APW7057KC-TR [ANPEC]

High Power Step-Down Synchronous DC/DC Controller; 高功率降压型同步DC / DC控制器
APW7057KC-TR
型号: APW7057KC-TR
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

High Power Step-Down Synchronous DC/DC Controller
高功率降压型同步DC / DC控制器

光电二极管 控制器
文件: 总14页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7057  
High Power Step-Down Synchronous DC/DC Controller  
Features  
General Description  
Operates from +5V Input  
The APW7057 is a 300kHz constant frequency volt-  
age mode synchronous switching controller that drives  
external N-channel MOSFETs. When the input sup-  
ply drops close to output, the upper MOSFET remains  
on, achieving 100% duty cycle. Internal loop compen-  
sation is optimized for fast transient response, elimi-  
nating external compensation network. The precision  
0.8V reference makes this part suitable for a wide va-  
riety of low voltage applications. Soft start is internally  
set to 2ms, limiting the input in-rush current and pre-  
venting the output from overshoot during powering up.  
The APW7057 has over current and short circuit  
protections. Over current protection is achieved by  
monitoring the voltage drop across the high side  
MOSFET, eliminating the need for a current sens-  
ing resistor and short circuit condition is detected  
through the FB pin. If either fault conditions occur,  
the APW7057 would initiate the soft start cycle. After  
three cycles and if the fault condition persists, the  
controller will be shut down. To restart the controller,  
either recycle the VCC supply or momentarily pull the  
OSCSET pin below 1.25V.  
0.8V Internal Reference Voltage  
- ±1.5% Accuracy Over Line, Load and Temp.  
0.8V to VCC Output Range  
Full Duty Cycle Range  
- 0% to 100%  
Internal Loop Compensation  
Internal Soft Start  
- Typical 2ms  
Programmable Over-Current Protection  
- Lossless Sensing Using MOSFET RDS (ON)  
Under-Voltage Protection  
Drives External N-Channel MOSFETs  
Shutdown Control  
Small SOP-8 Package  
Applications  
The APW7057 can be shutdown by pulling the OCSET  
pin below 1.25V. In shutdown, both gate drive signals  
will be low. The controller is available in a small SOP-  
8 package.  
Motherboard  
Graphics Cards  
Cable or DSL Modems, Set Top Boxes  
DSP Supplies  
Memory Supplies  
Pinouts  
5V Input DC-DC Regulators  
Distributed Power Supplies  
PHASE  
OCSET  
1
2
3
4
BOOT  
8
7
UGATE  
6
5
GND  
FB  
LGATE  
VCC  
SOP-8 (Top View )  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright  
ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Ordering and Marking Information  
Package Code  
APW7057  
K : SOP-8  
Operating Junction Temp. Range  
°
Handling Code  
Temp. Range  
Package Code  
C : 0 to 70 C  
Handling Code  
TU : Tube  
TR : Tape & Reel  
APW7057  
XXXXX  
APW7057 K :  
XXXXX - Date Code  
Block Diagram  
VCC  
BOOT  
Shutdown  
UnderVoltage  
Lockout  
OCSET  
IOCSET  
40uA  
OC  
Comparator  
UVLO  
Soft-Start  
and Fault  
Logic  
OCP  
PHASE  
UGATE  
0.5V  
UVP  
Soft-Start  
Inhibit  
PWM  
Gate  
Control  
COMP  
FB  
-
VCC  
+
+
Error  
Amplifier  
-
V
REF  
LGATE  
GND  
0.8V  
OSC  
F
Oscillator  
300kHz  
F i g u r G Figure 1.  
Copyright  
ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Typical Application  
R3  
2.2  
C3  
1uF  
V
IN  
+5V  
5
+
C2  
1000uF x2  
C1  
1uF  
D1  
C7  
R4  
VCC  
1N4148  
470pF  
8.2k  
1
2
8
BOOT  
7
OCSET  
C4  
0.1uF  
Q3  
Q1  
Q2  
UGATE  
PHASE  
L1  
3.3uH  
VOUT  
Shutdown  
+
+2.5V/10A  
U1  
APW7057  
LGATE  
C5  
1000uF x2  
4
6
FB  
GND  
3
R1  
5.1k  
R2  
2.4k  
C6  
0.1uF  
Q1: APM2014N UC  
Q2: APM2014N UC  
Q3: APM2300A AC  
C2: 1000uF/10V, ESR = 25mΩ  
C5: 1000uF/6.3V, ESR = 25mΩ  
FigurGFigure 2.  
Absolute Maximum Ratings  
Symbol  
Parameter  
VCC Supply Voltage (VCC to GND)  
BOOT Supply Voltage (BOOT to GND)  
PHASE, OCSET to GND Input Voltage  
FB to GND Input Voltage  
Rating  
-0.3 ~ 7  
-0.3 ~ 15  
-0.3 ~ 12  
CC  
Unit  
V
CC  
V
BOOT  
V
V
V
-0.3 ~ V +0.3  
V
Maximum Junction Temperature  
Storage Temperature  
125  
-65 ~ 150  
300  
oC  
oC  
oC  
kV  
STG  
T
SDR  
T
Maximum Soldering Temperature, 10 Seconds  
Minimum ESD Rating  
ESD  
V
±2  
Thermal Characteristics  
Symbol  
Parameter  
Junction-to-Ambient Resistance in free air (SOP-8)  
Value  
Unit  
θJA  
160  
oC/W  
Copyright  
ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Recommended Operating Conditions  
Symbol  
VCC  
VOUT  
VIN  
Parameter  
Range  
5%  
Unit  
V
VCC Supply Voltage  
5
±
Output Voltage of the Switching Regulator (Note)  
Input Voltage of the Switching Regulator (Note)  
Ambient Temperature  
0.8 ~ VCC  
3.3 ~ VCC  
0 ~ 70  
V
V
TA  
oC  
oC  
TJ  
Junction Temperature  
0 ~ 125  
Note : Refer to the typical application circuit  
Electrical Characteristics  
Unless otherwise specified, these specifications apply over VCC=5V, VBOOT=12V and TA= 0~70 oC. Typical  
values are at TA=25oC.  
APW7057  
Unit  
Symbol  
Parameter  
Test Conditions  
Min Typ Max  
SUPPLY CURRENT  
VCC Nominal Supply  
Current  
IVCC  
2.1  
2.1  
mA  
mA  
UGATE and LGATE Open  
UGATE Open  
BOOT Nominal Supply  
Current  
IBOOT  
Under Voltage Lockout(UVLO)  
Rising VCC Threshold  
Falling VCC Threshold  
OSCILLATOR  
4.0  
3.8  
4.2  
4.0  
4.4  
4.2  
V
V
FOSC  
Free Running Frequency  
Ramp Upper Threshold  
Ramp Lower Threshold  
Ramp Amplitude  
250  
300  
2.85  
0.95  
1.9  
340  
kHz  
V
V
VP-P  
VOSC  
REFERENCE VOLTAGE  
VREF Reference Voltage  
0.8  
V
Reference Voltage  
Accuracy  
-1.5  
+1.5  
%
ERROR AMPLIFIER  
DC Gain  
75  
10  
1
dB  
Hz  
FP  
FZ  
First Pole Frequency  
First Zero Frequency  
UGATE Duty Range  
FB Input Current  
kHz  
%
0
100  
0.1  
A
µ
Copyright  
ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Electrical Characteristics (Cont.)  
Unless otherwise specified, these specifications apply over VCC=5V, VBOOT=12V and TA= 0~70 oC. Typical  
values are at TA=25oC.  
APW7057  
Symbol  
Parameter  
Test Conditions  
Unit  
Min Typ Max  
PWM CONTROLLER GATE DRIVERS  
UAGTE  
UGATE  
LGATE  
UGATE Source  
UGATE Sink  
LGATE Source  
LGATE Sink  
D
V
V
V
V
=1V  
0.6  
7.3  
0.6  
1.8  
50  
A
=1V  
=1V  
=1V  
A
LGATE  
T
Dead Time  
nS  
PROTECTION  
OCSET  
I
OCSET  
OCSET Sink Current  
V
=4.5V  
34  
40  
46  
µA  
FB  
UV  
FB Under-Voltage Level  
FB falling  
0.5  
V
FB Under-Voltage  
Hysteresis  
15  
mV  
SOFT-START AND SHUTDOWN  
SS  
T
Soft-Start Interval  
2
mS  
V
OCSET  
Shutdown Threshold  
V
Falling  
1.25  
OCSET Shutdown  
Hysteresis  
20  
mV  
Functional Pin Description  
BOOT (Pin 1)  
LGATE (Pin 4)  
This pin provides the supply voltage to the high side  
MOSFET driver. A voltage no greater than 13V can  
be connected to this pin as a supply to the driver.  
For driving logic level N-channel MOSEFT, a boot-  
strap circuit can be use to create a suitable driver’s  
supply.  
This pin provides the gate drive signal for the low  
side MOSFET.  
VCC (Pin 5)  
This is the main bias supply for the controller and  
its low side MOSFET driver. Must be closely  
decoupled to GND (Pin 3). DO NOT apply a  
voltage greater than 5.5V to this pin.  
UGATE (Pin 2)  
This pin provides gate drive for the high-side  
MOSFET.  
GND (Pin 3)  
FB (Pin 6)  
Signal and power ground for the IC. All voltage lev-  
els are measured with respect to this pin. Tie this  
pin to the ground plane through the lowest imped-  
ance connection available.  
This pin is the inverting input of the error amplifier  
and it receives the feedback voltage from an exter-  
Copyright  
ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Functional Pin Description  
nal resistive divider across the output (VOUT). The the over current limit. An internally generated 40uA  
output voltage is determined by:  
current source will flow through this resistor, creat-  
ing a voltage drop. This voltage will be compared  
with the voltage across the high side MOSFET. The  
threshold of the over current limit is therefore given  
by:  
ROUT  
RGND  
VOUT = 0.8V(1+  
)
where ROUT is the resistor connected between VOUT  
and FB while RGND is the resistor connected from FB  
to GND.  
40uA x ROCSET  
IOI =  
RDS(ON)  
OCSET (Pin 7)  
An over current condition will cycle the soft start  
function. After three consecutive cycles and if the  
fault condition persists, the controller will be shut  
down. To restart the controller, either recycle the VCC  
supply or momentarily pull the OSCSET pin below  
1.25V.  
This pin serves two functions: as a shutdown con-  
trol and for setting the over current limit threshold.  
Pulling this pin below 1.25V shuts the controller  
down, forcing the UGATE and LGATE signals to be  
at 0V. A soft start cycle will be initiated upon the re-  
lease of this pin.  
A resistor (Rocset) connected between this pin and  
the drain of the high side MOSFET will determine  
PHASE (Pin 8)  
This pin is connected to the source of the high-side  
MOSFET and is used to monitor the voltage drop  
across the high-side MOSFET for over-current  
protection.  
Typical Characteristics  
Switching Frequency vs. Junction Temperature  
Reference Voltage vs. Junction Temperature  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
-50  
-25  
0
25  
50  
75  
100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
Junction Temperature (oC)  
Junction Temperature (°C)  
Copyright  
ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Typical Characteristics (Cont.)  
OCSET Current vs. Junction Temperature  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
-50  
-25  
0
25  
50  
75  
100 125 150  
Junction Temperature (oC)  
Operating Waveforms (Refer to the typical application circuit)  
1. Load Transient Response : IOUT = 0A -> 10A -> 0A  
- IOUT slew rate = Ó 10A/µS  
IOUT = 0A -> 10A  
IOUT = 0A -> 10A -> 0A  
IOUT = 10A -> 0A  
VOUT  
VOUT  
VOUT  
VUGATE  
VUGATE  
10A  
IOUT  
IOUT  
IOUT  
0A  
Ch1 : VOUT, 100mV/Div, DC,  
Offset = 2.50V  
Ch1 : VOUT, 100mV/Div, DC,  
Offset = 2.50V  
Ch1 : VOUT, 100mV/Div, DC,  
Offset = 2.50V  
Ch2 : VUGATE, 10V/Div, DC  
Ax1 : IOUT, 5A/Div  
Time : 10µS/Div  
Ax1 : IOUT, 5A/Div  
Time : 100µS/Div  
BW = 20MHz  
Ch2 : VUGATE, 10V/Div, DC  
Ax1 : IOUT, 5A/Div  
Time : 10µS/Div  
BW = 20MHz  
BW = 20MHz  
Copyright  
ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Operating Waveforms (Refer to the typical application circuit)  
2. UGATE and LGATE  
UGATE Rising  
UGATE Falling  
IOUT=10A  
IOUT=10A  
VUGATE  
VUGATE  
VLGATE  
VLGATE  
Ch1 : VUGATE, 2V/Div, DC  
Time : 125nS/Div  
Ch2 : VLGATE, 2V/Div, DC  
BW = 500MHz  
Ch1 : VUGATE, 2V/Div, DC  
Time : 125nS/Div  
Ch2 : VLGATE, 2V/Div, DC  
BW = 500MHz  
3. Powering ON / OFF  
Soft-start at Powering ON  
Powering OFF  
VIN  
VIN  
VOUT  
VOUT  
Ch1 : VIN, 2V/Div, DC  
Time : 5mS/Div  
Ch2 : VOUT, 1V/Div, DC  
BW = 20MHz  
Ch1 : VIN, 2V/Div, DC  
Time : 1mS/Div  
Ch2 : VOUT, 1V/Div, DC  
BW = 20MHz  
4. Short-Circuit Protection  
Under-Voltage (UVP)  
UVP  
and Over-Current Protection (OCP)  
OCP  
OCP  
Ch1 : VOUT, 1V/Div, DC  
Ax1 : IOUT, 10A/Div  
Time : 1mS/Div  
VOUT  
BW = 20MHz  
IOUT  
Copyright  
ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Application Information  
Component Selection Guidelines  
VOUT = IRIPPLE x ESR  
Output Capacitor Selection  
where Fs is the switching frequency of the regulator.  
The selection of COUT is determined by the required  
effective series resistance (ESR) and voltage rating  
rather than the actual capacitance requirement. There-  
fore select high performance low ESR capacitors that  
are intended for switching regulator applications. In  
some applications, multiple capacitors have to be  
paralled to achieve the desired ESR value. If tantalum  
capacitors are used, make sure they are surge tested  
by the manufactures. If in doubt, consult the capaci-  
tors manufacturer.  
There is a tradeoff exists between the inductor’s ripple  
current and the regulator load transient response time  
A smaller inductor will give the regulator a faster load  
transient response at the expense of higher ripple cur-  
rent and vice versa. The maximum ripple current oc-  
curs at the maximum input voltage. A good starting  
point is to choose the ripple current to be approxi-  
mately 30% of the maximum output current.  
Once the inductance value has been chosen, select  
an inductor that is capable of carrying the required  
peak current without going into saturation. In some  
type of inductors, especially core that is make of  
ferrite, the ripple current will increase abruptly when it  
saturates. This will result in a larger output ripple  
voltage.  
Input Capacitor Selection  
The input capacitor is chosen based on the voltage  
rating and the RMS current rating. For reliable  
operation, select the capacitor voltage rating to be at  
least 1.3 times higher than the maximum input voltage.  
The maximum RMS current rating requirement is ap-  
proximately IOUT/2 , where IOUT is the load current.  
During power up, the input capacitors have to handle  
large amount of surge current. If tantalum capacitors  
are used, make sure they are surge tested by the  
manufactures. If in doubt, consult the capacitors  
manufacturer.  
MOSFET Selection  
The selection of the N-channel power MOSFETs are  
determined by the RDS(ON), reverse transfer capacitance  
(CRSS) and maximum output current requirement.The  
losses in the MOSFETs have two components: con-  
duction loss and transition loss. For the upper and  
lower MOSFET, the losses are approximately given  
by the following :  
For high frequency decoupling, a ceramic capacitor  
between 0.1uF to 1uF can be connected between VCC  
and ground pin.  
PUPPER = Iout2(1+ TC)(RDS(ON))D + (0.5)(Iout)(VIN)(tsw)FS  
PLOWER = Iout2(1+ TC)(RDS(ON))(1-D)  
Inductor Selection  
The inductance of the inductor is determined by the  
output voltage requirement. The larger the inductance,  
the lower the inductor’s current ripple. This will trans-  
late into lower output ripple voltage. The ripple current  
where IOUT is the load current  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tsw is the switching interval  
and ripple voltage can be approximated by:  
F
i
VIN - VOUT  
Fs x L  
VOUT  
VIN  
x
IRIPPLE  
=
D is the duty cycle  
Copyright  
ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Application Information  
single point grounding. Figure 4 illustrates the layout,  
with bold lines indicating high current paths. Compo-  
nents along the bold lines should be placed close  
together. Below is a checklist for your layout:  
Note that both MOSFETs have conduction losses while  
the upper MOSFET include an additional transition  
loss.The switching internal, tsw, is a function of the  
reverse transfer capacitance CRSS. Figure 3 illustrates  
the switching waveform internal of the MOSFET.  
The (1+TC) term is to factor in the temperature depen-  
dency of the RDS(ON) and can be extracted from the  
“RDS(ON) vs Temperature” curve of the power MOSFET.  
Keep the switching nodes (UGATE, LGATE and  
PHASE) away from sensitive small signal nodes  
since these nodes are fast moving signals. There  
fore keep traces to these nodes as short as  
possible.  
Layout Considerations  
Decoupling capacitor CIN provides the bulk capaci  
tance and needs to be placed close to the IC since  
it will provide the MOSFET drivers transient current  
requirement.  
In high power switching regulator, a correct layout is  
important to ensure proper operation of the regulator.  
In general, interconnecting impedances should be mini-  
mized by using short, wide printed circuit traces. Sig-  
nal and power grounds are to be kept separate and  
finally combined using ground plane construction or  
The ground return of CIN must return to the combine  
COUT (-) terminal.  
Capacitor CBOOT should be connected as close to  
the BOOT and PHASE pins as possible.  
V DS  
V
IN  
CHF  
CIN  
5
VCC  
+
1
BOOT  
4
LGATE  
APW7057  
2
8
COUT  
Q1  
UGATE  
Q2  
+
PHASE  
L1  
VOUT  
t
Time  
sw  
Figure 4. Recommended Layout Diagram  
Figure 3. Switching waveform across MOSFET  
Copyright  
ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Packaging Information  
SOP-8 pin ( Reference JEDEC Registration MS-012)  
E
H
e1  
e2  
D
A1  
A
1
L
0.004max.  
Millimeters  
Inches  
Dim  
Min.  
Max.  
1.75  
0.25  
5.00  
4.00  
6.20  
1.27  
0.51  
Min.  
Max.  
0.069  
0.010  
0.197  
0.157  
0.244  
0.050  
0.020  
A
A1  
D
1.35  
0.10  
4.80  
3.80  
5.80  
0.40  
0.33  
0.053  
0.004  
0.189  
0.150  
0.228  
0.016  
0.013  
E
H
L
e1  
e2  
1.27BSC  
0.50BSC  
1
8
8
°
φ
°
Copyright  
ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Physical Specifications  
Terminal Material  
Lead Solderability  
Packaging  
Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb  
Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.  
2500 devices per reel  
Reflow Condition (IR/Convection or VPR Reflow)  
Reference JEDEC Standard J-STD-020A APRIL 1999  
Peak temperature  
°
183 C  
Pre-heat temperature  
Time  
Classification Reflow Profiles  
Convection or IR/  
Convection  
VPR  
°
±
°
°
Average ramp-up rate(183 C to Peak)  
3 C/second max.  
120 seconds max.  
60 ~ 150 seconds  
10 ~ 20 seconds  
10 C /second max.  
°
25 C)  
Preheat temperature 125  
°
C
Temperature maintained above 183  
Time within 5 C of actual peak temperature  
Peak temperature range  
°
60 seconds  
° °  
215~ 219 C or 235 +5/-0 C  
°
°
220 +5/-0 C or 235 +5/-0 C  
Ramp-down rate  
°
°
6 C /second max.  
10 C /second max.  
°
6 minutes max.  
Time 25 C to peak temperature  
Package Reflow Conditions  
pkg. thickness < 2.5mm and pkg.  
volume <  
pkg. thickness < 2.5mm and  
pkg. thickness  
and all bags  
2.5mm  
pkg. volume  
350 mm  
°
°
C
Convection 220 +5/-0 C  
Convection 235 +5/-0  
°
°
C
VPR 215-219 C  
VPR 235 +5/-0  
IR/Convection 235 +5/-0 C  
°
°
IR/Convection 220 +5/-0 C  
Copyright  
ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Reliability test program  
Test item  
SOLDERABILITY  
HOLT  
PCT  
TST  
Method  
Description  
MIL-STD-883D-2003  
MIL-STD-883D-1005.7  
JESD-22-B, A102  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
245 C , 5 SEC  
°
1000 Hrs Bias @ 125 C  
°
168 Hrs, 100 % RH , 121 C  
°
-65 C ~ 150 C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms , Itr > 100mA  
°
°
ESD  
Latch-Up  
Carrier Tape & Reel Dimension  
t
D
P
Po  
E
P1  
Bo  
F
W
Ao  
D1  
Ko  
T2  
J
C
A
B
T1  
A
B
C
J
T1  
T2  
W
12 + 0.3  
- 0.1  
P
E
Application  
SOP-8  
12.75 +  
0.1 5  
2 + 0.5 12.4 +0.2  
330 1  
62 1.5  
2 0.2  
±
8 0.1 1.75 0.1  
±
±
±
±
F
D
D1  
Po P1  
Ao  
Bo  
Ko  
t
1.55+ 0.25  
5.5 0.1 1.55 0.1  
4.0 0.1 2.0 0.1 6.4 0.1 5.2 0.1 2.1 0.1 0.3 0.013  
± ± ± ± ± ±  
±
±
(mm)  
Copyright  
ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  
APW7057  
Cover Tape Dimensions  
Application  
SOP- 8  
Carrier Width  
Cover Tape Width  
Devices Per Reel  
12  
9.3  
2500  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
5F, No. 2 Li-Hsin Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
7F, No. 137, Lane 235, Pac Chiao Rd.,  
Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.  
Tel : 886-2-89191368  
Fax : 886-2-89191369  
Copyright  
ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.3 - Oct., 2003  

相关型号:

APW7057KC-TRG

High Power Step-Down Synchronous DC/DC Controller
ANPEC

APW7057KC-TRL

High Power Step-Down Synchronous DC/DC Controller
ANPEC

APW7057KC-TU

High Power Step-Down Synchronous DC/DC Controller
ANPEC

APW7057_08

High Power Step-Down Synchronous DC/DC Controller
ANPEC

APW7058

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7058KC-TR

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7058KC-TRL

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7058KC-TU

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7058KC-TUL

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7060

Dual Controllers - Step Down Synchronous PWM and Linear Controller
ANPEC

APW7060K

Dual Controllers - Step Down Synchronous PWM and Linear Controller
ANPEC

APW7060KC-TR

Dual Controllers - Step Down Synchronous PWM and Linear Controller
ANPEC