AS7263 [AMSCO]

6 near-IR channels: 610nm, 680nm, 730nm, 760nm, 810nm and 860nm, each with 20nm FWHM;
AS7263
型号: AS7263
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

6 near-IR channels: 610nm, 680nm, 730nm, 760nm, 810nm and 860nm, each with 20nm FWHM

文件: 总45页 (文件大小:956K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS7263  
6-Channel NIR Spectral_ID Device with  
Electronic Shutter and Smart Interface  
The AS7263 is a digital 6-channel spectrometer for spectral  
identification in the near IR (NIR) light wavelengths. AS7263  
consists of 6 independent optical filters whose spectral re-  
sponse is defined in the NIR wavelengths from approximately  
600nm to 870nm with full-width half-max (FWHM) of 20nm. An  
integrated LED driver with programmable current is provided  
for electronic shutter applications.  
General Description  
The AS7263 integrates Gaussian filters into standard CMOS sil-  
icon via Nano-optic deposited interference filter technology  
and is packaged an LGA package that provides a built in aper-  
ture to control the light entering the sensor array.  
Control and Spectral data access is implemented through either  
the I²C register set, or with a high level AT Spectral Command  
set via a serial UART.  
Ordering Information and Content Guide appear at end of  
datasheet.  
Key Benefits & Features  
The benefits and features of AS7263, 6-Channel NIR  
Spectral_ID Device with Electronic Shutter and Smart Interface  
are listed below:  
Figure 1:  
Added Value of Using AS7263  
Benefits  
Features  
6 near-IR channels: 610nm, 680nm, 730nm, 760nm,  
810nm and 860nm, each with 20nm FWHM  
Compact 6-channel spectrometry solution  
Simple text-based command interface via UART,  
or direct register read and write with interrupt  
on sensor ready option on I²C  
UART or I²C slave digital Interface  
Lifetime-calibrated sensing with no drift over  
time or temperature  
NIR filter set realized by silicon interference filters  
No additional signal conditioning required  
Electronic shutter control/synchronization  
Low voltage operation  
16-bit ADC with digital access  
Programmable LED drivers  
2.7V to 3.6V with I²C interface  
20-pin LGA package 4.5mm x 4.7mm x 2.5mm,  
-40°C to 85°C temperature range  
Small, robust package, with built-in aperture  
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 1  
Document Feedback  
AS7263 − General Description  
Applications  
The AS7263 applications include:  
Product authentication  
Bank note/document validation  
Chemical analysis  
Food/beverage safety  
Block Diagram  
The functional blocks of this device are shown below:  
Figure 2:  
AS7263 NIR Spectral_ID System  
3V  
10uF  
100nF  
3V  
VDD1  
RX / SCL_S  
VDD2  
3V  
uP  
TX / SDA_S  
INT  
LED_IND  
LED_DRV  
AS7263  
Light  
6-channel  
NIR  
Sensor  
MOSI  
MISO  
Source  
Flash  
Memory  
SCK  
Light in  
CSN_EE  
Reflective  
Surface  
GND  
Page 2  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Pin Assignment  
The device pin assignments are described below.  
Pin Assignment  
Figure 3:  
Pin Diagram (Top View)  
20  
16  
1
15  
5
11  
6
10  
Figure 4:  
Pin Description  
Pin Number  
Pin Name  
Description  
1
2
NF  
RESN  
Not Functional. Do not connect.  
Reset, Active LOW  
3
SCK  
SPI Serial Clock  
4
MOSI  
SPI Master Out Slave In  
SPI Master In Slave Out  
5
MISO  
6
CSN_EE  
CSN_SD  
I2C_ENB  
NF  
Chip Select for External Serial Flash Memory, Active LOW  
Chip Select for SD Card Interface, Active LOW  
Select UART (Low) or I²C (High) Operation  
Not Functional. Do not connect.  
7
8
9
10  
11  
12  
13  
14  
NF  
Not Functional. Do not connect.  
RX/SCL_S  
TX/SDA_S  
INT  
RX (UART) or SCL_S (I²C Slave) Depending on I²C_ENB  
TX (UART) or SDA_S (I²C Slave) Depending on I²C_ENB  
Interrupt, Active LOW  
VDD2  
Voltage Supply  
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 3  
Document Feedback  
AS7263 − Pin Assignment  
Pin Number  
Pin Name  
LED_DRV  
GND  
Description  
LED Driver Output for Driving LED, Current Sink  
Ground  
15  
16  
17  
18  
19  
20  
VDD1  
Voltage Supply  
LED_IND  
NF  
LED Driver Output for Indicator LED, Current Sink  
Not Functional. Do not connect.  
Not Functional. Do not connect.  
NF  
Page 4  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Absolute Maximum Ratings  
Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or any  
other conditions beyond those indicated under  
Absolute Maximum Ratings  
Electrical Characteristics is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability. The device is not designed for high energy UV  
(ultraviolet) environments, including upward looking outdoor  
applications, which could affect long term optical performance.  
Figure 5:  
Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Units  
Comments  
Electrical Parameters  
V
Supply Voltage VDD1  
Supply Voltage VDD2  
-0.3  
-0.3  
5
5
V
V
Pin VDD1 to GND  
Pin VDD2 to GND  
DD1_MAX  
V
DD2_MAX  
Input/Output Pin  
Voltage  
V
-0.3  
VDD+0.3  
V
Input/Output Pin to GND  
JESD78D  
DD_IO  
Input Current  
(latch-up immunity)  
I
100  
mA  
SCR  
Electrostatic Discharge  
Electrostatic Discharge  
HBM  
1000  
V
V
JS-001-2014  
JSD22-C101F  
ESD  
ESD  
HBM  
Electrostatic Discharge  
CDM  
500  
CDM  
Temperature Ranges and Storage Conditions  
Storage Temperature  
Range  
T
-40  
85  
260  
85  
°C  
°C  
%
STRG  
IPC/JEDEC J-STD-020  
The reflow peak soldering  
temperature (body  
temperature) is specified  
according to IPC/JEDEC  
J-STD-020  
Package Body  
Temperature  
T
BODY  
“Moisture/Reflow  
Sensitivity Classification  
for Non-hermetic Solid  
State Surface Mount  
Devices.”  
Relative Humidity  
(non-condensing)  
RH  
5
NC  
Moisture Sensitivity  
Level  
Maximum floor life time of  
168 hours  
MSL  
3
ams Datasheet  
Page 5  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Electrical Characteristics  
All limits are guaranteed with VDD = VDD1 = VDD2 = 3.3V,  
Electrical Characteristics  
T
=25°C. The parameters with min and max values are  
AMB  
guaranteed with production tests or SQC (Statistical Quality  
Control) methods.  
Figure 6:  
Electrical Characteristics of AS7263  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
General Operating Conditions  
VDD1  
/VDD2  
Voltage Operating Supply UART Interface  
2.97  
3.3  
3.6  
3.6  
V
V
VDD1  
/VDD2  
2
Voltage Operating Supply  
2.7  
-40  
3.3  
25  
I C Interface  
T
Operating Temperature  
Operating Current  
Standby Current  
85  
5
°C  
mA  
μA  
AMB  
I
VDD  
(1)  
12  
16  
I
STANDBY  
Internal RC Oscillator  
Internal RC Oscillator  
Frequency  
F
15.7  
-8.5  
16.3  
1.2  
MHz  
ns  
OSC  
(2)  
Internal Clock Jitter  
@25°C  
t
JITTER  
Temperature Sensor  
Absolute Accuracy of the  
Temperature  
Measurement  
D
I
8.5  
°C  
TEMP  
Indicator LED  
LED Current  
1
4
8
mA  
%
IND  
I
Accuracy of Current  
-30  
30  
ACC  
Voltage Range of  
Connected LED  
V
Vds of current sink  
0.3  
VDD  
V
LED  
LED_DRV  
I
LED Current  
12.5, 25, 50 or 100  
12.5  
-10  
100  
10  
mA  
%
LED1  
ACC  
I
Accuracy of Current  
Voltage Range of  
Connected LED  
V
Vds of current sink  
0.3  
VDD  
V
LED  
Page 6  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Digital Inputs and Outputs  
Vin=0V or VDD  
Min  
Typ  
Max  
Unit  
I , I  
Logic Input Current  
-1  
-1  
1
μA  
IH IL  
Logic Input Current (RESN  
pin)  
I
Vin=0V  
-0.2  
mA  
ILRESN  
0.7*  
VDD  
V
CMOS Logic High Input  
CMOS Logic Low Input  
VDD  
V
V
V
IH  
0.3*  
VDD  
V
0
IL  
VDD -  
0.4  
V
CMOS Logic High Output I=1mA  
OH  
V
CMOS Logic Low Output  
Current Rise Time  
I=1mA  
0.4  
5
V
OL  
(2)  
C(Pad)=30pF  
C(Pad)=30pF  
ns  
ns  
t
t
RISE  
(2)  
Current Fall Time  
5
FALL  
Note(s):  
1. 15μA over temperature  
2. Guaranteed, not tested in production  
ams Datasheet  
Page 7  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Timing Characteristics  
Timing Characteristics  
Figure 7:  
AS7263 I²C Slave Timing Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Unit  
I²C Interface  
f
SCL Clock Frequency  
0
400  
kHz  
μs  
SCLK  
Bus Free Time  
Between a STOP and  
START  
t
1.3  
BUF  
Hold Time  
(Repeated) START  
t
0.6  
1.3  
0.6  
0.6  
μs  
μs  
μs  
μs  
HS:STA  
LOW Period of SCL  
Clock  
t
LOW  
HIGH Period of SCL  
Clock  
t
HIGH  
Setup Time for a  
Repeated START  
t
SU:STA  
t
t
Data Hold Time  
Data Setup Time  
0
0.9  
μs  
ns  
HS:DAT  
100  
SU:DAT  
Rise Time of Both  
SDA and SCL  
t
20  
20  
0.6  
300  
300  
ns  
ns  
μs  
pF  
pF  
R
Fall Time of Both SDA  
and SCL  
t
F
Setup Time for STOP  
Condition  
t
SU:STO  
Capacitive Load for  
Each Bus Line  
CB — total capacitance of  
one bus line in pF  
C
400  
10  
B
I/O Capacitance  
(SDA, SCL)  
C
I/O  
Page 8  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Timing Characteristics  
Figure 8:  
I²C Slave Timing Diagram  
tLOW  
tR  
tF  
SCL  
tHIGH  
P
S
S
P
tSU:DAT  
tSU:STA  
tHD:STA  
tHD:DAT  
tSU:STO  
VIH  
VIL  
SDA  
tBUF  
Stop  
Start  
Figure 9:  
AS7263 SPI Timing Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI Interface  
f
Clock Frequency  
Clock High Time  
Clock Low Time  
SCK Rise Time  
SCK Fall Time  
0
40  
40  
5
16  
MHz  
ns  
SCK  
t
SCK_H  
t
ns  
SCK_L  
t
ns  
SCK_RISE  
t
5
ns  
SCK_FALL  
Time between CSN high-low  
transition to first SCK high  
transition  
t
CSN Setup Time  
CSN Hold Time  
50  
ns  
ns  
CSN_S  
Time between last SCK  
falling edge and CSN  
low-high transition  
t
100  
CSN_H  
t
CSN Disable Time  
Data-Out Setup Time  
Data-Out Hold Time  
Data-In Valid  
100  
5
ns  
ns  
ns  
ns  
CSN_DIS  
t
DO_S  
t
5
DO_H  
t
10  
DI_V  
Note(s):  
1. Guaranteed, not tested in production  
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 9  
Document Feedback  
AS7263 − Timing Characteristics  
Figure 10:  
SPI Master Write Timing Diagram  
tCS N_DIS  
CSN  
tCSN_H  
tSCK_RISE  
tSCK_FALL  
tCSN_S  
SCK  
tDO_S  
tDO_H  
MOSI  
MISO  
MSB  
LSB  
HI-Z  
HI-Z  
Figure 11:  
SPI Master Read Timing Diagram  
CSN_xx  
tSCK_H  
tSCK_L  
SCK  
tDI_V  
Dont care  
MOSI  
MISO  
MSB  
LSB  
Page 10  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Timing Characteristics  
Optical Characteristics  
Figure 12:  
(1)  
Optical Characteristics of AS7263 (Pass Band)  
Channel  
(nm)  
Symbol Parameter Test Conditions  
Min  
Typ  
Max  
Unit  
counts/  
(2), (4)  
(3),(4)  
R
S
Channel R  
Channel S  
Channel T  
Channel U  
Channel V  
Channel W  
610  
680  
730  
760  
810  
860  
20  
Incandescent  
Incandescent  
Incandescent  
Incandescent  
Incandescent  
Incandescent  
35  
35  
35  
35  
35  
35  
2
(ꢀW/cm )  
counts/  
(2), (4)  
(2), (4)  
(2), (4)  
(2), (4)  
(2), (4)  
(3),(4)  
(3),(4)  
(3),(4)  
(3),(4)  
(3),(4)  
2
(ꢀW/cm )  
counts/  
T
2
(ꢀW/cm )  
counts/  
U
V
2
(ꢀW/cm )  
counts/  
2
(ꢀW/cm )  
counts/  
W
2
(ꢀW/cm )  
Full Width  
Half Max  
FWHM  
Wacc  
20  
5
nm  
nm  
Wavelength  
Accuracy  
Dark  
Channel  
Counts  
GAIN=64,  
dark  
f
5
counts  
deg  
T
=25°C  
AMB  
Angle of  
Incidence  
On the sensors  
20.0  
Note(s):  
1. Calibration & measurements are made using diffused light.  
2. Each channel is tested with GAIN = 16x, Integration Time (INT_T) = 166ms and VDD = VDD1 = VDD2 = 3.3V, TAMB=25°C.  
3. The accuracy of the channel counts/ꢀW/cm2 is 12%.  
4. The light source is an incandescent light with an irradiance of ~1500ꢀW/cm2 (300-1000nm). The energy at each channel (R, S, T, U,  
V, W) is calculated with a 33nm bandwidth around the center wavelengths (610, 680, 730, 760, 810, 860nm).  
ams Datasheet  
Page 11  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Typical Operating Characteristics  
Typical Operating  
Characteristics  
Figure 13:  
Spectral Responsivity  
AS7263  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
R
S
T
U
V
W
0
550  
600  
650  
700  
750  
800  
850  
900  
950  
λ - Wavelength (nm)  
Page 12  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
Detailed Description  
Figure 14:  
Internal Block Diagram  
VDD1  
VDD2  
INT  
LED_IND  
RX / SCL_S  
2
UART / I C  
LED_DRV  
TX / SDA_S  
I2C_ENB  
°C  
MISO  
Spectral_ID  
Engine  
SPI  
Master  
MOSI  
SCK  
CSN_SD  
Multi  
Spectral  
Sensor  
R
S T U V  
W
SYNC / RESN  
RC Osc  
16MHz  
GND  
6-Channel NIR Spectral_ID Detector  
The AS7263 6-channel Spectral_ID is a next-generation digital  
spectral sensor device. Each channel has a Gaussian filter  
characteristic with a full width half maximum (FWHM)  
bandwidth of 20nm. The channels are spaced roughly at 50nm  
intervals in the NIR spectrum: R, S, T, U, V, W. The sensor contains  
analog-to-digital converters (16-bit resolution ADC), which  
integrate the current from each channel’s photodiode. Upon  
completion of the conversion cycle, the integrated result is  
transferred to the corresponding data registers. The transfers  
are double-buffered to ensure that the integrity of the data is  
maintained.  
Interference filters enable high temperature stability and  
eliminate lifetime drift. Filter accuracy will be affected by the  
angle of incidence, and require 0° angle of incidence 20.0° for  
specified accuracy. Angles of light beyond this will shift the  
spectral response of the filters. The LGA package aperture  
assists in the control of the light input, helping to maintain the  
proper angle of incidence at the sensors.  
ams Datasheet  
Page 13  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Detailed Description  
Data Conversion Description  
AS7263 spectral conversion is implemented via two photodi-  
ode banks per device. Bank 1 consists of data from the S, T, U,  
V photodiodes. Bank 2 consists of data from the R, T, U, W pho-  
todiodes. Spectral conversion requires the integration time (IT  
in ms) set to complete. If both photodiode banks are required  
to complete the conversion, the 2nd bank requires an addition-  
al IT ms. Minimum IT for a single bank conversion is 2.8 ms. If  
data is required from all 6 photodiodes then the device must  
perform 2 full conversions (2 x Integration Time).  
The spectral conversion process is controlled with BANK Mode  
settings as follows:  
BANK Mode 0: Data will be available in registers S, T, U & V (R  
and W registers will be zero)  
BANK Mode 1: Data will be available in registers R, T, U & W (V  
and W registers will be zero)  
BANK Mode 2: Data will be available in registers R, S, T, U, V & W  
When the bank setting is Mode 0, Mode 1, or Mode 2, the spec-  
tral data conversion process operates continuously, with new  
data available after each IT ms period. In the continuous modes,  
care should be taken to assure prompt interrupt servicing so  
that integration values from both banks are all derived from the  
same spectral conversion cycle.  
BANK Mode 3: Data will be available in registers R, S, T, U, V & W  
in One-Shot mode  
When the bank setting is Mode 3, the device operates in  
One-Shot mode. Spectral conversion occurs only when bit 0 of  
the control register (1SHOT) is set to 1. The 1SHOT bit in the  
control register is subsequently cleared by hardware at the  
same time the DATA_RDY bit is set to 1 indicating the availability  
of spectral conversion result data. The One-Shot mode is in-  
tended for use when it is critical to ensure that spectral conver-  
sion results are obtained contemporaneously.  
Page 14  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
Figure 15:  
Photo Diode Array  
Photo Diode Array  
T
U
V
S
R
W
Figure 16:  
Bank Mode and Data Conversion  
BANK Mode 0  
One Conversion  
S, T, U, V  
R, T, U, W  
S, T, U, V  
Integration Time  
BANK Mode 1  
One Conversion  
Integration Time  
BANK Mode 2  
1st Conversion  
Integration Time  
2nd Conversion  
R, T, U, W  
Integration Time  
RC Oscillator  
The timing generation circuit consists of an on-chip 16MHz,  
temperature compensated oscillator, which provides the mas-  
ter clock for the AS7263.  
ams Datasheet  
Page 15  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Detailed Description  
Temperature Sensor  
The Temperature Sensor is constantly measuring the on-chip  
temperature and enables temperature compensation proce-  
dures.  
Reset  
Pulling down the RESN pin for longer than 100ms resets the  
AS7263.  
Figure 17:  
Reset Circuit  
RESN  
CLE  
Reset  
Push > 100ms  
AS7263  
Indicator LED  
The LED, connected to pin LED_IND, can be used to indicate  
programming progress of the device.  
While programming the AS7263 via the external SD card the  
indicator LED starts flashing (500ms pulses). When program-  
ming is completed the indicator LED is switched off. The LED  
(LED0) can be turned ON/OFF via AT commands or via I²C reg-  
ister control. The LED sink current is programmable from 1mA,  
2mA, 4mA and 8mA.  
Electronic Shutter with LED_DRV Driver Control  
There are two LED driver outputs that can be used to control  
up to 2 LEDs. This will allow different wavelength light sources  
to be used in the same system. The LED output sink currents are  
programmable and can drive external LED sources: LED_IND  
from 1mA, 2mA, 4mA and 8mA and LED_DRV from 12.5mA,  
25mA, 50mA and 100mA. The sources can be turned off and on  
via I²C registers control or AT commands and provides the de-  
vice with an electronic shutter.  
Page 16  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
Interrupt Operation  
If BANK is set to Mode 0 or Mode 1 then the data is ready after  
st  
the 1 integration time. If BANK is set to Mode 2 or Mode 3 then  
the data is ready after two integration times. If the interrupt is  
enabled (INT = 1) then when the data is ready, the INT line is  
pulled low and DATA_RDY is set to 1. The INT line is released  
(returns high) when the control register is read. DATA_RDY is  
cleared to 0 when any of the sensor registers R, S, T, U, V, W are  
st  
read. Since each sensor value is 2 bytes, after the 1 byte is read  
nd  
the 2 byte is shadow-protected in case an integration cycle  
st  
completes just after the 1 byte is read.  
In continuous spectral conversion mode (BANK setting of Mode  
0, Mode 1, or Mode 2), the sensors continue to gather informa-  
tion at the rate of the integration time, hence if the sensor reg-  
isters are not read when the interrupt line goes low, it will stay  
low and the next cycle’s sensor data will be available in the  
registers at the end of the next integration cycle. When the con-  
trol register BANK bits are written with a value of Mode 3,  
One-Shot Spectral Conversion mode is entered. When a single  
set of contemporaneous sensor readings is desired, writing  
BANK Mode 3 to the control register immediately triggers ex-  
actly two spectral data conversion cycles. At the end of these  
two conversion cycles, the DATA_RDY bit is set as for the other  
BANK modes. To perform a new One-Shot sequence, the control  
register BANK bits should be written with a value of Mode 3  
again. This process may continue until the user writes a different  
value into the BANK bits.  
I²C Slave Interface  
If selected by the I2C_ENB pin setting, interface and control can  
be accomplished through an I²C compatible slave interface to  
a set of registers that provide access to device control functions  
and output data. These registers on the AS7263 are, in reality,  
implemented as virtual registers in software. The actual I²C slave  
hardware registers number only three and are described in the  
table below. The steps necessary to access the virtual registers  
defined in the following are explained in pseudocode for exter-  
nal I²C master writes and reads below.  
I²C Feature List  
Fast mode (400kHz) and standard mode (100kHz) support.  
7+1-bit addressing mode.  
Write format: Byte.  
Read format: Byte.  
SDA input delay and SCL spike filtering by integrated  
RC-components.  
ams Datasheet  
Page 17  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Detailed Description  
Figure 18:  
I²C Slave Device Address and Physical Registers  
Entity  
Description  
Note  
Byte = 1001 001x  
Device Slave  
Address  
8-bit Slave Address  
x= 1 for Master Read (byte = 93 hex)  
x= 0 for Master Write (byte = 92 hex)  
Register Address = 0x00  
Bit 1: TX_VALID  
I²C slave interface STATUS  
register.  
Read-only.  
0 -> New data may be written to WRITE register  
1 -> WRITE register occupied. Do NOT write.  
Bit 0: RX_VALID  
STATUS  
Register  
0 -> No data is ready to be read in READ register.  
1 -> Data byte available in READ register.  
Register Address = 0x01  
I²C slave interface WRITE  
register.  
Write-only.  
8-Bits of data written by the I²C Master intended  
for receipt by the I²C slave. Used for both virtual  
register addresses and write data.  
WRITE Register  
READ Register  
I²C slave interface  
READ register.  
Read-only.  
Register Address = 0x02  
8-Bits of data to be read by the I²C Master.  
I²C Virtual Register Write Access  
Figure 19 shows the pseudocode necessary to write virtual  
registers on the AS7263. Note that, because the actual registers  
of interest are realized as virtual registers, a means of indicating  
whether there is a pending read or write operation of a given  
virtual register is needed. To convey this information, the most  
significant bit of the virtual register address is used as a marker.  
If it is 1, then a write is pending, otherwise the slave is expecting  
a virtual read operation. The pseudocode illustrates the proper  
technique for polling of the I²C slave status register to ensure  
the slave is ready for each transaction.  
Page 18  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
Figure 19:  
I²C Virtual Register Byte Write  
Pseudocode  
Poll I²C slave STATUS register;  
If TX_VALID bit is 0, a write can be performed on the interface;  
Send a virtual register address and set the MSB of the register address to 1 to indicate the pending write;  
Poll I²C slave STATUS register;  
If TX_VALID bit is 0, the virtual register address for the write has been received and the data may now be written;  
Write the data.  
Sample Code:  
#define I2C_AS72XX_SLAVE_STATUS_REG0x00  
#define I2C_AS72XX_SLAVE_WRITE_REG0x01  
#define I2C_AS72XX_SLAVE_READ_REG0x02  
#define I2C_AS72XX_SLAVE_TX_VALID0x02  
#define I2C_AS72XX_SLAVE_RX_VALID0x01  
void i2cm_AS72xx_write(uint8_t virtualReg, uint8_t d)  
{
volatile uint8_tstatus;  
while (1)  
{
// Read slave I²C status to see if the write buffer is ready.  
status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);  
if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)  
// No inbound TX pending at slave. Okay to write now.  
break ;  
}
// Send the virtual register address (setting bit 7 to indicate a pending write).  
i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, (virtualReg | 0x80)) ;  
while (1)  
{
// Read the slave I2C status to see if the write buffer is ready.  
status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG) ;  
if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)  
// No inbound TX pending at slave. Okay to write data now.  
break;  
}
// Send the data to complete the operation.  
i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, d);  
}
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 19  
Document Feedback  
AS7263 − Detailed Description  
I²C Virtual Register Read Access  
Figure 20 shows the pseudocode necessary to read virtual reg-  
isters on the AS7263. Note that in this case, reading a virtual  
register, the register address is not modified.  
Figure 20:  
I²C Virtual Register Byte Read  
Pseudocode  
Poll I²C slave STATUS register;  
If TX_VALID bit is 0, the virtual register address for the read may be written;  
Send a virtual register address;  
Poll I²C slave STATUS register;  
If RX_VALID bit is 1, the read data is ready;  
Read the data.  
Sample Code:  
uint8_t i2cm_AS72xx_read(uint8_t virtualReg)  
{
volatile uint8_t status, d ;  
while (1)  
{
// Read slave I2C status to see if the read buffer is ready.  
status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG) ;  
if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)  
// No inbound TX pending at slave. Okay to write now.  
break ;  
}
// Send the virtual register address (setting bit 7 to indicate a pending write).  
i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, virtualReg) ;  
while (1)  
{
// Read the slave I²C status to see if our read data is available.  
status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG) ;  
if ((status & I2C_AS72XX_SLAVE_RX_VALID) != 0)  
// Read data is ready.  
break ;  
}
// Read the data to complete the operation.  
d = i2cm_read(I2C_AS72XX_SLAVE_READ_REG) ;  
return d ;s  
}
The details of the i2cm_read() and i2cm_write() functions in  
previous Figures are dependent upon the nature and imple-  
mentation of the external I²C master device.  
Page 20  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
I²C Virtual Register Set  
The figure below provides a summary of the AS7263 I²C register  
set. Figures after that provide additional details. All register  
data is hex or, where noted, 32-bit floating point, and all  
multi-byte entities are Big Endian (most significant byte is  
situated at the lowest register address).  
Figure 21:  
I²C Register Set Overview  
Addr  
Name  
<D7> <D6> <D5> <D4> <D3> <D2> <D1>  
<D0>  
Version Registers  
0x00:  
0x01  
HW_Version  
FW_Version  
Hardware Version  
Firmware Version  
0x02:  
0x03  
Control Registers  
DATA_  
RDY  
0x04  
Control_Setup  
RST  
INT  
GAIN  
Bank  
Integration Time  
RSVD  
0x05  
0x06  
INT_T  
Device_Temp  
Device Temperature  
LED_  
DRV  
0x07  
LED_Control  
RSVD  
ICL_DRV  
ICL_IND  
LED_IND  
Sensor Raw Data Registers  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
R_High  
R_Low  
S_High  
S_Low  
T_High  
T_Low  
U_High  
U_Low  
V_High  
V_Low  
W_High  
W_Low  
Channel R High Data Byte  
Channel R Low Data Byte  
Channel S High Data Byte  
Channel S Low Data Byte  
Channel T High Data Byte  
Channel T Low Data Byte  
Channel U High Data Byte  
Channel U Low Data Byte  
Channel V High Data Byte  
Channel V Low Data Byte  
Channel W High Data Byte  
Channel W Low Data Byte  
ams Datasheet  
Page 21  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Detailed Description  
Addr  
Name  
<D7> <D6> <D5> <D4> <D3> <D2> <D1>  
<D0>  
Sensor Calibrated Data Registers  
Channel R Calibrated Data (float)  
0x14:  
0x17  
R_Cal  
S_Cal  
T_Cal  
U_Cal  
V_Cal  
W_Cal  
0x18:  
0x1B  
Channel S Calibrated Data (float)  
Channel T Calibrated Data (float)  
Channel U Calibrated Data (float)  
Channel V Calibrated Data (float)  
Channel W Calibrated Data (float)  
0x1C:  
0x1F  
0x20:  
0x23  
0x24:  
0x27  
0x28:  
0x2B  
Detailed Register Description  
Figure 22:  
HW Version Registers  
Addr: 0x00  
HW_Version  
Bit  
Bit Name  
Default  
Access  
Bit Description  
7:0  
Device Type  
0100000  
R
Device type number  
Addr: 0x01  
HW_Version  
Bit  
Bit Name  
Default  
Access  
Bit Description  
7:0  
HW Version  
00111111  
R
Hardware version  
Page 22  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
Figure 23:  
FW Version Registers  
Addr: 0x02  
FW_Version  
Access  
Bit  
7:6  
5:0  
Bit Name  
Default  
Default  
Bit Description  
Minor  
Version  
R
R
Minor Version [1:0]  
Sub Version  
Sub Version  
Addr: 0x03  
FW_Version  
Bit  
Bit Name  
Access  
Bit Description  
Major  
Version  
7:4  
R
Major Version  
Minor  
Version  
3:0  
R
Minor Version [5:2]  
Figure 24:  
Control Setup Register  
Addr: 0x04/0x84  
Control_Setup  
Bit  
Bit Name  
Default  
Access  
Bit Description  
Soft Reset, Set to 1 for soft reset, goes  
to 0 automatically after the reset  
7
RST  
INT  
0
R/W  
Enable interrupt pin output (INT),  
1: Enable, 0: Disable  
6
0
0
R/W  
R/W  
Sensor Channel Gain Setting (all  
channels)  
‘b00=1x; ‘b01=3.7x; ‘b10=16x;  
‘b11=64x  
5:4  
GAIN  
BANK  
Data Conversion Type (continuous)  
‘b00=Mode 0; ‘b01=Mode 1;  
3:2  
10  
R/W  
‘b10=Mode 2; ‘b11=Mode 3 One-Shot  
1: Data Ready to Read, sets INT active  
if interrupt is enabled.  
Can be polled if not using INT.  
1
0
DATA_RDY  
RSVD  
0
0
R/W  
R
Reserved; Unused  
ams Datasheet  
Page 23  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Detailed Description  
Figure 25:  
Integration Time Register  
Addr: 0x05/0x85  
INT_T  
Bit  
Bit Name  
Default  
Access  
Bit Description  
Integration time =  
<value> * 2.8ms  
7:0  
INT_T  
0xFF  
R/W  
Figure 26:  
Device Temperature Register  
Addr: 0x06  
Device_Temp  
Access  
Bit  
Bit Name  
Default  
Bit Description  
Device temperature  
data byte (°C)  
7:0  
Device_Temp  
R
Figure 27:  
LED Control Register  
Addr: 0x07/0x87  
LED Control  
Bit  
Bit Name  
Default  
Access  
Bit Description  
7:6  
RSVD  
0
R
Reserved  
LED_DRV current limit  
5:4  
3
ICL_DRV  
LED_DRV  
ICL_IND  
LED_IND  
00  
R/W  
‘b00=12.5mA; ‘b01=25mA;  
‘b10=50mA; ‘b11=100mA  
Enable LED_DRV  
1: Enabled; 0: Disabled  
0
00  
0
R/W  
R/W  
R/W  
LED_IND current limit  
‘b00=1mA; ‘b01=2mA; ‘b10=4mA;  
‘b11=8mA  
2:1  
0
Enable LED_IND  
1: Enabled; 0: Disabled  
Page 24  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
Figure 28:  
Sensor Raw Data Registers  
Addr: 0x08  
R_High  
Access  
Bit  
Bit Name  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Bit Description  
7:0  
R_High  
R
Channel R High Data Byte  
Addr: 0x09  
R_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
R_Low  
R
Channel R Low Data Byte  
Addr: 0x0A  
S_High  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
S_High  
R
Channel S High Data Byte  
Addr: 0x0B  
S_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
S_Low  
R
Channel S Low Data Byte  
Addr: 0x0C  
T_High  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
T_High  
R
Channel T High Data Byte  
Addr: 0x0D  
T_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
T_Low  
R
Channel T Low Data Byte  
Addr: 0x0E  
U_High  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
U_High  
R
Channel U High Data Byte  
Addr: 0x0F  
U_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
U_Low  
R
Channel U Low Data Byte  
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 25  
Document Feedback  
AS7263 − Detailed Description  
Addr: 0x10  
Bit Name  
V_High  
Access  
Bit  
Default  
Default  
Default  
Default  
Bit Description  
7:0  
V_High  
R
Channel V High Data Byte  
Addr: 0x11  
V_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
V_Low  
R
Channel V Low Data Byte  
Addr: 0x12  
W_High  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
W_High  
R
Channel W High Data Byte  
Addr: 0x13  
W_Low  
Bit  
Bit Name  
Access  
Bit Description  
7:0  
W_Low  
R
Channel W Low Data Byte  
Figure 29:  
Sensor Calibrated Data Registers  
Addr: 0x14:0x17  
R_Cal  
Bit  
Bit Name  
Default  
Default  
Default  
Default  
Access  
Bit Description  
31:0  
R_Cal  
R
Channel R Calibrated Data (float)  
Addr: 0x18:0x1B  
S_Cal  
Bit  
Bit Name  
Access  
Bit Description  
31:0  
S_Cal  
R
Channel S Calibrated Data (float)  
Addr: 0x1C:0x1F  
T_Cal  
Bit  
Bit Name  
Access  
Bit Description  
31:0  
T_Cal  
R
Channel T Calibrated Data (float)  
Addr: 0x20:0x23  
U_Cal  
Bit  
Bit Name  
Access  
Bit Description  
31:0  
U_Cal  
R
Channel U Calibrated Data (float)  
Page 26  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
Addr: 0x24:0x27  
V_Cal  
Access  
Bit  
Bit Name  
Default  
Default  
Bit Description  
31:0  
V_Cal  
R
Channel V Calibrated Data (float)  
Addr: 0x28:0x2B  
W_Cal  
Bit  
Bit Name  
Access  
Bit Description  
31:0  
W_Cal  
R
Channel W Calibrated Data (float)  
4-Byte Floating-Point (FP) Registers  
Several 4-byte registers (hex) are shown in the tables. Here is  
an example of how the registers are used to represent floating  
point data (based on the IEEE 754 standard):  
Figure 30:  
Example of the IEEE 754 Standard  
The floating point (FP) value assumed by 32 bit binary32 data  
with a biased exponent e (the 8 bit unsigned integer) and a 23  
bit fraction is (for the above example).  
23  
–i  
(e – 127)  
sign  
(b  
FPvalue = (–1)  
1 +  
23 – i)(2 ) x2  
i = 1  
23  
–i  
(124 – 127)  
0  
(b  
FPvalue = (–1) 1 +  
23 – i)(2 ) x2  
i = 1  
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 27  
Document Feedback  
AS7263 − Detailed Description  
FPvalue = (1)x(1 + 2–2)x2(–3) = 0.15625  
UART Interface  
If selected by the I2C_ENB pin setting, the UART module imple-  
ments the TX and RX signals as defined in the RS-232 / V.24  
standard communication protocol.  
It has on both, receive and transmit path, a 16 entry deep FIFO.  
It can generate interrupts as required.  
UART Feature List1  
Full Duplex Operation (Independent Serial Receive and  
Transmit Registers) with FIFO buffer of 8 byte for each.  
At a clock rate of 16MHz it supports communication at  
115200Baud.  
Supports Serial Frames with 8 Data Bits, 1 Parity Bit and 1  
Stop Bit.  
High Resolution Baud Rate Generator.  
Theory of Operation  
Transmission  
If data is available in the transmit FIFO, it will be moved into the  
output shift register and the data will be transmitted at the  
configured Baud Rate, starting with a Start Bit (logic zero) and  
followed by a Stop Bit (logic one).  
Reception  
At any time, with the receiver being idle, if a falling edge of a  
start bit is detected on the input, a byte will be received and  
stored in the receive FIFO. The following Stop Bit will be checked  
to be logic one.  
1. With UART operation, min VDD of 2.97V is required as shown in Electrical Characteristics Figures.  
Page 28  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
Figure 31:  
UART Protocol  
Data Bits  
D4  
TX  
D7  
P
D0  
D0  
D1  
D2  
D3  
D5  
D5  
D6  
D6  
D0  
Start Bit  
Parity Bit Stop Bit Next Start  
Tbit=1/Baude Rate  
Always Low  
Even or odd Always High  
RX  
D7  
P
D1  
D2  
D3  
D4  
D0  
Start Bit detected  
After Tbit/2: Sampling of Start Bit  
After Tbit: Sampling of Data  
Sample Points  
AT Command Interface  
The microprocessor interface to control the NIR Spectral_ID  
Sensor is via the UART, using the AT Commands across the UART  
interface.  
The 6-channel Spectral _ID sensor provides a text-based serial  
command interface borrowed from the “AT Command” model  
used in early Hayes modems.  
For example:  
Read DATA value: ATDATA <data>OK  
Set the gain of the sensor to 1x: ATGAIN =0 OK  
The “AT Command Interface Block Diagram, shown below be-  
tween the network interface and the core of the system, pro-  
vides access to the Spectral_ID engine’s control and configura-  
tion functions.  
Figure 32:  
AT Command Interface Block Diagram  
RX  
AT  
Command  
Interface  
AT Commands  
Spectral_ID  
Engine  
uP  
TX  
AT Command Interface  
AS726x  
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 29  
Document Feedback  
AS7263 − Detailed Description  
In the Figure below, numeric values may be specified with no  
leading prefix, in which case they will be interpreted as  
decimals, or with a leading “0x” to indicate that they are  
hexadecimal numbers, or with a leading “‘b” to indicate that  
they are binary numbers. The commands are loosely grouped  
into functional areas. Texts appearing between angle brackets  
(‘<‘ and ‘>‘) are commands or response arguments. A carriage  
return character, a linefeed character, or both may terminate  
commands and responses. Note that any command that  
encounters an error will generate the “ERROR” response shown,  
for example, in the NOP command at the top of the first table,  
but has been omitted elsewhere in the interest of readability  
and clarity.  
Figure 33:  
AT Commands  
Command  
Response  
Description / Parameters  
Spectral Data per Channel  
<R_value>,  
<S_value>,  
<T_value>,  
<U_value>,  
<V_value>,  
<W_value> OK  
Read R, S, T, U, V & W data. Returns comma-separated 16-bit  
integers.  
ATDATA  
<Cal_R_value>,  
<Cal_S_value>,  
<Cal_T_value>,  
<Cal_U_value>,  
<Cal_V_value>,  
Read calibrated R, S, T, U, V & W data. Returns comma-separated  
32-bit floating point values.  
ATCDATA  
<Cal_W_value> OK  
Sensor Configuration  
Set sensor integration time. Values should be in the range [1...  
255], with  
ATINTTIME=<value> OK  
integration time = <value> * 2.8ms.  
Read sensor integration time, with  
integration time = <value> * 2.8ms.  
ATINTTIME  
ATGAIN=<value>  
ATGAIN  
<value> OK  
OK  
Set sensor gain: 0=1X, 1=3.7x, 2=16x, 3=64x  
Read sensor gain setting, returning 0, 1, 2, or 3 as defined  
immediately above.  
<value>OK  
<value>OK  
ATTEMP  
Read temperature of chip in degree Celsius  
Page 30  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Detailed Description  
Command  
Response  
Description / Parameters  
Set Sensor Mode  
0 = BANK Mode 0;  
1 = BANK Mode 1;  
2 = BANK Mode 2;  
3 = BANK Mode 3 One-Shot;  
4 = Sensors OFF  
ATTCSMD=<value> OK  
In One-Shot mode, each ATTCSMD=3 command triggers a  
One-Shot reading  
ATTCSMD  
<value> OK  
Read Sensor Mode, see above  
<value>= # of samples  
ATBURST=<value>  
OK  
(ATBURST=1 means run until ATBURST=0 is received (a special  
case for continuous output)  
LED Driver Controls  
ATLED0=<value>  
ATLED0  
OK  
Sets LED_IND: 100=ON, 0=OFF  
Reads LED_IND setting: 100=ON, 0=OFF  
Sets LED_DRV: 100=ON, 0=OFF  
Reads LED_DRV setting: 100=ON, 0=OFF  
<100|0>OK  
OK  
ATLED1=<value>  
ATLED1  
<100|0>OK  
Sets LED_IND and LED_DRV current  
LED_IND: bits 3:0; LED_DRV: 7:4 bits  
LED_IND: ‘b00=1mA; ‘b01=2mA; ‘b10=4mA; ‘b11=8ma  
LED_DRV: ‘b00=12.5mA; ‘b01=25mA; ‘b10=50mA; ‘b11=100mA  
ATLEDC=<value>  
OK  
ATLEDC  
<value>OK  
Reads LED_IND and LED_DRV current settings as shown above  
NOP, Version Access, System Reset  
OK Success  
ERROR Failure  
AT  
NOP  
ATRST  
None  
Software Reset – no response  
Returns the system software version number  
<SWversion#>OK  
ERROR Failure  
ATVERSW  
Returns the system hardware revision and product ID, with bits  
7:4 containing the part ID, and bits 3:0 yielding the chip revision  
value.  
<HWversion#>OK  
ERROR Failure  
ATVERHW  
Firmware Update  
<value>= 16-bit checksum. Initial the firmware update process.  
Bytes that follow is always 56k bytes  
ATFWU=<value>  
ATFW=<value>  
ATFWS  
OK  
OK  
OK  
Download new firmware  
Up to 7 Bytes represented as hex chars with no leading or  
trailing 0x.  
Repeat command till all 56k bytes of firmware are downloaded  
Causes the active image to switch between the two possible  
current images and then resets the IC  
ams Datasheet  
Page 31  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Application Information  
Application Information  
Figure 34:  
AS7263 Typical Application Circuit  
3V3  
3V3  
17 VDD1  
14 VDD2  
RESN  
CSN_SD  
CSN_EE  
MISO  
7
6
5
4
3
8
1uF  
100nF 10uF  
1
2
5
6
3
7
/CS  
DO  
DI  
10K  
RST  
2
16 GND  
MOSI  
Flash  
Memory  
3V3 Vled  
SCK  
CLK  
15 LED_DRV  
18 LED_IND  
I2C_ENB  
/WP  
AS7263  
/HOLD  
DNP  
0R  
RX  
11 RX/SCL_S  
12 TX/SDA_S  
13 INT  
NC  
NC  
NC  
NC  
NC  
19  
20  
1
10  
9
TX  
INT  
Page 32  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Package Drawings & Markings  
Package Drawings & Markings  
Figure 35:  
Package Drawing LGA  
RoHS  
Green  
Note(s):  
1. XXXXX = tracecode  
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 33  
Document Feedback  
AS7263 − PCB Pad Layout  
Suggested PCB pad layout guidelines for the LGA device are  
shown.  
PCB Pad Layout  
Figure 36:  
Recommended PCB Pad Layout  
0.30  
0.65  
Unit: mm  
1
4.40  
Page 34  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Nov-25  
AS7263 − Mechanical Data  
Mechanical Data  
Figure 37:  
Tape & Reel Information  
Note(s):  
1. Each reel contains 2000 parts.  
2. Measured from centreline of sprocket hole to centreline of pocket.  
3. Cumulative tolerance of 10 sprocket holes is 0.20.  
4. Other material available.  
5. All dimensions in millimeters unless otherwise stated.  
ams Datasheet  
Page 35  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Storage & Soldering Information  
Storage & Soldering  
Information  
Soldering Information  
The module has been tested and has demonstrated an ability  
to be reflow soldered to a PCB substrate. The solder reflow  
profile describes the expected maximum heat exposure of  
components during the solder reflow process of product on a  
PCB. Temperature is measured on top of component. The  
components should be limited to a maximum of three passes  
through this solder reflow profile.  
Figure 38:  
Solder Reflow Profile  
Parameter  
Reference  
Device  
2.5°C/s  
Average temperature gradient in preheating  
Soak time  
t
2 to 3 minutes  
Max 60 s  
Max 50 s  
Max 10 s  
260° C  
soak  
t
Time above 217°C  
1
t
Time above 230°C  
2
Time above T  
-10°C  
t
peak  
3
T
Peak temperature in reflow  
peak  
Temperature gradient in cooling  
Max -5°C/s  
Figure 39:  
Solder Reflow Profile Graph  
Tpeak  
T3  
T2  
T1  
Time (s)  
t3  
t2  
t1  
tsoak  
Note(s):  
1. Not to scale - for reference only.  
Page 36  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Storage & Soldering Information  
Manufacturing Process Considerations  
The AS7263 package is compatible with standard reflow  
no-clean and cleaning processes including aqueous, solvent or  
ultrasonic techniques. However, as an open-aperture device,  
precautions must be taken to avoid particulate or solvent  
contamination as a result of any manufacturing processes,  
including pick and place, reflow, cleaning, integration assembly  
and/or testing. Temporary covering of the aperture is allowed.  
To avoid degradation of accuracy or performance in the end  
product, care should be taken that any temporary covering and  
associated sealants/debris are thoroughly removed prior to any  
optical testing or final packaging.  
Storage Information  
Moisture Sensitivity  
Optical characteristics of the device can be adversely affected  
during the soldering process by the release and vaporization of  
moisture that has been previously absorbed into the package.  
To ensure the package contains the smallest amount of  
absorbed moisture possible, each device is baked prior to being  
dry packed for shipping.  
Devices are dry packed in a sealed aluminized envelope called  
a moisture-barrier bag with silica gel to protect them from  
ambient moisture during shipping, handling, and storage  
before use.  
Shelf Life  
The calculated shelf life of the device in an unopened moisture  
barrier bag is 12 months from the date code on the bag when  
stored under the following conditions:  
Shelf Life: 12 months  
Ambient Temperature: <40°C  
Relative Humidity: <90%  
Rebaking of the devices will be required if the devices exceed  
the 12 month shelf life or the Humidity Indicator Card shows  
that the devices were exposed to conditions beyond the  
allowable moisture region.  
ams Datasheet  
Page 37  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Storage & Soldering Information  
Floor Life  
The module has been assigned a moisture sensitivity level of  
MSL 3. As a result, the floor life of devices removed from the  
moisture barrier bag is 168 hours from the time the bag was  
opened, provided that the devices are stored under the  
following conditions:  
Floor Life: 168 hours  
Ambient Temperature: <30°C  
Relative Humidity: <60%  
If the floor life or the temperature/humidity conditions have  
been exceeded, the devices must be rebaked prior to solder  
reflow or dry packing.  
Rebaking Instructions  
When the shelf life or floor life limits have been exceeded,  
rebake at 50°C for 12 hours.  
Page 38  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Nov-25  
AS7263 − Ordering & Contact Information  
Ordering & Contact Information  
Figure 40:  
(1) (2)  
Ordering Information  
Ordering  
Delivery  
Form  
Delivery  
Quantity  
Package Marking  
Code  
Description  
6-Channel NIR Spectral_ID  
Device with Electronic  
Shutter & Smart Interface  
AS7263-BLGT  
20-pinLGA  
AS7263  
Tape & Reel  
2000 pcs/reel  
Note(s):  
1. Required companion serial flash memory (must be ams verified) is ordered from the flash memory supplier (e.g. AT25SF041-SSHD-B  
from Adesto Technologies)  
2. AS7263 flash memory software is available from ams.  
Online product information is available at  
www.ams.com/AS7263  
Buy our products or get free samples online at:  
www.ams.com/ICdirect  
Technical Support is available at:  
www.ams.com/Technical-Support  
Provide feedback about this document at:  
www.ams.com/Document-Feedback  
For further information and requests, e-mail us at:  
ams_sales@ams.com  
For sales offices, distributors and representatives, please visit:  
www.ams.com/contact  
Headquarters  
ams AG  
Tobelbader Strasse 30  
8141 Premstaetten  
Austria, Europe  
Tel: +43 (0) 3136 500 0  
Website: www.ams.com  
ams Datasheet  
Page 39  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − RoHS Compliant & ams Green Statement  
RoHS: The term RoHS compliant means that ams AG products  
fully comply with current RoHS directives. Our semiconductor  
products do not contain any chemicals for all 6 substance  
categories, including the requirement that lead not exceed  
0.1% by weight in homogeneous materials. Where designed to  
be soldered at high temperatures, RoHS compliant products are  
suitable for use in specified lead-free processes.  
RoHS Compliant & ams Green  
Statement  
ams Green (RoHS compliant and no Sb/Br): ams Green  
defines that in addition to RoHS compliance, our products are  
free of Bromine (Br) and Antimony (Sb) based flame retardants  
(Br or Sb do not exceed 0.1% by weight in homogeneous  
material).  
Important Information: The information provided in this  
statement represents ams AG knowledge and belief as of the  
date that it is provided. ams AG bases its knowledge and belief  
on information provided by third parties, and makes no  
representation or warranty as to the accuracy of such  
information. Efforts are underway to better integrate  
information from third parties. ams AG has taken and continues  
to take reasonable steps to provide representative and accurate  
information but may not have conducted destructive testing or  
chemical analysis on incoming materials and chemicals. ams AG  
and ams AG suppliers consider certain information to be  
proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Page 40  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Nov-25  
AS7263 − Copyrights & Disclaimer  
Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten,  
Austria-Europe. Trademarks Registered. All rights reserved. The  
material herein may not be reproduced, adapted, merged,  
translated, stored, or used without the prior written consent of  
the copyright owner.  
Copyrights & Disclaimer  
Devices sold by ams AG are covered by the warranty and patent  
indemnification provisions appearing in its General Terms of  
Trade. ams AG makes no warranty, express, statutory, implied,  
or by description regarding the information set forth herein.  
ams AG reserves the right to change specifications and prices  
at any time and without notice. Therefore, prior to designing  
this product into a system, it is necessary to check with ams AG  
for current information. This product is intended for use in  
commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or  
high reliability applications, such as military, medical  
life-support or life-sustaining equipment are specifically not  
recommended without additional processing by ams AG for  
each application. This product is provided by ams AG “AS IS”  
and any express or implied warranties, including, but not  
limited to the implied warranties of merchantability and fitness  
for a particular purpose are disclaimed.  
ams AG shall not be liable to recipient or any third party for any  
damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any  
kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation  
or liability to recipient or any third party shall arise or flow out  
of ams AG rendering of technical or other services.  
ams Datasheet  
Page 41  
[v1-00] 2016-Nov-25  
Document Feedback  
AS7263 − Document Status  
Document Status  
Document Status  
Product Status  
Definition  
Information in this datasheet is based on product ideas in  
the planning phase of development. All specifications are  
design goals without any warranty and are subject to  
change without notice  
Product Preview  
Pre-Development  
Information in this datasheet is based on products in the  
design, validation or qualification phase of development.  
The performance and parameters shown in this document  
are preliminary without any warranty and are subject to  
change without notice  
Preliminary Datasheet  
Datasheet  
Pre-Production  
Production  
Information in this datasheet is based on products in  
ramp-up to full production or full production which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade  
Information in this datasheet is based on products which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade, but these products have been superseded and  
should not be used for new designs  
Datasheet (discontinued)  
Discontinued  
Page 42  
amsDatasheet  
Document Feedback  
[v1-00] 2016-Nov-25  
AS7263 − Revision Information  
Revision Information  
Changes from 0-90 (2016-Nov-04) to current revision 1-00 (2016-Nov-25)  
Initial production version for release  
Page  
Completely revised version  
Note(s):  
1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.  
2. Correction of typographical errors is not explicitly mentioned.  
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 43  
Document Feedback  
AS7263 − Content Guide  
1
1
2
2
General Description  
Key Benefits & Features  
Applications  
Content Guide  
Block Diagram  
3
5
6
Pin Assignment  
Absolute Maximum Ratings  
Electrical Characteristics  
8
Timing Characteristics  
11 Optical Characteristics  
12 Typical Operating Characteristics  
13 Detailed Description  
13 6-Channel NIR Spectral_ID Detector  
14 Data Conversion Description  
15 RC Oscillator  
16 Temperature Sensor  
16 Reset  
16 Indicator LED  
16 Electronic Shutter with LED_DRV Driver Control  
17 Interrupt Operation  
17 I²C Slave Interface  
17 I²C Feature List  
18 I²C Virtual Register Write Access  
20 I²C Virtual Register Read Access  
21 I²C Virtual Register Set  
22 Detailed Register Description  
27 4-Byte Floating-Point (FP) Registers  
28 UART Interface  
28 UART Feature List  
28 Theory of Operation  
28 Transmission  
28 Reception  
29 AT Command Interface  
32 Application Information  
33 Package Drawings & Markings  
34 PCB Pad Layout  
35 Mechanical Data  
36 Storage & Soldering Information  
36 Soldering Information  
37 Manufacturing Process Considerations  
37 Storage Information  
37 Moisture Sensitivity  
37 Shelf Life  
38 Floor Life  
38 Rebaking Instructions  
39 Ordering & Contact Information  
Page 44  
Document Feedback  
amsDatasheet  
[v1-00] 2016-Nov-25  
AS7263 − Content Guide  
40 RoHS Compliant & ams Green Statement  
41 Copyrights & Disclaimer  
42 Document Status  
43 Revision Information  
ams Datasheet  
[v1-00] 2016-Nov-25  
Page 45  
Document Feedback  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY