AS8510-ASSP [AMSCO]

Data Acquisition Device for Battery Sensors; 数据采集设备的电池传感器
AS8510-ASSP
型号: AS8510-ASSP
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Data Acquisition Device for Battery Sensors
数据采集设备的电池传感器

电池 传感器
文件: 总47页 (文件大小:482K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
high  
performance  
needs great  
design.  
Datasheet: AS8510 Data Acquisition Device for Battery Sensors  
Please be patient while we update our brand image as  
austriamicrosystems and TAOS are now ams.  
www.ams.com  
AS8510  
Data Acquisition Device for Battery Sensors  
Option for multiplexing either one differential  
1 General Description  
input, or two single ended inputs or the internal temperature  
sensor on one channel  
The AS8510 is a virtually offset free, low noise, two channel  
measurement device. It is tailored to accurately measure battery  
current from mA range up to kA range in conjunction with a 100 µΩ  
shunt resistor in series with the battery rail. Through the second  
measurement channel it enables capture of, either battery voltage  
synchronous with the current measurement, or, measure the analog  
output of an internal or external temperature sensor. Both channels  
are matched and can either measure small signals up to ±160 mV  
versus ground, through programmable gain amplifier or larger  
signals in the 0 to 1V range without the amplifier.  
Programmable current source for external temperature sensor  
connectable to any of the inputs  
High precision and high stability 1.2V reference voltage source  
Digital signal processing with filter options for both channels  
Four operating modes providing  
- Continuous data acquisition (or)  
- Periodic single-shot acquisition, (or)  
- Continuous acquisition on threshold crossing of programmed  
current levels (or)  
After analog to digital conversion and digital filtering, the resulting  
16-bit digital words are accessible through 4-wire standard serial  
interface.The device includes a number of additional features  
explained in the next section.  
- A combination of the above  
On chip high-precision 4MHz RC oscillator or option for external  
clock  
-40ºC to +125ºC ambient operation  
AEC - Q100 automotive qualified  
Internal chip ID for full traceability  
SSOP-20 pin package  
2 Key Features  
3.3V supply voltage  
Two High resolution 16 bit Σ−Δ A/D converters  
Programmable sampling to enable data throughputs from less  
than 1Hz to 8kHz  
3 Applications  
Zero Offset for both channels  
Independent control of data rate on both channels  
The AS8510 is ideal for shunt based batteries sensor. For high-side  
current sensing, the input signal may be conditioned using ams  
device AS8525 before applying to this device.  
Precision, low noise, programmable gain amplifiers for both  
channels with gains 5, 25, 40, 100 to support wide dynamic  
ranges.  
Figure 1. AS8510 Block Diagram  
REF  
DVDD  
AVDD  
Internal Temperature Sensor  
Prog-Cur  
Bandgap Reference  
Oscillators  
ETR  
ETS  
Source  
MUX and  
Chopper  
16-bit Sigma-Delta ADC  
PGA  
VBAT_IN  
VBAT_GND  
MEN  
CHOP_CLK  
FIR / MA  
AS8510  
INT  
CLK  
RSHH  
RSHL  
Chopper  
PGA  
16-bit Sigma-Delta ADC  
Analog Common Mode  
Serial Interface  
AVSS  
VCM  
SCLK CS SDI  
SDO DVSS  
www.ams.com/AS8510  
Revision 3.5  
1 - 46  
AS8510  
Datasheet - Contents  
Contents  
1 General Description ..................................................................................................................................................................  
2 Key Features.............................................................................................................................................................................  
3 Applications...............................................................................................................................................................................  
4 Pin Assignments .......................................................................................................................................................................  
4.1 Pin Descriptions....................................................................................................................................................................................  
5 Absolute Maximum Ratings ......................................................................................................................................................  
6 Electrical Characteristics...........................................................................................................................................................  
6.1 Operating Conditions............................................................................................................................................................................  
6.2 DC/AC Characteristics for Digital Inputs and Outputs..........................................................................................................................  
6.3 Detailed System and Block Specifications ...........................................................................................................................................  
1
1
1
4
4
6
7
7
7
9
6.3.1 Electrical System Specifications.................................................................................................................................................. 9  
6.4 Current Measurement Ranges (across 100µΩ shunt resistor)............................................................................................................  
9
6.4.1 Differential Input Amplifier for Current Channel......................................................................................................................... 10  
6.4.2 Differential Input Amplifier for Voltage Channel......................................................................................................................... 11  
6.4.3 Sigma Delta Analog to Digital Converter ................................................................................................................................... 12  
6.4.4 Bandgap Reference Voltage...................................................................................................................................................... 12  
6.4.5 Internal (Programmable) Current Source for External Temperature Measurement .................................................................. 13  
6.4.6 CMREF Circuit (VCM) ............................................................................................................................................................... 13  
6.4.7 Internal AVDD Power-on Reset................................................................................................................................................. 13  
6.4.8 Internal DVDD Power-on Reset................................................................................................................................................. 14  
6.4.9 Low Speed Oscillator................................................................................................................................................................. 14  
6.4.10 High Speed Oscillator.............................................................................................................................................................. 14  
6.4.11 External Clock.......................................................................................................................................................................... 14  
6.4.12 Internal Temperature Sensor................................................................................................................................................... 15  
6.5 System Specifications ........................................................................................................................................................................ 15  
7 Detailed Description................................................................................................................................................................ 16  
7.1 Current Measurement Channel .......................................................................................................................................................... 16  
7.2 Voltage/Temperature Measurement Channel..................................................................................................................................... 16  
7.3 Digital Implementation of Measurement Path..................................................................................................................................... 17  
7.4 Modes of Operation............................................................................................................................................................................ 17  
7.4.1 Normal Mode 1 (NOM1) ............................................................................................................................................................ 19  
7.4.2 Normal Mode 2 (NOM2) ............................................................................................................................................................ 19  
7.4.3 Standby Mode1 (SBM1) ............................................................................................................................................................ 20  
7.4.4 Standby Mode2 (SBM2) ............................................................................................................................................................ 21  
7.5 Reference-Voltage.............................................................................................................................................................................. 21  
7.6 Oscillators........................................................................................................................................................................................... 21  
7.7 Power-On Reset................................................................................................................................................................................. 21  
7.8 4-Wire Serial Port Interface ................................................................................................................................................................ 22  
7.8.1 SPI Frame.................................................................................................................................................................................. 22  
7.8.2 Write Command......................................................................................................................................................................... 23  
7.8.3 Read Command......................................................................................................................................................................... 24  
7.8.4 Timing........................................................................................................................................................................................ 25  
7.8.5 SPI Interface Timing .................................................................................................................................................................. 26  
www.ams.com/AS8510  
Revision 3.5  
2 - 46  
AS8510  
Datasheet - Contents  
7.9 Control Register.................................................................................................................................................................................. 27  
7.9.1 Standby Mode - Power Consumption........................................................................................................................................ 37  
7.9.2 Initialization Sequence at Power ON ......................................................................................................................................... 38  
7.9.3 Soft-reset of Device Using Bit D[7] of Reset Register 0x09....................................................................................................... 39  
7.9.4 Soft-reset of the Measurement Path Using Bit D[7] of Reset Register 0x09 ............................................................................. 39  
7.9.5 Reconfiguring Gain Setting of PGA .......................................................................................................................................... 40  
7.9.6 Configuring the Device During Normal Mode ............................................................................................................................ 40  
7.10 Low Side Current Measurement Application .................................................................................................................................... 41  
8 Package Drawings and Markings ........................................................................................................................................... 42  
8.1 Recommended PCB Footprint............................................................................................................................................................ 43  
9 Ordering Information............................................................................................................................................................... 45  
www.ams.com/AS8510  
Revision 3.5  
3 - 46  
AS8510  
Datasheet - Pin Assignments  
4 Pin Assignments  
Figure 2. Pin Assignments (Top View)  
1
2
20  
19  
INT  
RSHH  
RSHL  
CLK  
3
4
18  
17  
REF  
SDI  
MEN  
VCM  
5
6
16  
15  
AVDD  
AVSS  
CHOP_CLK  
DVDD  
AS8510  
7
8
14  
13  
ETR  
ETS  
DVSS  
SDO  
SCLK  
CS  
9
12  
11  
VBAT_IN  
VBAT_GND  
10  
4.1 Pin Descriptions  
Table 1. Pin Descriptions  
Pin Number  
Pin Name  
RSHH  
Pin Type  
Description  
Positive Differential input for current channel  
Negative differential input for current channel  
1
2
Analog input  
Analog output  
Supply pad  
RSHL  
REF  
Internal reference voltage to sigma-delta ADC; connect 100nF to  
AVSS from this pin.  
3
4
Common Mode voltage to the internal measurement path;  
connect 100nF to AVSS from this pin.  
VCM  
+3.3V Analog Power-supply  
0V Power-supply analog  
5
6
AVDD  
AVSS  
7
ETR  
Voltage channel single ended input  
8
ETS  
Analog input  
Battery voltage (high) input  
9
VBAT_IN  
VBAT_GND  
CS  
Battery voltage (low) input  
10  
11  
12  
13  
Chip select with an internal pull-up resistor (SPI Interface)  
Clock signal (SPI Interface)  
Digital input with pull-up  
Digital input  
SCLK  
Serial Data Input (SPI Interface)  
SDO  
Digital output  
www.ams.com/AS8510  
Revision 3.5  
4 - 46  
AS8510  
Datasheet - Pin Assignments  
Table 1. Pin Descriptions  
Pin Number  
Pin Name  
DVSS  
Pin Type  
Description  
0V Digital Ground  
14  
15  
Supply pad  
+3.3V Digital Supply  
DVDD  
Chop Clock used in High side measurements to synchronize  
external chopper.  
16  
17  
CHOP_CLK  
MEN  
(As an example, when AS8525 is used to condition the input  
signal to the input range of AS8510, the chop clock is used by  
AS8525.)  
Digital output  
Digital output issued during the Standby Mode (SBM) to signal  
the short duration of data sampling. This signal is useful in the  
case of a High Side Measurement application.  
(For example: This signal is used by AS8525 device to wake-up  
and enable the measurement path.)  
Data signal (SPI Interface)  
18  
19  
20  
SDI  
CLK  
INT  
Digital input  
Digital I/O  
By default this pin is the internal clock output which can be used  
by a Microcontroller. The internal clock may also be disabled as  
an output by programming Register 08. To use an external Clock,  
Register 08 has to be programmed.  
Active High Interrupt to indicate data is ready  
Digital output  
www.ams.com/AS8510  
Revision 3.5  
5 - 46  
AS8510  
Datasheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only. Functional operation of the  
device at these or any other conditions beyond those indicated in Electrical Characteristics on page 7 is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 2. Absolute Maximum Ratings  
Parameter  
Electrical Parameters  
Min  
Max  
Units  
Notes  
DC supply voltage (AVDD and DVDD)  
Input voltage (VIN)  
-0.3  
-0.3  
5
V
V
AVDD + 0.3  
DVDD + 0.3  
Input current (latchup immunity)  
-100  
100  
mA  
kV  
AEC - Q100 - 004  
AEC - Q100 - 002  
(ISCR  
)
Electrostatic Discharge  
Electrostatic discharge (ESD) all pins  
±2  
Continuous Power Dissipation  
SSOP20 in still air, soldered on JEDEC  
standard board @ 125º ambient, static  
operation with no time limit  
Total power dissipation  
(all supplies and outputs) (Pt)  
50  
mW  
Temperature Ranges and Storage Conditions  
Storage temperature (TSTRG  
Junction temperature (TJ)  
Thermal resistance (RthJC)  
)
-50  
125  
130  
80  
ºC  
ºC  
K/W  
JEDEC standard test board, 0 air velocity  
Norm: IPC/JEDEC J-STD-020  
The reflow peak soldering temperature (body  
temperature) is specified according IPC/  
JEDEC J-STD-020 “Moisture/Reflow Sensitivity  
Classification for Nonhermetic Solid State  
Surface Mount Devices”.  
Package body temperature (TBODY  
)
260  
85  
ºC  
%
The lead finish for Pb-free leaded packages is  
matte tin (100% Sn).  
Humidity non-condensing  
5
www.ams.com/AS8510  
Revision 3.5  
6 - 46  
AS8510  
Datasheet - Electrical Characteristics  
6 Electrical Characteristics  
6.1 Operating Conditions  
Table 3. Operating Conditions  
Symbol  
AVDD  
AVSS  
A - D  
Parameter  
Positive analog supply voltage  
0V Ground  
Conditions  
Min  
3.0  
0
Max  
3.6  
0
Units  
V
V
Difference in analog and digital supplies  
Positive digital supply  
0V Digital Ground  
0.1  
3.63  
0
V
DVDD  
DVSS  
TAMB  
2.97  
0
V
V
Ambient temperature  
Supply current  
-40  
125  
5.5  
ºC  
mA  
ISUPP  
System clock frequency1  
fCLK  
4.096  
MHz  
1. Nominal clock frequency from external or internal oscillator.  
6.2 DC/AC Characteristics for Digital Inputs and Outputs  
All pull-up and pull-down have been implemented with active devices. SDO has been measured with 10pF load.  
Table 4. INT  
Symbol  
ILEAK  
VOH  
Parameter  
Conditions  
Min  
-1  
Typ  
Typ  
Typ  
Max  
Units  
µA  
V
Tri-state leakage current  
High level output voltage  
Low level output voltage  
Output Current  
+1  
2.5  
VOL  
0.4  
4
V
IO  
mA  
Table 5. CS Input  
Symbol  
VIH  
Parameter  
Conditions  
Min  
Max  
Units  
V
High level input voltage  
Low level input voltage  
Input leakage current  
Pull up current  
2.0  
VIL  
0.8  
+1  
V
ILEAK  
Ipu  
-1  
µA  
µA  
CS pulled to DVDD = 3.3V  
-150  
-15  
Table 6. SDI  
Symbol  
VIH  
Parameter  
Conditions  
Min  
Max  
Units  
V
High level input voltage  
Low level input voltage  
Input leakage current  
2.0  
VIL  
0.8  
+1  
V
ILEAK  
-1  
µA  
www.ams.com/AS8510  
Revision 3.5  
7 - 46  
AS8510  
Datasheet - Electrical Characteristics  
Table 7. SDO Output  
Symbol  
VOH  
VOL  
Parameter  
Conditions  
Isource = 8mA  
Isink = 8mA  
Min  
Typ  
Typ  
Typ  
Max  
Units  
V
High level output voltage  
Low level output voltage  
Output Current  
2.5  
0.4  
8
V
Io  
mA  
Table 8. CHOP_CLK Output  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
V
VOH  
VOL  
Io  
High level output voltage  
Low level output voltage  
Output Current  
2.5  
0.4  
4
V
mA  
Table 9. CLK I/O with Input Schmitt Trigger and Output Buffer  
Symbol  
VIH  
Parameter  
Conditions  
DVDD = 3.3V  
DVDD = 3.3V  
Min  
Max  
Units  
V
High level input voltage  
Low level input voltage  
Input leakage current  
Pull down current  
2.4  
VIL  
1.0  
+1  
100  
4
V
ILEAK  
IPD  
-1  
µA  
µA  
mA  
V
CLK pulled to DVSS  
10  
Io  
Output Current  
VOH  
VOL  
High level output voltage  
Low level output voltage  
2.5  
0.4  
V
Table 10. SCLK with Input Schmitt Trigger  
Symbol  
VIH  
Parameter  
Conditions  
DVDD = 3.3V  
DVDD = 3.3V  
Min  
Typ  
Typ  
Max  
Units  
V
High level input voltage  
Low level input voltage  
Input leakage current  
2.4  
VIL  
1.0  
+1  
V
ILEAK  
-1  
µA  
Table 11. MEN Output  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Max  
Units  
V
High level output voltage  
Low level output voltage  
Output Current  
2.5  
VOL  
0.4  
2
V
IO  
mA  
www.ams.com/AS8510  
Revision 3.5  
8 - 46  
AS8510  
Datasheet - Electrical Characteristics  
6.3 Detailed System and Block Specifications  
6.3.1 Electrical System Specifications  
Table 12. Electrical System Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
IDDNOM  
Current consumption normal mode  
3
5.5  
mA  
Average of NORMAL Mode Power  
consumption over a period of 10sec  
when the device is in STANDBY Mode  
IDDSBM  
Current consumption standby mode  
40  
µA  
6.4 Current Measurement Ranges (across 100µΩ shunt resistor)  
Table 13. Current Measurement Ranges  
PGA  
Gain  
Nominal  
1
PSR2  
[dB]  
Imax  
[A]  
Vsh  
[mV]  
Data Rate  
(fOUT  
VINADC  
[mV]  
Symbol  
Parameter  
)
I10  
I200  
I400  
I1500  
Input current range of 10A in NOM  
Input current range of 200A in NOM  
Input current range of 400A in NOM  
Input current range of 1500A in NOM  
±10  
±200  
±400  
±1500  
±1  
±20  
±40  
±150  
100  
40  
25  
5
@ 1 kHz  
@ 1 kHz  
@ 1 kHz  
@ 1 kHz  
±100  
±800  
±1000  
±750  
60  
60  
60  
60  
Input current range of 1A in SBM 3  
Input current range of 10A in SBM 3  
Input current range of 200A in SBM 3  
I1  
±1  
±0.1  
±1  
100  
100  
40  
@ 1 Hz  
@ 1 Hz  
@ 1 Hz  
±10  
±100  
±800  
60  
60  
60  
I10  
±10  
I200  
±200  
±20  
1. VINADC = Vsh * Gain, gain deviations to be considered according to Table 15 and Table 16.  
2. AVDD, DVDD of 3.3V with ±5% variation.  
3. For low power current monitoring, single shot measurement is performed with internal oscillator.  
Note: The Data Rate at the output can be calculated according to the formula:  
fsout=2*fchop /R2 (R2 is down sampling ratio taking values 1, 2, 4 up to 32768 as powers of 2)  
Table 14. Valid Combinations of the Chopper Clock, Oversampling Clock and Decimation Ratios  
Over Sampling Frequency  
1.024MHz  
Chopper Frequency  
Decimation Ratio  
2kHz  
2kHz  
2kHz  
4kHz  
64  
64  
2.048MHz  
2.048MHz  
128  
64  
2.048MHz  
www.ams.com/AS8510  
Revision 3.5  
9 - 46  
AS8510  
Datasheet - Electrical Characteristics  
6.4.1 Differential Input Amplifier for Current Channel  
Table 15. Differential Input Amplifier for Current Channel  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
VIN_AMP  
Input voltage range  
RSHH and RSHL  
-160  
+160  
mV  
RSHH and RSHL@ +160mV input  
voltage at 125ºC with PGA  
Input current 1, 11  
IIN_AMP  
ICM  
-50  
2
50  
nA  
-160  
+300  
Absolute input voltage range 2  
mV  
Gain1 3, 4, 9  
Gain2 3, 4, 9  
Gain3 3, 4, 9  
G = G1  
G = G2  
G = G3  
I10  
100  
40  
25  
5
I200  
I400  
Gain4 3, 4, 9  
G = G4  
e
I1500  
Gain deviation  
i = 1, 2, 3, 4  
0.9 * Gi  
15  
1.1 * Gi  
±0.3  
Pole frequency 4, 5  
fP_AMP  
kHz  
%
-20ºC to +65ºC  
Gain 5, 25, referenced to room  
temperature  
Gain drift with temperature 6  
Offset drift with temperature 7, 10  
εT1  
VOSDRIFT  
Vos  
350  
µV  
µV  
After trim,  
for temperature range -20 to +65ºC  
350  
Input referred offset 7, 10  
Vos_ch  
VNdin  
THD  
Chopping enabled  
0
LSB  
nV/Hz  
dB  
Noise density 4, 8  
25  
70  
Total harmonic distortion  
For 150 Hz input signal  
Notes:  
1. Leakage test accuracy is limited by tester resource accuracy and tester hardware.  
2. For gain 100 PGA input common mode is 0V and the minimum supply is 3.15V.  
3. The measurement ranges are referred only by the gain of input amplifier, while other parameters such as bandwidth etc. are pro-  
grammed independently.  
4. This parameter is not measured directly in production. It is measured indirectly via gain measurements of the whole path. It is guaran-  
teed by design.  
5. Pole frequency of input amplifier changes with GAIN. The number is valid for the gain at G1, while the bandwidth will be higher for other  
ranges. This parameter is not measured in production.  
6. Based on device evaluation. Not tested.  
7. These offsets are cancelled if chopping enabled (default).  
8. Noise density calculated by taking system bandwidth as 150Hz.  
9. Refer to Measurement Ranges shown in Table 13.  
10. No impact on the measurement path. If the chopping is enabled, both the offset and offset drift will be eliminated.  
11. For negative input voltages up to -160mV below ground, Input leakage is typically -20nA @ 65ºC due to forward conductance of  
protection diode.  
www.ams.com/AS8510  
Revision 3.5  
10 - 46  
AS8510  
Datasheet - Electrical Characteristics  
6.4.2 Differential Input Amplifier for Voltage Channel  
Table 16. Differential Input Amplifier for Voltage Channel  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Input voltage range 1, 10  
VIN_AMP  
-160  
+160  
mV  
VBAT_IN, ETR, ETS @ +160mV input  
voltage at 125ºC with PGA  
Input current 2, 10  
IIN_AMP  
ICM  
-50  
2
50  
nA  
-160  
+300  
Absolute input voltage range 3  
mV  
Gain1 4, 5  
Gain2 4, 5  
Gain3 4, 5  
G = G1  
G = G2  
G = G3  
100  
40  
25  
5
Gain4 4, 5  
G = G4  
e
Gain deviation  
i = 1, 2, 3, 4  
0.9 * Gi  
15  
1.1 * Gi  
Pole frequency 5, 6  
fP_AMP  
kHz  
Noise density 5, 7  
VNDIN  
THD  
25  
70  
nV/Hz  
Total harmonic distortion  
For 150Hz input signal  
dB  
-20ºC to +65ºC  
Gain 5, 25, referenced to room  
temperature  
Gain drift with temperature 8  
εT1  
±0.3  
350  
%
VOS  
After trim at +65ºC  
Chopping enabled  
µV  
LSB  
µV  
Input referred offset 9  
Vos_ch  
VOSDRIFT  
0
Offset drift with temperature 9  
350  
Notes:  
1. Input for the voltage channel can be as high as 1220mV, in this high input case PGA will be bypassed.  
2. Leakage test accuracy is limited by tester resource accuracy and tester hardware, especially at low temperatures due to condensing  
moisture.  
3. For gain 100 PGA input common mode is 0V and the minimum supply is 3.15V.  
4. The measurement ranges are referred only by the gain of input amplifier, while other parameters such as bandwidth etc. are pro-  
grammed independently.  
5. This parameter is not measured directly in production. It is measured indirectly via gain measurements of the whole path. It is guaran-  
teed by design.  
6. Pole frequency of input amplifier changes with changing the GAIN. The number is valid for the gain at G1, while the bandwidth will be  
higher for other ranges. This parameter is not measured in production.  
7. Noise density calculated by taking system bandwidth as 150Hz.  
8. Based on device evaluation. Not tested.  
9. No impact on the measurement path. If the chopping is enabled, both the offset and offset drift will be eliminated.  
10. For negative input voltages up to -160mV below ground, Input leakage is typically -20nA @ 65ºC due to forward conductance of  
protection diode.  
www.ams.com/AS8510  
Revision 3.5  
11 - 46  
AS8510  
Datasheet - Electrical Characteristics  
6.4.3 Sigma Delta Analog to Digital Converter  
Table 17. Sigma Delta Analog to Digital Converter  
Symbol  
VREF  
Parameter  
Reference voltage 6  
Conditions  
Min  
Typ  
Max  
Units  
1.225  
V
Input range 1  
VINADC  
At Vref = 1.22V  
0
±1.22  
128  
V
Oversampling ratio/Decimation Ratio 2  
R1  
64  
128  
1024/  
2048  
Oversampling frequency 3  
fovs  
kHz  
RES  
BW  
16  
bits  
Hz  
dB  
Number of bits  
Bandwidth 4  
1
500  
Signal to noise ratio 5  
S/N  
90  
Notes:  
1. Production test at ±800mV. Maximum VIN can be 1.22V with VREF=1.225V.  
2. Programmable. It is defined with respect to the first decimator in the ΣΔ ADC.  
3. Programmable: Internal clock is 1024/2048 kHz; external clock max is 8192 kHz.  
4. Dependent on fovs, R1 and R2. The bandwidth is calculated according to the formula:  
BW=fovs/(2*R1*R2); the sampling frequency at the output of the A/D converter is 2*BW.  
5. Defined at maximum input signal, BW=500 Hz (1Hz to 500 Hz), fovs=1024 kHz, R1=64, fchop=2 kHz and R2=2.  
6. Reference voltage might be forced from external.  
6.4.4 Bandgap Reference Voltage  
Table 18. Bandgap Reference Voltage  
Symbol  
VREFTRIM  
VREFACC  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Reference Voltage after trim 1, 2  
Reference Voltage Initial Accuracy 1, 2  
Trim at 65ºC  
1.225  
V
At 65ºC  
±3.5  
±0.4  
mV  
%
Temperature range  
-20 to 65 ºC  
VREFDRIFT  
Reference Voltage Temperature drift  
Temperature range  
-40 to 125 ºC  
+0.4/  
-0.6  
%
PSRRREF  
SUTAVDD  
PSR @ dc  
80  
5
dB  
ms  
Start Up Time with supply ramp 3  
Start Up Time from power down 3  
Output resistance of band gap  
SUTPD  
RNDVREF  
VNDVREF  
CLVREF  
1
ms  
Ω
500  
100  
1000  
300  
Bandgap reference thermal noise density 3  
nV/Hz  
nF  
Output Capacitor (Ceramic)  
ESRVREF  
0.02  
1
Ω
Notes:  
1. Accuracy at 65ºC.  
2. No DC current is allowed from this pin.  
3. This is a design parameter and not production tested.  
www.ams.com/AS8510  
Revision 3.5  
12 - 46  
AS8510  
Datasheet - Electrical Characteristics  
6.4.5 Internal (Programmable) Current Source for External Temperature Measurement  
Table 19. External Temperature Measurement  
Symbol  
ICURON  
Parameter  
Conditions  
Min  
Typ  
270  
10  
Max  
Units  
µA  
5-bit current source enabled 1  
5-bit current source disabled  
5-bit programmable current source  
Limited by leakage  
0
320  
ICUROFF  
nA  
ppm  
/ ºK  
Temperature coefficient of current source 2  
Voltage on pin ETR 3  
TK_CS  
1000  
VMAXETR  
1000/G  
1.22  
mV  
V
Max voltage on pin ETR when PGA is  
bypassed 4  
VMAXETRMOD  
VMAXETS  
Voltage on pin ETS for resistor sensor 3  
1000/G  
1.22  
V
Max. Voltage on pin ETS when PGA is  
bypassed 5  
VMAXETSMOD  
V
Notes:  
1. Current value can be programmed in steps of 8μA from 0 to 256μA with a process error of 30%.  
2. Temperature coefficient is not important since external temperature measurement is a 2 step measurement. The value specified is  
guaranteed by design and will not be tested in production.  
3. Maximum voltage on pin ETR (reference) can be calculated by given formula, where G is the gain of PGA (G=100).  
4. Maximum voltage on pin ETR, if PGA is bypassed.  
5. Maximum voltage on pin ETS, if PGA is bypassed.  
6.4.6 CMREF Circuit (VCM)  
Table 20. CMREF Circuit  
Symbol  
VVCM  
CL  
Parameter  
Output voltage  
Load capacitance  
Min  
Typ  
1.7  
Max  
Units  
V
1.6  
1.8  
100  
nF  
6.4.7 Internal AVDD Power-on Reset  
Table 21. Internal AVDD Power-on Reset  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Power On Reset Threshold  
VPORHIA  
2.2  
2.4  
2.6  
V
POR time - The duration from Power ON till  
the time, internal Power On Reset signal  
tPORA  
1
µs  
goes HIGH1  
Current consumption in POR block2  
IPORA  
1.5  
µA  
1. POR pulse is always longer than tPORA whatever the slope of the supply.  
2. IPORA can not be switched off.  
www.ams.com/AS8510  
Revision 3.5  
13 - 46  
AS8510  
Datasheet - Electrical Characteristics  
6.4.8 Internal DVDD Power-on Reset  
Table 22. Internal DVDD Power-on Reset  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Power On Reset Threshold  
VPORHID  
2.2  
2.4  
2.7  
V
Hysteresis1  
VHYST  
tPORD  
IPORD  
0.2  
1
0.25  
0.4  
V
POR time - The duration from Power ON till the  
time, internal Power On Reset signal goes  
µs  
µA  
HIGH2  
Current3  
1.5  
1. VPORLO = VPORHI - VHYST where VPORLO is the lower threshold of POR.  
2. VPORLO = VPORHI - VHYST where VPORLO is the lower threshold of POR.  
3. IPORD can not be switched off.  
6.4.9 Low Speed Oscillator  
Table 23. Low Speed Oscillator  
Symbol  
fLS  
Parameter  
Frequency  
Min  
Typ  
Max  
Units  
kHz  
%
262.144  
fLS_ACC  
ILS  
Accuracy  
± 7  
5
Supply current  
µA  
6.4.10 High Speed Oscillator  
Table 24. High Speed Oscillator  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
fHS  
Frequency  
4.096  
MHz  
Accuracy 1, 2  
fHSACC  
IHS  
±4  
%
Supply current  
300  
µA  
Notes:  
1. Accuracy after trimming.  
2. Accuracy for limited temperature range of -20 to 65 ºC.  
6.4.11 External Clock  
Table 25. External Clock  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
2048/  
4096/  
8192  
fCLKEXT  
Clock frequency  
kHz  
to be programmed in Register 08  
CLK_REG through the serial bus SPI.  
DIVCLKEXT  
DCCLKEXT  
Clock division factor  
2/4/8  
Duty Cycle of external clock  
40  
60  
%
www.ams.com/AS8510  
Revision 3.5  
14 - 46  
AS8510  
Datasheet - Electrical Characteristics  
6.4.12 Internal Temperature Sensor  
Table 26. Internal Temperature Sensor  
Symbol  
TINTRNG  
ΔTIN  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
ºC  
Temperature sensor range  
Temperature measurement accuracy  
-40  
125  
3
ºC  
Guaranteed by design; at PGA gain 5  
which is the recommended Gain for  
internal temperature measurement.  
TINTSLP  
Temperature sensor slope  
27  
Digits/C  
Digits  
TINT65G5  
Temperature sensor output at gain 5  
40660  
41807  
43012  
6.5 System Specifications  
Table 27. System Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Channel to channel isolation 1  
IS  
-90  
dB  
dB  
Difference in channel to channel attenuation  
@600Hz 1, 2  
At  
3
5
Difference in phase shift between the two  
channels @600Hz 1, 2  
Ph  
Deg  
System Measurement Error Budget for Voltage and Current Channel.  
Temperature Range: -20ºC to +65ºC; Output data rate is 1kHz, VCC = 3.3V, chopping enabled.  
Table 28. System Measurement Error Budget for Gains 5 and 25  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
System measurement error 3, 4  
Err  
±0.5  
±0.8  
%
%
From device evaluation  
±0.3  
Measurement error due to PGA gain drift  
Measurement error due to VREF drift6  
±0.4  
%
%
Measurement error due to non-linearity of PG Tested by distortion measurements  
±0.025  
Notes:  
1. These specifications are defined by taking one channel as reference and measured on the other channel.  
2. Guaranteed by design.  
3. System measurement error due to noise, individual block parameter drifts and non linearity. Based on evaluation, not tested.  
4. System error due to offset is neglected because of chopper architecture.  
www.ams.com/AS8510  
Revision 3.5  
15 - 46  
AS8510  
Datasheet - Detailed Description  
7 Detailed Description  
The AS8510 consists of two independent high resolution 16-bit SD analog to digital conversion channels. The measurement path of these two  
channels integrates a programmable gain amplifier, chopper and de-chopper, sigma-delta modulator, decimator and a digital filter for  
simultaneous measurement of Current and Voltage/Temperature.  
The two measurement channels, namely the Current and Voltage/Temperature measurement channels have identical data path.  
The input signal is amplified in the Programmable Gain Amplifier (PGA) with any of the selected gains of 1, 5, 25, 40 and 100 facilitating  
measurement of a wide range of Current, voltage and temperature levels. Gain Settings for different input ranges and any associated restrictions  
are explained in the Table 13.  
Offset in the measurement path is minimized with the use of a chopper and a de-chopper at appropriate stages in the data path. By default the  
chopper/de-chopper is ON in the measurement path. It may be disabled by programming the appropriate register.  
The amplified input signal is converted into a single-bit pulse-density modulated stream by the Σ-Δ Modulator. A decimator acting as a low-pass  
filter filters out the quantization noise and generates 16-bit data corresponding to the input signal. The decimation ratios of 64, 128 may be  
selected in the first filter stage. For reducing data rate further, the second stage decimation can be used.  
An optional FIR Filter is provided to offer matched low pass filter response typically required in lead acid battery sensor systems.  
7.1 Current Measurement Channel  
The voltage across a Shunt Resistor, connected in series with the Battery negative terminal, forms the input signal to the Current Measurement  
channel. RSHH and RSHL are the Current measurement input pins. Offset in the input signal is nullified with the use of a chopper and a de-  
chopper at appropriate stages in the data path. The programmable gain amplifier in the data path with programmable settings of 1, 5, 25, 40 and  
100 enables measurement of current ranges from ±1A to ±1500A. The sampled input signal is converted into a single-bit pulse-density  
modulated stream by the Σ-Δ Modulator. A decimator acting as a low-pass filter filters out the quantization noise and generates 16-bit data  
equivalent to the input current signal. The programmable input sampling rate and the decimation ratio determine the output data rates. The data  
path can be programmed to provide 1Hz to 2 kHz rates in the various modes available. An optional FIR filter is provided to offer matched low  
pass filter response typically required in lead acid battery sensor systems.  
After enabling the current measurement channel, the delay for the availability of the first sample is two conversion cycles.  
7.2 Voltage/Temperature Measurement Channel  
The other two parameters of the Battery for measurement are Voltage and its Temperature. The second channel accepts signals from four  
independent sources through a Multiplexer as listed below:  
An attenuated battery voltage obtained through appropriate external resistor divider, (or)  
A signal from the external temperature sensor, (or)  
A signal from external reference, (or)  
A signal from the internal temperature sensor.  
Apart from this difference in the multiplexing of four input signals, the rest of the data path is identical to the Current measurement channel.  
RSHH and RSHL are the Current measurement input pins  
The Battery Voltage which can go up to 18V is attenuated through a Resistor Divider externally and is applied to the Voltage Channel. For  
Automotive Battery measurement, the Gain of the PGA should be restricted to 5 and 25. The latency for the first result from the voltage  
measurement channel is two conversion cycles.  
A second option on this measurement channel is to measure Temperature. Internally generated constant current is pumped through the  
Temperature Sensor with positive temperature coefficient, and, a high- precision resistor. The voltages across the sensor and the resistor form  
the inputs to the measurement channel one at a time. The difference between the two voltages which is independent of the magnitude of the  
current is used to determine the temperature accurately. The Voltage across the sensor is applied between the ETS and VSS pins and, the  
voltage across the high-precision resistor is applied between ETR and VSS. External Temperature measurement involves the acquisition of two  
signals one after the other using the same constant current source. The latency for the first result from the temperature measurement channel is  
two conversion cycles.  
A third option on the measurement channel is to measure the internal temperature. Hence, one of the three options for measurement of Battery  
Voltage, External Temperature and, internal temperature may be carried out by selection of appropriate inputs through the internal multiplexer  
selection.  
www.ams.com/AS8510  
Revision 3.5  
16 - 46  
AS8510  
Datasheet - Detailed Description  
7.3 Digital Implementation of Measurement Path  
Figure 3. Block Diagram of Digital Implementation  
R2  
FIR_MA_SEL  
R1  
fchop * 2 / R2  
fchop * 2 / R2  
fchop * 2  
fmod / R1  
MOD_IN  
CIC1  
64 / 128  
Dechopper  
CIC2  
FIR/MA  
DATAOUT  
fmod  
R1  
MOD_CLK  
fchop  
R1 = First decimation ratio (64 or 128)  
R2 = Second decimation ratio (1 to 32768)  
CHP_CLK  
CLK DIVISION  
BLOCK  
MOD_CLK  
Figure 3 shows the digital implementation of the decimator and filter to process the 1-bit output of the Modulator. This block receives a 1-bit pulse  
density modulated output (MOD_IN) from the second order sigma delta modulator along with the oversampling frequency clock (MOD_CLK).  
The MOD_CLK directly goes to a clock division block, which generates chopper clock (CHOP_CLK). The CHOP_CLK can be one of 2kHz or  
4kHz selected by Register CLK_REG in Table 33. The MOD_CLK can be either 1MHz or 2MHz. The Decimation is a two phase process. In the  
first phase, the R1 down sampling rate can be obtained by selecting either 64 or 128 in Registers DECREG_R1_I, DECREG_R1_V in Table 33.  
The 16-bit CIC1 output is dechopped with respect to CHOP_CLK. The output of Dechopper is passed through the CIC2 filter with a decimation  
ratio of 1to 32768 in steps of power of 2. This output is then processed through a FIR or Moving Average (MA) filter. FIR Filter is provided to offer  
matched low pass filter response typically required in lead acid battery sensor systems. MA filter is used to provide averaged output and the  
number of samples for averaging can be any integer value from 1 to 15.  
7.4 Modes of Operation  
The device operates in four different modes, namely,  
Normal Mode 1 (NOM1),  
Normal Mode 2 (NOM2),  
Standby Mode 1 (SBY1), and,  
Standby Mode 2 (SBY2).  
The Normal Modes are full-power modes with the exception that in Normal Mode 2, sampling is normally at a programmed lower frequency and  
is increased to a higher rate only when a measured input signal level crosses the programmed threshold in the current measurement channel.  
The Standby Modes are lower power modes. Sampling is normally at a very low frequency interval. In Standby Mode 2, data sampling can be  
carried out only when the internal comparator detects the input current to be greater than the programmed threshold and it generates interrupt on  
the INT pin.  
The device enters into the “Stop” state on Power On. This is a state where in the data path is inactive and can be entered into from any of the  
four Modes. The State transition Diagram involving the state of Stop and the four Modes is illustrated in the Figure 4.  
www.ams.com/AS8510  
Revision 3.5  
17 - 46  
AS8510  
Datasheet - Detailed Description  
Figure 4. State Transition Diagram  
RESET  
Wait for otp_load  
Completes in 32 cycles  
of lp_clk  
OTP_INT  
STOP  
1.5msec &  
NORM  
Analog Stablization  
period  
Wait for 1.5msec  
A_STB  
NORM  
NORM  
or  
stop  
Wait for x  
number of  
conversions  
Wait for TT1  
timeout  
SBM  
SBM_ON  
SBM_OFF  
Note:  
1. Device soft reset can be written in any of the following states STOP, A_STB, SBM_ON, SBM_OFF by writing “0” into D[7] of the RESET  
_REG (Address 0X09).  
2. Measurement path of soft reset should be written in any the states, STOP, SBM_OFF by writing “0” into D[6] of the RESET _REG (Address  
0X09).  
3. When soft reset is used for the measurement path or for the device, external clock needs to be disabled if the system clock is external  
clock in the application.  
www.ams.com/AS8510  
Revision 3.5  
18 - 46  
AS8510  
Datasheet - Detailed Description  
7.4.1 Normal Mode 1 (NOM1)  
On Power-on-reset of the device, AS8510 goes into STOP State.  
Transition to Normal mode1 (NOM1) occurs when the “START BIT” D0 of Mode Control Register MOD_CTL_REG in Table 33 is set to “1”  
through the serial port SPI. Data Rate of voltage and current channels can be independently programmed and both the channels generate  
interrupts for every output available from ADC. The interrupt signal is generated on the INT pin. The width of the interrupt pulse is eight cycles of  
lp_clk. The data is stable up to the next interrupt. If the data rate is different for the two channels, the interrupt rate would follow the higher rate  
among the two channels. Data update can be known by reading the status register. The functionality is explained in the waveform shown in  
Figure 5. When the device is configured to NORMAL Mode1 from any mode the configuration should be through the STOP state only.  
Figure 5. Normal Mode 1  
I
IDATA  
Sampling with f1  
t
V,T  
V,TDATA  
Sampling with f2  
STOP  
t
START  
Current Channel  
DATA Register  
Voltage Channel  
DATA Register  
INT at f1 rate from  
current channel  
T
INT  
Interrupt from the current channel is at f1 rate which is integer multiple of f2 rate from voltage channel  
7.4.2 Normal Mode 2 (NOM2)  
NOM2 differs from NOM1 in such a way that it allows for a relaxed data rate at a period of TMC by programming the corresponding register as  
long as the amplitude of current is less than a programmed threshold ITHC. However, when, the measured input signal exceeds the programmed  
threshold, the data rate is changed to the rate of NOM1 mode.  
Transition to NOM2 occurs when the “START BIT” D0 of Mode Control register MOD_CTL_REG in Table 33 is set to 1 and mode control bits to  
01 through SPI. In this mode the data rate should be programmed with the time of TMC. An interrupt signal is generated on INT at the rate of TMC  
secs with a pulse width of eight cycles of lp_clk. The data is stable up to the next interrupt. The data sample is compared against the programmed  
threshold and when it is exceeded, the data sampling rate is changed to provide data at the data rate of NOM1 mode. However, as soon as the  
data sample amplitude falls below the programmed threshold, the sampling rate is restored to provide data at the rate of TMC. The functionality is  
illustrated in the waveform Figure 6.  
www.ams.com/AS8510  
Revision 3.5  
19 - 46  
AS8510  
Datasheet - Detailed Description  
Figure 6. Normal Mode 2  
I
I < I THS  
V,I,T  
V,I,T  
V,I,T  
V,I,T  
V,I,T  
IDD  
TMC  
TMC  
ITHS  
t
Sampling with f  
I > ITHS  
INT  
T
INT  
7.4.3 Standby Mode1 (SBM1)  
The low-power Standby Mode can be entered only through the STOP state. Transition to SBM1 mode occurs when the “START BIT” D0 of Mode  
Control register MOD_CTL_REG in Table 33 is set to “1” and Mode Control Bits to “10” through SPI. In this mode the date rate is programmable  
with the time of Ta. An interrupt signal is generated on INT at the rate of Ta secs., and with a pulse width of eight cycles of lp_clk. The data is  
stable up to the next interrupt. The functionality is illustrated in Figure. During the period of Ta, only one data sample is made available and,  
during the rest of the period, the device is maintained in STOP state to reduce power consumption. The microcontroller which receives the data  
on the Interrupt, is also expected to be processing the data for a short time as shown clearly in the Figure 7 to ensure the overall low-power  
consumption of the data acquisition and processing system.  
Figure 7. Standby Mode 1  
I DD  
MCU  
MCU  
MCU  
V, I, T  
V, I, T  
ADC  
t
Ta sec.  
Ta sec.  
Ta sec.  
T
conv  
T
conv  
T
conv  
Start SBM1  
Channel  
DATA Register  
DATA – A0  
DATA – A1  
DATA – A2  
DATA – A3  
INT  
T
INT  
www.ams.com/AS8510  
Revision 3.5  
20 - 46  
AS8510  
Datasheet - Detailed Description  
7.4.4 Standby Mode2 (SBM2)  
Standby Mode 2 is an extension of the Standby Mode1 to achieve even a lower power in the data acquisition system by providing interrupt to the  
microcontroller only when the data sample exceeds the set current threshold. The Standby Mode can be entered only through the STOP state.  
Transition to SBM2 mode occurs when the “START BIT” D0 of Mode Control register MOD_CTL_REG in Table 33 is set to “1” and Mode Control  
Bits D7,D6 to “1,1” through SPI. In this mode the date rate is programmable with the time of Ta in the Ta control registers B, C. The data sample  
is made available and an interrupt signal is generated on INT pin only when the input signal exceeds the threshold set in Current Threshold  
Registers D,E. It should be noted here that the data is stable for Ta secs. The functionality is illustrated in Figure 8.  
Figure 8. Standby Mode 2  
IDD  
MCU  
|I| > I Threshold I  
I
ADC  
t
T
a
sec.  
Ta sec.  
Ta sec.  
T
conv  
T
conv  
Tconv  
Start SBM2  
Channel  
DATA Register  
DATA – A3  
DATA – A0  
DATA – A1  
DATA – A2  
INT  
T
INT  
7.5 Reference-Voltage  
Band gap-reference voltage is used for the ADC as a reference and for the generation of the current for external temperature measurement.  
7.6 Oscillators  
A High-speed oscillator (HS) generates the oversampling clock. For internal state machine and Interrupt generation, a low-speed Oscillator (LS)  
is also available.  
7.7 Power-On Reset  
The AS8510 has PORs, APOR and DPOR on analog and digital power supplies respectively. On PORs of both supplies, initialization sequence  
happens and the system status is shown in state diagram (see Figure 4).  
As shown in the state diagram, the system is in RESET state until DPOR output goes to logic HIGH and subsequently until APOR output goes to  
logic HIGH. Once analog power supply is available, the system goes into OTP_INT state and loads the default values into the control and data  
registers and goes into STOP state. If analog POR, APOR goes low at any time, the system goes into RESET state. In the STOP state, the  
AS8510 can be programmed and by giving start command it starts working following the state machine.  
www.ams.com/AS8510  
Revision 3.5  
21 - 46  
AS8510  
Datasheet - Detailed Description  
7.8 4-Wire Serial Port Interface  
The SPI interface is used as interface between the AS8510 and an external micro-controller to configure the device and access the status  
information. The micro-controller begins communication with the SPI which is configured as a slave. The SPI protocol is simple and the length of  
each frame is an integer multiple of bytes except when a transmission is started. Each frame has 1 command bit, 7 address/configuration bits,  
and one or more data bytes. The edge of CS and the level of SCLK during the start of a SPI transaction, determine the edge on which the data is  
transferred from the SPI and the edge on which the data is sampled by the slave. Table 29 describes the setting of the transfer and sampling  
edges of SCLK. Figure 9 shows the falling edge and rising edge for data transfer and data sampling respectively, when SCLK is HIGH on the  
falling edge of CS.  
Table 29. CS and SCLK  
CS  
SCLK  
LOW  
HIGH  
ANY  
Description  
Serial data transferred on rising edge of SPI clock. Sampled at falling edge of SPI clock.  
Serial data transferred on falling edge of SPI clock. Sampled at rising edge of SPI clock.  
Serial data transfer edge is unchanged.  
FALL  
FALL  
ANY  
Figure 9. Protocol for Serial Data Write with Length = 1  
CS  
SCLK  
0
A5  
A4  
A3  
A2  
A1  
A0 D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A6  
SDI  
SDO  
Data D7 – D0 is moved  
to Address A4..A0 here  
Transfer edge  
Sampling edge  
7.8.1 SPI Frame  
A frame is formed by a first byte for command and address/configuration and a following bit stream that can be formed by an integer number of  
bytes. Command is coded on the 1 first bit, while address is given on LSB 7 bits (see Table 30).  
Table 30. Command Bits  
Command Bits  
Register Address or Transmission Configuration  
C0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Table 31. Command Bits  
C0  
0
Command  
WRITE  
<A6:A0>  
ADDRESS  
ADDRESS  
Description  
Writes data byte on the given starting address.  
Read data byte from the given starting address.  
1
READ  
If the command is read or write, one or more bytes follow. When the micro-controller sends more bytes (keeping CS LOW and SCLK toggling),  
the SPI interface increments the address of the previous data byte and writes/reads data to/from consecutive addresses.  
www.ams.com/AS8510  
Revision 3.5  
22 - 46  
AS8510  
Datasheet - Detailed Description  
7.8.2 Write Command  
For write command, C0=0. After the command code C0 is transferred, the address of register to be written is provided from MSB to LSB.  
Subsequently one or more data bytes can be transferred from MSB to LSB. For each data byte following the first one, used address is the  
incremented value of the previously written address. Each bit of the frame has to be driven by the SPI master on the SPI clock transfer edge. The  
SPI slave samples it on the next clock edge. These edges are determined by the level of SCLK as shown in Table 29. Figure 10 and Figure 11  
are examples of write command without and with address self-increment.  
Figure 10. Protocol for Serial Data Write with Length = 1  
CS  
SCLK  
0
A5  
A4 A3  
A2  
A1  
A0 D7  
D6  
D5  
D4 D3  
D2  
D1  
D0  
A6  
SDI  
SDO  
Data D7 – D0 is moved  
to Address A4..A0 here  
Figure 11. Protocol for Serial Data Write with Length = 4  
CS  
SCLK  
D D D D D D D D  
D D D D D D D D  
A
4
A A A A  
3 2 1 0  
D D D D D D D D D D D D D D D D D D D D D D D D  
A A  
6 5  
0
SDI  
7 6  
5 4 3 2 1 0  
5 4 3 2 1 0  
7 6  
7 6  
5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
SDO  
Data D7-D0 is  
moved to Address  
A4-A0 here  
Data D7-D0 is  
moved to Address moved to Address moved to Address  
A4-A0 +1 here A4-A0 +3 here  
Data D7-D0 is  
Data D7-D0 is  
Data D7-D0 is  
moved to Address  
A4-A0 +4 here  
A4-A0 +2 here  
www.ams.com/AS8510  
Revision 3.5  
23 - 46  
AS8510  
Datasheet - Detailed Description  
7.8.3 Read Command  
For Read command C0=1. After the command code C0, the address of register to be read is provided from MSB to LSB. Then one or more data  
bytes can be transferred from the SPI slave to the master, always from MSB to LSB. To transfer more bytes from consecutive addresses, SPI  
master keeps CS signal LOW and SPI clock active as long as it desires to read data from the slave. Each bit of the command and address of the  
frame is to be driven by the SPI master on the SPI clock transfer edge where SPI slave samples it on the next SPI clock edge.  
Each bit of the data section of the frame is driven by the SPI slave on the SPI clock transfer edge and SPI master samples it on the next SPI  
clock edge. These edges are determined as per Table 29 and examples of read command without and with address self-increment.  
Figure 12. Protocol for Serial Data Read with Length = 1  
CS  
SCLK  
A6  
1
A5  
A4  
A3  
A2  
A1  
A0  
SDI  
SDO  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data D7 – D0 at  
Address A4..A0 is  
read here  
Figure 13. Protocol for Serial Data Read with Length = 4  
CS  
SCLK  
A
6
A A A A A A  
4 3 2 1 0  
5
1
SDI  
D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
SDO  
Data D7-D0 at  
Address A4-A0 Address A4-A0 +1 Address A4-A0 +2 Address A4-A0 +3 Address A4-A0 +4  
is read here is read here is read here is read here is read here  
Data D7-D0 at  
Data D7-D0 at  
Data D7-D0 at  
Data D7-D0 at  
www.ams.com/AS8510  
Revision 3.5  
24 - 46  
AS8510  
Datasheet - Detailed Description  
7.8.4 Timing  
In the following timing waveforms and parameters are exposed.  
Figure 14. Write Timing for Writing  
CS  
...  
...  
tCPS tCPHD  
tSCLKH  
tSCLKL  
tCSH  
SCLK  
CLK  
polarity  
tDIS  
tDIH  
...  
...  
DATAI  
DATAI  
DATAI  
SDI  
SDO  
Figure 15. Read Timing for Reading  
CS  
tSCLKH  
tSCLKL  
SCLK  
DATAI  
DATAI  
SDI  
tDOD  
tDOHZ  
DATAO (D7 )  
DATAO (D0 )  
SDO  
www.ams.com/AS8510  
Revision 3.5  
25 - 46  
AS8510  
Datasheet - Detailed Description  
7.8.5 SPI Interface Timing  
Table 32. SPI Interface Timing  
Symbol  
General  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
BRSPI  
TSCLKH  
TSCLKL  
Write timing  
tDIS  
Bit rate  
1
Mbps  
ns  
Clock high time  
Clock low time  
400  
400  
ns  
Data in setup time  
Data in hold time  
CS hold time  
20  
20  
20  
ns  
ns  
ns  
tDIH  
TCSH  
Read timing  
tDOD  
Data out delay  
80  
80  
ns  
ns  
Time for the SPI to release the SDO  
bus  
tDOHZ  
Data out to high impedance delay  
Timing parameters when entering 4-Wire SPI mode (for determination of CLK polarity)  
Clock setup time  
(CLK polarity)  
Setup time of SCLK with respect to CS  
falling edge  
tCPS  
20  
20  
ns  
ns  
Clock hold time  
(CLK polarity)  
Hold time of SCLK with respect to CS  
falling edge  
tCPHD  
www.ams.com/AS8510  
Revision 3.5  
26 - 46  
AS8510  
Datasheet - Detailed Description  
7.9 Control Register  
This section describes the control registers used in AS8510. Registers can be broadly classified into the following categories.  
Data access registers  
Status Registers  
Digital signal path control registers  
Digital Control registers  
Analog Control Registers  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Data Access Registers  
DREG_I1  
(ADC Data Register for Current)  
00  
0000_0000  
0000_0000  
0000_0000  
0000_0000  
R
R
R
R
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
Denotes the Current ADC MSB Byte (ADC_I[15:8])  
Denotes the Current ADC LSB Byte (ADC_I[7:0])  
Denotes the Voltage ADC MSB Byte (ADC_V[15:8])  
Denotes the Voltage ADC LSB Byte (ADC_V[7:0])  
DREG_I2  
(ADC Data Register for Current)  
01  
02  
03  
DREG_V1  
(ADC Data Register for Voltage)  
DREG_V2  
(ADC Data Register for Voltage)  
Status Registers  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
NOM1/NOM2 Data Ready  
NOM2 Threshold Crossover  
SBM1 Data Ready  
SBM2 Threshold Crossover  
APOR status  
04  
STATUS_REG  
0000_0000  
R
Data from current channel updated  
Data from voltage channel updated  
Reserved  
www.ams.com/AS8510  
Revision 3.5  
27 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Digital Signal Path Control Registers for Current Channel  
This bit selects decimation rate is used for current  
channel. Default is 0 (Down Sampling Rate is 64)  
D[7]  
0
1
Down Sampling Rate is 64  
Down Sampling Rate is 128  
These two bits select division ratio of oversampling  
frequency clock MOD_CLK to be used as chopper  
clock, CHOP_CLK.  
Default is “10” (divide by 512)  
00  
01  
10  
11  
Chopper Clock Always High  
Divide by 256  
D[6:5]  
Divide by 512  
Divide by 1024  
These four bits select the decimation ratio of second  
CIC stage. Default is “0010” (equal to 4)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
4
8
05  
DEC_REG_R1_I  
0100_ 0101 R/W  
16  
32  
64  
D[4:1]  
128  
256  
512  
1024  
2048  
4096  
8192  
16384  
32768  
CIC1 Saturation Interrupt Mask Control.  
Default is 1  
D[0]  
0
1
Unmask  
Mask  
www.ams.com/AS8510  
Revision 3.5  
28 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
D[7]  
D[6]  
I-Channel Enable, Default 1=enable  
V-Channel Enable, Default 1=enable  
Interrupt polarity  
D[5]  
D[4]  
0
1
Active high  
Active low  
. Interrupt Mask Control for Current Channel Data  
Ready Interrupt on INT pin (Default is 0)  
0
1
Unmasked  
Masked  
These two bits select the source of output 16-bit data in  
Normal mode from Current channel. Default is 01  
06  
DEC_REG_R2_I  
1100_0101  
R/W  
00  
01  
10  
11  
FIR / MA Output  
CIC2 Output  
D[3:2]  
D[1:0]  
Dechop/Demod Output  
CIC1 Output  
These two bits select the source of output 16-bit data in  
SBM mode from Current channel. Default is 01  
00  
01  
10  
11  
FIR / MA Output  
CIC2 Output  
Dechop/Demod Output  
CIC1 Output  
www.ams.com/AS8510  
Revision 3.5  
29 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
This bit selects FIR / MA Filter in Current channel.  
Default is 0 (FIR)  
D[7]  
0
1
FIR  
MA Filter  
These bits select the number of data samples for  
averaging in MA filter in Current channel.  
Default is 0000 (bypass)  
0000  
0001  
0011  
0111  
1111  
bypass  
D[6:3]  
1
3
7
07  
FIR CTL_REG_I  
0000_0100  
R/W  
15  
These two bits select the Measurement Path  
architecture in both Current and Voltage channels.  
Default is 10 (Dechopper after CIC)  
00  
01  
Demodulator after CIC1  
Demodulator before CIC1  
D[2:1]  
D[0]  
Dechopper after CIC1  
(preferred and suggested)  
10  
11  
Demodulator before CIC1 with settled  
sample  
Reserved. Default 0. Do not change  
www.ams.com/AS8510  
Revision 3.5  
30 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Digital Control Registers  
Oversampling frequency clock selection. Default is 00  
(high speed (HS) internal Clock)  
00  
01  
10  
Internal HS Clock with No Clock Output  
Internal HS Clock with Clock Output  
External Clock  
D[7:6]  
D[5:4]  
These two bits select the division ratio for HS clock/  
external clock. Default is 10 (division by 4)  
00  
01  
10  
11  
No division  
Divide by 2  
Divide by 4  
Divide by 8  
CLK_REG  
(Clock Control Register)  
08  
0010_0000  
R/W  
These two bits select the division ratio of HS clock, by  
which it should be divided before providing it on CLK  
pin. Default is 00 (No Division)  
00  
01  
10  
11  
No Division  
Divide by 2  
Divide by 4  
Divide by 8  
D[3:2]  
D[1]  
This bit selects the division ratio of LS clock  
LS _CLK undivided (Low Speed clock)  
LS _CLK divide by 2  
0
1
D[0]  
D[7]  
Reserved  
Entire device can be soft reset by writing “0” into this  
register bit. This bit will take a default 1 value on coming  
out of Reset  
RESET_REG  
(Reset Control Register)  
09  
1100_0000  
R/W  
Measurement Path can be soft reset by writing “0” into  
this register bit. This bit will take a default 1 value after  
Measurement Path is reset.  
D[6]  
D[5:0]  
Reserved  
www.ams.com/AS8510  
Revision 3.5  
31 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
These two bits select the operating mode of the Device.  
Default is 00 (Normal Mode 1)  
00  
01  
10  
11  
Normal Mode 1  
Normal Mode 2  
Standby Mode 1  
Standby Mode 2  
D[7:6]  
These three bits select the number of cycles to be  
ignored before comparison with the set threshold in  
Standy Mode. Default is 000 (3 cycles of data)  
000  
001  
010  
011  
100  
101  
110  
111  
3 cycles of data  
4 cycles of data  
5 cycles of data  
6cycles of data  
7 cycles of data  
8 cycles of data  
9 cycles of data  
10 cycles of data  
D[5:3]  
MOD_CTL_REG  
(Mode Control Registers)  
0A  
0000_0000  
R/W  
This bit controls the CHOP_CLK availability on  
CHOP_CLK pin.  
Default is 0  
D[2]  
D[1]  
0
1
Disabled  
Enabled  
Enabling the MEN pin to indicate transition from  
Standby to Normal Mode.  
0
1
Disabled  
Enabled  
This bit is used to take the device from STOP state to  
any of the Modes based on D[7:6] selection of this  
register.  
D[0]  
D[7]  
0
1
Retain in STOP state  
Enables transition to Normal or Standby  
Modes.  
Unit of Ta in SBM1/SBM2. Default is 1  
Unit is in milliseconds  
Unit is in seconds  
0
1
MOD_Ta_REG1  
(Ta Control Register)  
0B  
1000_0000  
D[6:0]  
D[7:0]  
MSB value of Ta  
MOD_Ta_REG2  
(Ta Control Register)  
Unit of Ta in SBM1/SBM2  
LSB value of Ta  
0C  
0D  
0E  
0000_0000  
0000_0000  
0000_0000  
R/W  
R/W  
R/W  
MOD_ITH_REG1  
(Current Threshold Register)  
D[7:0]  
D[7:0]  
MSB bits of 16 bits SBM2 threshold register  
LSB bits of 16 bits SBM2 threshold register  
MOD_ITH_REG2  
(Current Threshold Register)  
www.ams.com/AS8510  
Revision 3.5  
32 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
Register Name  
POR Value  
0000_0000  
0000_0000  
R/W  
R/W  
R/W  
8-bit Control / Status Data  
HEX  
MOD_TMC_REG1  
(TMC Control Registers)  
MSB value of number of data samples to be dropped  
from ADC before sending Interrupt in NOM2  
0F  
D[7:0]  
D[7:0]  
MOD_TMC_REG2  
(TMC Control Register)  
LSB value of number of data samples to be dropped  
from ADC before sending Interrupt in NOM2  
10  
11  
12  
NOM_ITH_REG1  
NOM_ITH_REG2  
0000_0000  
0000_0000  
R/W  
R/W  
D[7:0]  
D[7:0]  
Eight MSB bits of NOM2 current threshold register  
Eight LSB bits of NOM2 current threshold register  
Analog Control Registers  
Setting of Gain G of Current Channel PGA. Default is  
01 (G = 25)  
00  
01  
10  
11  
5
D[7:6]  
25  
40  
100  
PGA_CTL_REG  
(PGA Control Registers)  
13  
0101_0000  
R/W  
Setting of Gain G in Voltage channel. Default is 01 (G =  
25)  
00  
01  
10  
11  
5
D[5:4]  
D[3:0]  
25  
40  
100  
Reserved  
0
1
0
1
Disable Chopper clock to Current channel  
Enable Chopper clock to Current channel  
Disable Chopper clock to Voltage channel  
Enable Chopper clock to Voltage channel  
Reserved  
D[7]  
D[6]  
D[5]  
D[4]  
Reserved  
PD_CTL_REG_1  
(Power Down Control Register)  
14  
1100_1111  
R/W  
0
1
0
1
0
1
0
1
Disable Current channel PGA  
D[3]  
D[2]  
D[1]  
D[0]  
Enable Current channel PGA  
Disable Current channel ΣΔ Modulator  
Enable Current channel ΣΔ Modulator  
Disable Voltage channel PGA  
Enable Voltage channel PGA  
Disable Voltage channel ΣΔ Modulator  
Enable Voltage channel ΣΔ Modulator  
www.ams.com/AS8510  
Revision 3.5  
33 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Disable CIC1 of both channels  
0
1
0
1
0
1
0
1
D[7]  
D[6]  
D[5]  
D[4]  
Enable CIC1 of both channels  
Disable CIC2 of both channels  
Enable CIC2 of both channels  
Disable Dechopper in both channels  
Enable Dechopper in both channels  
Disable FIR in both channels  
Enable FIR in both channels  
PD_CTL_REG_2  
(Power Down Control Register)  
Do not bypass PGA in Current Channel  
Default 0  
15  
1111_0011  
R/W  
0
1
0
D[3]  
D[2]  
Bypass PGA in Current Channel  
Do not bypass PGA in Voltage Channel  
Default 0  
1
0
1
0
1
0
1
0
1
0
1
Bypass PGA in Voltage Channel  
Disable Current Channel Chopper  
Enable Current Channel Chopper  
Disable Voltage Channel Chopper  
Enable Voltage Channel Chopper  
Disable Common Mode Reference  
Enable Common Mode Reference  
Disable Internal Current Source  
D[1]  
D[0]  
D[7]  
D[6]  
D[5]  
Enable Internal Current Source  
Disable Internal temperature sensor  
Enable Internal temperature sensor  
Reserved. (Default 1) Do not change  
Reserved. (Default 1) Do not change  
Data Output in binary numbering system  
PD_CTL_REG_3  
(Power Down Control Register)  
16  
1111_1000  
D[4]  
D[3]  
0
1
D[2]  
Data Output in 2’s complement numbering  
system  
D[1]  
D[0]  
Reserved. (Default 0) Do not change  
Reserved  
www.ams.com/AS8510  
Revision 3.5  
34 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
These bits specify the selection of voltage/temperature  
in Voltage Channel  
Default is 00 (Voltage Channel)  
00  
01  
10  
11  
Voltage Channel  
External Temperature Channel ETR  
External Temperature Channel ETS  
Internal Temperature Channel  
D[7:6]  
D[5]  
D[4]  
Reserved. (Default 0) Do not change  
Internal current source switch enable. Default is 0  
Note: D4 bit is used for Enabling current source to  
the channel selected by bits D[7,6] of this  
register.  
ACH_CTL_REG  
(Analog Channel Selection  
Register)  
17  
0000_0000  
R/W  
0
1
Disabled  
Enabled  
Enable/disable Internal current source to RSHH pin of  
Current channel  
D[3]  
0
1
Disabled  
Enabled  
Enable/disable current source switch to RSHL pin of  
Current channel  
D[2]  
0
1
Disabled  
Enabled  
D[1:0]  
Reserved  
These three bits specify the selection of magnitude of  
current from the Internal current source. Default is  
00000 (0µA).  
00000  
00001  
00010  
00100  
01000  
10000  
11111  
0µA  
8.5µA  
17µA  
D[7:3]  
ISC_CTL_REG  
(Current Source Setting Register)  
18  
0000_0000  
R/W  
34.5µA  
68µA  
135µA  
270µA  
D[2:0]  
D[7]  
Reserved  
1
Reserved (default = 1) Do not change  
Reserved  
19  
44  
OTP_EN_REG  
0000_0000  
0000_0000  
R/W  
R
D[6:0]  
D[7]  
Status indicating data saturation in Current channel  
Status indicating data saturation in Voltage channel  
Reserved  
STATUS_REG_2  
D[6]  
D[5:0]  
www.ams.com/AS8510  
Revision 3.5  
35 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Digital Signal path control registers for Voltage Channel  
Selection of Decimation ratio for Voltage/Temperature  
channel.  
Default is 0 (Down Sampling Rate is 64)  
D[7]  
0
1
Down Sampling Rate is 64  
Down Sampling Rate is 128  
Division of oversampling clock, which is used as  
Chopper Clock. Default is 10 (divide by 512)  
00  
01  
10  
11  
Chopper Clock Always High  
Divide by 256  
D[6:5]  
Divide by 512  
Divide by 1024  
Decimation ratio of CIC2. Default is 0010 (4)  
0000  
1
2
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
8
45  
DEC_REG_R1_V  
0100_ 0101 R/W  
16  
32  
64  
D[4:1]  
128  
256  
512  
1024  
2048  
4096  
8192  
16384  
32768  
CIC1 Saturation Interrupt Mask Control.  
Default is 1  
D[0]  
0
1
Unmasked  
Masked  
www.ams.com/AS8510  
Revision 3.5  
36 - 46  
AS8510  
Datasheet - Detailed Description  
Table 33. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
D[7:5]  
D[4]  
Reserved  
Interrupt Mask Control for Voltage channel data Ready  
Interrupt on INT pin (Default is 0)  
0
1
Unmasked  
Masked  
These two bits select the source of output 16-bit data in  
Normal mode from Voltage channel. Default is 01  
46  
DEC_REG_R2_V  
R/W  
0000_0100  
00  
01  
10  
11  
FIR / MA Output  
CIC2 Output  
D[3:2]  
Dechop/Demod Output  
CIC Output  
D[1:0]  
D[7]  
Reserved  
This bit selects FIR / MA Filter in Voltage channel.  
Default is 0 (FIR)  
0
1
FIR  
MA Filter  
These bits select the number of data samples for  
averaging in MA filter in Voltage channel.  
Default is 0000 (bypass)  
47  
FIR CTL_REG_V  
0000_0000  
R/W  
0000  
0001  
0011  
0111  
1111  
bypass  
D[6:3]  
D[2:0]  
1
3
7
15  
Reserved  
Note: All the registers from address 0x19 to 0x2C are read-only.  
7.9.1 Standby Mode - Power Consumption  
In Standby Mode 1 there is a timer based accurate measurement every Ta seconds. The device itself stays in idle-mode as long as it does not  
get a different command from the SPI interface. Internal oscillator frequency is typically foscint=262 kHz to reduce power consumption as long as  
the timer runs. After every time out of Ta secs, it performs accurate measurement of current, voltage/ temperature. Data ready is signaled to  
microcontroller through an interrupt signal on INT and goes into STOP state.  
In the SBM the following equations hold:  
Tsbm1 = Ta= 10s (default value is 10secs); the power consumption is valid for this setting. This is the period of the repetition rate in SBM 1  
and SBM2.  
Tsett 2ms (depending on external capacitors). This is the time required by the analog part to settle when the new measuring period is  
started. Any measurements performed during Tsett produce invalid results.  
T1 = 3ms (by default setting, every third measurement is sent to microcontroller in the SBM mode 1) is the time needed to perform the first  
measurement.  
Tmeas =Tsett +T1 is the total active time needed to get a valid result.  
DRSBM = Tmeas/Tsbm 5ms/10s. This is the ratio of repetition time versus the active time (Device in NOM mode).  
Power consumption = (DRSBM*NOM mode power consumption) + ((10s-5ms)/10s)*Stop mode power consumption)  
www.ams.com/AS8510  
Revision 3.5  
37 - 46  
AS8510  
Datasheet - Detailed Description  
7.9.2 Initialization Sequence at Power ON  
Figure 16. AS8510 Device Initialization Sequence at Power ON  
VPORHID/VPORHIA  
DVDD/AVDD  
POR_N  
INT  
Start  
ADC  
1.5mS  
TADC  
D2  
500µS  
D3  
D4  
D3  
D4  
D3  
D4  
D1  
D1  
D2  
D1  
D2  
Configure  
Device  
CHOP_CLK  
Channel Data  
Register  
0x0000  
DATA1  
DATA2  
TDATA_INVALID  
TDATA_STATUS_RD  
TDATA_VALID  
Device initialization starts if the DVDD and AVDD supplies are switched ON and DVDD > VPORHID. The duration period of Initialization is 500μsec  
and during this period, INT pin toggles at the rate of internal low power oscillator. Toggling on INT during the period of initialization should be  
ignored in the system. Device configuration and activation should be carried out only after the initialization period.  
On ADC start, device enters into analog stabilization state and takes 1.5msec for oscillator and Reference to settle. After this 1.5msec period, the  
first interrupt will occur after a time period of TADC  
.
TDATA_STATUS_RD is the time period during which the micro-controller should complete reading of data and status from the device. If reading is  
carried out beyond this time period, then, ADC performance will degrade for next sample generation. Status register gets cleared automatically  
only when micro-controller reads this register. Data in the channel registers is changed after TDATA_VALID duration. Ensure that data channel  
registers and status registers are not read during the TDATA_INVALID duration.  
Example:  
Configuration registers are set as follows:  
CLK_REG = 8’b0010_0000  
DEC_REG_R1_I = 0100_0101  
DEC_REG_R2_I = 1100_0101  
FIR_CTL_REG_I = 0000_0100  
ADC is configured to a data rate of 1KHz, CHOP_CLK to 2KHz, and Modulator clock to 1MHz, Decimation ratio of CIC1 = 64, and Decimation  
ratio of CIC2 = 4. With these settings the various time periods as shown in the Figure 16 are as follows:  
TDATA_STATUS_RD = 100 μsec  
(TDATA_STATUS_RD = (1/mod_clk) * R1 * [((mod_clk/(2*chop_clk))*(1/R1)) - 2.5)  
TDATA_INVALID = 8 μsec  
TADC = 1msec  
TDATA_VALID = TADC - TDATA_INVALID = 1msec - 8 μsec  
CHOP_CLK and POR_N are internal signals of the device.  
www.ams.com/AS8510  
Revision 3.5  
38 - 46  
AS8510  
Datasheet - Detailed Description  
Table 34 provides valid combinations of Modulator clock, Chopper clock and Decimation R1 and the corresponding values of TDATA_STATUS_RD and  
TADC  
.
Table 34. Valid Combinations of Modulator Clock, Chopper Clock and Decimation Ratio R1  
TADC  
Chopper Frequency  
TDATA_STATUS_RD  
Modulator Clock  
Decimation Ratio R1  
R2/(2*CHOP_CLK)  
for R2=4  
CHOP_CLK  
1.024MHz  
2.048MHz  
2KHz  
64  
64  
1usec * 64 * [4 - 2.5] = 96usec  
1mSec  
1mSec  
0.5usec * 64 * [8 - 2.5] = 176usec  
2KHz  
0.5usec * 128 * [4 - 2.5] = 96usec  
0.5usec * 64 * [4 - 2.5] = 48usec  
2.048MHz  
2.048MHz  
2KHz  
4KHz  
128  
64  
1mSec  
0.5mSec  
7.9.3 Soft-reset of Device Using Bit D[7] of Reset Register 0x09  
It is possible to soft-reset the device by writing “0” into D[7] bit of Reset Register at 0x09. On applying soft-reset, the device enters into  
initialization state and D[6] bit changes back to “1”. The duration period of Initialization is 500μsec, and, during this period, INT pin toggles at the  
rate of internal low power oscillator. Toggling on INT during the period of initialization should be ignored in the system. Device configuration and  
activation should be carried out only after the initialization period. See Figure 17 for the timing details of the sequence of device initialization on  
soft-reset.  
Figure 17. AS8510 Device Initialization Sequence at Soft-reset  
Start  
ADC  
1.5mS  
INT  
500µS  
D4  
D3  
D4  
D
3
D4  
D3  
D4  
D3  
D4  
D1  
D2  
D1 Soft Reset  
D1  
D2  
D1  
D2  
D1  
D2  
Re-Configure  
Device  
Using D7  
CHOP_CLK  
Channel Data  
Register  
0x0000  
DATA-N  
DATA-N+1  
TDATA_INVALID  
DATA1  
DATA2  
TDATA_STATUS_RD  
TDATA_STATUS_RD  
TDATA_VALID  
TDATA_INVALID  
TDATA_VALID  
7.9.4 Soft-reset of the Measurement Path Using Bit D[7] of Reset Register 0x09  
Measurement path also can be reset by using D[6] bit of Reset Register at 0x09. On applying soft-reset only signal measurement path registers  
will be reset. For applying this reset, device should be in STOP state. If the device is working with external clock, at the time of soft-reset the  
clock needs to be disabled.  
www.ams.com/AS8510  
Revision 3.5  
39 - 46  
AS8510  
Datasheet - Detailed Description  
7.9.5 Reconfiguring Gain Setting of PGA  
Only PGA gain settings can be changed dynamically while ADC conversions are in progress. When PGA gain settings are changed, the first  
sample from the ADC is invalid. Ignore the first interrupt after the gain re-configuration. Valid data starts from the second interrupt onwards.  
Figure 18. AS8510 - Re-configuration of Gain Setting of PGA  
Gain Re-Configuration can be  
carried out in this slot, skip next  
interrupt and Channel Data.  
Read Channel  
data in this slot  
VALID  
DATA  
TDATA_STATUS_RD  
INT  
D3  
D4  
D4  
D3  
D4  
D3  
D4  
D3  
D4  
D1  
D2  
D1  
D2  
D1  
D2  
D1  
D2  
CHOP_CLK  
Channel Data  
Register  
DATA-N  
DATA-N+1  
DATA1  
TDATA_STATUS_RD  
DATA2  
TDATA_STATUS_RD  
TDATA_INVALID  
TDATA_INVALID  
TDATA_VALID  
TDATA_VALID  
7.9.6 Configuring the Device During Normal Mode  
Following registers can be programmed dynamically when the device is in operational mode (Normal mode).  
ACH_CTL_REG address is 0x17 for channel selection on the voltage measurement path  
PGA_CTL_REG address is 0x13 for gain setting  
PD_CTL_REG2 address is 0x15 for PGA Bypass  
ISC_CTL_REG address is 0x18 for current source programmability  
During the operation (Normal mode) of the device, if any of the registers need to be programmed or changed other than the above mentioned  
registers, then it is required to STOP the device by writing into MOD_CTL_REG “STOP” bit and configure the device as per the requirements and  
start the device.  
www.ams.com/AS8510  
Revision 3.5  
40 - 46  
AS8510  
Datasheet - Detailed Description  
7.10 Low Side Current Measurement Application  
Figure 19. Application Diagram  
RSHH  
RSHL  
INT  
CLK  
REF  
SDI  
100nF  
VCM  
MEN  
AS8510  
100nF  
3.3V  
1µF  
CHOP_CLK  
AVDD  
20 pin  
(SSOP20)  
3.3V  
AVSS  
ETR  
DVDD  
DVSS  
SDO  
SCLK  
CS  
1µF  
+12V  
481 R  
R
ETS  
VBAT_IN  
VBAT_GND  
100 µohm  
+
-
Load  
µC  
12V  
Battery  
Note: On ETR connect constant resistor (temp co = 0)  
On ETS connect Temperature sensor (use sensor resistor more than 10K)  
www.ams.com/AS8510  
Revision 3.5  
41 - 46  
AS8510  
Datasheet - Package Drawings and Markings  
8 Package Drawings and Markings  
The product is available in a 20-pin SSOP package.  
Figure 20. Drawings and Dimensions  
Symbol Min  
Nom  
Max  
2.00  
-
A
A1  
A2  
b
-
-
0.05  
1.65  
0.22  
0.09  
6.90  
7.40  
5.00  
-
-
1.75  
1.85  
0.38  
0.25  
7.50  
8.20  
5.60  
-
-
-
c
D
7.20  
7.80  
5.30  
0.65 BSC  
0.75  
1.25 REF  
0.25 BSC  
-
E
E1  
e
L
0.55  
-
0.95  
-
L1  
L2  
R
YYWWIXX  
AS8510  
-
-
0.09  
0º  
-
θ
4º  
8º  
N
20  
www.ams.com/AS8510  
Revision 3.5  
42 - 46  
AS8510  
Datasheet - Package Drawings and Markings  
Notes:  
1. Dimensions & tolerancing conform to ASME Y14.5M-1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
Marking: YYWWIXX.  
YY  
WW  
I
XX  
Last two digits of the current year  
Manufacturing week  
Assembly plant identifier  
Assembly traceability code  
8.1 Recommended PCB Footprint  
Figure 21. PCB Footprint  
Recommended Footprint Data  
Symbol  
mm  
9.02  
6.16  
0.46  
0.65  
6.31  
A
B
C
D
E
www.ams.com/AS8510  
Revision 3.5  
43 - 46  
AS8510  
Datasheet - Revision History  
Revision History  
Revision  
Date  
Owner  
mbr  
Description  
Initial version  
1.1  
Jun 22, 2009  
Dec 02, 2009  
Updated the datasheet according to 1.8 specification  
ss2, rad  
Following modifications carried out in Table 27:  
1) Deleted Max value for parameter ‘Temperature upper limit’  
2) Added Footnote 2  
3) Added new parameter ‘Temperature Sensor Output (without gain  
calibration)  
1.2  
Dec 08, 2009  
Feb 19, 2010  
ss2  
Updated Table 15 with PGA information  
Updated Voltage Measurement  
1.3  
2.0  
mbr  
Updated VREFand VIN values in Table 17 and VREF in Table 18  
Inserted new Table 28 - System Measurement Error Budget  
Changed the pin name AGND to VCM  
Current source added in the block diagram  
Added application diagram  
June 01, 2010  
mbr  
Updated Electrical Characteristics on page 7  
Updated Detailed System and Block Specifications on page 9  
Updated Standby Mode - Power Consumption on page 37  
Updates carried out across the datasheet  
3.0  
3.1  
3.2  
Oct 29, 2010  
Nov 02, 2010  
Nov 14, 2010  
Nov 26, 2010  
Dec 03, 2010  
ss2  
ss2  
ss2  
vel  
Updated Ref Voltage Offset in Table 18  
Added sections 7.9.2, 7.9.3, 7.9.5  
Formatted figures 17, 18 in portrait mode. Index modified from page 39  
Added Configuring the Device During Normal Mode on page 40  
3.3  
ss2  
Updated General Description, Key Features, Applications, Pin Descriptions,  
Current Measurement Ranges, Differential Input Amplifier for Current  
Channel, Differential Input Amplifier for Voltage Channel, Sigma Delta Analog  
to Digital Converter, Bandgap Reference Voltage, System Measurement Error  
Budget for Gains 5 and 25, Package Drawings and Markings. Deleted Voltage  
Measurement.  
3.4  
Mar 01, 2011  
mbr /ss2  
Updated Table 14, Figure 4, Table 19, Table 18, Section 7.9.6, Figure 19.  
Added Section 7.9.4  
Aug 05, 2011  
Dec 31, 2012  
mbr,ss2,vel  
sju  
3.5  
Updated ordering table.  
Note: Typos may not be explicitly mentioned under revision history.  
www.ams.com/AS8510  
Revision 3.5  
44 - 46  
AS8510  
Datasheet - Ordering Information  
9 Ordering Information  
The devices are available as the standard products shown in Table 35.  
Table 35. Ordering Information  
Ordering Code  
AS8510-ASSP  
AS8510-ASSM  
Description  
Delivery Form  
Package  
Data Acquisition Device for Battery Sensors  
Data Acquisition Device for Battery Sensors  
Tape and Reel (2000 pcs)  
Tape and Reel (500 pcs)  
20-pin SSOP  
20-pin SSOP  
Note: All products are RoHS compliant and ams green.  
Buy our products or get free samples online at www.ams.com/ICdirect  
Technical Support is available at www.ams.com/Technical-Support  
For further information and requests, email us at sales@ams.com  
(or) find your local distributor at www.ams.com/distributor  
www.ams.com/AS8510  
Revision 3.5  
45 - 46  
AS8510  
Datasheet - Copyrights  
Copyrights  
Copyright © 1997-2012, ams AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights  
reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the  
copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no  
warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described  
devices from patent infringement. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior  
to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in normal  
commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability  
applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing  
by ams AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard  
production flow, such as test flow or test location.  
The information furnished here by ams AG is believed to be correct and accurate. However, ams AG shall not be liable to recipient or any third  
party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the  
technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other  
services.  
Contact Information  
Headquarters  
ams AG  
Tobelbaderstrasse 30  
A-8141 Unterpremstaetten, Austria  
Tel : +43 (0) 3136 500 0  
Fax : +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.ams.com/contact  
www.ams.com/AS8510  
Revision 3.5  
46 - 46  

相关型号:

AS8510_10

Data Acquisition Device for Battery Sensors
AMSCO

AS8515

Data Acquisition System with Power Management and LIN Transceiver for 12V Battery Sensor Applications
AMSCO

AS8515-ZMFM

Data Acquisition System with Power Management and LIN Transceiver for 12V Battery Sensor Applications
AMSCO

AS8515-ZMFP

Data Acquisition System with Power Management and LIN Transceiver for 12V Battery Sensor Applications
AMSCO

AS8520

LIN Transceiver with Voltage Regulator, Attenuator, Relay Drivers, MCU Interface for Automotive Applications
AMSCO

AS8520-AQFT

LIN Transceiver with Voltage Regulator, Attenuator, Relay Drivers, MCU Interface for Automotive Applications
AMSCO

AS8525

LIN Transceiver with Voltage Regulators, Programmable Gain High Side Amplifier, and Voltage Attenuator
AMSCO

AS8525-AQFM

LIN Transceiver with Voltage Regulators, Programmable Gain High Side Amplifier, and Voltage Attenuator
AMSCO

AS8525-AQFP

LIN Transceiver with Voltage Regulators, Programmable Gain High Side Amplifier, and Voltage Attenuator
AMSCO

AS8530

LIN Transceiver with Integrated Voltage Regulator and MCU Interface for Automotive Applications
AMSCO

AS8530-ASOM

LIN Transceiver with Integrated Voltage Regulator and MCU Interface for Automotive Applications
AMSCO

AS8530-ASOP

LIN Transceiver with Integrated Voltage Regulator and MCU Interface for Automotive Applications
AMSCO