AS7262-BLGT [AMSCO]

6 visible channels: 450nm, 500nm, 550nm, 570nm, 600nm and 650nm, each with 40nm FWHM;
AS7262-BLGT
型号: AS7262-BLGT
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

6 visible channels: 450nm, 500nm, 550nm, 570nm, 600nm and 650nm, each with 40nm FWHM

文件: 总47页 (文件大小:677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS7262  
6-Channel Visible Spectral_ID Device  
with Electronic Shutter and Smart  
Interface  
The AS7262 is a cost-effective multi-spectral sensor-on-chip  
solution designed to address spectral ID applications. This  
highly integrated device delivers 6-channel multi-spectral  
sensing in the visible wavelengths from approximately 430nm  
to 670nm with full-width half-max (FWHM) of 40nm. An  
integrated LED driver with programmable current is provided  
for electronic shutter applications.  
General Description  
The AS7262 integrates Gaussian filters into standard CMOS  
silicon via nano-optic deposited interference filter technology  
and is packaged in an LGA package that provides a built in  
aperture to control the light entering the sensor array.  
Control and spectral data access is implemented through either  
the I²C register set, or with a high level AT Spectral Command  
set via a serial UART.  
Ordering Information and Content Guide appear at end of  
datasheet.  
Key Benefits & Features  
The benefits and features of AS7262, 6-Channel Visible  
Spectral_ID Device with Electronic Shutter and Smart Interface  
are listed below:  
Figure 1:  
Added Value of Using AS7262  
Benefits  
Features  
6 visible channels: 450nm, 500nm, 550nm, 570nm,  
600nm and 650nm, each with 40nm FWHM  
Compact 6-channel spectrometry solution  
Simple text-based command interface via  
UART, or direct register read and write with  
interrupt on sensor ready option on I²C  
UART or I²C slave digital Interface  
Lifetime-calibrated sensing with minimal drift  
over time or temperature  
Visible filter set realized by silicon interference filters  
No additional signal conditioning required  
Electronic shutter control/synchronization  
Low voltage operation  
16-bit ADC with digital access  
Programmable LED drivers  
2.7V to 3.6V with I²C interface  
20-pin LGA package 4.5mm x 4.7mm x 2.5mm  
-40°C to 85°C temperature range  
Small, robust package, with built-in aperture  
ams Datasheet  
[v1-00] 2016-Dec-16  
Page 1  
Document Feedback  
AS7262 − General Description  
Applications  
The AS7262 applications include:  
Portable spectrometry  
Horticulture  
Color matching and identification  
Authentication and brand protection  
Precision color tuning/calibration  
Block Diagram  
The system blocks of this device are shown below.  
Figure 2:  
AS7262 Visible Spectral_ID System  
3V  
10μF  
100nF  
3V  
VDD1  
RX / SCL_S  
VDD2  
3V  
μP  
TX / SDA_S  
INT  
LED_IND  
LED_DRV  
AS7262  
Light  
6-channel  
Visible  
Sensor  
MOSI  
MISO  
Source  
Flash  
Memory  
SCK  
Light in  
CSN_EE  
Reflective  
Surface  
GND  
Page 2  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Pin Assignments  
The device pin assignments are described below.  
Pin Assignments  
Figure 3:  
Pin Diagram of AS7262 (Top View)  
20  
16  
1
15  
5
11  
6
10  
Figure 4:  
Pin Description of AS7262  
Pin Number  
Pin Name  
Description  
1
2
NF  
RESN  
Not Functional. Do not connect.  
Reset, Active LOW  
3
SCK  
SPI Serial Clock  
4
MOSI  
SPI Master Out Slave In  
SPI Master In Slave Out  
5
MISO  
6
CSN_EE  
CSN_SD  
I²C_ENB  
NF  
Chip Select for external serial Flash memory, Active LOW  
Chip Select for SD Card Interface, Active LOW  
Select UART (Low) or I²C (High) Operation  
Not Functional. Do not connect.  
7
8
9
10  
11  
12  
13  
14  
NF  
Not Functional. Do not connect.  
RX/SCL_S  
TX/SDA_S  
INT  
RX (UART) or SCL_S (I²C Slave) Depending on I²C_ENB  
TX (UART) or SDA_S (I²C Slave) Depending on I²C_ENB  
Interrupt, Active LOW  
VDD2  
Voltage Supply  
ams Datasheet  
[v1-00] 2016-Dec-16  
Page 3  
Document Feedback  
AS7262 − Pin Assignments  
Pin Number  
Pin Name  
LED_DRV  
GND  
Description  
LED Driver Output for Driving LED, Current Sink  
Ground  
15  
16  
17  
18  
19  
20  
VDD1  
Voltage Supply  
LED_IND  
NF  
LED Driver Output for Indicator LED, Current Sink  
Not Functional. Do not connect.  
NF  
Not Functional. Do not connect.  
Page 4  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Dec-16  
AS7262 − Absolute Maximum Ratings  
Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or any  
other conditions beyond those indicated under Electrical  
Characteristics is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
Absolute Maximum Ratings  
The device is not designed for high energy UV (ultraviolet)  
environments, including upward looking outdoor applications,  
which could affect long term optical performance.  
Figure 5:  
Absolute Maximum Ratings of AS7262  
Symbol  
Parameter  
Min  
Max  
Units  
Comments  
Electrical Parameters  
V
Supply Voltage VDD1  
Supply Voltage VDD2  
Input/Output Pin Voltage  
-0.3  
-0.3  
-0.3  
5
5
V
V
V
Pin VDD1 to GND  
DD1_MAX  
V
Pin VDD2 to GND  
DD2_MAX  
V
VDD+0.3  
Input/Output Pin to GND  
DD_IO  
Input Current  
(latch-up immunity)  
I
100  
mA  
JESD78D  
SCR  
Electrostatic Discharge  
ESD  
Electrostatic Discharge HBM  
Electrostatic Discharge CDM  
1000  
500  
V
V
JS-001-2014  
JSD22-C101F  
HBM  
ESD  
CDM  
Temperature Ranges and Storage Conditions  
T
Storage Temperature Range  
-40  
85  
°C  
STRG  
IPC/JEDEC J-STD-020  
The reflow peak soldering  
temperature (body  
temperature) is specified  
according to IPC/JEDEC  
J-STD-020 “Moisture/Reflow  
Sensitivity Classification for  
Non-hermetic Solid State  
Surface Mount Devices.”  
T
Package Body Temperature  
260  
°C  
BODY  
Relative Humidity  
(non-condensing)  
RH  
5
85  
%
NC  
Maximum floor life time of  
168 hours  
MSL  
Moisture Sensitivity Level  
3
ams Datasheet  
[v1-00] 2016-Dec-16  
Page 5  
Document Feedback  
AS7262 − Electrical Characteristics  
All limits are guaranteed with VDD = VDD1 = VDD2 = 3.3V,  
Electrical Characteristics  
T
= 25°C. The parameters with min and max values are  
AMB  
guaranteed with production tests or SQC (Statistical Quality  
Control) methods.  
Figure 6:  
Electrical Characteristics of AS7262  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
General Operating Conditions  
VDD1 /VDD2 Voltage Operating Supply  
VDD1 /VDD2 Voltage Operating Supply  
UART Interface  
I²C Interface  
2.97  
2.7  
3.3  
3.3  
25  
3.6  
3.6  
85  
V
V
T
Operating Temperature  
Operating Current  
-40  
°C  
AMB  
I
5
mA  
VDD  
Internal RC Oscillator  
Internal RC Oscillator  
Frequency  
F
15.7  
-8.5  
16  
16.3  
1.2  
MHz  
ns  
OSC  
(1)  
Internal Clock Jitter  
@25°C  
t
JITTER  
Temperature Sensor  
Absolute Accuracy of the  
Internal Temperature  
Measurement  
D
8.5  
°C  
TEMP  
Indicator LED  
I
LED Current  
1
4
8
mA  
%
IND  
I
Accuracy of Current  
-30  
30  
ACC  
Voltage Range of Connected  
LED  
V
Vds of current sink  
0.3  
VDD  
V
LED  
LED_DRV  
I
LED Current  
12.5, 25, 50 or 100  
12.5  
-10  
100  
10  
mA  
%
LED1  
I
Accuracy of Current  
ACC  
Voltage Range of Connected  
LED  
V
Vds of current sink  
0.3  
VDD  
V
LED  
Page 6  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Digital Inputs and Outputs  
Vin=0V or VDD  
Min  
Typ  
Max  
Unit  
I , I  
Logic Input Current  
-1  
-1  
1
μA  
IH IL  
Logic Input Current (RESN  
pin)  
I
Vin=0V  
-0.2  
mA  
IL RESN  
V
CMOS Logic High Input  
CMOS Logic Low Input  
CMOS Logic High Output  
CMOS Logic Low Output  
Current Rise Time  
0.7* VDD  
0
VDD  
0.3* VDD  
VDD-0.4  
0.4  
V
V
IH  
V
IL  
V
I=1mA  
V
OH  
V
I=1mA  
V
OL  
(1)  
C(Pad)=30pF  
5
ns  
t
RISE  
(1)  
Current Fall Time  
C(Pad)=30pF  
5
ns  
t
FALL  
Note(s):  
1. Guaranteed, not tested in production  
ams Datasheet  
Page 7  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Timing Characteristics  
Timing Characteristics  
Figure 7:  
AS7262 I²C Slave Timing Characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
I²C Interface  
f
SCL Clock Frequency  
0
400  
kHz  
ꢀs  
SCLK  
Bus Free Time Between a STOP  
and START  
t
1.3  
BUF  
t
Hold Time (Repeated) START  
LOW Period of SCL Clock  
HIGH Period of SCL Clock  
Setup Time for a Repeated START  
Data Hold Time  
0.6  
1.3  
0.6  
0.6  
0
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ns  
ns  
ns  
ꢀs  
HS:STA  
t
LOW  
t
HIGH  
t
SU:STA  
t
0.9  
HS:DAT  
t
Data Setup Time  
100  
20  
SU:DAT  
t
Rise Time of Both SDA and SCL  
Fall Time of Both SDA and SCL  
Setup Time for STOP Condition  
300  
300  
R
t
20  
F
t
0.6  
SU:STO  
CB — total capacitance of  
one bus line in pF  
C
Capacitive Load for Each Bus Line  
I/O Capacitance (SDA, SCL)  
400  
10  
pF  
pF  
B
C
I/O  
Figure 8:  
I²C Slave Timing Diagram  
tLOW  
tR  
tF  
SCL  
tHIGH  
P
S
S
P
tSU:DAT  
tSU:STA  
tHD:STA  
tHD:DAT  
tSU:STO  
VIH  
VIL  
SDA  
tBUF  
Stop  
Start  
Page 8  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Dec-16  
AS7262 − Timing Characteristics  
Figure 9:  
AS7262 SPI Timing Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
SPI Interface  
f
Clock Frequency  
Clock High Time  
Clock Low Time  
SCK Rise Time  
SCK Fall Time  
0
40  
40  
5
16  
MHz  
ns  
SCK  
t
SCK_H  
t
ns  
SCK_L  
t
ns  
SCK_RISE  
t
5
ns  
SCK_FALL  
Time between CSN high-low  
transition to first SCK high transition  
t
CSN Setup Time  
CSN Hold Time  
50  
ns  
ns  
CSN_S  
Time between last SCK falling edge  
and CSN low-high transition  
t
100  
CSN_H  
t
CSN Disable Time  
Data-Out Setup Time  
Data-Out Hold Time  
Data-In Valid  
100  
5
ns  
ns  
ns  
ns  
CSN_DIS  
t
DO_S  
t
5
DO_H  
t
10  
DI_V  
Figure 10:  
SPI Master Write Timing Diagram  
tCS N_DIS  
CSN  
tCSN_H  
tSCK_RISE  
tSCK_FALL  
tCSN_S  
SCK  
tDO_S  
tDO_H  
MOSI  
MISO  
MSB  
LSB  
HI-Z  
HI-Z  
ams Datasheet  
Page 9  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Timing Characteristics  
Figure 11:  
SPI Master Read Timing Diagram  
CSN_xx  
tSCK_H  
tSCK_L  
SCK  
tDI_ V  
Dont care  
MOSI  
MISO  
MSB  
LSB  
Page 10  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Dec-16  
AS7262 − Optical Characteristics  
Optical Characteristics  
Figure 12:  
(1)  
Optical Characteristics of AS7262 (Pass Band)  
Channel  
(nm)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
counts/  
(2), (4)  
(3), (4)  
V
B
Channel V  
450  
500  
550  
570  
600  
5700K White LED  
5700K White LED  
5700K White LED  
5700K White LED  
5700K White LED  
5700K White LED  
45  
2
(μW/cm )  
counts/  
(2), (4)  
(2), (4)  
(2), (4)  
(2), (4)  
(2), (4)  
(3), (4)  
(3), (4)  
(3), (4)  
(3), (4)  
(3), (4)  
Channel B  
Channel G  
Channel Y  
Channel O  
Channel R  
45  
45  
45  
45  
45  
2
(μW/cm )  
counts/  
G
Y
2
(μW/cm )  
counts/  
2
(μW/cm )  
counts/  
O
R
2
(μW/cm )  
counts/  
650  
40  
2
(μW/cm )  
FWHM  
Wacc  
dark  
Full Width Half Max  
Wavelength Accuracy  
Dark Channel Counts  
Package Field of View  
40  
5
nm  
nm  
GAIN=64, T  
=25°C  
5
counts  
deg  
AMB  
PFOV  
20.0  
Note(s):  
1. Calibration and measurements are made using diffused light  
2. Each channel is tested with GAIN = 16x, Integration Time (INT_T) = 166ms and VDD = VDD1 = VDD2 = 3.3V, TAMB=25°C  
3. The accuracy of the channel counts/μW/cm2 is 12%  
4. The source light is a 5700K white LED with an irradiance of ~600μW/cm2 (300-1000nm). The energy at each channel (V, B, G, Y, O, R)  
is calculated with a 40nm bandwidth around the center wavelengths (450nm, 500nm, 550nm, 570nm, 600nm, 650nm).  
ams Datasheet  
Page 11  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Typical Optical Characteristics  
Typical Optical Characteristics  
Figure 13:  
Spectral Responsivity  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
350  
400  
450  
500  
550  
600  
650  
700  
750  
Page 12  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
Detailed Description  
Figure 14:  
AS7262 Functional Block Diagram  
VDD1  
VDD2  
INT  
LED_IND  
RX / SCL_S  
2
UART / I C  
LED_DRV  
TX / SDA_S  
I2C_ENB  
°C  
MISO  
MOSI  
SCK  
Spectral_ID  
Engine  
SPI  
Master  
CSN_SD  
Multi  
Spectral  
Sensor  
B
G
O
Y R  
V
RESN  
RC Osc  
16MHz  
GND  
6-Channel Visible Spectral_ID Detector  
The AS7262 6-channel Spectral_ID is a next-generation digital  
spectral sensor device. Each channel has a Gaussian filter  
characteristic with a full width half maximum (FWHM)  
bandwidth of 40nm.  
The sensor contains analog-to-digital converters (16-bit  
resolution ADC), which integrate the current from each  
channel’s photodiode. Upon completion of the conversion  
cycle, the integrated result is transferred to the corresponding  
data registers. The transfers are double-buffered to ensure that  
the integrity of the data is maintained.  
Interference filters enable high temperature stability and  
minimal lifetime drift. Filter accuracy will be affected by the  
angle of incidence which itself is limited by integrated aperture  
and internal micro-lens structure. The aperture-limited field of  
view is 20.0° to deliver specified accuracy.  
ams Datasheet  
Page 13  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Detailed Description  
Data Conversion Description  
AS7262 spectral conversion is implemented via two  
photodiode banks per device. Bank 1 consists of data from the  
V, G, B, Y photodiodes. Bank 2 consists of data from the G, Y, O,  
R photodiodes. Spectral conversion requires the integration  
time (IT in ms) set to complete. If both photodiode banks are  
nd  
required to complete the conversion, the 2 bank requires an  
additional IT ms. Minimum IT for a single bank conversion is  
2.8 ms. If data is required from all 6 photodiodes then the device  
must perform 2 full conversions (2 x Integration Time).  
The spectral conversion process is controlled with BANK Mode  
settings as follows:  
BANK Mode 0: Data will be available in registers V, B, G & Y (O  
and R registers will be zero) with conversions occurring  
continuously.  
BANK Mode 1: Data will be available in registers G, Y, O & R (V  
and B registers will be zero) with conversions occurring  
continuously.  
BANK Mode 2: Data will be available in registers V, B, G, Y, O &  
R with conversions occurring continuously.  
When the bank setting is Mode 0, Mode 1, or Mode 2, the  
spectral data conversion process operates continuously, with  
new data available after each IT ms period. In the continuous  
modes, care should be taken to assure prompt interrupt  
servicing so that integration values from both banks are all  
derived from the same spectral conversion cycle.  
BANK Mode 3: Data will be available in registers V, B, G, Y, O &  
R in One-Shot mode  
When the bank setting is set to Mode 3 the device initiates  
One-Shot operation. The DATA_RDY bit is set to 1 once data is  
available, indicating spectral conversion is complete. One-Shot  
mode is intended for use when it is critical to ensure spectral  
conversion results are obtained contemporaneously. An  
example use for one-shot mode is when a digitally controlled  
illumination source is briefly turned on for the purpose of taking  
a set of filter readings.  
Page 14  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
Figure 15:  
Photo Diode Array  
Photo Diode Array  
G
Y
V
B
R
O
Figure 16:  
Bank Mode and Data Conversion  
BANK Mode 0  
One Conversion  
V, B, G, Y  
G, Y, O, R  
V, B, G, Y  
Integration Time  
BANK Mode 1  
One Conversion  
Integration Time  
BANK Mode 2  
1st Conversion  
Integration Time  
2nd Conversion  
G, Y, O, R  
Integration Time  
ams Datasheet  
[v1-00] 2016-Dec-16  
Page 15  
Document Feedback  
AS7262 − Detailed Description  
RC Oscillator  
The timing generation circuit consists of an on-chip 16MHz,  
temperature compensated oscillator, which provides the  
master clock for the AS7262.  
Temperature Sensor  
The temperature sensor is constantly measuring the on-chip  
temperature and enables temperature compensation  
procedures.  
Reset  
Pulling down the RESN pin for longer than 100ms resets the  
AS7262.  
Figure 17:  
Reset Circuit  
RESN  
Spectral_ID  
Engine  
Reset  
Push > 100ms  
AS7262  
Indicator LED  
The LED, connected to pin LED_IND, can be used to indicate  
programming progress of the device.  
While programming the AS7262 via the external SD card the  
indicator LED starts flashing (500ms pulses). When  
programming is completed the indicator LED is switched off.  
The LED (LED0) can be turned ON/OFF via AT commands or via  
I²C register control. The LED sink current is programmable from  
1mA, 2mA, 4mA and 8mA.  
Page 16  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
Electronic Shutter with LED_DRV Driver Control  
There are two LED driver outputs that can be used to control  
up to 2 LEDs. This will allow different wavelength light sources  
to be used in the same system. The LED output sink currents are  
programmable and can drive external LED sources: LED_IND  
from 1mA, 2mA, 4mA and 8mA and LED_DRV from 12.5mA,  
25mA, 50mA and 100mA. The sources can be turned off and on  
via I²C registers control or AT commands and provides the  
device with an electronic shutter.  
Interrupt Operation  
If BANK is set to Mode 0 or Mode 1 then the data is ready after  
st  
the 1 integration time. If BANK is set to Mode 2 or Mode 3 then  
the data is ready after two integration times. If the interrupt is  
enabled (INT = 1) then when the data is ready, the INT line is  
pulled low and DATA_RDY is set to 1. The INT line is released  
(returns high) when the control register is read. DATA_RDY is  
cleared to 0 when any of the sensor registers V, B, G, Y, O & R are  
read. For multi-byte sensor data (2 or 4 bytes), after the 1st byte  
is read the remaining get shadow buffer protected in case an  
integration cycle completes just after the 1st byte is read.  
In continuous spectral conversion mode (BANK setting of Mode  
0, 1, or 2), the sensors continue to gather information at the rate  
of the integration time, hence if the sensor registers are not read  
when the interrupt line goes low, it will stay low and the next  
cycle’s sensor data will be available in the registers at the end  
of the next integration cycle.  
When the control register BANK bits are written with a value of  
Mode 3, One-Shot Spectral Conversion mode is entered. When  
a single set of contemporaneous sensor readings is desired,  
writing BANK Mode 3 to the control register immediately  
triggers exactly two spectral data conversion cycles. At the end  
of these two conversion cycles, the DATA_RDY bit is set as for  
the other BANK modes. To perform a new One-Shot sequence,  
the control register BANK bits should be written with a value of  
Mode 3 again. This process may continue until the user writes  
a different value into the BANK bits.  
I²C Slave Interface  
If selected by the I²C_ENB pin setting, interface and control can  
be accomplished through an I²C compatible slave interface to  
a set of registers that provide access to device control functions  
and output data. These registers on the AS7262 are, in reality,  
implemented as virtual registers in software. The actual I²C  
slave hardware registers number only three and are described  
in the table below. The steps necessary to access the virtual  
registers defined in the following are explained in pseudocode  
for external I²C master writes and reads below.  
ams Datasheet  
Page 17  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Detailed Description  
I²C Feature List  
Fast mode (400kHz) and standard mode (100kHz) support.  
7+1-bit addressing mode.  
Write format: Byte.  
Read format: Byte.  
SDA input delay and SCL spike filtering by integrated  
RC-components.  
Figure 18:  
I²C Slave Device Address and Physical Registers  
Entity  
Description  
Note  
Byte = 1001001x (device address = 49 hex)  
x= 1 for Master Read (byte = 93 hex)  
x= 0 for Master Write (byte = 92 hex)  
Device Slave Address 8-bit Slave Address  
Register Address = 0x00  
Bit 1: TX_VALID  
I²C slave interface  
STATUS register  
Read-only  
0 New data may be written to WRITE register  
1 WRITE register occupied. Do NOT write.  
Bit 0: RX_VALID  
STATUS Register  
0 No data is ready to be read in READ register.  
1 Data byte available in READ register.  
Register Address = 0x01  
I²C slave interface  
WRITE register  
Write-only  
8-Bits of data written by the I²C Master intended  
for receipt by the I²C slave. Used for both virtual  
register addresses and write data.  
WRITE Register  
READ Register  
I²C slave interface  
READ register  
Read-only  
Register Address = 0x02  
8-Bits of data to be read by the I²C Master.  
I²C Virtual Register Write Access  
I²C Virtual Register Byte Write shows the pseudocode necessary  
to write virtual registers on the AS7262. Note that, because the  
actual registers of interest are realized as virtual registers, a  
means of indicating whether there is a pending read or write  
operation of a given virtual register is needed. To convey this  
information, the most significant bit of the virtual register  
address is used as a marker. If it is 1, then a write is pending,  
otherwise the slave is expecting a virtual read operation. The  
pseudocode illustrates the proper technique for polling of the  
I²C slave status register to ensure the slave is ready for each  
transaction.  
Page 18  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
I²C Virtual Register Byte Write  
Pseudocode  
Poll I²C slave STATUS register;  
If TX_VALID bit is 0, a write can be performed on the interface;  
Send a virtual register address and set the MSB of the register address to 1 to indicate the pending write;  
Poll I²C slave STATUS register;  
If TX_VALID bit is 0, the virtual register address for the write has been received and the data may now be written;  
Write the data.  
Sample Code:  
#define I2C_AS72XX_SLAVE_STATUS_REG  
#define I2C_AS72XX_SLAVE_WRITE_REG  
#define I2C_AS72XX_SLAVE_READ_REG  
#define I2C_AS72XX_SLAVE_TX_VALID  
#define I2C_AS72XX_SLAVE_RX_VALID  
0x00  
0x01  
0x02  
0x02  
0x01  
void i2cm_AS72xx_write(uint8_t virtualReg, uint8_t d)  
{
volatile uint8_t status;  
while (1)  
{
// Read slave I²C status to see if the write buffer is ready.  
status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);  
if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)  
// No inbound TX pending at slave. Okay to write now.  
break;  
}
// Send the virtual register address (setting bit 7 to indicate a pending write).  
i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, (virtualReg | 0x80));  
while (1)  
{
// Read the slave I²C status to see if the write buffer is ready.  
status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);  
if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)  
// No inbound TX pending at slave. Okay to write data now.  
break;  
}
// Send the data to complete the operation.  
i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, d);  
}
ams Datasheet  
Page 19  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Detailed Description  
I²C Virtual Register Read Access  
I²C Virtual Register Byte Read shows the pseudocode necessary  
to read virtual registers on the AS7262. Note that in this case,  
reading a virtual register, the register address is not modified.  
I²C Virtual Register Byte Read  
Pseudocode  
Poll I²C slave STATUS register;  
If TX_VALID bit is 0, the virtual register address for the read may be written;  
Send a virtual register address;  
Poll I²C slave STATUS register;  
If RX_VALID bit is 1, the read data is ready;  
Read the data.  
Sample Code:  
uint8_t i2cm_AS72xx_read(uint8_t virtualReg)  
{
volatile uint8_t status, d;  
while (1)  
{
// Read slave I²C status to see if the read buffer is ready.  
status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);  
if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)  
// No inbound TX pending at slave. Okay to write now.  
break;  
}
// Send the virtual register address (setting bit 7 to indicate a pending write).  
i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, virtualReg);  
while (1)  
{
// Read the slave I²C status to see if our read data is available.  
status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);  
if ((status & I2C_AS72XX_SLAVE_RX_VALID) != 0)  
// Read data is ready.  
break;  
}
// Read the data to complete the operation.  
d = i2cm_read(I2C_AS72XX_SLAVE_READ_REG);  
return d; s  
}
The details of the i2cm_read() and i2cm_write()  
functions in previous Figures are dependent upon the nature  
and implementation of the external I²C master device.  
Page 20  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
4-Byte Floating-Point (FP) Registers  
Several 4-byte registers (hex) are used by the AS7262. Here is  
an example of how these registers are used to represent floating  
point data (based on the IEEE 754 standard):  
Figure 19:  
Example of the IEEE 754 Standard  
byte 3  
byte 2  
byte 0  
byte 1  
3E (hex)  
20 (hex)  
00 (hex)  
00 (hex)  
0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
31  
24 23  
16 15  
8 7  
0
sign  
exponent (8 bits)  
fraction (23 bits)  
0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
= 0.15625  
0
31 30  
23 22  
The floating point (FP) value assumed by 32 bit binary32 data  
with a biased exponent e (the 8 bit unsigned integer) and a  
23 bit fraction is (for the above example):  
23  
FP value= (–1)sign 1 +  
23 – i2 × 2  
(e – 127)  
–i  
b  
i = 1  
23  
0
(124 – 127)  
–i  
b  
FP value= (–1) ⋅ 1 +  
23 – i2 × 2  
i = 1  
FP value= 1 × (1 + 2–2) × 2–3 = 0.15625  
ams Datasheet  
Page 21  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Detailed Description  
I²C Virtual Register Set  
Figure 20 provides a summary of the AS7262 I²C register set.  
Figures after that provide additional register details. All register  
data is hex, and all multi-byte entities are Big Endian (most  
significant byte is situated at the lowest register address).  
Multiple byte registers (2 byte integer, or, 4 byte floating point)  
must be read in the order of ascending register addresses (low  
to high). And if capable of being written to, must also be written  
in the order of ascending register addresses.  
Figure 20:  
I²C Virtual Register Set Overview  
Addr  
Name  
<D7> <D6> <D5> <D4>  
<D3>  
<D2>  
<D1>  
<D0>  
Version Registers  
0x00:0x01  
0x02:0x03  
HW_Version  
FW_Version  
Hardware Version  
Firmware Version  
Control Registers  
0x04  
0x05  
0x06  
0x07  
Control_Setup  
INT_T  
RST  
INT  
GAIN  
Bank  
DATA_RDY  
RSVD  
Integration Time  
Device_Temp  
LED_Control  
Device Temperature  
LED_DRV  
RSVD  
ICL_DRV  
ICL_IND  
LED_IND  
Sensor Raw Data Registers  
Channel V High Data Byte  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
V_High  
V_Low  
B_High  
B_Low  
G_High  
G_Low  
Y_High  
Y_Low  
O_High  
O_Low  
R_High  
R_Low  
Channel V Low Data Byte  
Channel B High Data Byte  
Channel B Low Data Byte  
Channel G High Data Byte  
Channel G Low Data Byte  
Channel Y High Data Byte  
Channel Y Low Data Byte  
Channel O High Data Byte  
Channel O Low Data Byte  
Channel R High Data Byte  
Channel R Low Data Byte  
Page 22  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
Addr  
Name  
<D7> <D6> <D5> <D4>  
<D3>  
<D2>  
<D1>  
<D0>  
Sensor Calibrated Data Registers  
0x14:0x17  
0x18:0x1B  
0x1C:0x1F  
0x20:0x23  
0x24:0x27  
0x28:0x2B  
V_Cal  
B_Cal  
G_Cal  
Y_Cal  
O_Cal  
R_Cal  
Channel V Calibrated Data (floating point)  
Channel B Calibrated Data (floating point)  
Channel G Calibrated Data (floating point)  
Channel Y Calibrated Data (floating point)  
Channel O Calibrated Data (floating point)  
Channel R Calibrated Data (floating point)  
ams Datasheet  
Page 23  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Detailed Description  
Detailed Register Description  
Figure 21:  
HW Version Registers  
Addr: 0x00  
HW_Version  
Bit Description  
Bit  
Bit Name  
Default  
Access  
7:0  
Device Type  
01000000  
R
Device type number  
Addr: 0x01  
HW_Version  
Bit  
Bit Name  
Default  
Access  
Bit Description  
7:0  
HW Version  
00111110  
R
Hardware version  
Figure 22:  
FW Version Registers  
Addr: 0x02  
FW_Version  
Bit  
7:6  
5:0  
Bit Name  
Minor Version  
Sub Version  
Default  
Default  
Access  
Bit Description  
R
R
Minor version [1:0]  
Sub version  
Addr: 0x03  
FW_Version  
Bit  
7:4  
3:0  
Bit Name  
Major version  
Minor version  
Access  
Bit Description  
R
R
Major version  
Minor version [5:2]  
Page 24  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
Figure 23:  
Control Setup Register  
Addr: 0x04/0x84  
Control_Setup  
Bit Description  
Bit  
Bit Name  
Default  
Access  
Soft Reset, Set to 1 for soft reset, goes to 0  
automatically after the reset  
7
RST  
0
R/W  
Enable interrupt pin output (INT),  
1: Enable, 0: Disable  
6
INT  
0
0
R/W  
R/W  
Sensor Channel Gain Setting (all channels)  
‘b00=1x; ‘b01=3.7x; ‘b10=16x; ‘b11=64x  
5:4  
GAIN  
Data Conversion Type (continuous)  
‘b00=Mode 0; ‘b01=Mode 1; ‘b10=Mode 2;  
‘b11=Mode 3 One-Shot  
3:2  
BANK  
10  
R/W  
1: Data Ready to Read, sets INT active if interrupt is  
enabled.  
Can be polled if not using INT.  
1
DATA_RDY  
RSVD  
0
0
R/W  
R
0
Reserved; Unused  
Figure 24:  
Integration Time Register  
Addr: 0x05/0x85  
INT_T  
Bit  
Bit Name  
Default  
Access  
Bit Description  
7:0  
INT_T  
0xFF  
R/W  
Integration time = <value> * 2.8ms  
Figure 25:  
Device Temperature Register  
Addr: 0x06  
Device_Temp  
Bit  
Bit Name  
Default  
Access  
Bit Description  
7:0  
Device_Temp  
R
Device temperature data byte (°C)  
ams Datasheet  
[v1-00] 2016-Dec-16  
Page 25  
Document Feedback  
AS7262 − Detailed Description  
Figure 26:  
LED Control Register  
Addr: 0x07/0x87  
LED Control  
Bit Description  
Bit  
Bit Name  
Default  
Access  
7:6  
RSVD  
0
R
Reserved  
LED_DRV current limit  
5:4  
3
ICL_DRV  
LED_DRV  
ICL_IND  
LED_IND  
00  
0
R/W  
R/W  
R/W  
R/W  
‘b00=12.5mA; ‘b01=25mA; ‘b10=50mA; ‘b11=100mA  
Enable LED_DRV  
1: Enabled; 0: Disabled  
LED_IND current limit  
‘b00=1mA; ‘b01=2mA; ‘b10=4mA; ‘b11=8mA  
2:1  
0
00  
0
Enable LED_IND  
1: Enabled; 0: Disabled  
Page 26  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
Figure 27:  
Sensor Raw Data Registers  
Addr: 0x08  
V_High  
Bit  
Bit Name  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Access  
Bit Description  
7:0  
V_High  
R
Channel V High Data Byte  
Addr: 0x09  
V_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
V_Low  
R
Channel V Low Data Byte  
Addr: 0x0A  
B_High  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
B_High  
R
Channel B High Data Byte  
Addr: 0x0B  
B_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
B_Low  
R
Channel B Low Data Byte  
Addr: 0x0C  
G_High  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
G_High  
R
Channel G High Data Byte  
Addr: 0x0D  
G_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
G_Low  
R
Channel G Low Data Byte  
Addr: 0x0E  
Y_High  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
Y_High  
R
Channel Y High Data Byte  
Addr: 0x0F  
Y_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
Y_Low  
R
Channel Y Low Data Byte  
ams Datasheet  
Page 27  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Detailed Description  
Addr: 0x10  
Bit Name  
O_High  
Bit Description  
Bit  
Default  
Default  
Default  
Default  
Access  
7:0  
O_High  
R
Channel O High Data Byte  
Addr: 0x11  
O_Low  
Bit  
Bit Name  
O_Low  
Access  
Bit Description  
7:0  
R
Channel O Low Data Byte  
Addr: 0x12  
R_High  
Bit  
Bit Name  
R_High  
Access  
Bit Description  
7:0  
R
Channel R High Data Byte  
Addr: 0x13  
R_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
R_Low  
R
Channel R Low Data Byte  
Page 28  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
Figure 28:  
Sensor Calibrated Data Registers  
Addr: 0x14:0x17  
V_Cal  
Bit Description  
Bit  
Bit Name Default Access  
31:0  
V_Cal  
R
Channel V Calibrated Data (floating point)  
Addr: 0x18:0x1B  
B_Cal  
Bit  
Bit Name Default Access  
Bit Description  
Channel B Calibrated Data (floating point)  
G_Cal  
31:0  
B_Cal  
R
Addr: 0x1C:0x1F  
Bit  
Bit Name Default Access  
Bit Description  
Channel G Calibrated Data (floating point)  
Y_Cal  
31:0  
G_Cal  
R
Addr: 0x20:0x23  
Bit  
Bit Name Default Access  
Bit Description  
Channel Y Calibrated Data (floating point)  
O_Cal  
31:0  
Y_Cal  
R
Addr: 0x24:0x27  
Bit  
Bit Name Default Access  
Bit Description  
Channel O Calibrated Data (floating point)  
R_Cal  
31:0  
O_Cal  
R
Addr: 0x28:0x2B  
Bit  
Bit Name Default Access  
Bit Description  
31:0  
R_Cal  
R
Channel R Calibrated Data (floating point)  
ams Datasheet  
[v1-00] 2016-Dec-16  
Page 29  
Document Feedback  
AS7262 − Detailed Description  
UART Interface  
If selected by the I²C_ENB pin setting, the UART module  
implements the TX and RX signals as defined in the RS-232 /  
V.24 standard communication protocol.  
It has on both, receive and transmit path, a 16 entry deep FIFO.  
It can generate interrupts as required.  
UART Feature List1  
Full Duplex Operation (Independent Serial Receive and  
Transmit Registers) with FIFO buffer of 8 byte for each.  
At a clock rate of 16MHz it supports communication at  
115200 Baud.  
Supports Serial Frames with 8 Data Bits, no Parity and 1  
Stop Bit  
Theory of Operation  
Transmission  
If data is available in the transmit FIFO, it will be moved into the  
output shift register and the data will be transmitted at the  
configured Baud Rate, starting with a Start Bit (logic zero) and  
followed by a Stop Bit (logic one).  
Reception  
At any time, with the receiver being idle, if a falling edge of a  
start bit is detected on the input, a byte will be received and  
stored in the receive FIFO. The following Stop Bit will be checked  
to be logic one.  
Figure 29:  
UART Protocol  
Data Bits  
TX  
RX  
D7  
D0  
D0  
D1  
D2  
D3  
D4  
D5  
D5  
D6  
D6  
D0  
D0  
Start Bit  
Stop Bit Next Start  
Always High  
Tbit=1/Baude Rate  
Always Low  
D7  
D1  
D2  
D3  
D4  
Start Bit detected  
After Tbit/2: Sampling of Start Bit  
After Tbit: Sampling of Data  
Sample Points  
1. With UART operation, min VDD of 2.97V is required as shown in Electrical Characteristics Figures.  
Page 30  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
AT Command Interface  
The microprocessor interface to control the Visible Spectral_ID  
sensor is via the UART, using the AT Commands across the UART  
interface.  
The 6-channel Spectral _ID sensor provides a text-based serial  
command interface borrowed from the “AT Command” model  
used in early Hayes modems. For example:  
Read DATA value: ATDATA <data>OK  
Set the gain of the sensor to 1x: ATGAIN =0 OK  
The “AT Command Interface Block Diagram, shown below  
between the network interface and the core of the system,  
provides access to the Spectral_ID engine’s control and  
configuration functions.  
Figure 30:  
AT Command Interface Block Diagram  
RX  
AT  
AT Commands  
Spectral_ID  
Engine  
μP  
Command  
Interface  
TX  
AT Command Interface  
AS726x  
In Figure 31, numeric values may be specified with no leading  
prefix, in which case they will be interpreted as decimals, or with  
a leading “0x” to indicate that they are hexadecimal numbers,  
or with a leading “‘b” to indicate that they are binary numbers.  
The commands are loosely grouped into functional areas. Texts  
appearing between angle brackets (‘<‘ and ‘>‘) are commands  
or response arguments. A carriage return character, a linefeed  
character, or both may terminate commands and responses.  
Note that any command that encounters an error will generate  
the “ERROR” response shown, for example, in the NOP  
command at the top of the first table, but has been omitted  
elsewhere in the interest of readability and clarity.  
ams Datasheet  
Page 31  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Detailed Description  
Figure 31:  
AT Commands  
Command  
Response  
Description/Parameters  
Spectral Data per Channel  
<V_value>,  
<B_value>,  
<G_value>,  
<Y_value>,  
<O_value>,  
<R_value> OK  
Read V, B, G, Y, O & R data. Returns comma-separated  
16-bit integers.  
ATDATA  
<Cal_V_value>,  
<Cal_B_value>,  
<Cal_G_value>,  
<Cal_Y_value>,  
<Cal_O_value>,  
<Cal_R_value> OK  
Read calibrated V, B, G, Y, O & R data. Returns  
comma-separated 32-bit floating point values.  
ATCDATA  
Sensor Configuration  
Set sensor integration time. Values should be in the range  
[1..255], with integration time = <value> * 2.8ms  
ATINTTIME=<value>  
OK  
Read sensor integration time, with  
integration time = <value> * 2.8ms  
ATINTTIME  
ATGAIN=<value>  
ATGAIN  
<value> OK  
OK  
Set sensor gain: 0=1x, 1=3.7x, 2=16x, 3=64x  
Read sensor gain setting, returning 0, 1, 2, or 3 as defined  
immediately above.  
<value>OK  
<value>OK  
ATTEMP  
Read temperature of chip in degree Celsius  
Set Sensor Mode  
0 = BANK Mode 0;  
1 = BANK Mode 1;  
2 = BANK Mode 2;  
3 = BANK Mode 3 One-Shot;  
4 = Sensors OFF  
ATTCSMD=<value>  
OK  
In One-Shot mode, each ATTCSMD=3 command triggers a  
One-Shot reading  
ATTCSMD  
<value> OK  
Read Sensor Mode, see above  
<value>= # of samples  
ATBURST=<value>  
OK  
(ATBURST=1 means run until ATBURST=0 is received (a  
special case for continuous output)  
Page 32  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Detailed Description  
Command  
Response  
Description/Parameters  
LED Driver Controls  
Sets LED_IND: 100=ON, 0=OFF  
ATLED0=<value>  
ATLED0  
OK  
<100|0>OK  
OK  
Reads LED_IND setting: 100=ON, 0=OFF  
Sets LED_DRV: 100=ON, 0=OFF  
ATLED1=<value>  
ATLED1  
<100|0>OK  
Reads LED_DRV setting: 100=ON, 0=OFF  
Sets LED_IND and LED_DRV current  
LED_IND: bits 3:0; LED_DRV: 7:4 bits  
LED_IND: ‘b00=1mA; ‘b01=2mA; ‘b10=4mA; ‘b11=8mA  
LED_DRV: ‘b00=12.5mA; ‘b01=25mA; ‘b10=50mA;  
‘b11=100mA  
ATLEDC=<value>  
OK  
Reads LED_IND and LED_DRV current settings as shown  
above  
ATLEDC  
<value>OK  
NOP, Version Access, System Reset  
OK Success  
ERROR Failure  
AT  
NOP  
ATRST  
None  
Software Reset – no response  
Returns the system software version number  
<SWversion#>OK  
ERROR Failure  
ATVERSW  
Returns the system hardware revision and product ID,  
with bits 7:4 containing the part ID, and bits 3:0 yielding  
the chip revision value.  
<HWversion#>OK  
ERROR Failure  
ATVERHW  
Firmware Update  
<value>= 16-bit checksum. Initializes the firmware update  
process. Number of bytes that follow are always 56k bytes  
ATFWU=<value>  
ATFW=<value>  
OK  
OK  
Download new firmware  
Up to 7 Bytes represented as hex chars with no leading or  
trailing 0x.  
Repeat command till all 56k bytes of firmware are  
downloaded  
Causes target address for FW updates to advance. Should  
be called after every successful “OK” returned after  
“ATFW=<value>” command usage.  
ATFWA  
ATFWS  
OK  
OK  
Causes the active image to switch between the two  
possible current images and then resets the IC  
ams Datasheet  
Page 33  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Application Information  
Application Information  
Schematic  
Figure 32:  
AS7262 Typical Application Circuit  
3V3  
3V3  
17 VDD1  
14 VDD2  
RESN  
CSN_SD  
CSN_EE  
MISO  
MOSI  
7
6
5
4
3
8
1uF  
100nF 10uF  
1
2
5
6
3
7
/CS  
DO  
DI  
10K  
RST  
2
16 GND  
Flash  
Memory  
3V3 Vled  
SCK  
CLK  
15 LED_DRV  
18 LED_IND  
I2C_ENB  
/WP  
AS7262  
/HOLD  
DNP  
0R  
RX  
11 RX/SCL_S  
12 TX/SDA_S  
13 INT  
NC  
NC  
NC  
NC  
NC  
19  
20  
1
10  
9
TX  
INT  
PCB Layout  
Figure 33:  
Typical Layout Routing  
In order to prevent interference, avoid trace routing  
feedthroughs with exposure directly under the AS7262. An  
example routing is illustrated in the diagram.  
Page 34  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Package Drawings & Markings  
Package Drawings & Markings  
Figure 34:  
Package Drawings LGA  
AS7262  
RoHS  
Green  
Note(s):  
1. XXXXX = tracecode  
ams Datasheet  
[v1-00] 2016-Dec-16  
Page 35  
Document Feedback  
AS7262 − PCB Pad Layout  
Suggested PCB pad layout guidelines for the LGA device are  
shown.  
PCB Pad Layout  
Figure 35:  
Recommended PCB Pad Layout  
0.30  
0.65  
Unit: mm  
1
4.40  
Note(s):  
1. Unless otherwise specified, all dimensions are in millimeters.  
2. Dimensional tolerances are 0.05mm unless otherwise noted.  
3. This drawing is subject to change without notice.  
Page 36  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Mechanical Data  
Mechanical Data  
Figure 36:  
Tape & Reel Information  
Note(s):  
1. Each reel contains 2000 parts.  
ams Datasheet  
Page 37  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Soldering & Storage Information  
Soldering & Storage  
Information  
Soldering Information  
The module has been tested and has demonstrated an ability  
to be reflow soldered to a PCB substrate. The solder reflow  
profile describes the expected maximum heat exposure of  
components during the solder reflow process of product on a  
PCB. Temperature is measured on top of component. The  
components should be limited to a maximum of three passes  
through this solder reflow profile.  
Figure 37:  
Solder Reflow Profile  
Parameter  
Reference  
Device  
2.5°C/s  
Average temperature gradient in preheating  
Soak time  
t
2 to 3 minutes  
Max 60s  
SOAK  
Time above 217°C(T )  
t
1
1
Time above 230°C(T )  
t
Max 50s  
2
2
Time above T  
- 10°C(T )  
t
Max 10s  
peak  
3
3
T
Peak temperature in reflow  
260°C  
peak  
Temperature gradient in cooling  
Max -5°C/s  
Figure 38:  
Solder Reflow Profile Graph  
Page 38  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Dec-16  
AS7262 − Soldering & Storage Information  
Manufacturing Process Considerations  
The AS7262 package is compatible with standard reflow  
no-clean and cleaning processes including aqueous, solvent or  
ultrasonic techniques. However, as an open-aperture device,  
precautions must be taken to avoid particulate or solvent  
contamination as a result of any manufacturing processes,  
including pick and place, reflow, cleaning, integration assembly  
and/or testing. Temporary covering of the aperture is allowed.  
To avoid degradation of accuracy or performance in the end  
product, care should be taken that any temporary covering and  
associated sealants/debris are thoroughly removed prior to any  
optical testing or final packaging.  
Storage Information  
Moisture Sensitivity  
Optical characteristics of the device can be adversely affected  
during the soldering process by the release and vaporization of  
moisture that has been previously absorbed into the package.  
To ensure the package contains the smallest amount of  
absorbed moisture possible, each device is baked prior to being  
dry packed for shipping.  
Devices are dry packed in a sealed aluminized envelope called  
a moisture-barrier bag with silica gel to protect them from  
ambient moisture during shipping, handling, and storage  
before use.  
Shelf Life  
The calculated shelf life of the device in an unopened moisture  
barrier bag is 12 months from the date code on the bag when  
stored under the following conditions:  
Shelf Life: 12 months  
Ambient Temperature: <40°C  
Relative Humidity: <90%  
Rebaking of the devices will be required if the devices exceed  
the 12 month shelf life or the Humidity Indicator Card shows  
that the devices were exposed to conditions beyond the  
allowable moisture region.  
ams Datasheet  
Page 39  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Soldering & Storage Information  
Floor Life  
The module has been assigned a moisture sensitivity level of  
MSL 3. As a result, the floor life of devices removed from the  
moisture barrier bag is 168 hours from the time the bag was  
opened, provided that the devices are stored under the  
following conditions:  
Floor Life: 168 hours  
Ambient Temperature: <30°C  
Relative Humidity: <60%  
If the floor life or the temperature/humidity conditions have  
been exceeded, the devices must be rebaked prior to solder  
reflow or dry packing.  
Rebaking Instructions  
When the shelf life or floor life limits have been exceeded,  
rebake at 50°C for 12 hours.  
Page 40  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Ordering & Contact Information  
Ordering & Contact Information  
Figure 39:  
Ordering Information  
(1)  
Ordering  
Code  
Delivery  
Form  
Delivery  
Quantity  
Package  
Marking  
Description  
6-Channel Visible Spectral_ID  
Device with Electronic Shutter  
and Smart Interface  
AS7262-BLGT  
20-pin LGA  
AS7262  
Tape & Reel 2000 pcs/reel  
Note(s):  
1. Required companion serial flash memory (must be ams verified) is ordered from the flash memory supplier (e.g. AT25SF041-SSHD-B  
from Adesto Technologies).  
2. AS7262 flash memory software is available from ams.  
Buy our products or get free samples online at:  
www.ams.com/ICdirect  
Technical Support is available at:  
www.ams.com/Technical-Support  
Provide feedback about this document at:  
www.ams.com/Document-Feedback  
For further information and requests, e-mail us at:  
ams_sales@ams.com  
For sales offices, distributors and representatives, please visit:  
www.ams.com/contact  
Headquarters  
ams AG  
Tobelbader Strasse 30  
8141 Premstaetten  
Austria, Europe  
Tel: +43 (0) 3136 500 0  
Website: www.ams.com  
ams Datasheet  
Page 41  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − RoHS Compliant & ams Green Statement  
RoHS: The term RoHS compliant means that ams AG products  
fully comply with current RoHS directives. Our semiconductor  
products do not contain any chemicals for all 6 substance  
categories, including the requirement that lead not exceed  
0.1% by weight in homogeneous materials. Where designed to  
be soldered at high temperatures, RoHS compliant products are  
suitable for use in specified lead-free processes.  
RoHS Compliant & ams Green  
Statement  
ams Green (RoHS compliant and no Sb/Br): ams Green  
defines that in addition to RoHS compliance, our products are  
free of Bromine (Br) and Antimony (Sb) based flame retardants  
(Br or Sb do not exceed 0.1% by weight in homogeneous  
material).  
Important Information: The information provided in this  
statement represents ams AG knowledge and belief as of the  
date that it is provided. ams AG bases its knowledge and belief  
on information provided by third parties, and makes no  
representation or warranty as to the accuracy of such  
information. Efforts are underway to better integrate  
information from third parties. ams AG has taken and continues  
to take reasonable steps to provide representative and accurate  
information but may not have conducted destructive testing or  
chemical analysis on incoming materials and chemicals. ams AG  
and ams AG suppliers consider certain information to be  
proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Page 42  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Copyrights & Disclaimer  
Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten,  
Austria-Europe. Trademarks Registered. All rights reserved. The  
material herein may not be reproduced, adapted, merged,  
translated, stored, or used without the prior written consent of  
the copyright owner.  
Copyrights & Disclaimer  
Devices sold by ams AG are covered by the warranty and patent  
indemnification provisions appearing in its General Terms of  
Trade. ams AG makes no warranty, express, statutory, implied,  
or by description regarding the information set forth herein.  
ams AG reserves the right to change specifications and prices  
at any time and without notice. Therefore, prior to designing  
this product into a system, it is necessary to check with ams AG  
for current information. This product is intended for use in  
commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or  
high reliability applications, such as military, medical  
life-support or life-sustaining equipment are specifically not  
recommended without additional processing by ams AG for  
each application. This product is provided by ams AG “AS IS”  
and any express or implied warranties, including, but not  
limited to the implied warranties of merchantability and fitness  
for a particular purpose are disclaimed.  
ams AG shall not be liable to recipient or any third party for any  
damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any  
kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation  
or liability to recipient or any third party shall arise or flow out  
of ams AG rendering of technical or other services.  
ams Datasheet  
Page 43  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Document Status  
Document Status  
Document Status  
Product Status  
Definition  
Information in this datasheet is based on product ideas in  
the planning phase of development. All specifications are  
design goals without any warranty and are subject to  
change without notice  
Product Preview  
Pre-Development  
Information in this datasheet is based on products in the  
design, validation or qualification phase of development.  
The performance and parameters shown in this document  
are preliminary without any warranty and are subject to  
change without notice  
Preliminary Datasheet  
Datasheet  
Pre-Production  
Production  
Information in this datasheet is based on products in  
ramp-up to full production or full production which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade  
Information in this datasheet is based on products which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade, but these products have been superseded and  
should not be used for new designs  
Datasheet (discontinued)  
Discontinued  
Page 44  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Dec-16  
AS7262 − Revision Information  
Initial production version 1-00 for release  
Revision Information  
ams Datasheet  
Page 45  
[v1-00] 2016-Dec-16  
Document Feedback  
AS7262 − Content Guide  
1
1
2
2
General Description  
Key Benefits & Features  
Applications  
Content Guide  
Block Diagram  
3
5
6
8
Pin Assignments  
Absolute Maximum Ratings  
Electrical Characteristics  
Timing Characteristics  
11 Optical Characteristics  
12 Typical Optical Characteristics  
13 Detailed Description  
13 6-Channel Visible Spectral_ID Detector  
14 Data Conversion Description  
16 RC Oscillator  
16 Temperature Sensor  
16 Reset  
16 Indicator LED  
17 Electronic Shutter with LED_DRV Driver Control  
17 Interrupt Operation  
17 I²C Slave Interface  
18 I²C Feature List  
18 I²C Virtual Register Write Access  
19 I²C Virtual Register Byte Write  
20 I²C Virtual Register Read Access  
20 I²C Virtual Register Byte Read  
21 4-Byte Floating-Point (FP) Registers  
22 I²C Virtual Register Set  
24 Detailed Register Description  
30 UART Interface  
30 UART Feature List  
30 Theory of Operation  
30 Transmission  
30 Reception  
31 AT Command Interface  
34 Application Information  
34 Schematic  
34 PCB Layout  
35 Package Drawings & Markings  
36 PCB Pad Layout  
37 Mechanical Data  
38 Soldering & Storage Information  
38 Soldering Information  
39 Manufacturing Process Considerations  
39 Storage Information  
39 Moisture Sensitivity  
39 Shelf Life  
40 Floor Life  
40 Rebaking Instructions  
Page 46  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Dec-16  
AS7262 − Content Guide  
41 Ordering & Contact Information  
42 RoHS Compliant & ams Green Statement  
43 Copyrights & Disclaimer  
44 Document Status  
45 Revision Information  
ams Datasheet  
[v1-00] 2016-Dec-16  
Page 47  
Document Feedback  

相关型号:

AS7263

6 near-IR channels: 610nm, 680nm, 730nm, 760nm, 810nm and 860nm, each with 20nm FWHM
AMSCO

AS7263-BLGT

6 near-IR channels: 610nm, 680nm, 730nm, 760nm, 810nm and 860nm, each with 20nm FWHM
AMSCO

AS737

Transponder TX antenna< Pin Type: AS Series>
SUMIDA

AS737-125-103

LF Transmitter Antenna
SUMIDA

AS737-125-153

LF Transmitter Antenna
SUMIDA

AS737-125-223

LF Transmitter Antenna
SUMIDA

AS737-125-332

LF Transmitter Antenna
SUMIDA

AS737-125-682

LF Transmitter Antenna
SUMIDA

AS737-134-103

LF Transmitter Antenna
SUMIDA

AS737-134-153

LF Transmitter Antenna
SUMIDA

AS737-134-223

LF Transmitter Antenna
SUMIDA

AS737-134-332

LF Transmitter Antenna
SUMIDA