3V and 5.0V Mode  
VDD (V)  
5.0  
NOISESET  
Temperature Range (°C)  
-40 to 150  
RMS Output Noise (degree)  
0
0
1
0.068  
0.068  
0.082  
3.3  
-40 to 125  
3.3  
-40 to 150  
Figure 11:  
5.0V and 3.3V Power Supply Options  
5.0V Operation  
3.3 V Operation  
VDD  
GND  
VDD3V3  
3.0 – 3.6V  
100nF  
VDD  
GND  
LDO  
VDD3V3  
LDO  
1uF  
100nF  
AS547U  
AS547U  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 11  
Document Feedback  
AS5047U − Detailed Description  
Dynamic Angle Error Compensation  
The AS5047U uses 4 integrated Hall sensors which produce a  
voltage proportional to the orthogonal component of the  
magnetic field to the die. These voltage signals are amplified,  
filtered, and converted into the digital domain to allow the  
CORDIC digital block to calculate the angle of the magnetic  
vector. The propagation of these signals through the analog  
front-end and digital back-end generates a fixed delay between  
the time of measurement and the availability of the measured  
angle at the outputs. This latency generates a dynamic angle  
error represented by the product of the angular speed (ω) and  
the system propagation delay (t  
):  
delay  
(EQ1)  
DAE = ω x t  
delay  
The dynamic angle compensation block calculates the current  
magnet rotation speed (ω) and multiplies it with the system  
propagation delay (t  
) to determine the correction angle to  
delay  
reduce this error. At constant speed, the residual system  
propagation delay is t  
.
delay_DAEC  
The angle represented on the PWM interface is not  
compensated by the Dynamic Angle Error Compensation  
algorithm. It is also possible to disable the Dynamic Angle Error  
Compensation with the DAECDIS setting. Disabling the  
Dynamic Angle Error Compensation gives a noise benefit of  
0.016 degree rms. This setting can be advantageous for low  
speed (under 100 RPM) respectively static positioning  
applications.  
Adaptive Filter System  
The AS5047U uses an implemented adaptive filter system,  
which reduces the transition noise.  
The filter works dynamically depending on acceleration  
(positive and negative acceleration) of rotating system. It is able  
to match the right filter coefficients automatically.  
The filter coefficients (K value), which define also the limits in  
which the filters is acting, can be set in the OTP (K_min= 0x00  
and K_max=0x00 by default).In addition, there is the possibility  
to turn off the filter in the OTP.  
Page 12  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Figure 12:  
Noise vs K Values  
K_min  
K_max  
0
1
2
3
4
5
6
Filter coefficient (K values)  
For detailed application information please refer to the  
Application Note: AS5x47U_Adaptive_Filter.  
Figure 13:  
K Value Configuration  
K_min [LSB]  
Minimum K Value  
K_max [LSB]  
Maximum K Value  
000  
001  
010  
011  
100  
101  
110  
111  
2
3
4
5
6
0
1
1
000  
001  
010  
011  
100  
101  
110  
111  
6
5
4
3
5
1
0
0
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 13  
Document Feedback  
AS5047U − Detailed Description  
Figure 14:  
Adaptive Filter System Setting  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Depending on K setting  
in the OTP  
fcorner  
Corner frequency  
48  
3059  
Hz  
RMS noise (depending  
on the selected K  
setting)  
ONFdyn  
ONFstat  
Noise during rotation  
0.019  
0.011  
0.086  
0.084  
°
°
Noise when stand  
still  
Depending on K setting  
in the OTP  
Figure 15:  
Corner Frequency vs Noise  
fcorner  
ONFdyn  
ONFstat  
K Value  
Filter corner  
frequency [Hz]  
Noise during  
rotation [degree]  
Noise when stand still  
[degree]  
0
1
2
3
4
5
6
48  
97  
0.019  
0.028  
0.036  
0.048  
0.062  
0.077  
0.086  
0.011  
0.017  
0.032  
0.044  
0.059  
0.077  
0.084  
194  
387  
773  
1548  
3095  
Page 14  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Speed Measurements  
Rotation Speed Measurement  
The AS5047U features an average angular velocity calculation  
algorithm with 14-bit resolution. This angular velocity  
information is available over SPI and can be used without  
further averaging in the ECU.  
Figure 16:  
Angular Velocity Measurement Parameter  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Velocity signal  
resolution  
Two's complement  
value  
V
14  
bit  
Res  
Measurement range  
(default)  
V
-28000  
28000  
rpm  
º/s/bit  
%
Range  
Velocity sensitivity  
(default)  
V
24.141  
68.4  
14-bit resolution  
Sens  
Based on actual  
rotation speed  
V
Velocity total error  
Cut off frequency  
5
Error  
Depending on K value  
(see adaptive filter  
system)  
F
16.9  
231  
Hz  
Cutoff  
Figure 17:  
Angular Velocity Measurement Filter Parameters  
Filter Setting  
Typ  
5.8  
Unit  
Notes  
K=0  
K=1  
K=2  
K=3  
K=4  
K=5  
K=6  
6
8.4  
19.8  
51.8  
121.9  
244.9  
°/s  
RMS noise  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 15  
Document Feedback  
AS5047U − Detailed Description  
SPI Interface (Slave)  
The SPI interface shall connected to a host microcontroller  
(master) to read or write the volatile memory as well as to  
program the non-volatile OTP registers.  
The AS5047U SPI only supports slave operation mode. It  
communicates at clock rates up to 10 MHz.  
The AS5047U SPI uses mode=1 (CPOL=0, CPHA=1) to exchange  
data. As shown in Figure 18, a data transfer starts with the  
falling edge of CSn (CLK is low). The AS5047U samples MOSI  
data on the falling edge of CLK. SPI commands are executed at  
the end of the frame (rising edge of CSn). The bit order is MSB  
first.  
A CRC is protecting the SPI Data.  
SPI Timing  
The AS5047U SPI timing is shown in Figure 18.  
Figure 18:  
SPI Timing Diagram  
tCSn  
CSn  
(Input)  
tclk  
tclkH  
tclkL  
tL  
tH  
CLK  
(Input)  
tMISO  
tOZ  
MISO  
(Output)  
Data[23]  
Data[22]  
Data[0]  
tOZ  
tMOSI  
MOSI  
(Input)  
Data[23]  
Data[22]  
Data[0]  
Page 16  
Document Feedback  
amsDatasheet  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Figure 19:  
SPI Timing  
Parameter  
Description  
Time between CSn falling edge and CLK rising edge  
Serial clock period  
Min  
Max  
Units  
ns  
(1)  
t
350  
L
t
100  
ns  
clk  
t
t
Low period of serial clock  
50  
50  
ns  
clkL  
High period of serial clock  
ns  
clkH  
Time between last falling edge of CLK and rising  
edge of CSn  
t
t
clk/2  
ns  
H
(1)  
t
High time of SS/ between two transmissions  
Data input valid to clock edge  
ns  
ns  
ns  
ns  
350  
CSn  
t
t
20  
MOSI  
MISO  
CLK edge to data output valid  
51  
10  
t
Time between CSn rising edge and MISO HiZ  
OZ  
Note(s):  
1. Synchronization with the internal clock 2 * tCLK_SYS + 10ns (e.g. at 9 MHz 232ns)  
ams Datasheet  
Page 17  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Detailed Description  
SPI Transaction  
AS5047U provides two different SPI transactions  
16-bit SPI frame without CRC (for high throughput)  
24-bit SPI frames with CRC  
32-bit SPI frames with CRC. The 32-bit SPI frames includes  
8-bit PAD word.  
For high-throughput requirements, the AS5047U can handle  
16-bit frames for read operations. This allows reading more than  
400000 angle positions per second.  
Figure 20:  
16-Bit SPI Frame  
CSn  
15 14 13  
0
0
R
ADDR[13:0]  
MOSI  
MSB  
LSB  
15 14 13  
ER  
0
RDATA[13:0]  
MISO  
MSB  
LSB  
Figure 21:  
16-Bit Command Frame  
Bit  
15  
Name  
Description  
0
Do not Care  
1: Read  
14  
R
13:0  
ADDR[13:0]  
Address  
Page 18  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Figure 22:  
16-Bit Data Frame  
Bit  
15  
Name  
ER  
Description  
Warning Bit  
Error Bit  
Data  
14  
13:0  
DATA[13:0]  
24-Bit SPI frames and 32-Bit SPI frames have CRC for increased  
reliability of communication over the SPI. A wrong setting of  
the calculation / setting of the CRC causes a CRC error, which  
sets the CRCERR bit in the error flag register.  
Figure 23:  
24-Bit SPI Frame  
CSn  
23  
0
21  
8 7  
8 7  
0
RW  
ADDR[13:0]  
CRC-8  
CRC-8  
MOSI  
MISO  
MSB  
LSB  
0
23 22 21  
ER  
RDATA[13:0]  
MSB  
LSB  
Figure 24:  
24-Bit Command Frame  
Bit  
Name  
Description  
23  
0
Do not Care  
0: Write  
1: Read  
22  
RW  
21:8  
7:0  
ADDR[13:0]  
CRC  
Address  
Calculated CRC  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 19  
Document Feedback  
AS5047U − Detailed Description  
Figure 25:  
24-Bit Data Frame  
Bit  
23  
Name  
Description  
Warning Bit  
Error Bit  
ER  
22  
21:8  
7:0  
DATA[13:0]  
CRC  
Data  
Calculated CRC  
The 32-Bit Frames have a PAD Word, which is applicable for  
operation in daisy chain mode.  
Figure 26:  
32-Bit SPI Frame  
CSn  
31  
23 22 21  
8 7  
8 7  
0
0
RW  
PAD[n-1:0]  
ADDR[13:0]  
CRC-8  
MOSI  
MSB  
LSB  
0
31 30 29  
ER  
16 15  
RDATA[13:0]  
CRC-8  
PAD[n-1:0]  
MISO  
MSB  
LSB  
Figure 27:  
32-Bit Command Frame  
Bit  
31:24  
23  
Name  
PAD  
0
Description  
PAD Number  
Do Not care  
0: Write  
1: Read  
22  
RW  
21:8  
7:0  
ADDR[13:0]  
CRC  
Address  
Calculated CRC  
Page 20  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Figure 28:  
32-Bit Data Frame  
Bit  
31  
Name  
Description  
Warning Bit  
Error Bit  
ER  
30  
29:16  
15:8  
7:0  
RW  
ADDR[13:0]  
CRC  
Data  
Calculated CRC  
PAD Number  
The data sent on the MISO pin. The CRC is calculated by the  
AS5047U. If an error or a warning is detected in the previous SPI  
command frame, the Error/Warning bit is set high. The SPI read  
is synchronized on the rising edge of CSn and the data is  
transmitted on MISO with the next read command, as shown in  
Figure 29.  
Figure 29:  
SPI Read  
CSn  
Command  
Command  
Command  
Command  
Read ADD[m]  
Read ADD[n]  
Read ADD[o]  
Read ADD[p]  
MOSI  
MISO  
Data  
Data  
Data  
DATA (ADD[m])  
DATA (ADD[n])  
DATA (ADD[o])  
Recommended CRC calculation see chapter CRC Checksum  
In an SPI write transaction, the write command frame is  
followed by a write data frame at MOSI. The write data frame  
consists of the new content of register which address is in the  
command frame. During the new content is transmitted on  
MOSI by the write data frame, the old content is send on MISO.  
At the next command on MOSI the actual content of the register  
is transmitted on MISO, as shown in Figure 30.  
ams Datasheet  
Page 21  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Detailed Description  
Figure 30:  
SPI Write  
CSn  
Command  
Data to write into ADD[n]  
Command  
Data to write into ADD[m]  
Command  
Next  
Write ADD[n]  
DATA (x)  
Write ADD[m]  
DATA (y)  
MOSI  
MISO  
command  
New Data content  
of ADD[n]  
New Data content  
of ADD[m]  
Data content ADD[n]  
Data content ADD[m]  
DATA (ADD[n])  
DATA (x)  
DATA (ADD[m])  
DATA (y)  
PAD Word  
Any number of PAD [8*n-1:0] bits can precede the MOSI data.  
The PAD word is used to allocate the data on MISO to the correct  
device.  
CRC Checksum  
For secure and reliable data transmission, the 24-Bit and 32-Bit  
frames have a CRC for verification of correct transmission. The  
CRC is calculated out of the payload of SPI frames (e.g.: CRC is  
calculated out of bit 23:8 from 24-bit command frame)  
The calculation of the CRC is based on Irreducible polynomial  
x^8+x^4+x^3+x^2+1 according to standard J1850.  
The initialization CRC = 0xFF prevents that 0x000000 is a valid  
SPI command. This command would clear all sticky error flags.  
Page 22  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Volatile Registers  
The volatile registers are shown in Figure 31. Each register has  
a 14-bit address.  
Figure 31:  
Volatile Memory Register Description  
Address  
0x0000  
Name  
NOP  
Default  
0x0000  
0x0000  
0x0000  
Description  
No operation  
0x0001  
ERRFL  
PROG  
Error register  
0x0003  
Programming register  
0xX3C2 or 0xXBC2 for  
3.3V mode  
0xX3C3 or 0xXBC3 for  
5 V mode  
0x3FF5  
DIA  
DIAGNOSTIC  
0x3FF9  
0x3FFA  
0x3FFB  
0x3FFC  
0x3FFD  
AGC  
Sin-data  
Cos-data  
VEL  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
AGC Value  
Raw digital sine channel data  
Raw digital cosine channel data  
Velocity  
MAG  
CORDIC magnitude  
Measured angle without dynamic  
angle error compensation  
0x3FFE  
0x3FFF  
0x00D1  
ANGLEUNC  
ANGLECOM  
0x0000  
0x0000  
0x0000  
Measured angle with dynamic angle  
error compensation  
ECC checksum calculated based on  
actual register setting  
ECC_Checksum  
Figure 32:  
ERRFL (0x0001)  
Name  
Read/Write  
Bit Position  
Description  
CORDIC  
Overflow  
R
10  
Reading the Overflow Bit of the CORDIC  
OffCompNotFi  
nished  
In case the flag is 1 the internal offset compensation  
is not finished  
R
9
8
Not used  
N/A  
No function. Bit Setting: 0  
Watchdog information. In case the flag sets to 1, the  
internal oscillator or the watchdog is not working  
correctly  
WDTST  
R
R
7
6
CRC error  
CRC error during SPI communication  
ams Datasheet  
Page 23  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Detailed Description  
Name  
Read/Write  
Bit Position  
Description  
Command_  
error  
R
R
R
5
4
3
SPI invalid command received  
Framing error  
P2ram_error  
Framing if SPI communication wrong  
ECC has detected 2 uncorrectable errors in P2RAM in  
customer area  
P2ram_  
warning  
R
R
2
1
ECC is correcting one bit of P2RAM in customer area  
This flag sets to 1 in case the AGC Value reaches 255  
LSB and the magnitude value is the half of the of the  
regulated magnitude value (between AGC = 0LSB  
and AGC = 255LSB) which is typical 4800LSB.  
MagHalf  
Agc-warning=1. The flag sets to 1 in case the AGC  
Value reaches 0LSB or 255LSB. The detailed  
information which level is reached can be found in  
the diagnostic register.  
Agc-warning  
R
0
Reading the ERRFL register automatically clears its contents  
(ERRFL=0x0000).  
In case of an error flag, a read of the DIA register is mandatory.  
Figure 33:  
PROG (0x0003)  
Name  
PROGVER  
PROGOTP  
OTPREF  
Read/Write  
R/W  
Bit Position  
Description  
Program verify: Must be set to 1 for verifying the  
correctness of the OTP programming  
6
3
2
R/W  
Start OTP programming cycle  
Refreshes the non-volatile memory content with the  
OTP programmed content  
R/W  
Program OTP enable: Enables reading / writing the OTP  
memory  
PROGEN  
R/W  
0
The PROG register is used for programming the OTP memory.  
Page 24  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Figure 34:  
DIA(0x3FF5)  
Name  
SPI_cnt  
Read/Write  
Bit Position  
Description  
R
N/A  
R
11:12  
10  
SPI frame counter  
Not used  
No function. Bit Setting: 0  
Initial AGC settling finished  
AGC_finished  
9
Off comp  
finished  
R
8
Error flag offset compensation finished  
SinOff_fin  
CosOff_fin  
R
R
R
R
R
R
R
7
6
5
4
3
2
1
Sine offset compensation finished  
Cosine offset compensation finished  
Error flag magnitude is below half of target value  
Warning flag AGC high  
MagHalf_flag  
Comp_h  
Comp_l  
Warning flag AGC low  
Cordic_overflow  
LoopsFinished  
Error flag CORDIC overflow  
All Magneto Core loops finished  
VDD supply mode:  
0: VDD 3.3 Mode  
1: VDD 5.0 Mode  
Vdd_mode  
R
0
Figure 35:  
AGC(0x3FF9)  
Description  
Name  
Read/Write  
Bit Position  
AGC  
R
7:0  
8-Bit AGC value  
Figure 36:  
VEL(0x3FFC)  
Description  
Name  
Read/Write  
Bit Position  
Vel  
R
13:0  
Velocity value (14-bit signed integer)  
Figure 37:  
MAG (0x3FFD)  
Description  
Name  
Read/Write  
Bit Position  
Mag  
R
13:0  
CORDIC magnitude information  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 25  
Document Feedback  
AS5047U − Detailed Description  
Figure 38:  
ANGLEUNC (0x3FFE)  
Name  
Read/Write  
Bit Position  
Description  
Angle information without dynamic angle error  
compensation  
ANGLEUNC  
R
13:0  
Figure 39:  
ECC_s (0x3FD0)  
Name  
Read/Write  
Bit Position  
Description  
ECC_s  
R
6:0  
Calculated ECC checksum  
Figure 40:  
ANGLECOM(0x3FFF)  
Name  
Read/Write  
Bit Position  
Description  
Angle information with dynamic angle error  
compensation  
ANGLECOM  
R
13:0  
Non-Volatile Registers (OTP)  
The OTP (One-Time Programmable) memory is used to store the  
absolute zero position of the sensor and the customer settings  
permanently in the sensor IC. SPI write/read access is possible  
several times for all non-volatile registers (soft write). Soft  
written register content will be lost after a hardware reset. The  
programming itself can be done just once. Therefore the  
content of the non-volatile registers is stored permanently in  
the sensor. The register content is still present after a hardware  
reset and cannot be overwritten. For a correct function of the  
sensor the OTP programming is not required. If no  
configuration or programming is done, the non-volatile  
registers are in the default state 0x0000.  
Figure 41:  
Non-Volatile Register Table  
Address  
0x0015  
0x0016  
0x0017  
0x0018  
Name  
Default  
0x0000  
0x0000  
0x0000  
0x0000  
Description  
Outputs and filter disable register  
Zero position MSB  
DISABLE  
ZPOSM  
ZPOSL  
Zero position LSB/ MAG diagnostic  
Custom setting register 1  
SETTINGS1  
Page 26  
Document Feedback  
amsDatasheet  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Address  
0x0019  
Name  
Default  
0x0000  
0x0000  
0x0000  
Description  
SETTINGS2  
SETTINGS3  
ECC  
Custom setting register 2  
0x001A  
0x001B  
Custom setting register 3  
ECC Settings  
Figure 42:  
DISABLE (0x0015)  
Description  
Name  
Read/Write/Program  
Bit Position  
0: Normal mode (default)  
1: Switch UVW output off (tristate)  
UVW_off  
RW  
0
0: Normal mode (default)  
1: Switch ABI output off (tristate)  
ABI_off  
na  
RW  
RW  
RW  
1
2:5  
6
Default=0  
0: Filter enabled (default)  
1: Filter disabled  
FILTER_disable  
Figure 43:  
ZPOSM (0x0016)  
Description  
Name  
Read/Write/Program Bit Position  
ZPOSM  
R/W/P  
7:0  
8 most significant bits of the zero position  
Figure 44:  
ZPOSL (0x0017)  
Name  
Read/Write/Program Bit Position  
Description  
ZPOSL  
R/W/P  
R/W/P  
5:0  
6
6 least significant bits of the zero position  
Default=0; only applicable for automotive  
version AS5147U  
Dia1_en  
Dia2_en  
Default=0; only applicable for automotive  
version AS5147U  
R/W/P  
7
ams Datasheet  
Page 27  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Detailed Description  
Figure 45:  
SETTINGS1 (0x0018)  
Name  
K_max  
K_min  
Read/Write/Program Bit Position  
Description  
R/W/P  
R/W/P  
2:0  
5:3  
K max for adaptive filter setting  
K min for adaptive filter setting  
Default=0; only applicable for automotive  
version AS5147U  
Dia3_en  
Dia4_en  
R/W/P  
R/W/P  
6
7
Default=0; only applicable for automotive  
version AS5147U  
Figure 46:  
SETTINGS2 (0x0019)  
Name  
Read/Write/Program Bit Position  
Description  
0: 3 pulses  
1: 1 pulses  
IWIDTH  
R/W/P  
0
NOISESET  
DIR  
R/W/P  
R/W/P  
1
2
Noise setting for 3.3V operation at 150°C  
Rotation direction  
Defines the PWM output  
UVW_ABI  
R/W/P  
3
(0=ABI is operating, W is used as PWM)  
(1=UVW is operating, I is used as PWM)  
Disable dynamic angle error compensation  
(0=DAE compensation ON,  
1=DAE compensation OFF)  
DAECDIS  
ABI_DEC  
R/W/P  
R/W/P  
4
5
ABI setting to decimal count  
This bit defines which data can be read from  
address 16383dec (3FFFhex)  
0-> ANGLECOM  
Data_select  
PWMon  
R/W/P  
R/W/P  
6
7
1-> ANGLEUNC  
Enables PWM (setting of UVW_ABI bit  
necessary)  
Page 28  
Document Feedback  
amsDatasheet  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Figure 47:  
SETTINGS3 (0x001A)  
Name  
UVWPP  
HYS  
Read/Write/Program Bit Position  
Description  
R/W/P  
R/W/P  
R/W/P  
2:0  
4:3  
7:5  
UVW number of pole pairs  
Hysteresis  
ABIRES  
Resolution of ABI  
Figure 48:  
ECC (0x001B)  
Read/Write/  
Program  
Bit  
Position  
Name  
Description  
ECC_chsum  
ECC_en  
R/W/P  
R/W/P  
6:0  
7
ECC checksum  
Enables ECC  
ams Datasheet  
Page 29  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Detailed Description  
ABI Incremental Interface  
The AS5047U can send the angle position to the host  
microcontroller through an incremental interface. This  
interface is available simultaneously with the other interfaces.  
By default, the incremental interface is set to work at a 12-bit  
resolution which corresponds to 4096 steps per revolution or  
1024 pulses per revolution (ppr). This resolution can be  
changed with the OTP bits ABIRES. The phase shift between the  
A and B signals indicates the rotation direction: clockwise (A  
leads, B follows) or counterclockwise (B leads, A follows). During  
the start-up time, after power on to the chip, all three ABI signals  
are high. The DIR bit can be used to invert the sense of the  
rotation direction.  
The IWIDTH setting programs the width of the index pulse from  
3 LSB (default) to 1 LSB.  
Figure 49:  
ABI Signals  
A
B
I
N-7 N-6 N-5 N-4 N-3 N-2 N-1  
0
1
2
3
4
5
6
7
8
7
6
5
4
3
2
1
0 N-1 N-2 N-3 N-4  
Steps  
Clockwise rotation  
Counter-clockwise rotation  
N= 16384 for 14-Bit resolution, N = 4096 for 12-bit resolution  
and N = 1024 for 10-bit resolution..  
The Figure 49 shows the ABI signal flow if the magnet rotates  
in clockwise direction and counter-clockwise direction (DIR=0).  
The rotation direction of the magnet is defined as clockwise  
(DIR=0) when the view is from the topside of AS5047U.  
Page 30  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Figure 50:  
ABI Settings  
ABIRES [LSB]  
SETTINGS3  
(0x001A)  
ABI_DEC  
SETTINGS2  
(0x0019)  
ABI_Pulses  
ABI Resolution [LSB]  
100  
011  
000  
001  
010  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
0
0
1
1
1
1
1
1
1
1
4096  
2048  
1024  
512  
256  
1000  
500  
400  
300  
200  
100  
50  
16384  
8192  
4096 (default value)  
2048  
1024  
4000  
2000  
1600  
1200  
800  
400  
200  
25  
100  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 31  
Document Feedback  
AS5047U − Detailed Description  
UVW Commutation Interface  
The AS5047U can emulate the UVW signals generated by the  
three discrete Hall switches commonly used in BLDC motors.  
The UVWPP field in the SETTINGS3 register selects the number  
of pole pairs of the motor (from 1 to 7 pole pairs). The UVW  
signals are generated based on14-bit core resolution.  
During the start-up time, after power on of the chip, the UVW  
signals are low.  
Figure 51:  
UVW Signals  
U
V
W
angle 0°  
60°  
120°  
180°  
240°  
300°  
360°  
360° 300°  
240°  
180°  
120°  
60°  
0°  
Clockwise rotation  
Counter-clockwise rotation  
The Figure 51 shows the UVW signal flow if the magnet rotates  
in clockwise direction and counter-clockwise direction (DIR=0).  
The rotation direction of the magnet is defined as clockwise  
(DIR=0) when the view is from the topside of AS5047U. With the  
bit DIR, it is possible to invert the rotation direction.  
Page 32  
Document Feedback  
amsDatasheet  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Figure 52:  
UVW Settings  
UVWPP [LSB]  
Pole Pairs  
1pp (default)  
2pp  
000  
001  
010  
011  
100  
101  
110  
111  
3pp  
4pp  
5pp  
6pp  
7pp  
7pp  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 33  
Document Feedback  
AS5047U − Detailed Description  
PWM  
The PWM can be enabled with the bit setting PWMon. The PWM  
encoded signal is displayed on the pin W or the pin I. The bit  
setting UVW_ABI defines which output is used as PWM. The  
PWM output consists of a frame of 4119 PWM clock periods, as  
shown in Figure 53. The PWM frame has the following sections:  
12 PWM clock periods for INIT  
4 PWM clock periods for error detection  
4095 PWM clock periods of data  
8 PWM clock periods low  
The angle is represented in the data part of the frame with a  
12-bit resolution. One PWM clock period represents 0.088  
degree and has a typical duration of 444 ns.  
If the embedded diagnostic of the AS5047U detects any error  
the PWM interface displays only 12 clock periods high  
(0.3% duty-cycle). Respectively the 4 clocks for error detection  
are forced to low.  
Figure 53:  
Pulse Width Modulation Encoded Signal  
frame  
4 clock  
time  
12 clock periods periods  
4095 clock periods  
data  
8 clock periods  
low  
high  
Error  
detection  
Page 34  
Document Feedback  
amsDatasheet  
[v1-00] 2018-Oct-30  
AS5047U − Detailed Description  
Hysteresis  
The hysteresis can be programmed in the HYS bits of the  
SETTINGS3 register. The hysteresis can be 1, 2, or 3 LSB bits,  
based on 11-bit resolution.  
Figure 54:  
Hysteresis Settings  
Hysteresis Related to 11-Bit  
HYS  
ABI Resolution  
00  
01  
10  
11  
1
2
3
0
Automatic Gain Control (AGC) and CORDIC  
Magnitude  
The AS5047U uses AGC to compensate for variations in the  
magnetic field strength due to changes of temperature, air gap  
between the chip and the magnet, and demagnetization of the  
magnet. The automatic gain control value can be read in the  
AGC field of the AGC register. Within the specified input  
magnetic field strength (Bz), the Automatic Gain Control keeps  
the CORDIC magnitude value (MAG) constant.  
If magnetic field strength is out of specifications, the AGC has  
its limits reached and the Agc-warning bit is set. When the  
magnetic field strength is decreasing more then AGC can  
control, the CORDIC magnitude is also decreasing.  
If the CORDIC magnitude decreases lower than half of the target  
magnet, the error flag MagHalf_flag is set.  
ams Datasheet  
Page 35  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Detailed Description  
ECC  
The ECC (Error Code Correction) is a mechanism which protects  
the customer settings.  
The ECC protection is active whenever ECC_en=1. ECC_en is the  
error corrected counterpart of the P2RAM bit en and is found  
in register ECC_STATUS. Whenever a bit error occurs, this is  
reported by the status register ERRFL [2:3]. Single bit errors are  
corrected immediately and do not influence the correct  
operation of the sensor. If either a single or double errors are  
detected, the next SPI MISO frame will report this to the  
software by setting flags error=1 (double bit error) or  
warning=1 (single bit error). Warning and error are sticky flags,  
which guarantees that spurious P2RAM errors are certainly  
reported.  
The ECC Protection is activated with the following steps:  
Writing uses data into the register and set ECC_en to high.  
Reading ECC_s from register 0x3FD0 and set the value into  
ECC_chsum. Do not overwrite the ECC_en  
Programming the part.  
Page 36  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Application Information  
Application Information  
Burn and Verification of the OTP Memory  
Figure 55:  
Minimum Programming Diagram for the AS5047U with 5V Supply Voltage  
VDD during programming 4.5 – 5.5V  
VDD  
I
CSn  
CLK  
GND  
MISO  
VDD3V  
MOSI  
TEST  
A
VDD  
U
Programmer  
V
100nF  
1μF  
B
W
GND  
Note(s):  
1. In terms of EMC and for remote application, additional circuits are necessary.  
ams Datasheet  
Page 37  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Application Information  
Figure 56:  
Minimum Programming Diagram for the AS5047U with 3.3V Supply Voltage  
VDD during programming: 3.3V – 3.5V  
VDD  
I
CSn  
CLK  
GND  
VDD3V  
MISO  
MOSI  
VDD  
U
TEST  
Programmer  
A
V
100nF  
B
W
GND  
Note(s):  
1. In terms of EMC and for remote application, additional circuits are necessary.  
Page 38  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Application Information  
Figure 57:  
Programming Parameter  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Programming @ Room  
Temperature  
(25°C 20°C)  
Programming  
temperature  
T
5
45  
°C  
aProg  
Positive supply  
voltage  
5 V operation mode. Supply  
voltage during programming  
V
4.5  
3.3  
5
5.5  
3.5  
V
V
DD  
Positive supply  
voltage  
3.3 V operation mode. Supply  
voltage during programming  
V
DD  
Current for  
programming  
Max current during OTP burn  
procedure.  
I
100  
mA  
Prog  
Note(s):  
1. Programming parameter valid for AS5047U.  
Step-by-Step Procedure to Permanently  
Program the Non-Volatile Memory (OTP):  
The programming can either be performed in 5V operation  
using the internal LDO (1μF on regulator output pin), or in 3V  
Operation but using a supply voltage between 3.3V and 3.5V.  
1. Power on cycle  
2. Write the SETTINGS1 and SETTINGS2 and SETTINGS3  
registers with the Custom settings for this application  
3. Place the magnet at the desired zero position  
4. Read out the measured angle from the ANGLECOM  
register  
5. Write ANGLECOM [5:0] into the ZPOSL register and  
ANGLECOM[13:6] into the ZPOSM register  
6. Read reg(0x0016) to reg(0x001A)  
7. Set ECC_en in Register ECC to 1 (ECC protection  
enabled)  
8. Read ECC_s (0x3FD0) to get the correct ECC key  
9. Write ECC_s key into ECC register  
10. Read reg(0x0016) to reg(0x001B) read register step1  
11. Comparison of written content (settings and angle) with  
content of read register step1  
12. If point 11 is correct, enable OTP read / write by setting  
PROGEN = 1 in the PROG register  
13. Start the OTP burn procedure by setting PROGOTP = 1  
in the PROG register  
14. Read the PROG register until it reads 0x0001  
(Programming procedure complete)  
ams Datasheet  
Page 39  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Application Information  
15. Clear the memory content by writing 0x00 in the whole  
non-volatile memory  
16. Set the PROGVER = 1 to set the Guard band for the guard  
1
band test.  
17. Refresh the non-volatile memory content with the OTP  
content by setting OTPREF = 1  
18. Read reg(0x0016) to reg(0x001B) read register step2  
19. Comparison of written content (settings and angle) with  
content of read register step2. If a deviation in the  
comparison occurs, the guard band test was not  
successful. Reprogramming is not allowed!  
Mandatory: guard band test  
20. New power on cycle.  
21. Read reg(0x0016) to Reg(0x001B) read register step3  
22. Comparison of written content (settings and angle) with  
content of read register step3. If a deviation in the  
comparison occurs, the power on test was not  
successful. Reprogramming is not allowed!  
23. If point 18 is correct, the programming was successful.  
1. Guard band test:  
Restricted to temperature range: 25 °C 20 °C  
Right after the programming procedure (max. 1 hour with same conditions 25°C 20 °C), same VDD voltage.  
The guard band test is only for the verification of the burned OTP fuses during the programming sequence.  
A use of the guard band in other cases is not allowed.  
Page 40  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Application Information  
Figure 58:  
OTP Memory Burn and Verification Flowchart  
Read  
Reg(0x0003)  
Read OTP_CTRL  
Power on cycle  
START  
FAIL  
Write  
OTP burning procedure  
complete if  
Reg(0x0003)==0x01  
Write  
Reg(0x0015)  
Reg(0x0018)  
Reg(0x0019)  
Reg(0x001A)  
Reg(0x0003)==0x01  
DISABLE,SETTINGS1,  
SETTINGS2 and  
SETTINGS3 register  
Write  
Reg(0x0015)=0x00  
Reg(0x0016)=0x00  
Reg(0x0017)=0x00  
Reg(0x0018)=0x00  
Reg(0x0019)=0x00  
Reg(0x001A)=0x00  
Reg(0x001B)=0x00  
Turn magnet to the  
Set magnet to the zero  
position  
Clear memory  
Set Guardband  
prospective Zero Position  
Read  
Reg(0x3FFF)  
Write  
Reg(0x0003)=0x40  
Read ANGLECOM  
Refresh memory with OTP  
content  
Write  
Reg(0x0003)=0x04  
Write  
Write Angle into ZPOSL  
and ZPOSM  
Reg(0x0017(5:0))=Reg(0x3FFF(5:0))  
Reg(0x0016(7:0))=Reg(0x3FFF(13:6))  
Read  
Reg(0x0015)  
Reg(0x0016)  
Reg(0x0017)  
Reg(0x0018)  
Reg(0x0019)  
Reg(0x001A)  
Reg(0x001B)  
Read  
Reg(0x0015)  
Reg(0x0016)  
Reg(0x0017)  
Reg(0x0018)  
Reg(0x0019)  
Reg(0x001A)  
Read Register step 2  
Read Reg(0x0015) to  
Reg(0x001A)  
Comparison of written  
content  
Write  
(DISABLE,SETTINGS1,  
SETTINGS2, SETTINGS3,  
ZPOSM, ZPOSL and ECC) with  
content of Read Register  
step 2.  
Write ECC_EN  
Reg(0x001B)=0x80  
Verify 3  
FAIL  
Read  
Reg(0x3FD0)  
Read ECC Value  
PASS  
Mandatory Guardband-Test  
Write ECC (do not  
overwrite ECC-en)  
Write  
Reg(0x001B)  
Power-on Reset  
Read  
Read  
Reg(0x0015)  
Reg(0x0016)  
Reg(0x0017)  
Reg(0x0018)  
Reg(0x0019)  
Reg(0x001A)  
Reg(0x001B)  
Read Registers step 1  
(DISABLE,SETTINGS1,  
SETTINGS2, SETTINGS3,  
ZPOSM, ZPOSL and ECC)  
Reg(0x0015)  
Reg(0x0016)  
Reg(0x0017)  
Reg(0x0018)  
Reg(0x0016)  
Read Register step 3  
Comparison of written  
content  
(DISABLE,SETTINGS1,  
SETTINGS2, SETTINGS3,  
ZPOSM, ZPOSL and ECC) with  
content of Read Register  
step 3  
Comparison of written  
content  
(DISABLE,SETTINGS1,  
SETTINGS2, SETTINGS3,  
ZPOSM, ZPOSL and ECC)  
with Read Register step 1  
read content  
Verify 4  
FAIL  
Verify 1  
FAIL  
PASS  
PASS  
END  
Correct  
programming  
and verification.  
END  
Wrong  
programming.  
Reprogramming  
not allowed!  
Unlock OTP area for  
burning  
Write  
Reg(0x0003)=0x01  
(PROGEN=1)  
Start OTP burning  
procedure  
Write  
Reg(0x0003)=0x08  
(PROGOTP=1)  
Note(s):  
1. Device with wrong programming must not be used. Scrapping mandatory.  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 41  
Document Feedback  
AS5047U − Application Information  
Circuit Diagram  
Figure 59:  
Minimum Circuit Diagram for the AS5047U  
VDD during programming 4.5 – 5.5V  
VDD  
I
CSn  
CLK  
GND  
VDD3V  
MISO  
MOSI  
TEST  
A
VDD  
U
Programmer  
V
100nF  
1μF  
B
W
GND  
Note(s):  
1. In terms of EMC and for remote application, additional protection circuit is necessary.  
Page 42  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Package Drawings & Markings  
Package Drawings & Markings  
Figure 60:  
Package Outline Drawing AS5047U  
RoHS  
Green  
Symbol  
Min  
-
Nom  
Max  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
-
Symbol  
R
Min  
Nom  
-
Max  
A
A1  
A2  
b
-
-
0.09  
-
-
0.05  
0.80  
0.19  
0.09  
4.90  
-
R1  
0.09  
-
1.00  
-
S
0.20  
-
-
Θ1  
0º  
-
-
8º  
-
c
-
Θ2  
12 REF  
12 REF  
0.10  
0.10  
0.05  
0.20  
14  
D
5.00  
6.40 BSC  
4.40  
0.65 BSC  
0.60  
1.00 REF  
Θ3  
-
-
E
aaa  
bbb  
ccc  
ddd  
N
-
-
E1  
e
4.30  
-
4.50  
-
-
-
-
-
L
0.45  
-
0.75  
-
-
-
L1  
Note(s):  
1. Dimensioning and tolerancing conform to ASME Y14.5M - 1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
3. N is the total number of terminals.  
ams Datasheet  
[v1-00] 2018-Oct-30  
Page 43  
Document Feedback  
AS5047U − Package Drawings & Markings  
Figure 61:  
AS5047U Package Marking  
AS5047U  
YYWWMZZ  
@
Figure 62:  
Packaging Code  
YY  
WW  
M
ZZ  
@
Last two digits of the  
manufacturing year  
Free choice /  
traceability code  
Manufacturing week  
Plant identifier  
Sublot identifier  
Page 44  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Mechanical Data  
Mechanical Data  
Figure 63:  
TSSOP14 Die Placement and Hall Array Position  
0.306 0.100  
2.130 0.235  
Hall radius  
0.236 0.100  
0.694 0.150  
Note(s):  
1. Dimensions are in mm.  
2. The Hall array center is located in the center of the IC package. Hall array radius is 1.25mm.  
3. Die thickness is 203ꢀm nominal.  
ams Datasheet  
Page 45  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Ordering & Contact Information  
Ordering&ContactInformation  
Figure 64:  
Ordering Information  
Ordering  
Package  
Code  
Delivery  
Marking  
Delivery Form  
Quantity  
500 pcs/reel  
4500 pcs/reel  
AS5047U-HTSM  
AS5047U-HTST  
TSSOP14  
TSSOP14  
AS5047U  
AS5047U  
7” Tape & Reel in dry pack  
13” Tape & Reel in dry pack  
Buy our products or get free samples online at:  
www.ams.com/Products  
Technical Support is available at:  
www.ams.com/Technical-Support  
Provide feedback about this document at:  
www.ams.com/Document-Feedback  
For further information and requests, e-mail us at:  
ams_sales@ams.com  
For sales offices, distributors and representatives, please visit:  
www.ams.com/Contact  
Headquarters  
ams AG  
Tobelbader Strasse 30  
8141 Premstaetten  
Austria, Europe  
Tel: +43 (0) 3136 500 0  
Website: www.ams.com  
Page 46  
Document Feedback  
amsDatasheet  
[v1-00] 2018-Oct-30  
AS5047U − RoHS Compliant & ams Green Statement  
RoHS: The term RoHS compliant means that ams AG products  
fully comply with current RoHS directives. Our semiconductor  
products do not contain any chemicals for all 6 substance  
categories, including the requirement that lead not exceed  
0.1% by weight in homogeneous materials. Where designed to  
be soldered at high temperatures, RoHS compliant products are  
suitable for use in specified lead-free processes.  
RoHS Compliant & ams Green  
Statement  
ams Green (RoHS compliant and no Sb/Br): ams Green  
defines that in addition to RoHS compliance, our products are  
free of Bromine (Br) and Antimony (Sb) based flame retardants  
(Br or Sb do not exceed 0.1% by weight in homogeneous  
material).  
Important Information: The information provided in this  
statement represents ams AG knowledge and belief as of the  
date that it is provided. ams AG bases its knowledge and belief  
on information provided by third parties, and makes no  
representation or warranty as to the accuracy of such  
information. Efforts are underway to better integrate  
information from third parties. ams AG has taken and continues  
to take reasonable steps to provide representative and accurate  
information but may not have conducted destructive testing or  
chemical analysis on incoming materials and chemicals. ams AG  
and ams AG suppliers consider certain information to be  
proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
ams Datasheet  
Page 47  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Copyrights & Disclaimer  
Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten,  
Austria-Europe. Trademarks Registered. All rights reserved. The  
material herein may not be reproduced, adapted, merged,  
translated, stored, or used without the prior written consent of  
the copyright owner.  
Copyrights & Disclaimer  
Devices sold by ams AG are covered by the warranty and patent  
indemnification provisions appearing in its General Terms of  
Trade. ams AG makes no warranty, express, statutory, implied,  
or by description regarding the information set forth herein.  
ams AG reserves the right to change specifications and prices  
at any time and without notice. Therefore, prior to designing  
this product into a system, it is necessary to check with ams AG  
for current information. This product is intended for use in  
commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or  
high reliability applications, such as military, medical  
life-support or life-sustaining equipment are specifically not  
recommended without additional processing by ams AG for  
each application. This product is provided by ams AG “AS IS”  
and any express or implied warranties, including, but not  
limited to the implied warranties of merchantability and fitness  
for a particular purpose are disclaimed.  
ams AG shall not be liable to recipient or any third party for any  
damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any  
kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation  
or liability to recipient or any third party shall arise or flow out  
of ams AG rendering of technical or other services.  
The Hardware was developed in the domain of SEooC (Safety  
Element out of Context) using ams best system know how. The  
final system or target application is not known to ams AG. This  
implies, that ams AG does not guarantee for a system functional  
safety concept. The final responsibility for achieving a certain  
ASIL (Automotive Safety Integrity Level) in the target  
application is the responsibility of the system integrator.  
Page 48  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Document Status  
Document Status  
Document Status  
Product Status  
Definition  
Information in this datasheet is based on product ideas in  
the planning phase of development. All specifications are  
design goals without any warranty and are subject to  
change without notice  
Product Preview  
Pre-Development  
Information in this datasheet is based on products in the  
design, validation or qualification phase of development.  
The performance and parameters shown in this document  
are preliminary without any warranty and are subject to  
change without notice  
Preliminary Datasheet  
Datasheet  
Pre-Production  
Production  
Information in this datasheet is based on products in  
ramp-up to full production or full production which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade  
Information in this datasheet is based on products which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade, but these products have been superseded and  
should not be used for new designs  
Datasheet (discontinued)  
Discontinued  
ams Datasheet  
Page 49  
[v1-00] 2018-Oct-30  
Document Feedback  
AS5047U − Revision Information  
Revision Information  
Changes from 0-07 (2018-Sep-12) to current revision 1-00 (2018-Oct-30)  
Page  
Updated figure 27  
20  
Note(s):  
1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.  
2. Correction of typographical errors is not explicitly mentioned.  
Page 50  
amsDatasheet  
Document Feedback  
[v1-00] 2018-Oct-30  
AS5047U − Content Guide  
1
1
2
2
General Description  
Key Benefits & Features  
Applications  
Content Guide  
Block Diagram  
3
5
Pin Assignment  
Absolute Maximum Ratings  
6
7
7
Electrical Characteristics  
Magnetic Characteristics  
System Specifications  
9
Timing Characteristics  
10 Detailed Description  
11 Power Management  
12 Dynamic Angle Error Compensation  
12 Adaptive Filter System  
15 Speed Measurements  
15 Rotation Speed Measurement  
16 SPI Interface (Slave)  
16 SPI Timing  
18 SPI Transaction  
22 PAD Word  
22 CRC Checksum  
23 Volatile Registers  
26 Non-Volatile Registers (OTP)  
30 ABI Incremental Interface  
32 UVW Commutation Interface  
34 PWM  
35 Hysteresis  
35 Automatic Gain Control (AGC) and CORDIC Magnitude  
36 ECC  
37 Application Information  
37 Burn and Verification of the OTP Memory  
39 Step-by-Step Procedure to Permanently Program the  
Non-Volatile Memory (OTP):  
42 Circuit Diagram  
43 Package Drawings & Markings  
45 Mechanical Data  
46 Ordering & Contact Information  
47 RoHS Compliant & ams Green Statement  
48 Copyrights & Disclaimer  
49 Document Status  
50 Revision Information  
ams Datasheet  
Page 51  
[v1-00] 2018-Oct-30  
Document Feedback  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY