GRM31CR60J106KA01L [ANALOGICTECH]

1MHz 1.2A Buck DC/DC Converter; 1MHz的1.2A降压型DC / DC转换器
GRM31CR60J106KA01L
型号: GRM31CR60J106KA01L
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

1MHz 1.2A Buck DC/DC Converter
1MHz的1.2A降压型DC / DC转换器

转换器 电容器 PC
文件: 总14页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
SwitchReg  
General Description  
Features  
The AAT1157 SwitchReg™ is a member of  
AnalogicTech's Total Power Management IC™  
(TPMIC™) product family. The step-down switch-  
ing converter is ideal for applications where fixed  
frequency and low ripple are required over the full  
range of load conditions. The 2.7V to 5.5V input  
voltage range makes the AAT1157 ideal for single-  
cell lithium-ion/polymer battery applications.  
Capable of up to 1.2A with internal MOSFETs, the  
current-mode controlled IC provides high efficiency  
over a wide operating range. Fully integrated com-  
pensation simplifies system design and lowers  
external parts count. The device operates at a  
fixed 1MHz switching frequency across all load  
conditions.  
VIN Range: 2.7V to 5.5V  
Up to 95% Efficiency  
110 mRDS(ON) Internal Switches  
<1µA Shutdown Current  
1MHz Buck Switching Frequency  
Fixed or Adjustable VOUT 0.8V  
Integrated Power Switches  
Current Mode Operation  
Internal Compensation  
Stable with Ceramic Capacitors  
Constant PWM Operation for Low Output  
Ripple  
Internal Soft Start  
Over-Temperature Protection  
Current Limit Protection  
16-Pin QFN 3x3mm Package  
-40°C to +85°C Temperature Range  
The AAT1157 is available in the Pb-free, 16-pin  
3x3mm QFN package and is rated over the -40°C  
to +85°C temperature range.  
Applications  
HDD MP3 Players  
Notebook Computers  
PDAs  
Point-of-Load Regulation  
Set Top Boxes  
Smart Phones  
Wireless Notebook Adapters  
Typical Application  
U1  
AAT1157  
3.3V  
2.5V  
4
12  
VP  
FB  
LX  
R3  
187k  
15  
14  
13  
16  
3
11  
R1  
100  
VP  
10  
L1  
3.0µH  
VP  
LX  
C1  
10µF  
7
EN  
LX  
9
VCC  
N/C  
N/C  
N/C  
R4  
59k  
C3-C4  
2x 22µF  
6
PGND  
PGND  
2
8
C2  
0.1µF  
1
5
SGND PGND  
1157.2005.11.1.4  
1
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
Pin Descriptions  
Pin #  
Symbol  
Function  
1, 2, 3  
PGND  
Main power ground return pin. Connect to the output and input capacitor  
return. (See board layout rules.)  
4
FB  
Feedback input pin. This pin is connected to the converter output. It is used to  
set the output of the converter to regulate to the desired value via an internal  
resistive divider. For an adjustable output, an external resistive divider is con-  
nected to this pin.  
5
7
SGND  
EN  
Signal ground. Connect the return of all small signal components to this pin.  
(See board layout rules.)  
Enable input pin. A logic high enables the converter; a logic low forces the  
AAT1157 into shutdown mode reducing the supply current to less than 1µA.  
The pin should not be left floating.  
6, 8, 16  
9
N/C  
Not internally connected.  
VCC  
Bias supply. Supplies power for the internal circuitry. Connect to input power  
via low pass filter with decoupling to SGND.  
10, 11, 12  
13, 14, 15  
EP  
VP  
LX  
Input supply voltage for the converter power stage. Must be closely decoupled  
to PGND.  
Connect inductor to these pins. Switching node internally connected to the  
drain of both high- and low-side MOSFETs.  
Exposed paddle (bottom); connect to PGND directly beneath package.  
Pin Configuration  
QFN33-16  
(Top View)  
1
2
3
4
12  
11  
10  
9
PGND  
PGND  
PGND  
FB  
VP  
VP  
VP  
VCC  
2
1157.2005.11.1.4  
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VCC, VP  
VLX  
VCC, VP to GND  
6
V
V
LX to GND  
-0.3 to VP + 0.3  
-0.3 to VCC + 0.3  
-0.3 to -6  
VFB  
FB to GND  
V
VEN  
EN to GND  
V
TJ  
Operating Junction Temperature Range  
ESD Rating2 - HBM  
-40 to150  
°C  
V
VESD  
3000  
Thermal Characteristics  
Symbol  
Description  
Value  
Units  
θJA  
θJC  
PD  
Maximum Thermal Resistance (QFN33-16)3  
Maximum Thermal Resistance (QFN33-16)  
Maximum Power Dissipation (QFN33-16) (TA = 25°C)3, 4  
50  
4.2  
2.0  
°C/W  
°C/W  
W
Recommended Operating Conditions  
Symbol  
Description  
Value  
Units  
T
Ambient Temperature Range  
-40 to 85  
°C  
1. Stresses above those listed in Absolute Maximum Ratings may cause damage to the device. Functional operation at conditions other  
than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Human body model is 100pF capacitor discharged through a 1.5kresistor into each pin.  
3. Mounted on a demo board (FR4, in still air). Exposed pad must be mounted to PCB.  
4. Derate 20mW/°C above 25°C.  
1157.2005.11.1.4  
3
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
Electrical Characteristics1  
VIN = VCC = VP = 5V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = 25°C.  
Symbol  
Description  
Conditions  
Min Typ Max Units  
VIN  
Input Voltage Range  
2.7  
5.5  
V
V
IN = VOUT + 0.2 to 5.5V,  
VOUT  
Output Voltage Tolerance  
Load Regulation  
-4  
+4  
%
IOUT = 0 to 1.2A  
VIN = 4.2V, ILOAD = 0 to 1.2A  
VIN =2.7 to 5.5V  
No Load  
VOUT/VOUT  
VOUT(VOUT*VIN) Line Regulation  
±2.5  
±0.1  
160  
%
%/V  
µA  
µA  
A
IQ  
Quiescent Supply Current  
300  
1.0  
ISHDN  
ILIM  
Shutdown Current  
Current Limit  
VEN = 0V, VIN = 5.5V  
TA = 25°C  
1.7  
1.2  
VIN Rising, VEN = VCC  
2.5  
0.6  
VUVLO  
Under-Voltage Lockout  
V
VIN Falling, VEN = VCC  
VUVLO(HYS)  
VIL  
Under-Voltage Lockout Hysteresis  
Input Low Voltage  
250  
mV  
V
VIH  
Input High Voltage  
1.4  
V
IIL  
Input Low Current  
VIN = VFB = 5.5V  
VIN = VFB = 0V  
TA = 25°C  
1.0  
1.0  
µA  
µA  
mΩ  
mΩ  
kHz  
IIH  
Input High Current  
RDS(ON)H  
RDS(ON)L  
FOSC  
High Side Switch On Resistance  
Low Side Switch On Resistance  
Oscillator Frequency  
Over-Temperature Shutdown  
Threshold  
110  
100  
150  
150  
TA = 25°C  
TA = 25°C  
750  
1000 1250  
TSD  
140  
°C  
°C  
Over-Temperature Shutdown  
Hysteresis  
THYS  
15  
1. The AAT1157 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured  
by design, characterization, and correlation with statistical process controls.  
4
1157.2005.11.1.4  
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
Typical Characteristics  
No Load Supply Current vs. Input Voltage  
DC Regulation  
(VOUT = 2.5V)  
2.0  
300  
85°C  
VIN = 3.6V  
1.0  
250  
200  
VIN = 3.0V  
VIN = 3.3V  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
25°C  
150  
-40°C  
100  
50  
0
1
10  
100  
1000  
10000  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Output Current (mA)  
P-Channel RDSON vs. Input Voltage  
N-Channel RDSON vs. Input Voltage  
200  
200  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
100°C  
25°C  
120°C  
100°C  
120°C  
85°C  
85°C  
25°C  
60  
60  
40  
40  
20  
20  
0
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
Output Voltage vs. Temperature  
(VIN = 3.6V; VOUT = 2.5V; IOUT = 1.0A)  
Frequency vs. Input Voltage  
(VOUT = 1.8V)  
0.1  
0
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-40  
-20  
0
20  
40  
60  
80  
100  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Temperature (°C)  
Input Voltage (V)  
1157.2005.11.1.4  
5
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
Typical Characteristics  
Soft Start  
(VOUT = 2.5V; IOUT = 1.2A; VIN = 3.6V)  
Output Ripple  
(VOUT = 2.5V; IOUT = 1.2A; VIN = 3.6V)  
0.02  
0.01  
0
3
6.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
2.5  
2
2.0  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
0.0  
1.5  
1
-2.0  
-4.0  
-6.0  
-8.0  
-10.0  
0.5  
0
Time (250µs/div)  
Time (500ns/div)  
Line Transient  
(IOUT = 1.2A; VO = 2.5V)  
Load Transient Response  
(400mA-1.2A; VIN = 3.3V; VOUT = 2.5V)  
0.08  
0.05  
4.0  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
0.24  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.20  
0.16  
0.12  
0.08  
0.04  
0.00  
-0.04  
-0.08  
0.02  
-0.01  
-0.04  
-0.07  
-0.10  
-0.13  
-0.16  
1.2A  
400mA  
Time (25µs/div)  
Time (20µs/div)  
6
1157.2005.11.1.4  
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
Functional Block Diagram  
VCC  
VP = 2.7V to 5.5V  
1.0V REF  
CMP  
DH  
OP. AMP  
FB  
LOGIC  
LX  
DL  
1MΩ  
OSC  
Temp.  
Sensing  
SGND  
EN  
PGND  
input is applied. It limits the current surge seen at  
the input and eliminates output voltage overshoot.  
When pulled low, the enable input forces the  
AAT1157 into a non-switching shutdown state.  
The total input current during shutdown is less  
than 1µA.  
Applications Information  
Control Loop  
The AAT1157 is a peak current mode buck converter.  
The inner wide bandwidth loop controls the inductor  
peak current. The inductor current is sensed through  
the P-channel MOSFET (high side) and is also used  
for short-circuit and overload protection. A fixed slope  
compensation signal is added to the sensed current  
to maintain stability for duty cycles greater than 50%.  
The loop appears as a voltage-programmed current  
source in parallel with the output capacitor.  
Power and Signal Source  
Separate small signal ground and power supply  
pins isolate the internal control circuitry from the  
noise associated with the output power MOSFET  
switching. The low-pass filter R1 and C2 shown in  
the Figure 1 schematic filters the input noise asso-  
ciated with the power switching.  
The voltage error amplifier output programs the  
current loop for the necessary inductor current to  
force a constant output voltage for all load and line  
conditions. The external voltage feedback resistive  
divider divides the output voltage to the error ampli-  
fier reference voltage of 0.6V. The low-DC gain  
voltage error amplifier eliminates the need for  
external compensation components while provid-  
ing sufficient DC loop gain for good load regulation.  
The voltage loop crossover frequency and phase  
margin are set by the output capacitor.  
Current Limit and Over-Temperature  
Protection  
For overload conditions, the peak input current  
sensed through the high-side P-channel MOSFET  
is limited. Thermal protection completely disables  
switching when internal dissipation becomes  
excessive, protecting the device from damage. The  
junction over-temperature threshold is 140°C with  
15°C of hysteresis. Once the over-temperature or  
over-current fault is removed, the AAT1157 auto-  
matically recovers.  
Soft Start/Enable  
Soft start increases the inductor current limit point  
in discrete steps once the input voltage or enable  
1157.2005.11.1.4  
7
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
LX  
Enable  
U1  
AAT1157  
VOUT+  
VIN+  
12  
11  
10  
4
VP  
FB  
VOUT(V)  
R3 (k)  
R3  
15  
14  
13  
16  
3
R1  
100  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
VP  
LX  
LX  
L1  
VP  
3.0µH  
R2  
7
EN  
LX  
100K  
9
6
8
5
C1  
10µF  
VCC  
N/C  
N/C  
N/C  
R4  
59.0k  
C2  
0.1µF  
PGND  
PGND  
137  
C3-C4  
2x 22µF  
2
187  
267  
1
SGND PGND  
GND  
GND  
C1 Murata 10µF 6.3V X5R GRM42-6X5R106K6.3  
C3,C4 MuRata 22µF 6.3V GRM21BR60J226ME39L X5R 0805  
L1 Sumida CDRH5D28-3R0NC  
Figure 1: AAT1157 Evaluation Board Schematic  
Lithium-Ion to 2.5V Converter.  
Inductor  
Input Capacitor  
The output inductor should limit the ripple current to  
330mA at the maximum input voltage. This match-  
es the inductor current downslope with the fixed  
internal slope compensation. For a 2.5V output and  
the ripple set to a maximum input voltage of 4.2V,  
the inductance value required to limit the ripple cur-  
rent to 330mA is 3.0µH. From this calculated value,  
a standard value can be selected.  
The primary function of the input capacitor is to pro-  
vide a low impedance loop for the edges of pulsed  
current drawn by the AAT1157. A low ESR/ESL  
ceramic capacitor is ideal for this function. To mini-  
mize stray inductance, the capacitor should be  
placed as closely as possible to the IC. This keeps  
the high frequency content of the input current  
localized, minimizing radiated and conducted EMI  
while facilitating optimum performance of the  
AAT1157. Ceramic X5R or X7R capacitors are  
ideal for this function. The size required will vary  
depending on the load, output voltage, and input  
voltage source impedance characteristics. Values  
range from 1µF to 10µF. The input capacitor RMS  
current varies with the input voltage and the output  
voltage. The equation for the RMS current in the  
input capacitor is:  
Manufacturer's specifications list both the inductor  
DC current rating, which is a thermal limitation, and  
the peak current rating, which is determined by the  
saturation characteristics. The inductor should not  
show any appreciable saturation under normal load  
conditions. Some inductors may meet the peak and  
average current ratings yet result in excessive loss-  
es due to a high DCR. Always consider the losses  
associated with the DCR and its effect on the total  
converter efficiency when selecting an inductor.  
VO  
VIN  
VO ⎞  
VIN ⎠  
I
RMS = IO ⋅  
1 -  
VOUT  
IPP F  
VOUT  
L =  
=
1 -  
VIN(MAX)  
The input capacitor RMS ripple current reaches a  
maximum when VIN is two times the output volt-  
age where it is approximately one half of the load  
current. Losses associated with the input ceramic  
capacitor are typically minimal and are not an  
issue. The proper placement of the input capaci-  
tor can be seen in the evaluation board layout (C1  
in Figure 2).  
2.5  
V
2.5V  
4.2V  
1 -  
0.33A 1MHz  
= 3.07µH  
For a maximum ripple current of 330mA, the peak  
switch and inductor current at 1.2A is 1.365A. A stan-  
dard value of 3.0µH can be used in this example. The  
3.0µH Sumida series CDRH5D28 inductor has a  
24mmaximum DCR and a 2.4A DC current rating.  
8
1157.2005.11.1.4  
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
3. The trace connecting the FB pin to resistors R3  
and R4 should be as short as possible by plac-  
ing R3 and R4 immediately next to the  
AAT1157. The sense trace connection R3 to  
the output voltage should be separate from any  
power trace and connect as closely as possible  
to the load point. Sensing along a high-current  
load trace will degrade DC load regulation.  
4. The resistance of the trace from the load return to  
the PGND (Pins 1, 2, and 3) and SGND (Pin 5)  
should be kept to a minimum. This will help to  
minimize any error in DC regulation due to differ-  
ences in the potential of the internal signal  
ground and the power ground. SGND (Pin 5) can  
also be used to remotely sense the output  
ground at the point of load to improve regulation.  
5. A low pass filter (R1 and C2) provides a clean-  
er bias source for the AAT1157 active circuitry.  
C2 should be placed as closely as possible to  
SGND (Pin 5) and VCC (Pin 9).  
Output Capacitor  
Since there are no external compensation compo-  
nents, the output capacitor has a strong effect on loop  
stability. Larger output capacitance reduces the  
crossover frequency while increasing the phase mar-  
gin. For the 2.5V 1.2A design using the 3.0µH induc-  
tor, a 40µF capacitor provides a stable output. Table 1  
provides a list of suggested output capacitor values  
for various output voltages. In addition to assisting in  
stability, the output capacitor limits the output ripple  
and provides holdup during large load transitions. The  
output capacitor RMS ripple current is given by:  
VOUT  
(VIN - VOUT  
VIN  
)
1
IRMS  
=
L
F ⋅  
2
3  
For an X7R or X5R ceramic capacitor, the ESR is  
very low and the dissipation due to the RMS current  
of the capacitor is not a concern. Tantalum capaci-  
tors with sufficiently low ESR to meet output voltage  
ripple requirements also have an RMS current rating  
well beyond that actually seen in this application.  
6. For good heat transfer, four 15 mil vias spaced  
on a 26 mil grid connect the QFN central pad-  
dle to the bottom side ground plane, as shown  
in Figures 2 and 3.  
Thermal Calculations  
Layout  
There are three types of losses associated with the  
AAT1157: MOSFET switching losses, conduction  
losses, and quiescent current losses. The conduc-  
tion losses are due to the RDSON characteristics of  
the internal P- and N-channel MOSFET power  
devices. At full load, assuming continuous conduc-  
tion mode (CCM), a simplified form of the total loss-  
es is given by:  
Figures 2 and 3 display the suggested PCB layout  
for the AAT1157. The following guidelines should  
be used to help insure a proper layout.  
1. The input capacitor (C1) should connect as  
closely as possible to VP (Pins 10, 11, and 12)  
and PGND (Pins 1, 2, and 3).  
2. C3-C4 and L1 should be connected as close-  
ly as possible. The connection from L1 to the  
LX node should be as short as possible.  
Figure 2: Evaluation Board Top Side.  
Figure 3: Evaluation Board Bottom Side.  
1157.2005.11.1.4  
9
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
59k. Values higher than this can cause stability  
problems, while lower values can degrade light  
load efficiency. For a 2.5V output with R4 set to  
59k, R3 is 187k.  
IO2 ⋅ (RDSON(HS) VO + RDSON(LS) ⋅ (VIN - VO))  
P =  
VIN  
+ (tsw F IO VIN + IQ) VIN  
V
2.5V  
0.6V  
O
R3 =  
-1 · R4 =  
- 1 · 59k= 187kΩ  
Where IQ is the AAT1157 quiescent current.  
V
REF  
Once the total losses have been determined, the  
junction temperature can be derived from the θJA for  
the QFN package. Close attention should be paid to  
the proper layout for the QFN package. Proper size  
and placement of thermal routing vias below the  
central paddle is necessary for good heat transfer to  
other PCB layers and their ground planes. The θJA  
for the QFN package with no connection to the cen-  
tral paddle is 50°C/W. The actual θJA will vary with  
the number and type of vias. The PCB board size,  
number of board layers, and ground plane charac-  
teristics also influence the θJA. A good thermal con-  
nection from the paddle to the PCB ground plane  
layers can significantly reduce θJA.  
Table 1: Suggested Component Values.  
Output  
Voltage  
(V)  
Output  
Capacitor  
(C3-C4) (µF)  
R3 for  
R4 = 59kΩ  
(k)  
L1  
(µH)  
0.8  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
1.5 - 2.6  
1.5 - 3.3  
2.2 - 3.3  
2.2 - 4.7  
3.0 - 4.7  
3.0 - 4.7  
2.2 - 4.7  
3x 22  
2x 22  
2x 22  
2x 22  
2x 22  
2x 22  
22  
19.6  
39.2  
59  
88.7  
118  
187  
267  
TJ = P · ΘJA + TAMB  
Buck-Boost Output  
Figure 4 shows how to configure the AAT1157 in a  
buck boost configuration with an external MOSFET  
and Schottky diode. The converter has a 3.3V  
600mA output with an input voltage ranging from  
2.7V to 5.5V.  
Adjustable Output  
Resistors R3 and R4, as shown in Figure 1, force  
the output to regulate higher than the 0.6V refer-  
ence voltage level. The optimum value for R4 is  
VIN 2.7V to 5.5V  
U1  
VO 3.3V/600mA  
R2  
AAT1157  
267k  
12  
11  
10  
7
4
VP  
OUT  
15  
14  
13  
16  
3
L1  
3.0µH  
R1  
100  
VP  
LX  
D1  
VP  
LX  
MBRM120L  
EN  
LX  
C1  
22µF  
9
Q1  
Si2302ADS  
VCC  
N/C  
N/C  
N/C  
C3,C4  
2x 22µF  
R3  
59.0k  
6
C2  
0.1µF  
PGND  
PGND  
8
2
5
1
SGND PGND  
L1 SumidaCDRH5D28-3R0  
C1 Murata 22µF 10V X7R 1210 GRM32ER71A226KE20L  
C3,C4 MuRata 22µF 6.3V X5R 0805 GRM21BR60J226ME39L  
Figure 4: AAT1157 Buck Boost Converter.  
10  
1157.2005.11.1.4  
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
Design Example  
Specifications  
IOUT  
1.2A  
IRIPPLE 330mA  
VOUT 2.5V  
VIN  
FS  
3.0V to 4.2V  
1MHz  
TAMB = 85°C  
Maximum Input Capacitor Ripple:  
V
V
O
O
IRMS = IO ·  
· 1-  
= 0.59Arms  
V
V
IN  
IN  
P = esr · IRMS2 = 5m· 0.592 A = 1.7mW  
Inductor Selection:  
VOUT  
IPP F  
1 -  
VOUT  
2.5  
V
2.5V  
4.2V  
L =  
=
1 -  
= 3.07µH  
VIN  
0.33A 1MHz  
Select Sumida inductor CDRH5D28 3.0µH.  
2.5V  
4.2V  
VO  
L F  
VO  
VIN  
2.5  
V
I =  
1 -  
=
1-  
= 340mA  
3.0µH 1MHz  
I  
2
IPK = IOUT  
+
= 1.2A + 0.17A = 1.37A  
P = IO2 DCR = (1.2A)2 31m= 45mW  
Output Capacitor Ripple Current:  
(VOUT) · (VIN - VOUT  
)
1
2.5V · (4.2V - 2.5V)  
1
·
= 97.4mArms  
IRMS  
=
·
=
3.0µH · 1MHz · 4.2V  
L·F·V  
2· 3  
2· 3  
IN  
Pesr = esr · IRMS2 = 5m· (97.4mA)2 = 47.4µW  
1157.2005.11.1.4  
11  
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
AAT1157 Dissipation and Junction Temperature Estimate:  
IO2 · (RDSON(HS) · VO + RDSON(LS) · (VIN -VO))  
PTOTAL  
=
=
+ (tsw · F · IO + IQ) · VIN  
VIN  
1.2A2 · (0.17· 2.5V + 0.16· (4.2V - 2.5V))  
+ (20nsec · 1MHz · 1.2A + 275µA) · 4.2V  
4.2V  
= 341mW  
TJ(MAX) = TAMB + ΘJA · PTOTAL = 85°C + 50°C/W · 0.341W = 102°C  
Surface Mount Inductors  
Value  
(µH)  
Max DC  
DCR  
Size (mm)  
L x W x H  
Manufacturer Part Number  
Current (A) (m)  
Type  
Sumida  
Sumida  
Sumida  
TaiyoYuden  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
MuRata  
MuRata  
CDRH5D28-2R6  
CDRH5D28-3R0  
CDRH5D28-4R2  
NPO5DB4R7M  
2.6  
3.0  
4.2  
4.7  
2.2  
2.7  
3.3  
4.1  
2.2  
3.3  
4.7  
4.7  
2.6  
2.4  
18  
24  
31  
38  
31  
43  
49  
57  
59  
85  
41  
25  
5.7x5.7x3.0  
5.7x5.7x3.0  
5.7x5.7x3.0  
5.9x6.1x2.8  
5.0x5.0x3.0  
5.0x5.0x3.0  
5.0x5.0x3.0  
5.7x5.7x2.0  
4.0x4.0x1.8  
4.0x4.0x1.8  
5.0x5.0x4.7  
6.3x6.3x4.7  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Non-Shielded  
Shielded  
2.2  
1.4  
CDRH4D28-2R2  
CDRH4D28-2R7  
CDRH4D28-3R3  
CDRH5D18-4R1  
CDRH3D16/HP-2R2  
CDRH3D16/HP-3R3  
LQH55DN4R7M03  
LQH66SN4R7M03  
2.04  
1.6  
1.57  
1.95  
2.3  
1.8  
2.7  
2.2  
Surface Mount Capacitors  
Value  
(µF)  
Voltage  
(V)  
Manufacturer  
Part Number  
Temp. Co.  
Case  
MuRata  
MuRata  
MuRata  
GRM21BR60J106ME01L  
GRM21BR60J226ME01L  
GRM31CR60J106KA01L  
10  
22  
10  
6.3  
6.3  
6.3  
X5R  
X5R  
X5R  
0805  
0805  
1206  
12  
1157.2005.11.1.4  
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
Ordering Information  
Output Voltage  
Package  
Marking1  
Part Number (Tape and Reel)2  
AAT1157IVN-T1  
FB = 0.8V, Adjustable 0.8V  
QFN33-16  
OEXYY  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means  
semiconductor products that are in compliance with current RoHS standards, including  
the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more  
information, please visit our website at http://www.analogictech.com/pbfree.  
Package Information  
QFN33-16  
0.230 0.05  
Pin 1 Identification  
1
5
Pin 1 Dot By Marking  
13  
9
3.000 0.05  
0.500 0.05  
Top View  
Bottom View  
0.203 0.0254  
Side View  
All dimensions in millimeters.  
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
1157.2005.11.1.4  
13  
AAT1157  
1MHz 1.2A Buck DC/DC Converter  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights,  
or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice.  
Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech  
warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech’s standard warranty. Testing and other quality con-  
trol techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.  
Advanced Analogic Technologies, Inc.  
830 E. Arques Avenue, Sunnyvale, CA 94085  
Phone (408) 737-4600  
Fax (408) 737-4611  
14  
1157.2005.11.1.4  

相关型号:

GRM31CR60J106MA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR60J107KE39

Chip Monolithic Ceramic Capacitor for General
MURATA

GRM31CR60J107KEA8#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR60J107M

Chip Monolithic Ceramic Capacitor 1206 X5R 100uF 6.3V
MURATA

GRM31CR60J107ME39

Chip Monolithic Ceramic Capacitors
MURATA

GRM31CR60J107ME39L

Single-Input Voltage, Synchronous Buck Regulator
INFINEON

GRM31CR60J107ME39L

8V to 36Vin Cool-Power
VICOR

GRM31CR60J107ME39L

15A Voltage Mode Synchronous Buck PWM
ENPIRION

GRM31CR60J107ME39L

CHIP MONOLITHIC CERAMIC CAPACITOR
MURATA

GRM31CR60J107MEA8#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR60J156KE19

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM31CR60J156KE19#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA