MCF5328CVM240 [ANALOGICTECH]

MCF5329 ColdFire Microprocessor Data Sheet; MCF5329的ColdFire微处理器数据手册
MCF5328CVM240
型号: MCF5328CVM240
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

MCF5329 ColdFire Microprocessor Data Sheet
MCF5329的ColdFire微处理器数据手册

微处理器
文件: 总48页 (文件大小:975K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCF5329DS  
Rev. 0.1, 03/2006  
Freescale Semiconductor  
Data Sheet: Advance Information  
MCF5329 ColdFire®  
Microprocessor Data Sheet  
Supports MCF5327, MCF5328, & MCF5329  
by: Microcontroller Division  
Table of Contents  
The MCF532x devices are a family of highly-integrated  
32-bit microprocessors based on the Version 3 ColdFire  
microarchitecture. All MCF532x devices contain a  
32-Kbyte internal SRAM, an LCD controller, USB host  
and On-the-Go controllers, a 2-bank SDR/DDR  
SDRAM controller, a 16-channel DMA controller, up to  
three UARTs, a queued SPI, as well as other peripherals  
that enable the MCF532x family for use in general  
purpose industrial control applications. Optional  
peripherals include a Fast Ethernet controller, a CAN  
module, and cryptography hardware accelerators.  
1
2
3
4
5
6
MCF532x Family Configurations .........................2  
Ordering Information ...........................................3  
Signal Descriptions..............................................3  
Mechanicals and Pinouts ..................................10  
Preliminary Electrical Characteristics................15  
Revision History ................................................46  
This document provides an overview of the MCF532x  
microprocessor family, focusing on its highly diverse  
feature set. It was written from the perspective of the  
MCF5329 device. However, it also pertains to the  
MCF5327, and MCF5328. See the following section for  
a summary of differences between the various devices of  
the MCF532x family.  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
• Preliminary  
MCF532x Family Configurations  
1 MCF532x Family Configurations  
The following table compares the various device derivatives available within the MCF532x family.  
Table 1. MCF532x Family Configurations  
Module  
MCF5327  
MCF5328  
MCF5329  
ColdFire Version 3 Core with EMAC  
(Enhanced Multiply-Accumulate Unit)  
x
x
x
Core (System) Clock  
up to 240 MHz  
up to 80 MHz  
Peripheral and External Bus Clock  
(Core clock ÷ 3)  
Performance (Dhrystone/2.1 MIPS)  
Unified Cache  
up to 211  
16 Kbytes  
Static RAM (SRAM)  
32 Kbytes  
LCD Controller  
x
x
x
x
x
x
x
x
x
x
x
x
x
3
x
x
x
x
4
x
4
x
2
x
x
x
x
SDR/DDR SDRAM Controller  
USB 2.0 Host  
x
x
USB 2.0 On-the-Go  
x
x
UTMI+ Low Pin Interface (ULPI)  
Synchronous Serial Interface (SSI)  
Fast Ethernet Controller (FEC)  
Cryptography Hardware Accelerators  
FlexCAN 2.0B communication module  
UARTs  
3
x
x
x
3
x
I2C  
x
QSPI  
x
x
PWM Module  
x
x
Real Time Clock  
x
x
32-bit DMA Timers  
4
4
x
Watchdog Timer (WDT)  
Periodic Interrupt Timers (PIT)  
Edge Port Module (EPORT)  
Interrupt Controllers (INTC)  
16-channel Direct Memory Access (DMA)  
FlexBus External Interface  
General Purpose I/O Module (GPIO)  
JTAG - IEEE® 1149.1 Test Access Port  
Package  
x
4
4
x
x
2
2
x
x
x
x
x
x
x
x
196  
256  
256  
MAPBGA  
MAPBGA  
MAPBGA  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
2
Freescale Semiconductor  
Ordering Information  
2 Ordering Information  
Table 2. Orderable Part Numbers  
Freescale Part  
Number  
Description  
Speed  
Temperature  
MCF5327CVM240  
MCF5328CVM240  
MCF5329CVM240  
MCF5327 RISC Microprocessor, 196 MAPBGA  
MCF5328 RISC Microprocessor, 256 MAPBGA  
MCF5329 RISC Microprocessor, 256 MAPBGA  
240 MHz  
240 MHz  
240 MHz  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
3 Signal Descriptions  
The following table lists all the MCF532x pins grouped by function. The “Dir” column is the direction for  
the primary function of the pin only. Refer to Section 4, “Mechanicals and Pinouts,” for package diagrams.  
For a more detailed discussion of the MCF532x signals, consult the MCF5329 Reference Manual  
(MCF5329RM).  
NOTE  
In this table and throughout this document a single signal within a group is  
designated without square brackets (i.e., A23), while designations for  
multiple signals within a group use brackets (i.e., A[23:21]) and is meant to  
include all signals within the two bracketed numbers when these numbers  
are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality.  
Pins that are muxed with GPIO will default to their GPIO functionality.  
Table 3. MCF5327/8/9 Signal Information and Muxing  
MCF5327  
196  
MCF5328  
256  
MCF5329  
256  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
MAPBGA  
MAPBGA  
MAPBGA  
Reset  
RESET2  
RSTOUT  
I
M12  
P14  
N15  
P14  
N15  
P14  
O
Clock  
EXTAL  
XTAL2  
I
L14  
K14  
M11  
N11  
P16  
N16  
P13  
R13  
P16  
N16  
P13  
R13  
O
I
EXTAL32K  
XTAL32K  
O
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
3
Signal Descriptions  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF5327  
196  
MCF5328  
MCF5329  
256  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
256  
MAPBGA  
MAPBGA  
MAPBGA  
FB_CLK  
O
L1  
T2  
T2  
Mode Selection  
RCON2  
I
I
N7  
M8  
M8  
DRAMSEL  
G10  
H12  
H12  
FlexBus  
A[23:22]  
A[21:16]  
FB_CS[5:4]  
O
O
B11,C11  
C13, D13  
C13, D13  
B12, A12,  
D11, C12,  
B13, A13  
E13, A14,  
B14, C14,  
A15, B15  
E13, A14,  
B14, C14,  
A15, B15  
A[15:14]  
A[13:11]  
SD_BA[1:0]  
O
O
A14, B14  
D14, B16  
D14, B16  
SD_A[13:11]  
C13, C14,  
D12  
C15, C16,  
D15  
C15, C16,  
D15  
A10  
O
O
D13  
D16  
D16  
A[9:0]  
SD_A[9:0]  
D14,  
E11–14,  
F11–F14,  
G14  
E14–E16,  
F13–F16,  
G16– G14  
E14–E16,  
F13–F16,  
G16– G14  
D[31:16]  
D[15:1]  
SD_D[31:16]3  
FB_D[31:17]3  
O
O
H3–H1,  
M1–M4,  
M1–M4,  
J4–J1, K1, N1–N4, T3, N1–N4, T3,  
L4, M2, M3, P4, R4, T4, P4, R4, T4,  
N1, N2, P1, N5, P5, R5, N5, P5, R5,  
P2, N3  
T5  
T5  
F4–F1,  
J3–J1,  
J3–J1,  
G4–G2, L5, K4–K1, L2, K4–K1, L2,  
N4, P4, M5, R6, N7, P7, R6, N7, P7,  
N5, P5, M6 R7, T7, P8, R7, T7, P8,  
R8  
R8  
D02  
FB_D[16]3  
O
O
N6  
T8  
T8  
BE/BWE[3:0]  
PBE[3:0]  
SD_DQM[3:0]  
H4, P3, G1, L4, P6, L3, L4, P6, L3,  
M4  
N6  
N6  
OE  
TA2  
R/W  
TS  
PBUSCTL3  
PBUSCTL2  
PBUSCTL1  
PBUSCTL0  
O
I
L7  
R9  
R9  
G13  
P6  
G13  
N8  
G13  
N8  
O
O
DACK0  
D2  
H4  
H4  
Chip Selects  
FB_CS[5:4]  
FB_CS[3:1]  
PCS[5:4]  
PCS[3:1]  
O
O
B13, A13  
B13, A13  
A11, D10,  
C10  
A12, B12,  
C12  
A12, B12,  
C12  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
4
Freescale Semiconductor  
Signal Descriptions  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF5327  
196  
MCF5328  
MCF5329  
256  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
256  
MAPBGA  
MAPBGA  
MAPBGA  
FB_CS0  
O
B10  
D12  
D12  
SDRAM Controller  
SD_A10  
SD_CKE  
O
O
O
O
O
O
O
O
O
O
O
O
L2  
E1  
K3  
K2  
P2  
H2  
R1  
R2  
J4  
P2  
H2  
R1  
R2  
J4  
SD_CLK  
SD_CLK  
SD_CS1  
SD_CS0  
E2  
H5  
L6  
L3  
M1  
K4  
D1  
H1  
L1  
H1  
L1  
SD_DQS3  
SD_DQS2  
SD_SCAS  
SD_SRAS  
SD_SDR_DQS  
SD_WE  
T6  
P3  
R3  
P1  
H3  
T6  
P3  
R3  
P1  
H3  
External Interrupts Port4  
IRQ72  
IRQ62  
PIRQ72  
PIRQ62  
I
I
H14  
J13  
J14  
J13  
J14  
USBHOST_  
VBUS_EN2  
IRQ52  
PIRQ52  
USBHOST_  
VBUS_OC2  
I
J15  
J15  
IRQ42  
IRQ32  
IRQ22  
IRQ12  
PIRQ42  
PIRQ32  
PIRQ22  
PIRQ12  
SSI_MCLK2  
I
I
I
I
H13  
H12  
J14  
J13  
J16  
K14  
K15  
K16  
J16  
K14  
K15  
K16  
USB_CLKIN2  
DREQ12  
SSI_CLKIN2  
FEC  
FEC_MDC  
FEC_MDIO  
FEC_TXCLK  
FEC_TXEN  
FEC_TXD0  
FEC_COL  
PFECI2C3  
PFECI2C2  
PFECH7  
PFECH6  
PFECH5  
PFECH4  
PFECH3  
PFECH2  
I2C_SCL2  
I2C_SDA2  
O
I/O  
I
C1  
C2  
A2  
B2  
E4  
A8  
C8  
D8  
C1  
C2  
A2  
B2  
E4  
A8  
C8  
D8  
O
O
I
ULPI_DATA0  
ULPI_CLK  
ULPI_NXT  
ULPI_STP  
FEC_RXCLK  
FEC_RXDV  
I
I
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
5
Signal Descriptions  
Signal Name  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF5327  
196  
MCF5328  
MCF5329  
256  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
256  
MAPBGA  
MAPBGA  
MAPBGA  
FEC_RXD0  
FEC_CRS  
PFECH1  
PFECH0  
ULPI_DATA4  
ULPI_DIR  
I
I
C6  
B8  
C6  
B8  
FEC_TXD[3:1]  
FEC_TXER  
FEC_RXD[3:1]  
FEC_RXER  
PFECL[7:5] ULPI_DATA[3:1]  
PFECL4  
PFECL[3:1] ULPI_DATA[7:5]  
O
O
I
D3–D1  
B1  
D3–D1  
B1  
E7, A6, B6 E7, A6, B6  
PFECL0  
I
D4  
D4  
LCD Controller  
LCD_D17  
LCD_D16  
LCD_D17  
LCD_D16  
LCD_D15  
LCD_D14  
LCD_D13  
LCD_D12  
LCD_D[11:8]  
PLCDDH1  
PLCDDH0  
PLCDDH1  
PLCDDH0  
PLCDDM7  
PLCDDM6  
PLCDDM5  
PLCDDM4  
CANTX  
CANRX  
O
O
O
O
O
O
O
O
O
C9  
D9  
A6  
B6  
C6  
D6  
A5  
B5  
C9  
D9  
A7  
B7  
C7  
D7  
FEC_COL  
FEC_CRS  
A7  
B7  
C7  
D7  
FEC_RXCLK  
FEC_RXDV  
PLCDDM[3:0] FEC_RXD[3:0]  
C5, D5, A4, D6, E6, A5, D6, E6, A5,  
B4  
C4  
B3  
A3  
A2  
B5  
C5  
D5  
A4  
A3  
B5  
C5  
D5  
A4  
A3  
LCD_D7  
LCD_D6  
PLCDDL7  
PLCDDL6  
PLCDDL5  
PLCDDL4  
FEC_RXER  
FEC_TXCLK  
FEC_TXEN  
FEC_TXER  
O
O
O
O
O
LCD_D5  
LCD_D4  
LCD_D[3:0]  
PLCDDL[3:0] FEC_TXD[3:0]  
D4, C3, D3, B4, C4, B3, B4, C4, B3,  
B2  
C3  
C3  
LCD_ACD/  
LCD_OE  
PLCDCTLH0  
O
D7  
B9  
B9  
LCD_CLS  
PLCDCTLL7  
O
O
O
C7  
B7  
A7  
A9  
A9  
LCD_CONTRAST PLCDCTLL6  
D10  
C10  
D10  
C10  
LCD_FLM/  
PLCDCTLL5  
LCD_VSYNC  
LCD_LP/  
PLCDCTLL4  
O
A8  
B10  
B10  
LCD_HSYNC  
LCD_LSCLK  
LCD_PS  
PLCDCTLL3  
PLCDCTLL2  
PLCDCTLL1  
O
O
O
O
B8  
C8  
D8  
B9  
A10  
A11  
B11  
C11  
A10  
A11  
B11  
C11  
LCD_REV  
LCD_SPL_SPR PLCDCTLL0  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
6
Freescale Semiconductor  
Signal Descriptions  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF5327  
196  
MCF5328  
MCF5329  
256  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
256  
MAPBGA  
MAPBGA  
MAPBGA  
USB Host & USB On-the-Go  
USBOTG_M  
USBOTG_P  
USBHOST_M  
USBHOST_P  
I/O  
I/O  
I/O  
I/O  
J12  
K13  
L12  
M13  
L15  
L16  
L15  
L16  
M15  
M16  
M15  
M16  
FlexCAN (MCF5329 only)  
CANRX and CANTX do not have dedicated bond pads. Please refer to the following pins for muxing:  
I2C_SDA, SSI_RXD, or LCD_D16 for CANRX and I2C_SCL, SSI_TXD, or LCD_D17 for CANTX.  
PWM  
PWM7  
PWM5  
PWM3  
PWM1  
PPWM7  
PPWM5  
PPWM3  
PPWM1  
I/O  
I/O  
I/O  
I/O  
H13  
H14  
H15  
H16  
H13  
H14  
H15  
H16  
DT3OUT  
DT2OUT  
DT3IN  
DT2IN  
G12  
G11  
SSI  
SSI_MCLK  
SSI_BCLK  
SSI_FS  
PSSI4  
PSSI3  
PSSI2  
PSSI1  
PSSI0  
PSSI1  
PSSI0  
PWM7  
PWM5  
CANRX  
CANTX  
I/O  
I/O  
I/O  
I
G4  
F4  
G3  
G4  
F4  
G3  
G2  
G1  
U2CTS  
U2RTS  
U2RXD  
U2TXD  
U2RXD  
U2TXD  
SSI_RXD2  
SSI_TXD2  
SSI_RXD2  
SSI_TXD2  
O
I
G2  
G1  
O
I2C  
I2C_SCL2  
I2C_SDA2  
I2C_SCL2  
I2C_SDA2  
PFECI2C1  
PFECI2C0  
PFECI2C1  
PFECI2C0  
CANTX  
CANRX  
U2TXD  
U2RXD  
U2TXD  
U2RXD  
I/O  
I/O  
I/O  
I/O  
F3  
F2  
E3  
E4  
F3  
F2  
DMA  
DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing:  
TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1.  
QSPI  
QSPI_CS2  
QSPI_CS1  
PQSPI5  
PQSPI4  
U2RTS  
PWM7  
O
O
P10  
L11  
T12  
T13  
T12  
T13  
USBOTG_  
PU_EN  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
7
Signal Descriptions  
Signal Name  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF5327  
196  
MCF5328  
MCF5329  
256  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
256  
MAPBGA  
MAPBGA  
MAPBGA  
QSPI_CS0  
QSPI_CLK  
QSPI_DIN  
PQSPI3  
PQSPI2  
PQSPI1  
PQSPI0  
PWM5  
I2C_SCL2  
U2CTS  
O
O
I
P11  
R12  
N12  
P12  
P11  
R12  
N12  
P12  
N10  
L10  
M10  
QSPI_DOUT  
I2C_SDA  
O
UARTs  
U1CTS  
U1RTS  
U1TXD  
U1RXD  
U0CTS  
U0RTS  
U0TXD  
U0RXD  
PUARTL7  
PUARTL6  
PUARTL5  
PUARTL4  
PUARTL3  
PUARTL2  
PUARTL1  
PUARTL0  
SSI_BCLK  
SSI_FS  
SSI_TXD2  
SSI_RXD2  
I
O
O
I
C9  
D9  
D11  
E10  
E11  
E12  
R15  
T15  
T14  
R14  
D11  
E10  
E11  
E12  
R15  
T15  
T14  
R14  
A9  
A10  
P13  
N12  
P12  
P11  
I
O
O
I
Note: The UART2 signals are multiplexed on the QSPI, SSI, DMA Timers, and I2C pins.  
DMA Timers  
DT3IN  
DT2IN  
DT1IN  
DT0IN  
PTIMER3  
PTIMER2  
PTIMER1  
PTIMER0  
DT3OUT  
DT2OUT  
DT1OUT  
DT0OUT  
U2RXD  
U2TXD  
DACK1  
DREQ02  
I
I
I
I
C1  
B1  
A1  
C2  
F1  
E1  
E2  
E3  
F1  
E1  
E2  
E3  
BDM/JTAG5  
JTAG_EN6  
DSCLK  
PSTCLK  
BKPT  
I
I
J11  
N14  
M7  
M13  
P15  
T9  
M13  
P15  
T9  
TRST2  
TCLK2  
TMS2  
TDI2  
TDO  
O
I
N13  
M14  
P9  
R16  
N14  
N11  
R16  
N14  
N11  
DSI  
I
DSO  
O
O
DDATA[3:0]  
P7, L8, M8, N9, P9, N10, N9, P9, N10,  
N8  
P10  
P10  
PST[3:0]  
O
P8, L9, M9, R10, T10,  
R10, T10,  
R11, T11  
N9 R11, T11  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
8
Freescale Semiconductor  
Signal Descriptions  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF5327  
196  
MCF5328  
MCF5329  
256  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
256  
MAPBGA  
MAPBGA  
MAPBGA  
Test  
TEST6  
I
I
E10  
A16  
N13  
A16  
N13  
PLL_TEST7  
Power Supplies  
EVDD  
E6, E7,  
E8, F5–F8, E8, F5–F8,  
F5–F7, H9, G5, G6, H5, G5, G6, H5,  
J8, J9, K8,  
K9  
H6, J11,  
K11, K12,  
H6, J11,  
K11, K12,  
L9–L11, M9, L9–L11, M9,  
M10 M10  
IVDD  
E5, K5, K10 E5,G12,M5, E5, G12,M5,  
M11, M12  
M11, M12  
PLL_VDD  
SD_VDD  
H10  
J12  
J12  
E8, E9,  
E9, F9–F11, E9, F9–F11,  
F8–F10, J6, G11, H11,  
G11, H11,  
J5, J6, K5,  
K6, J7, K7  
J5, J6, K5,  
K6, L5–L8, K6, L5–L8,  
M6, M7  
M6, M7  
USBOTG_VDD  
VSS  
K12  
L14  
L14  
G6–G9,  
H6–H8, P9  
G7–G10,  
H7–H10,  
J7–10,  
G7–G10,  
H7–H10,  
J7–10,  
K7–K10,  
L12, L13  
K7–K10,  
L12, L13  
PLL_VSS  
H11  
L13  
K13  
M14  
K13  
M14  
USBHOST_VSS  
NOTES:  
1
Refers to pin’s primary function.  
Pull-up enabled internally on this signal for this mode.  
2
3
Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by  
negating the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.  
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the  
alternate functions.  
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not  
responsible for assigning these pins.  
4
5
6
7
Pull-down enabled internally on this signal for this mode.  
Must be left floating for proper operation of the PLL.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Freescale Semiconductor  
9
Preliminary  
Mechanicals and Pinouts  
4 Mechanicals and Pinouts  
This section contains drawings showing the pinout and the packaging and mechanical characteristics of  
the MCF532x devices.  
NOTE  
The mechanical drawings are the latest revisions at the time of publication  
of this document. The most up-to-date mechanical drawings can be found at  
the product summary page located at http://www.freescale.com/coldfire.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
10  
Freescale Semiconductor  
Preliminary  
Mechanicals and Pinouts  
4.1 Pinout—256 MAPBGA  
Figure 1 shows a pinout of the MCF5328CVM240 and MCF5329CVM240 devices.  
NOTE  
The pin at location N13 (PLL_TEST) must be left floating, else improper  
operation of the PLL module will occur.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
FEC_  
TXCLK  
LCD_  
D4  
LCD_  
D5  
LCD_  
D9  
FEC_  
RXD2  
LCD_  
D15  
FEC_  
COL  
LCD_  
CLS  
LCD_  
LSCLK  
LCD_  
PS  
A
B
C
D
E
F
NC  
FB_CS3 FB_CS4  
FB_CS2 FB_CS5  
A20  
A17  
TEST  
A
B
C
D
E
F
FEC_  
TXER  
FEC_  
TXEN  
LCD_  
D1  
LCD_  
D3  
LCD_  
D8  
FEC_  
RXD1  
LCD_  
D14  
FEC_  
CRS  
LCD_  
ACD/OE HSYNC  
LCD_LP/  
LCD_  
REV  
A19  
A18  
A15  
A9  
A16  
A13  
A11  
A8  
A14  
A12  
A10  
A7  
FEC_  
MDC  
FEC_  
MDIO  
LCD_  
D0  
LCD_  
D2  
LCD_  
D7  
FEC_  
RXD0  
LCD_  
D13  
FEC_  
RXCLK  
LCD_ LCD_FLM/  
D17  
LCD_  
SPL_SPR  
FB_CS1  
FB_CS0  
U1RXD  
NC  
A23  
A22  
VSYNC  
FEC_  
TXD1  
FEC_  
TXD2  
FEC_  
TXD3  
FEC_  
RXER  
LCD_  
D6  
LCD_  
D11  
LCD_  
D12  
FEC_  
RXDV  
LCD_ LCD_CON  
D16 TRAST  
U1CTS  
U1TXD  
FEC_  
TXD0  
LCD_  
D10  
FEC_  
RXD3  
DT2IN  
DT3IN  
DT1IN  
DT0IN  
IVDD  
EVDD  
EVDD  
EVDD  
EVDD SD_VDD U1RTS  
A21  
I2C_  
SDA  
I2C_  
SCL  
SSI_  
BCLK  
EVDD  
EVDD  
EVDD  
EVDD  
VSS  
VSS  
VSS  
VSS  
EVDD SD_VDD SD_VDD SD_VDD  
A6  
A5  
A4  
A3  
SSI_  
TXD  
SSI_  
RXD  
SSI_  
MCLK  
G
H
J
SSI_FS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SD_VDD  
SD_VDD  
EVDD  
IVDD  
TA  
A0  
A1  
A2  
G
H
J
SD_  
CS0  
DRAM  
SEL  
SD_CKE SD_WE  
TS  
PWM7  
IRQ7  
PWM5  
IRQ6  
IRQ3  
PWM3  
IRQ5  
PWM1  
IRQ4  
PLL_  
VDD  
D13  
D9  
D14  
D10  
D8  
D15  
D11  
SD_CS1 SD_VDD SD_VDD  
VSS  
PLL_  
VSS  
K
L
D12  
SD_VDD SD_VDD  
VSS  
EVDD  
EVDD  
VSS  
IRQ2  
USB  
IRQ1  
USB  
K
L
SD_  
DQS3  
BE/  
BWE1  
BE/  
BWE3  
USB_  
VSS  
USBOTG  
_VDD  
SD_VDD SD_VDD SD_VDD SD_VDD EVDD  
EVDD  
EVDD  
EVDD  
OTG_M OTG_P  
JTAG_ USBHOST  
EN  
USB  
USB  
M
N
P
R
T
D31  
D27  
D30  
D26  
D29  
D25  
D28  
D24  
D22  
D21  
IVDD SD_VDD SD_VDD RCON  
BE/  
EVDD  
IVDD  
IVDD  
M
N
P
R
T
_VSS  
HOST_M HOST_P  
TDO/  
DSO  
QSPI_  
DIN  
PLL_  
TEST  
D19  
D18  
D17  
D6  
D5  
D4  
R/W  
DDATA3 DDATA1  
DDATA2 DDATA0  
TDI/DSI  
RESET  
XTAL  
BWE0  
SD_DR  
_DQS  
BE/  
BWE2  
QSPI_  
CS0  
QSPI_  
DOUT  
EXTAL  
32K  
TRST/  
DSCLK  
SD_A10 SD_CAS  
D2  
RSTOUT  
U0RXD  
EXTAL  
QSPI_  
CLK  
XTAL  
32K  
TMS/  
BKPT  
SD_CLK SD_CLK SD_RAS  
D7  
D1  
OE  
PST3  
PST1  
U0CTS  
SD_  
DQS2  
TCLK/  
PSTCLK  
QSPI_  
CS2  
QSPI_  
CS1  
NC  
1
FB_CLK  
2
D23  
3
D20  
4
D16  
5
D3  
7
D0  
8
PST2  
10  
PST0  
11  
U0TXD  
14  
U0RTS  
15  
NC  
16  
6
9
12  
13  
Figure 1. MCF5328CVM240 and MCF5329CVM240 Pinout Top View (256 MAPBGA)  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
11  
Mechanicals and Pinouts  
4.2 Package Dimensions—256 MAPBGA  
Figure 2 shows MCF5328CVM240 and MCF5329CVM240 package dimensions.  
X
D
M
Laser mark for pin A1  
identification in  
this area  
5
Y
0.30 Z  
A2  
K
A
A1  
256X  
4
0.15 Z  
Z
E
Detail K  
Rotated 90° Clockwise  
Notes:  
1.  
2.  
Dimensions are in millimeters.  
Interpret dimensions and tolerances  
per ASME Y14.5M, 1994.  
Top View  
M
0.20  
15X e  
3.  
4.  
5.  
Dimension b is measured at the  
maximum solder ball diameter, parallel  
to datum plane Z.  
Datum Z (seating plane) is defined by  
the spherical crowns of the solder  
balls.  
Parallelism measurement shall exclude  
any effect of mark on top surface of  
package.  
Metalized mark for  
pin A1 identification  
in this area  
S
15 13 11  
16 14 12 10  
7 6 5 4 3 2 1  
A
B
C
D
E
F
S
15X e  
3
G
H
J
256X  
b
M
M
0.25  
0.10  
Z X Y  
Millimeters  
K
L
M
N
P
R
T
Dim Min  
1.25  
A1 0.27  
Max  
1.60  
0.47  
Z
A
1.16 REF  
A2  
b
D
E
e
0.40  
17.00 BSC  
17.00 BSC  
0.60  
Bottom View  
1.00 BSC  
0.50 BSC  
View M-M  
S
Figure 2. 256 MAPBGA Package Outline  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
12  
Freescale Semiconductor  
Mechanicals and Pinouts  
4.3 Pinout—196 MAPBGA  
The pinout for the MCF5327CVM240 package is shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
LCD_  
D4  
LCD_  
D5  
LCD_  
D9  
LCD_  
D13  
LCD_ LCD_FLM/ LCD_LP/  
D17 VSYNC HSYNC  
A
B
C
D
E
F
DT1IN  
U1TXD  
U1RXD FB_CS3  
A20  
A16  
A15  
A
B
C
D
E
F
LCD_  
D0  
LCD_  
D6  
LCD_  
D8  
LCD_  
D12  
LCD_ LCD_CON LCD_  
LCD_  
D2TIN  
DT3IN  
FB_CS0  
A23  
A22  
A19  
A8  
A21  
A18  
A17  
A13  
A10  
A6  
A14  
A12  
D16  
TRAST  
LSCLK SPL_SPR  
LCD_  
D2  
LCD_  
D7  
LCD_  
D11  
LCD_  
D15  
LCD_  
CLS  
LCD_  
PS  
DT0IN  
TS  
U1CTS FB_CS1  
U1RTS FB_CS2  
LCD_  
D1  
LCD_  
D3  
LCD_  
D10  
LCD_  
D14  
LCD_  
ACD/OE  
LCD_  
REV  
SD_WE  
A11  
A9  
SD_CKE SD_CS0 I2C_SCL I2C_SDA IVDD  
EVDD  
EVDD  
VSS  
EVDD  
EVDD  
VSS  
SD_VDD SD_VDD  
TEST  
A7  
A5  
D12  
D13  
D8  
D14  
D9  
D15  
D10  
EVDD  
D11  
SD_VDD SD_VDD SD_VDD  
DRAM  
A4  
A3  
A2  
A1  
BE/  
BWE1  
G
H
J
VSS  
VSS  
EVDD  
EVDD  
EVDD  
PST1  
PST0  
PWM1  
PWM3  
IRQ3  
TA  
A0  
G
H
J
SEL  
BE/  
BWE3  
SD_  
DQS3  
PLL_  
VDD  
PLL_  
VSS  
D29  
D25  
D24  
D30  
D26  
D31  
D27  
VSS  
VSS  
VSS  
IRQ4  
IRQ1  
IRQ7  
IRQ2  
XTAL  
EXTAL  
TDI/DSI  
JTAG_  
EN  
USB  
OTG_M  
D28  
SD_VDD SD_VDD SD_VDD  
SD_  
EVDD  
EVDD  
DDATA1  
DDATA0  
PST3  
IVDD  
IVDD  
SD_DR_  
DQS  
USBHOST  
_VDD  
USB  
OTG_P  
K
L
SD_CLK SD_CLK  
IVDD  
SD_VDD  
EVDD  
K
L
DQS2  
TCLK/  
PSTCLK  
QSPI_  
DIN  
QSPI_  
CS1  
USB  
HOST_M  
USBHOST  
_VSS  
FB_CLK SD_A10 SD_CAS  
D23  
D7  
D1  
BE/  
BWE0  
QSPI_  
DOUT  
EXTAL  
32K  
USB  
HOST_P  
M
N
P
SD_RAS  
D20  
D22  
D19  
D21  
D16  
D4  
D0  
RCON  
RESET  
U0RTS  
M
N
P
TDO/  
DSO  
QSPI_  
CLK  
XTAL  
32K  
TMS/  
BKPT  
TRST/  
DSCLK  
D6  
D3  
R/W  
DDATA3  
BE/  
BWE2  
QSPI_  
CS2  
D18  
1
D17  
2
D5  
4
D2  
5
OE  
6
DDATA2  
7
PST2  
8
VSS  
9
U0RXD  
11  
U0TXD  
12  
U0CTS RSTOUT  
3
10  
13  
14  
Figure 3. MCF5327CVM240 Pinout Top View (196 MAPBGA)  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
13  
Mechanicals and Pinouts  
4.4 Package Dimensions—196 MAPBGA  
Figure 4 shows the MCF5327CVM240 package dimensions.  
NOTES:  
D
X
Y
1. Dimensions are in millimeters.  
2. Interpretdimensionsandtolerances  
per ASME Y14.5M, 1994.  
Laser mark for pin 1  
identification in  
this area  
3. Dimension B is measured at the  
maximum solder ball diameter,  
parallel to datum plane Z.  
4. Datum Z (seating plane) is defined  
bythesphericalcrownsofthesolder  
balls.  
M
K
5. Parallelism measurement shall  
exclude any effect of mark on top  
surface of package.  
Millimeters  
DIM Min Max  
A 1.32 1.75  
A1 0.27 0.47  
A2 1.18 REF  
E
b
D
E
e
0.35 0.65  
15.00 BSC  
15.00 BSC  
1.00 BSC  
0.50 BSC  
S
M
Top View  
0.20  
13X e  
S
Metalized mark for  
pin 1 identification  
in this area  
14 13 12 11 10  
9
6
5
4
3
2
1
A
B
C
D
E
F
5
S
0.30 Z  
13X e  
A2  
A
G
H
J
A1  
0.15 Z  
4
Z
K
L
Detail K  
Rotated 90 Clockwise  
°
M
N
P
3
196X  
b
Bottom View  
0.30 Z X Y  
0.10 Z  
View M-M  
Figure 4. 196 MAPBGA Package Dimensions (Case No. 1128A-01)  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
14  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
5 Preliminary Electrical Characteristics  
This document contains electrical specification tables and reference timing diagrams for the MCF5329  
microcontroller unit. This section contains detailed information on power considerations, DC/AC  
electrical characteristics, and AC timing specifications of MCF5329.  
The electrical specifications are preliminary and are from previous designs or design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however  
for production silicon these specifications will be met. Finalized specifications will be published after  
complete characterization and device qualifications have been completed.  
NOTE  
The parameters specified in this MCU document supersede any values  
found in the module specifications.  
5.1 Maximum Ratings  
1, 2  
Table 4. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core Supply Voltage  
IVDD  
EVDD  
SDVDD  
PLLVDD  
VIN  
– 0.5 to +2.0  
– 0.3 to +4.0  
– 0.3 to +4.0  
– 0.3 to +2.0  
– 0.3 to +3.6  
25  
V
V
CMOS Pad Supply Voltage  
DDR/Memory Pad Supply Voltage  
PLL Supply Voltage  
V
V
Digital Input Voltage 3  
V
Instantaneous Maximum Current  
ID  
mA  
Single pin limit (applies to all pins) 3, 4, 5  
Operating Temperature Range (Packaged)  
TA  
(TL - TH)  
– 40 to +85  
°C  
°C  
Storage Temperature Range  
N1 OTES:  
Tstg  
– 55 to +150  
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.”  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is  
not guaranteed. Continued operation at these levels may affect device reliability or cause  
permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid application of  
any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g.,  
either VSS or EVDD).  
2
3
4
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,  
then use the larger of the two values.  
All functional non-supply pins are internally clamped to VSS and EVDD  
.
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
15  
Preliminary Electrical Characteristics  
5
Power supply must maintain regulation within operating EVDD range during instantaneous  
and operating maximum current conditions. If positive injection current (Vin > EVDD) is greater  
than IDD, the injection current may flow out of EVDD and could result in external power supply  
going out of regulation. Insure external EVDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power (ex; no  
clock). Power supply must maintain regulation within operating EVDD range during  
instantaneous and operating maximum current conditions.  
5.2 Thermal Characteristics  
Table 5. Thermal Characteristics  
Characteristic  
Symbol  
256MBGA 196MBGA Unit  
Junction to ambient, natural convection  
Four layer board  
(2s2p)  
θJMA  
261,2  
321,2  
°C/W  
Junction to ambient (@200 ft/min)  
Four layer board  
(2s2p)  
θJMA  
231,2  
291,2  
°C/W  
Junction to board  
θJB  
θJC  
Ψjt  
Tj  
153  
104  
21,5  
105  
203  
104  
21,5  
105  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
Junction to top of package  
Maximum operating junction temperature  
N1 OTES:  
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent  
device junction temperatures from exceeding the rated specification. System designers should be aware  
that device junction temperatures can be significantly influenced by board layout and surrounding devices.  
Conformance to the device junction temperature specification can be verified by physical measurement in  
the customer’s system using the Ψjt parameter, the device power dissipation, and the method described in  
EIA/JESD Standard 51-2.  
2
3
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8.  
Board temperature is measured on the top surface of the board near the package.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written in conformance with Psi-JT.  
4
5
The average chip-junction temperature (T ) in °C can be obtained from:  
J
TJ = TA + (PD × ΘJMA  
)
Eqn. 1  
Where:  
T
= Ambient Temperature, °C  
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
= P + P  
A
Q
JMA  
P
D
INT  
I/O  
P
= I × IV , Watts - Chip Internal Power  
DD DD  
INT  
P
= Power Dissipation on Input and Output Pins — User Determined  
I/O  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
16  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
For most applications P < P  
and can be ignored. An approximate relationship between P and T (if  
I/O  
INT  
D
J
P
is neglected) is:  
I/O  
K
--------------------------------  
PD  
=
Eqn. 2  
(TJ + 273°C)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA × 273°C) + QJMA × P2D  
Eqn. 3  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  
P (at equilibrium) for a known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 1 and Equation 2 iteratively for any value of T .  
A
5.3 ESD Protection  
1, 2  
Table 6. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
N1 OTES:  
HBM  
2000  
V
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for  
Automotive Grade Integrated Circuits.  
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
5.4 DC Electrical Specifications  
Table 7. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Core Supply Voltage  
PLL Supply Voltage  
IVDD  
PLLVDD  
EVDD  
1.4  
1.4  
1.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
1.6  
CMOS Pad Supply Voltage  
3.0  
3.6  
1.95  
Mobile DDR/Bus Pad Supply Voltage  
DDR/Bus Pad Supply Voltage  
SDR/Bus Pad Supply Voltage  
USB Supply Voltage  
SDVDD  
SDVDD  
SDVDD  
USBVDD  
EVIH  
1.65  
2.25  
3.0  
2.75  
3.6  
3.0  
3.6  
CMOS Input High Voltage  
2
EVDD + 0.05  
0.8  
CMOS Input Low Voltage  
EVIL  
-0.05  
TBD  
-0.05  
2
Mobile DDR/Bus Input High Voltage  
Mobile DDR/Bus Input Low Voltage  
DDR/Bus Input High Voltage  
DDR/Bus Input Low Voltage  
SDVIH  
SDVIL  
SDVIH  
SDVIL  
SDVDD + 0.05  
TBD  
SDVDD + 0.05  
0.8  
-0.05  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
17  
Preliminary Electrical Characteristics  
Table 7. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Input Leakage Current  
Iin  
-1.0  
1.0  
µA  
Vin = VDD or VSS, Input-only pins  
CMOS Output High Voltage  
EVOH  
EVOL  
EVDD - 0.4  
0.4  
V
V
V
V
IOH = –5.0 mA  
CMOS Output Low Voltage  
SDVDD - 0.4  
IOL = 5.0 mA  
DDR/Bus Output High Voltage  
IOH = –5.0 mA  
SDVOH  
SDVOL  
DDR/Bus Output Low Voltage  
0.4  
-130  
IOL = 5.0 mA  
Weak Internal Pull-Up Device Current, tested at VIL Max.1  
IAPU  
Cin  
-10  
µA  
Input Capacitance 2  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
NOTES:  
1
Refer to the signals section for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
2
5.4.1 PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins.  
DD  
The filter shown in Figure 5 should be connected between the board V and the PLLV pins. The  
DD  
DD  
resistor and capacitors should be placed as close to the dedicated PLLV pin as possible.  
DD  
10 Ω  
Board VDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 5. System PLL V Power Filter  
DD  
5.4.2 USB Power Filtering  
To minimize noise, external filters are required for each of the USB power pins. The filter shown in  
Figure 6 should be connected between the board EV or IV and each of the USBV pins. The  
DD  
DD  
DD  
resistor and capacitors should be placed as close to the dedicated USBV pin as possible.  
DD  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
18  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
0 Ω  
Board EVDD/IVDD  
USB VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 6. USB V Power Filter  
DD  
NOTE  
In addition to the above filter circuitry, a 0.01 F capacitor is also  
recommended in parallel with those shown.  
5.4.3 Supply Voltage Sequencing and Separation Cautions  
Figure 7 shows situations in sequencing the I/O V (EV ), SDRAM V (SDV ), PLL V  
DD  
DD  
DD  
DD  
DD  
(PLLV ), and Core V (IV ).  
DD  
DD  
DD  
EVDD, SDVDD, USBVDD  
SDVDD (2.5V/1.8V)  
3.3V  
2.5V  
Supplies Stable  
IVDD, PLLVDD  
1.5V  
1
2
0
Time  
Notes:  
1. IVDD should not exceed EVDD, SDVDD or PLLVDD by more than  
0.4 V at any time, including power-up.  
2. Recommended that IVDD/PLLVDD should track EVDD/SDVDD up to  
0.9 V, then separate for completion of ramps.  
3. Input voltage must not be greater than the supply voltage (EVDD, SDVDD,  
IVDD, or PLLVDD) by more than 0.5 V at any time, including during power-up.  
4. Use 1 ms or slower rise time for all supplies.  
Figure 7. Supply Voltage Sequencing and Separation Cautions  
The relationship between SDV and EV is non-critical during power-up and power-down sequences.  
DD  
DD  
Both SDV (2.5V or 3.3V) and EV are specified relative to IV .  
DD  
DD  
DD  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
19  
Preliminary Electrical Characteristics  
5.4.3.1 Power Up Sequence  
If EV /SDV are powered up with IV at 0 V, then the sense circuits in the I/O pads will cause all  
DD  
DD  
DD  
pad output drivers connected to the EV /SDV to be in a high impedance state. There is no limit on  
DD  
DD  
how long after EV /SDV powers up before IV must powered up. IV should not lead the EV ,  
DD  
DD  
DD  
DD  
DD  
SDV or PLLV by more than 0.4 V during power ramp-up, or there will be high current in the internal  
DD  
DD  
ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning  
on the internal ESD protection clamp diodes.  
The recommended power up sequence is as follows:  
1. Use 1 µs or slower rise time for all supplies.  
2. IV /PLLV and EV /SDV should track up to 0.9 V, then separate for the completion of  
DD  
DD  
DD  
DD  
ramps with EV /SD V going to the higher external voltages. One way to accomplish this is to  
DD  
DD  
use a low drop-out voltage regulator.  
5.4.3.2 Power Down Sequence  
If IV /PLLV are powered down first, then sense circuits in the I/O pads will cause all output drivers  
DD  
DD  
to be in a high impedance state. There is no limit on how long after IV and PLLV power down before  
DD  
DD  
EV or SDV must power down. IV should not lag EV , SDV , or PLLV going low by more  
DD  
DD  
DD  
DD  
DD  
DD  
than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There  
are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PLLV to 0 V.  
DD  
DD  
2. Drop EV /SDV supplies.  
DD  
DD  
5.5 Power Consumption Specifications  
Estimated maximum RUN mode power consumption measurements are shown in the below figure.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
20  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
Estimated Power Consumption vs. Core Frequency  
300  
250  
200  
150  
100  
50  
0
0
40  
80  
120  
160  
200  
240  
Core Frequency (MHz)  
Figure 8. Estimated Maximum RUN Mode Power Consumption  
Table 8 lists estimated maximum power and current consumption for the device in various operating  
modes.  
Table 8. Estimated Maximum Power Consumption Specifications  
Characteristic  
Symbol Typical  
Max  
Unit  
Run Mode - Total Power Dissipation  
250  
5.74  
244  
mW  
mW  
mW  
Static  
Dynamic  
Core Operating Supply Current 1  
Run Mode  
IDD  
EIDD  
TBD  
mA  
Pad Operating Supply Current  
Run Mode (application dependent)  
Wait Mode  
144  
96  
1
mA  
mA  
mA  
Stop Mode  
NOTES:  
1
Current measured at maximum system clock frequency, all modules active, and default drive  
strength with matching load.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Freescale Semiconductor  
21  
Preliminary  
Preliminary Electrical Characteristics  
5.6 Oscillator and PLL Electrical Characteristics  
Table 9. PLL Electrical Characteristics  
Min.  
Value  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
1
PLL Reference Frequency Range  
Crystal reference  
fref_crystal  
fref_ext  
TBD  
TBD  
16  
16  
MHz  
MHz  
External reference  
2
Core frequency  
fsys  
fsys/3  
TBD  
TBD  
240  
80  
MHz  
MHz  
CLKOUT Frequency1  
3
4
Crystal Start-up Time2, 3  
tcst  
10  
ms  
EXTAL Input High Voltage  
Crystal Mode4  
All other modes (External, Limp)  
VIHEXT  
VIHEXT  
TBD  
TBD  
TBD  
TBD  
V
V
5
EXTAL Input Low Voltage  
Crystal Mode4  
VILEXT  
VILEXT  
TBD  
TBD  
TBD  
TBD  
V
V
All other modes (External, Limp)  
6
XTAL Load Capacitance2  
PLL Lock Time 2, 5  
5
30  
1
pF  
ms  
%
7
8
tlpll  
tdc  
40  
Duty Cycle of reference 2  
60  
N1 OTES:  
All internal registers retain data at 0 Hz.  
2
3
4
5
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
This parameter is guaranteed by design rather than 100% tested.  
This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in  
the synthesizer control register (SYNCR).  
5.7 External Interface Timing Characteristics  
Table 10 lists processor bus input timings.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and  
output delay with respect to the rising edge of a reference clock. The  
reference clock is the FB_CLK output.  
All other timing relationships can be derived from these values. Timings  
listed in Table 10 are shown in Figure 10 and Figure 11.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
22  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
* The timings are also valid for inputs sampled on the negative clock edge.  
1.5V  
FB_CLK (80MHz)  
TSETUP  
THOLD  
Invalid  
1.5V Valid 1.5V  
Invalid  
Input Setup And Hold  
Input Rise Time  
Input Fall Time  
t
t
rise  
V
= V  
IH  
h
V = V  
l
IL  
fall  
V
= V  
IH  
h
V = V  
l
IL  
FB_CLK  
B4  
B5  
Inputs  
Figure 9. General Input Timing Requirements  
5.7.1 FlexBus  
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to  
slave-only devices up to a maximum bus frequency of 80MHz. It can be directly connected to  
asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or  
other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple  
chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects  
(FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory  
interfaces. Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte  
(8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common  
ROM/flash memories.  
5.7.1.1 FlexBus AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative  
to the system clock.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Freescale Semiconductor  
23  
Preliminary  
Preliminary Electrical Characteristics  
Table 10. FlexBus AC Timing Specifications  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit Notes  
Frequency of Operation  
FB1 Clock Period (FB_CLK)  
80  
12.5  
7.0  
Mhz  
ns  
fsys/3  
tFBCK  
tcyc  
1
FB2 Address, Data, and Control Output Valid (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)  
tFBCHDCV  
ns  
1, 2  
FB3 Address, Data, and Control Output Hold (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)  
tFBCHDCI  
1
ns  
FB4 Data Input Setup  
tDVFBCH  
tDIFBCH  
tCVFBCH  
tCIFBCH  
tFBCHAV  
tFBCHAI  
3.5  
0
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
FB5 Data Input Hold  
FB6 Transfer Acknowledge (TA) Input Setup  
FB7 Transfer Acknowledge (TA) Input Hold  
FB8 Address Output Valid (A[23:0])  
FB9 Address Output Hold (A[23:0])  
4
0
3
1
N1 OTES:  
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.8.2, “DDR SDRAM AC Timing  
Characteristics” for SD_CS[3:0] timing.  
2
3
The FlexBus supports programming an extension of the address hold. Please consult the MCF5329 Reference  
Manual for more information.  
These specs are used when the A[23:0] signals are configured as 23-bit, non-muxed FlexBus address signals.  
FB_CLK  
FB1  
FB3  
A[23:0]  
D[31:0]  
R/W  
A[23:0]  
FB2  
FB5  
DATA  
FB4  
TS  
FB_CSn  
BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 10. FlexBus Read Timing.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
24  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
FB_CLK  
A[23:0]  
D[31:0]  
R/W  
FB1  
FB3  
FB2  
FB3  
TS  
FB_CSn  
BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 11. Flexbus Write Timing  
5.8 SDRAM Bus  
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports  
either standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.  
5.8.1 SDR SDRAM AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative  
to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read  
cycles. The device’s SDRAM controller is a DDR controller that has an SDR mode. Because it is designed  
to support DDR, a DQS pulse must still be supplied to device for each data beat of an SDR read. Te  
processor accomplishes this by asserting a signal named SD_DQS during read cycles. Care must be taken  
during board design to adhere to the following guidelines and specs with regard to the SDR_DQS signal  
and its usage.  
Table 11. SDR Timing Specifications  
Symbol  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
TBD  
12.5  
80  
Mhz  
ns  
2
3
SD1 Clock Period  
SD2 Clock Skew  
tSDCK  
tSDSK  
TBD  
TBD  
0.55  
SD3 Pulse Width High  
tSDCKH  
0.45  
SD_CLK  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
25  
Preliminary Electrical Characteristics  
Table 11. SDR Timing Specifications (continued)  
Symbol  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
4
SD4 Pulse Width Low  
tSDCKH  
0.45  
0.55  
SD_CLK  
ns  
SD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Valid  
tSDCHACV  
0.5 × SD_CLK  
+ 1.0  
SD6 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Hold  
tSDCHACI  
2.0  
ns  
5
6
SD7 SD_SDR_DQS Output Valid  
tDQSOV  
Self timed  
ns  
ns  
SD8 SD_DQS[3:0] input setup relative to SD_CLK  
tDQVSDCH  
0.25 ×  
0.40 × SD_CLK  
SD_CLK  
7
8
SD9 SD_DQS[3:2] input hold relative to SD_CLK  
tDQISDCH  
tDVSDCH  
tDISDCH  
Does not apply. 0.5×SD_CLK fixed  
width.  
SD10 Data (D[31:0]) Input Setup relative to SD_CLK (reference  
only)  
0.25 ×  
ns  
SD_CLK  
SD11 Data Input Hold relative to SD_CLK (reference only)  
1.0  
ns  
ns  
SD12 Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid tSDCHDMV  
0.75 × SD_CLK  
+ 0.5  
SD13 Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold tSDCHDMI  
1.5  
ns  
NOTES:  
1
The device supports same frequency of operation for both FlexBus and SDRAM clock operates as that of the internal bus clock.  
Please see the PLL chapter of the MCF5329 Reference Manual for more information on setting the SDRAM clock rate.  
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation  
from this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data beat.  
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each data  
beat.  
2
3
4
5
6
7
8
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does  
not affect the memory controller.  
Since a read cycle in SDR mode still uses the DQS circuit within the device, it is most critical that the data valid window be  
centered 1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup  
spec is just provided as guidance.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
26  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
SD1  
SD3  
SD2  
SD_CLK0  
SD2  
SD4  
SD_CLK1  
SD6  
SD_CSn  
SD_RAS  
SD_CAS  
SD_WE  
CMD  
SD5  
A[23:0]  
SD_BA[1:0]  
ROW  
COL  
SD12  
SDDM  
D[31:0]  
SD13  
WD1  
WD2  
WD3  
WD4  
Figure 12. SDR Write Timing  
SD1  
SD2  
SD2  
SD_CLK0  
SD_CLK1  
SD6  
SD_CSn,  
SD_RAS,  
SD_CAS,  
SD_WE  
CMD  
3/4 MCLK  
Reference  
SD5  
A[23:0],  
SD_BA[1:0]  
ROW  
COL  
tDQS  
SDDM  
SD7  
SD_DQS (Measured at Output Pin)  
SD_DDQS (Measured at Input Pin)  
Board Delay  
SD9  
Board Delay  
SD8  
Delayed  
SD_CLK  
SD10  
D[31:0]  
from  
WD1  
WD2  
WD3  
WD4  
Memories  
NOTE: Data driven from memories relative  
to delayed memory clock.  
SD11  
Figure 13. SDR Read Timing  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
27  
Preliminary Electrical Characteristics  
5.8.2 DDR SDRAM AC Timing Characteristics  
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to  
properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte  
lanes. The following timing numbers are subject to change at anytime, and are only provided to aid in early  
board design. Please contact your local Freescale representative if questions develop.  
Table 12. DDR Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
tDDCK  
tDDSK  
80  
TBD  
0.45  
0.45  
TBD  
12.5  
0.55  
0.55  
Mhz  
ns  
2
3
3
4
DD1 Clock Period  
DD2 Pulse Width High  
DD3 Pulse Width Low  
tDDCKH  
tDDCKL  
tSDCHACV  
SD_CLK  
SD_CLK  
ns  
DD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Valid  
0.5 × SD_CLK  
+ 1.0  
DD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Hold  
tSDCHACI  
2.0  
ns  
DD6 Write Command to first DQS Latching Transition  
tCMDVDQ  
tDQDMV  
1.25  
SD_CLK  
ns  
5
6
DD7 Data and Data Mask Output Setup (DQ-->DQS)  
Relative to DQS (DDR Write Mode)  
1.5  
7
DD8 Data and Data Mask Output Hold (DQS-->DQ)  
Relative to DQS (DDR Write Mode)  
tDQDMI  
1.0  
ns  
8
9
DD9 Input Data Skew Relative to DQS (Input Setup)  
DD10 Input Data Hold Relative to DQS.  
tDVDQ  
tDIDQ  
1
ns  
ns  
0.25 × SD_CLK  
+ 0.5ns  
DD11 DQS falling edge from SDCLK rising (output hold time) tDQLSDCH  
0.5  
0.9  
ns  
DD12 DQS input read preamble width  
DD13 DQS input read postamble width  
DD14 DQS output write preamble width  
DD15 DQS output write postamble width  
N1 OTES:  
tDQRPRE  
tDQRPST  
tDQWPRE  
tDQWPST  
1.1  
0.6  
SD_CLK  
SD_CLK  
SD_CLK  
SD_CLK  
0.4  
0.25  
0.4  
0.6  
The frequency of operation is either 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the  
same frequency as the internal bus clock.  
2
3
4
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process,  
temperature, and voltage variations.  
This specification relates to the required input setup time of today’s DDR memories. Rigoletto’s output setup should be larger  
than the input setup of the DDR memories. If it is not larger, then the input setup on the memory will be in violation.  
MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to  
MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].  
The first data beat will be valid before the first rising edge of DQS and after the DQS write preamble. The remaining data  
beats will be valid for each subsequent DQS edge.  
This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3],  
MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative  
MEM_DQS[0].  
5
6
7
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
28  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
8
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line  
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other  
factors).  
9Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line  
becomes invalid.  
SD_CLK  
VIX  
VID  
VMP  
VIX  
SD_CLK  
Figure 14. SD_CLK and SD_CLK crossover timing  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
DD6  
A[13:0]  
COL  
DD7  
DM3/DM2  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 15. DDR Write Timing  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
29  
Preliminary Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
CL=2  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
CL=2.5  
A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
WD1 WD2 WD3 WD4  
Figure 16. DDR Read Timing  
5.9 General Purpose I/O Timing  
1
Table 13. GPIO Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1 FB_CLK High to GPIO Output Valid  
G2 FB_CLK High to GPIO Output Invalid  
G3 GPIO Input Valid to FB_CLK High  
G4 FB_CLK High to GPIO Input Invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
9
10  
ns  
ns  
ns  
ns  
1.5  
N1 OTES:  
GPIO pins include: IRQn, PWM, UART, FlexCAN, and Timer pins.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
30  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
FB_CLK  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 17. GPIO Timing  
5.10 Reset and Configuration Override Timing  
Table 14. Reset and Configuration Override Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RESET Input valid to FB_CLK High  
tRVCH  
tCHRI  
9
1.5  
5
10  
1
ns  
ns  
R2 FB_CLK High to RESET Input invalid  
R3 RESET Input valid Time 1  
tRIVT  
tCYC  
ns  
R4 FB_CLK High to RSTOUT Valid  
tCHROV  
tROVCV  
tCOS  
0
R5 RSTOUT valid to Config. Overrides valid  
R6 Configuration Override Setup Time to RSTOUT invalid  
R7 Configuration Override Hold Time after RSTOUT invalid  
R8 RSTOUT invalid to Configuration Override High Impedance  
ns  
20  
0
tCYC  
ns  
tCOH  
tROICZ  
tCYC  
N1 OTES:  
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to  
the system. Thus, RESET must be held a minimum of 100 ns.  
FB_CLK  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R5  
R6  
R7  
Configuration Overrides*:  
(RCON, Override pins])  
Figure 18. RESET and Configuration Override Timing  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
31  
Preliminary Electrical Characteristics  
NOTE  
Refer to the CCM chapter of the MCF5329 Reference Manual for more  
information.  
5.11 LCD Controller Timing Specifications  
This sections lists the timing specifications for the LCD Controller.  
Table 15. LCD_LSCLK Timing  
Num  
Parameter  
Minimum Maximum  
Unit  
T1  
T2  
T3  
LCD_LSCLK Period  
Pixel data setup time  
Pixel data up time  
25  
11  
11  
2000  
ns  
ns  
ns  
Note: The pixel clock is equal to LCD_LSCLK / (PCD + 1). When it is in CSTN, TFT or monochrome mode  
with bus width = 1,LCD_LSCLK is equal to the pixel clock. When it is in monochrome with other bus width  
settings, LCD_LSCLK is equal to the pixel clock divided by bus width. The polarity of LCD_LSCLK and LCD_LD  
signals can also be programmed.  
T1  
LCD_LSCLK  
LCD_LD[17:0]  
T2  
T3  
Figure 19. LCD_LSCLK to LCD_LD[17:0] timing diagram  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
32  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Non-display region  
Display region  
T3  
T1  
T4  
LCD_VSYNC  
LCD_HSYNC  
LCD_OE  
T2  
Line Y  
Line 1  
Line Y  
LCD_LD[17:0]  
T5  
T6  
XMAX  
T7  
LCD_HSYNC  
LCD_LSCLK  
LCD_OE  
(1,1)  
(1,2)  
LCD_LD[15:0]  
(1,X)  
Figure 20. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
Table 16. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
Number  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
End of LCD_OE to beginning of LCD_VSYNC  
LCD_HSYNC period  
T5+T6+T7-1  
(VWAIT1·T2)+T5+T6+T7-1  
XMAX+T5+T6+T7  
VWIDTH·T2  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
T2  
1
LCD_VSYNC pulse width  
End of LCD_VSYNC to beginning of LCD_OE  
LCD_HSYNC pulse width  
(VWAIT2·T2)+1  
HWIDTH+1  
1
End of LCD_HSYNC to beginning to LCD_OE  
End of LCD_OE to beginning of LCD_HSYNC  
3
HWAIT2+3  
1
HWAIT1+1  
Note: Ts is the LCD_LSCLK period. LCD_VSYNC, LCD_HSYNC and LCD_OE can be programmed as active high or  
active low. In Figure 20, all 3 signals are active low. LCD_LSCLK can be programmed to be deactivated during the  
LCD_VSYNC pulse or the LCD_OE deasserted period. In Figure 20, LCD_LSCLK is always active.  
Note: XMAX is defined in number of pixels in one line.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Freescale Semiconductor  
33  
Preliminary  
Preliminary Electrical Characteristics  
XMAX  
LCD_LSCLK  
LCD_LD  
D2  
D1  
D320  
D320  
LCD_SPL_SPR  
T1  
T3  
T2  
T2  
LCD_HSYNC  
T4  
T4  
LCD_CLS  
T5  
T6  
LCD_PS  
T7  
T7  
LCD_REV  
Figure 21. Sharp TFT Panel Timing  
Table 17. Sharp TFT Panel Timing  
Minimum  
Num  
Description  
LCD_SPL/LCD_SPR pulse width  
Value  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
1
1
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
End of LCD_LD of line to beginning of LCD_HSYNC  
End of LCD_HSYNC to beginning of LCD_LD of line  
LCD_CLS rise delay from end of LCD_LD of line  
LCD_CLS pulse width  
HWAIT1+1  
4
HWAIT2 + 4  
3
CLS_RISE_DELAY+1  
CLS_HI_WIDTH+1  
1
LCD_PS rise delay from LCD_CLS negation  
LCD_REV toggle delay from last LCD_LD of line  
0
PS_RISE_DELAY  
1
REV_TOGGLE_DELAY+1  
Note: Falling of LCD_SPL/LCD_SPR aligns with first LCD_LD of line.  
Note: Falling of LCD_PS aligns with rising edge of LCD_CLS.  
Note: LCD_REV toggles in every LCD_HSYN period.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
T1  
T1  
LCD_VSYNC  
T3  
T4  
T2  
T2  
XMAX  
LCD_HSYNC  
LCD_LSCLK  
Ts  
LCD_LD[15:0]  
Figure 22. Non-TFT Mode Panel Timing  
Table 18. Non-TFT Mode Panel Timing  
Num  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
LCD_HSYNC to LCD_VSYNC delay  
LCD_HSYNC pulse width  
2
1
HWAIT2 + 2  
HWIDTH + 1  
0 T3 Ts  
HWAIT1 + 1  
Tpix  
Tpix  
LCD_VSYNC to LCD_LSCLK  
LCD_LSCLK to LCD_HSYNC  
1
Tpix  
Note: Ts is the LCD_LSCLK period while Tpix is the pixel clock period. LCD_VSYNC, LCD_HSYNC and LCD_LSCLK  
can be programmed as active high or active low. In Figure 22, all these 3 signals are active high. When it is in CSTN  
mode or monochrome mode with bus width = 1, T3 = Tpix = Ts. When it is in monochrome mode with bus width = 2, 4  
and 8, T3 = 1, 2 and 4 Tpix respectively.  
5.12 USB On-The-Go  
The MCF5329 device is compliant with industry standard USB 2.0 specification.  
5.13 ULPI Timing Specification  
Control and data timing requirements for the ULPI pins are given in Table 19. These timings apply in  
synchronous mode only. All timings are measured with either a 60 MHz input clock from the  
USB_CLKIN pin or a 60MHz output clock at the ULPI_CLK pin. Both clocks need to maintain a 50%  
duty cycle. Control signals and 8-bit data are always clocked on the rising edge, while the optional  
double-edge 4-bit data signals are clocked on rising and falling edges.  
The ULPI interface on the MCF5329 processor is compliant with the industry standard definition.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Freescale Semiconductor  
35  
Preliminary  
Preliminary Electrical Characteristics  
TDDD  
THD  
TSD  
THC  
TDD  
TDDD  
THDD  
THDD  
TSC  
TDC  
TDC  
ULPI_CLK  
ULPI_STP  
(Input)  
ULPI_DATA  
(Input-8bit)  
ULPI_DATA  
(Input-4bit)  
TSDD  
TSDD  
ULPI_DIR/ULPI_NXT  
(Output)  
ULPI_DATA  
(Output-8bit)  
ULPI_DATA  
(Output-4bit)  
Figure 23. ULPI Timing Diagram  
Table 19. ULPI Interface Timing  
Parameter  
Symbol  
Min  
Max  
Units  
Timing with reference to ULPI_CLK  
Setup time (control in, 8-bit data in)  
Setup time (control in, 8-bit data in)  
Output delay (control out, 8-bit data out)  
Timing with reference to USB_CLKIN  
Setup time (control in, 8-bit data in)  
Hold time (control in, 8-bit data in)  
Output delay (control out, 8-bit data out)  
TSC, TSD  
THC, THD  
TDC, TDD  
0.0  
6.0  
ns  
ns  
ns  
9.0  
TSC, TSD  
THC, THD  
TDC, TDD  
-1.5  
3.0  
ns  
ns  
ns  
6.0  
5.14 SSI Timing Specifications  
The following figure and table lists the specifications for the SSI module.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
36  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
S1  
S2  
S3  
SSI_BCLK  
S4  
S5  
SSI_MCLK  
STFS  
S6  
S7  
SSI_TXD (Output)  
STFS  
S6  
SSI_RXD (Input)  
Note: SSI External. Continous clock Synchronous mode only  
Figure 24. SSI External Continous Clock Timing Diagram  
Table 20. SSI Timing  
1.8 +/- 0.10V  
Num  
Description  
Unit  
Minimum  
Maximum  
S1  
S2  
SSI_BCLK clock period  
SSI_BCK high-level time  
SSI_BCK low-level time  
1/(64fs)1  
35  
49  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
S3  
35  
S4  
SSI_BCK rising edge to SSI_MCLK edge  
SSI_MCLK edge to SSI_BCLK rising edge  
SSI_TXD/SSI_RXD data set-up time  
SSI_TXD/SSI_RXD data hold time  
10  
S5  
10  
S6  
10  
S7  
10  
NOTES:  
1fs is the sampling frequency. SSI_BCLK can be operated upto 512 times the sampling frequency to a max frequency of 49.152MHz  
5.15 I2C Input/Output Timing Specifications  
2
Table 21 lists specifications for the I C input timing parameters shown in Figure 25.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Freescale Semiconductor  
37  
Preliminary  
Preliminary Electrical Characteristics  
2
Table 21. I C Input Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2
8
1
tcyc  
tcyc  
ms  
ns  
Clock low period  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
ms  
tcyc  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
tcyc  
tcyc  
2
2
Table 22 lists specifications for the I C output timing parameters shown in Figure 25.  
2
Table 22. I C Output Timing Specifications between SCL and SDA  
Num  
I11 Start condition hold time  
I2 1 Clock low period  
Characteristic  
Min  
Max  
Units  
6
3
tcyc  
tcyc  
µs  
10  
7
I3 2 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
I4 1 Data hold time  
tcyc  
ns  
I5 3 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
I6 1 Clock high time  
10  
2
tcyc  
tcyc  
tcyc  
tcyc  
I7 1 Data setup time  
I8 1 Start condition setup time (for repeated start condition only)  
I9 1 Stop condition setup time  
20  
10  
N1 OTES:  
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum  
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 22. The I2C interface is  
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual  
position is affected by the prescale and division values programmed into the IFDR; however, the numbers  
given in Table 22 are minimum values.  
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively  
drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance  
and pull-up resistor values.  
2
3
Specified at a nominal 50-pF load.  
Figure 25 shows timing for the values in Table 22 and Table 21.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
38  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
I5  
I6  
I2  
I2C_SCL  
I2C_SDA  
I7  
I8  
I1  
I9  
I4  
I3  
2
Figure 25. I C Input/Output Timings  
5.16 Fast Ethernet AC Timing Specifications  
MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.  
5.16.1 MII Receive Signal Timing (FEC_RXD[3:0], FEC_RXDV,  
FEC_RXER, and FEC_RXCLK)  
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed twice the  
FEC_RXCLK frequency.  
Table 23 lists MII receive channel timings.  
Table 23. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup  
FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold  
FEC_RXCLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
FEC_RXCLK period  
FEC_RXCLK period  
FEC_RXCLK pulse width low  
Figure 26 shows MII receive signal timings listed in Table 23.  
M3  
FEC_RXCLK (input)  
M4  
FEC_RXD[3:0] (inputs)  
FEC_RXDV  
FEC_RXER  
M1  
M2  
Figure 26. MII Receive Signal Timing Diagram  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
39  
Preliminary Electrical Characteristics  
5.16.2 MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN,  
FEC_TXER, FEC_TXCLK)  
Table 24 lists MII transmit channel timings.  
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. There is  
no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the  
FEC_TXCLK frequency.  
The transmit outputs (FEC_TXD[3:0], FEC_TXEN, FEC_TXER) can be programmed to transition from  
either the rising or falling edge of FEC_TXCLK, and the timing is the same in either case. This options  
allows the use of non-compliant MII PHYs.  
Refer to the Ethernet chapter for details of this option and how to enable it.  
Table 24. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid  
FEC_TXCLK pulse width high  
5
25  
ns  
ns  
35%  
35%  
65%  
65%  
FEC_TXCLK period  
FEC_TXCLK period  
FEC_TXCLK pulse width low  
Figure 27 shows MII transmit signal timings listed in Table 24.  
M7  
FEC_TXCLK (input)  
M5  
M8  
FEC_TXD[3:0] (outputs)  
FEC_TXEN  
FEC_TXER  
M6  
Figure 27. MII Transmit Signal Timing Diagram  
5.16.3 MII Async Inputs Signal Timing (FEC_CRS and FEC_COL)  
Table 25 lists MII asynchronous inputs signal timing.  
Table 25. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
FEC_CRS, FEC_COL minimum pulse width  
1.5  
FEC_TXCLK period  
Figure 28 shows MII asynchronous input timings listed in Table 25.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
40  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
FEC_CRS  
FEC_COL  
M9  
Figure 28. MII Async Inputs Timing Diagram  
5.16.4 MII Serial Management Channel Timing (FEC_MDIO and  
FEC_MDC)  
Table 26 lists MII serial management channel timings. The FEC functions correctly with a maximum  
MDC frequency of 2.5 MHz.  
Table 26. MII Serial Management Channel Timing  
Num  
Characteristic  
Min Max  
Unit  
M10 FEC_MDC falling edge to FEC_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11 FEC_MDC falling edge to FEC_MDIO output valid (max prop delay)  
M12 FEC_MDIO (input) to FEC_MDC rising edge setup  
M13 FEC_MDIO (input) to FEC_MDC rising edge hold  
M14 FEC_MDC pulse width high  
10  
0
25  
ns  
ns  
ns  
40% 60% FEC_MDC period  
40% 60% FEC_MDC period  
M15 FEC_MDC pulse width low  
Figure 29 shows MII serial management channel timings listed in Table 26.  
M14  
M15  
FEC_MDC (output)  
FEC_MDIO (output)  
M10  
M11  
FEC_MDIO (input)  
M12  
M13  
Figure 29. MII Serial Management Channel Timing Diagram  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
41  
Preliminary Electrical Characteristics  
5.17 32-Bit Timer Module Timing Specifications  
Table 27 lists timer module AC timings.  
Table 27. Timer Module AC Timing Specifications  
Name  
Characteristic  
Unit  
Min  
Max  
T1  
T2  
DT0IN / DT1IN / DT2IN / DT3IN cycle time  
DT0IN / DT1IN / DT2IN / DT3IN pulse width  
3
1
tCYC  
tCYC  
5.18 QSPI Electrical Specifications  
Table 28 lists QSPI timings.  
Table 28. QSPI Modules AC Timing Specifications  
Name  
Characteristic  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
2
510  
10  
tCYC  
ns  
QSPI_CLK high to QSPI_DOUT valid.  
QSPI_CLK high to QSPI_DOUT invalid. (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
9
ns  
9
ns  
The values in Table 28 correspond to Figure 30.  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QS3  
QS4  
QS5  
QSPI_DIN  
Figure 30. QSPI Timing  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
42  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
5.19 JTAG and Boundary Scan Timing  
Table 29. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fJCYC  
tJCYC  
DC  
4
1/4  
3
fsys/3  
tCYC  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
tJCW  
26  
0
TCLK Rise and Fall Times  
tJCRF  
ns  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
tBSDST  
tBSDHT  
tBSDV  
4
33  
33  
26  
8
ns  
26  
0
ns  
ns  
tBSDZ  
0
ns  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
ns  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
J11 TCLK Low to TDO Data Valid  
10  
0
ns  
ns  
J12 TCLK Low to TDO High Z  
0
ns  
J13 TRST Assert Time  
100  
10  
ns  
J14 TRST Setup Time (Negation) to TCLK High  
ns  
N1 OTES:  
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 31. Test Clock Input Timing  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
43  
Preliminary Electrical Characteristics  
TCLK  
VIL  
VIH  
J5  
Input Data Valid  
J6  
Data Inputs  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 32. Boundary Scan (JTAG) Timing  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 33. Test Access Port Timing  
TCLK  
TRST  
J14  
J13  
Figure 34. TRST Timing  
5.20 Debug AC Timing Specifications  
Table 30 lists specifications for the debug AC timing parameters shown in Figure 36.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
44  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
Table 30. Debug AC Timing Specification  
Characteristic  
Num  
Units  
Min  
Max  
DE0  
DE1  
DE2  
DE3  
DE4  
PSTCLK cycle time  
4
0.3  
tcyc  
ns  
PST valid to PSTCLK high  
PSTCLK high to PST invalid  
DSCLK cycle time  
1.5  
5
ns  
tcyc  
tcyc  
tcyc  
ns  
DSI valid to DSCLK high  
1
DE51 DSCLK high to DSO invalid  
4
DE6  
DE7  
BKPT input data setup time to FB_CLK high  
FB_CLK high to BKPT invalid  
4
0
ns  
N1 OTES:  
DSCLK and DSI are synchronized internally. DE4 is measured from the synchronized DSCLK input  
relative to the rising edge of FB_CLK.  
Figure 35 shows real-time trace timing for the values in Table 30.  
PSTCLK  
DE0  
DE1  
DE2  
PST[3:0]  
DDATA[3:0]  
Figure 35. Real-Time Trace AC Timing  
Figure 36 shows BDM serial port AC timing and BKPT pin timing for the values in Table 30.  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Freescale Semiconductor  
45  
Preliminary  
Revision History  
FB_CLK  
BKPT  
DE6  
DE7  
DE5  
DSCLK  
DSI  
DE3  
Current  
Past  
Next  
DE4  
DSO  
Current  
Figure 36. BDM Serial Port AC Timing  
6 Revision History  
Table 31. MCF5329DS Document Revision History  
Rev. No.  
Substantive Changes  
Date of Release  
0
• Initial release.  
11/2005  
3/2006  
0.1  
• Added not to Section 4, “Mechanicals and Pinouts.”  
• Added “top view” and “bottom view” where appropriate in mechanical  
drawings and pinout figures.  
Figure 9: Corrected “FB_CLK (75MHz)” label to “FB_CLK (80MHz)”  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
46  
Freescale Semiconductor  
THIS PAGE INTENTIONALLY LEFT BLANK  
MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1  
Preliminary  
Freescale Semiconductor  
47  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. All other product or service names are the property  
of their respective owners.© Freescale Semiconductor, Inc. 2006. All rights  
reserved.  
MCF5329DS  
Rev. 0.1  
03/2006  

相关型号:

MCF5328CVM240J

32-BIT, 240MHz, RISC PROCESSOR, PBGA256, 17 X 17 MM, ROHS COMPLIANT, MAPBGA-256
NXP

MCF5329

CodeWarrior Development Studio for ColdFire㈢ Architectures
FREESCALE

MCF5329CVM240

Microprocessor Data Sheet
FREESCALE

MCF5329CVM240

MCF5329 ColdFire Microprocessor Data Sheet
ANALOGICTECH

MCF5329CVM240J

暂无描述
NXP

MCF5329DS

MCF5329 ColdFire Microprocessor Data Sheet
ANALOGICTECH

MCF5329_08

ColdFire㈢ Microprocessor
FREESCALE

MCF5372

Microprocessor Data Sheet
FREESCALE

MCF5372

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF53721

ColdFire㈢ Microprocessor
FREESCALE

MCF53721

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF53721CVM240

MCF5329 DRAGONFIRE
NXP